1
|
Frąckowiak J, Komorowicz I, Sajnóg A, Skrypnik K, Suliburska J, Hanć A. Do probiotics and iron supplementation have any impact on element distribution in rat kidneys? - bioimaging by laser ablation inductively coupled plasma mass spectrometry. Talanta 2024; 283:127112. [PMID: 39492141 DOI: 10.1016/j.talanta.2024.127112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the influence of multistrain probiotics and iron supplementation on the distribution and interaction of trace elements in the kidneys of Wistar rats using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) bioimaging. Forty 6-week-old female Wistar rats were divided into five groups, each fed an AIN-93 M diet with varying additions or deficiencies of iron and probiotics, which included a control, an iron-deficient diet, an iron-deficient diet with probiotics, an iron-deficient diet with iron supplementation, and an iron-deficient diet with both probiotics and iron supplementation. The obtained two-dimensional maps of the distribution of elements reveal distinct locations of Cu, Fe, Mn, and Zn in specific tissues of rat kidneys. Specifically, Cu and Fe were co-localized in the renal cortex, while Zn was mostly absent from regions where Cu and Fe accumulated. Fe supplementation alone increased Fe in the renal cortex, while probiotics enhanced this effect, suggesting a synergistic role in Fe absorption. The total content of elements in the kidneys of all groups was determined after digestion: Cu 13.3-24.7 mg kg-1, Fe 218-509 mg kg-1, Mn 0.87-1.29 mg kg-1, and Zn 28.6-40.1 mg kg-1. Competitive interactions among Cu, Fe, and Zn were observed, with probiotics modulating their concentrations and distribution, highlighting their role in trace element homeostasis. Our research provides insights into the interactions between dietary supplements, probiotics, and trace element distribution in kidneys, paving the way for targeted nutritional interventions. This study highlights the need for further research on trace element functions in organisms and their impact on health.
Collapse
Affiliation(s)
- Julia Frąckowiak
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Izabela Komorowicz
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Sajnóg
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Anetta Hanć
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Evcan E, Gulec S. Comparison of apical and basolateral Cu treatment for iron-related gene regulation during deferoxamine induced iron deficiency. GENES & NUTRITION 2022; 17:16. [PMID: 36494833 PMCID: PMC9733202 DOI: 10.1186/s12263-022-00717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal copper transporter (Atp7a) mutant-brindled mice with systemic Cu deficiency had elevated Cu levels in enterocyte cells without any perturbation of iron-regulating genes, suggesting that blood Cu level might be important for intestinal iron homeostasis during iron deficiency (ID). We hypothesized that the blood Cu level and polarization (apical and basolateral) of enterocyte cells might be important regulators for the compensatory response on the regulation of genes in enterocyte cells during iron deficiency. METHODS We grew Caco-2 cells on a bicameral cell culture plate to mimic the human intestine system and on a regular tissue culture plate. Iron deficiency was induced by deferoxamine (DFO). The cells were treated with Cu and Cu with Fe following mRNA expressions of DMT1, FPN, TFR, and ANKRD37 were analyzed. RESULTS Our main finding was that basolateral treatment of Cu significantly reduced mRNA expressions of iron-regulated genes, including DMT1, FPN, TFR, and ANKRD37, compared to DFO-treated and DFO with apical Cu-treated groups in both bicameral and regular tissue culture plates. CONCLUSIONS Cu level in the basolateral side of Caco-2 cells significantly influenced the intracellular gene regulation in DFO-induced iron-deficient condition, and polarization of the cells might be important factor gene regulation in enterocyte cells.
Collapse
Affiliation(s)
- Ezgi Evcan
- grid.419609.30000 0000 9261 240Xİzmir Institute of Technology, Faculty of Engineering, Department of Food Engineering, Molecular Nutrition and Human Physiology Laboratory, Urla, 35430 İzmir, Turkey
| | - Sukru Gulec
- grid.419609.30000 0000 9261 240Xİzmir Institute of Technology, Faculty of Engineering, Department of Food Engineering, Molecular Nutrition and Human Physiology Laboratory, Urla, 35430 İzmir, Turkey
| |
Collapse
|
3
|
Collins JF. Copper nutrition and biochemistry and human (patho)physiology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:311-364. [PMID: 34112357 DOI: 10.1016/bs.afnr.2021.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The essential trace mineral copper plays important roles in human physiology and pathophysiology. Disruption of copper homeostasis may underlie the development of ischemic heart disease, and connective tissue and neurodegenerative disorders. Copper also likely participates in the host response to bacterial infection and is further implicated more broadly in regulating immunity. Recent studies further associate copper with disruption of lipid homeostasis, as is frequently seen in, for example, non-alcoholic fatty liver disease (NAFLD). Moreover, continuing investigation of copper chaperones has revealed new roles for these intracellular copper-binding proteins. Despite these (and many other) significant advances, many questions related to copper biology remain unanswered. For example, what are the most sensitive and specific biomarkers of copper status, and which ones are useful in marginal (or "sub-clinical" copper deficiency)? Further research on this topic is required to inform future investigations of copper metabolism in humans (so the copper status of study participants can be fully appreciated). Also, are current recommendations for copper intake adequate? Recent studies suggest that overt copper deficiency is more common than once thought, and further, some have suggested that the copper RDAs for adults may be too low. Additional human balance and interventional studies are necessary and could provide the impetus for reconsidering the copper RDAs in the future. These and myriad other unresolved aspects of copper nutrition will undoubtedly be the focus of future investigation.
Collapse
Affiliation(s)
- James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Staniek H. The Combined Effects of Cr(III) Supplementation and Iron Deficiency on the Copper and Zinc Status in Wistar Rats. Biol Trace Elem Res 2019; 190:414-424. [PMID: 30430418 PMCID: PMC6599762 DOI: 10.1007/s12011-018-1568-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Abstract
The aim of the study was to assess the combined effects of chromium(III) supplementation and iron deficiency on the copper (Cu) and zinc (Zn) status in female rats. The Cr, Fe, Cu and Zn dietary and tissular levels were measured by Atomic Absorption Spectrometry (AAS) method. The data show that chromium(III) supplementation compensated for the negative effects of Fe deficiency on the Cu content but it deepened the effect on Zn levels in the female rats. Detailed data on the status of trace elements and their interactions in healthy subjects and patients with metabolic disorders (e.g. anaemia, diabetes mellitus) are strongly required for effective nutritional and therapeutic strategies.
Collapse
Affiliation(s)
- Halina Staniek
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznań, Poland.
| |
Collapse
|
5
|
Iron Homeostasis in the Lungs-A Balance between Health and Disease. Pharmaceuticals (Basel) 2019; 12:ph12010005. [PMID: 30609678 PMCID: PMC6469191 DOI: 10.3390/ph12010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022] Open
Abstract
A strong mechanistic link between the regulation of iron homeostasis and oxygen sensing is evident in the lung, where both systems must be properly controlled to maintain lung function. Imbalances in pulmonary iron homeostasis are frequently associated with respiratory diseases, such as chronic obstructive pulmonary disease and with lung cancer. However, the underlying mechanisms causing alterations in iron levels and the involvement of iron in the development of lung disorders are incompletely understood. Here, we review current knowledge about the regulation of pulmonary iron homeostasis, its functional importance, and the link between dysregulated iron levels and lung diseases. Gaining greater knowledge on how iron contributes to the pathogenesis of these diseases holds promise for future iron-related therapeutic strategies.
Collapse
|
6
|
The effect of maternal iron deficiency on zinc and copper levels and on genes of zinc and copper metabolism during pregnancy in the rat. Br J Nutr 2018; 121:121-129. [PMID: 30482256 DOI: 10.1017/s0007114518003069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fe deficiency is relatively common in pregnancy and has both short- and long-term consequences. However, little is known about the effect on the metabolism of other micronutrients. A total of fifty-four female rats were fed control (50 mg Fe/kg) or Fe-deficient diets (7·5 mg/kg) before and during pregnancy. Maternal liver, placenta and fetal liver were collected at day 21 of pregnancy for Cu and Zn analysis and to measure expression of the major genes of Cu and Zn metabolism. Cu levels increased in the maternal liver (P=0·002) and placenta (P=0·018) of Fe-deficient rats. Zn increased (P<0·0001) and Cu decreased (P=0·006) in the fetal liver. Hepatic expression of the Cu chaperones antioxidant 1 Cu chaperone (P=0·042) and cytochrome c oxidase Cu chaperone (COX17, P=0·020) decreased in the Fe-deficient dams, while the expression of the genes of Zn metabolism was unaltered. In the placenta, Fe deficiency reduced the expression of the chaperone for superoxide dismutase 1, Cu chaperone for superoxide dismutase (P=0·030), ceruloplasmin (P=0·042) and Zn transport genes, ZRT/IRT-like protein 4 (ZIP4, P=0·047) and Zn transporter 1 (ZnT1, P=0·012). In fetal liver, Fe deficiency increased COX17 (P=0·020), ZRT/IRT-like protein 14 (P=0·036) and ZnT1 (P=0·0003) and decreased ZIP4 (P=0·004). The results demonstrate that Fe deficiency during pregnancy has opposite effects on Cu and Zn levels in the fetal liver. This may, in turn, alter metabolism of these nutrients, with consequences for development in the fetus and the neonate.
Collapse
|
7
|
Staniek H, Wójciak RW. The combined effect of supplementary Cr(III) propionate complex and iron deficiency on the chromium and iron status in female rats. J Trace Elem Med Biol 2018; 45:142-149. [PMID: 29173471 DOI: 10.1016/j.jtemb.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022]
Abstract
The aim of the study was to evaluate the combined effect of supplementary chromium(III) and iron deficiency on the chromium and iron status in female rats. The study was carried out on female Wistar rats, which were divided into 6 experimental groups with different Fe levels (deficient 10% RDA and recommended (adequate) 100% RDA). Simultaneously, for six weeks their diets were supplemented with Cr(III) at doses of 1, 50 and 500mgkg-1. The tissular chromium and iron levels were measured with the AAS method. The serum iron and TIBC were measured with colorimetric methods The serum ferritin level was measured by means of electrochemiluminescence immunoassay. The serum transferrin level was measured with the ELISA method. The haematology was measured with an automated blood analyser. Supplementary Cr3 increased the Cr content in the tissues. This effect was weaker in the Fe-deficient groups than in those with the recommended Fe level, but it did not affect the Fe status. Fe deficiency significantly reduced the Fe content in the tissues. Simultaneously, Cr3 supplementation mitigated the symptoms of Fe deficiency. Fe deficiency increased TIBC and transferrin levels but reduced ferritin and most haematological parameters. However, simultaneous addition of high doses of Cr3 did not deepen these adverse changes. Our results show that the trend of changes in the Fe-Cr interaction depends on the content of these elements in the body.
Collapse
Affiliation(s)
- Halina Staniek
- Department of Bromatology and Food Toxicology, Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Ul. Wojska Polskiego 31, 60-624, Poznań, Poland.
| | - Rafał W Wójciak
- Department of Clinical Psychology, Poznań University of Medical Sciences, Ul. Bukowska 70, 60-812, Poznań, Poland
| |
Collapse
|
8
|
Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics 2017; 9:1028-1046. [PMID: 28620665 DOI: 10.1039/c7mt00079k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although manganese (Mn) is critical for the proper functioning of various metabolic enzymes and cofactors, excess Mn in the brain causes neurotoxicity. While the exact transport mechanism of Mn has not been fully understood, several importers and exporters for Mn have been identified over the past decade. In addition to Mn-specific transporters, it has been demonstrated that iron transporters can mediate Mn transport in the brain and peripheral tissues. However, while the expression of iron transporters is regulated by body iron stores, whether or not disorders of iron metabolism modify Mn homeostasis has not been systematically discussed. The present review will provide an update on the role of altered iron status in the transport and toxicity of Mn.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue 148TF, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Bjørklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA, Tinkov AA. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol 2017; 41:41-53. [PMID: 28347462 DOI: 10.1016/j.jtemb.2017.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/21/2017] [Accepted: 02/07/2017] [Indexed: 11/17/2022]
Abstract
Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Jan Aaseth
- Department of Public Health, Hedmark University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- RUDN University, Moscow, Russia; Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | | | | | - Alexandr A Nikonorov
- Orenburg State University, Orenburg, Russia; Orenburg State Medical University, Orenburg, Russia
| | - Alexey A Tinkov
- RUDN University, Moscow, Russia; Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; Orenburg State Medical University, Orenburg, Russia
| |
Collapse
|
10
|
A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson's disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J Inorg Biochem 2017; 170:160-168. [DOI: 10.1016/j.jinorgbio.2017.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023]
|
11
|
Effects of diet on brain iron levels among healthy individuals: an MRI pilot study. Neurobiol Aging 2015; 36:1678-1685. [DOI: 10.1016/j.neurobiolaging.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 11/20/2022]
|
12
|
Bioavailability of iron in multiple fortified milk. Journal of Food Science and Technology 2015; 52:6017-23. [PMID: 26345022 DOI: 10.1007/s13197-015-1711-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 12/16/2022]
Abstract
The objectives of the study were to evaluate the bioavailability of iron in milk fortified with ferric pyrophosphate (FPP) soluble and vitamin A acetate and to establish the role of vitamin A in enhancement of iron absorption. Balance indices viz. apparent digestibility coefficient, % retention/intake of iron and haematological parameters viz. blood haemoglobin, plasma ferritin, plasma transferrin and iron content in rat livers were analyzed to evaluate iron bioavailability. Anaemia was induced in one group of rats to evaluate the effect of iron status of body on iron absorption from diet. The results of in vivo study showed that feeding of rats with lyophilates of milk fortified with FPP soluble and FPP soluble + vitamin A acetate had a significant effect on the balance indices of the iron as well as on the haematological parameters and iron liver status. The utilization of iron in the body, as indicated by the results of balance indices, haematological parameters and iron status of livers was significantly higher in anaemic rats compared to control group rats. Vitamin A appeared to be playing role in enhancement of iron absorption and utilization in body.
Collapse
|
13
|
Mora AM, van Wendel de Joode B, Mergler D, Córdoba L, Cano C, Quesada R, Smith DR, Menezes-Filho JA, Eskenazi B. Maternal blood and hair manganese concentrations, fetal growth, and length of gestation in the ISA cohort in Costa Rica. ENVIRONMENTAL RESEARCH 2015; 136:47-56. [PMID: 25460620 PMCID: PMC4262687 DOI: 10.1016/j.envres.2014.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/05/2014] [Accepted: 10/13/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Animal studies have shown that both deficiency and excess manganese (Mn) may result in decreased fetal size and weight, but human studies have reported inconsistent results. METHODS We examined the association of blood and hair Mn concentrations measured at different times during pregnancy with fetal growth among term births and length of gestation in a cohort of 380 mother-infant pairs living near banana plantations aerially sprayed with Mn-containing fungicides in Costa Rica. We used linear regression and generalized additive models to test for linear and nonlinear associations RESULTS Mean (± SD) blood Mn concentration was 24.4 ± 6.6 μg/L and geometric mean (geometric SD) hair Mn concentration was 1.8 (3.2) μg/g. Hair Mn concentrations during the second and third trimesters of gestation were positively related to infant chest circumference (β for 10-fold increase = 0.62 cm; 95% CI: 0.16, 1.08; and β = 0.55 cm; 95% CI: -0.16, 1.26, respectively). Similarly, average maternal hair Mn concentrations during pregnancy were associated with increased chest circumference (β for 10-fold increase = 1.19 cm; 95% CI: 0.43, 1.95) in infants whose mothers did not have gestational anemia, but not in infants of mothers who had gestational anemia (β = 0.39 cm; 95% CI: -0.32, 1.10; pINT=0.14). All these associations were linear. Blood Mn concentrations did not show consistent linear nor nonlinear relationships with any of the birth outcomes CONCLUSIONS Mn plays an important role in fetal development, but the extent to which environmental exposures may cause adverse health effects to the developing fetus is not well understood. Among women living near banana plantations in Costa Rica, we did not observe linear or nonlinear associations of Mn concentrations with lowered birth weight or head circumference, as reported in previous studies. However, we did find positive linear associations between maternal hair Mn concentrations during pregnancy and infant chest circumference.
Collapse
Affiliation(s)
- Ana M Mora
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, P.O. Box 86-3000 Heredia, Costa Rica; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave, Suite 265, Berkeley, CA 94704, USA.
| | - Berna van Wendel de Joode
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, P.O. Box 86-3000 Heredia, Costa Rica.
| | - Donna Mergler
- Centre de Recherche Interdisciplinaire sur la Biologie, la Santé, la Société et l' Environnement (CINBIOSE), Université du Québec à Montréal, Pavillon des sciences, 141, Avenue du Président Kennedy, H2× 1Y4 Montréal, Québec, Canada.
| | - Leonel Córdoba
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, P.O. Box 86-3000 Heredia, Costa Rica.
| | - Camilo Cano
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, P.O. Box 86-3000 Heredia, Costa Rica.
| | - Rosario Quesada
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, P.O. Box 86-3000 Heredia, Costa Rica.
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n Campus Universitário de Ondina, 40170-115 Salvador, Bahia, Brazil.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Ave, Suite 265, Berkeley, CA 94704, USA.
| |
Collapse
|
14
|
Veuthey T, Wessling-Resnick M. Pathophysiology of the Belgrade rat. Front Pharmacol 2014; 5:82. [PMID: 24795636 PMCID: PMC4000996 DOI: 10.3389/fphar.2014.00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023] Open
Abstract
The Belgrade rat is an animal model of divalent metal transporter 1 (DMT1) deficiency. This strain originates from an X-irradiation experiment first reported in 1966. Since then, the Belgrade rat’s pathophysiology has helped to reveal the importance of iron balance and the role of DMT1. This review discusses our current understanding of iron transport homeostasis and summarizes molecular details of DMT1 function. We describe how studies of the Belgrade rat have revealed key roles for DMT1 in iron distribution to red blood cells as well as duodenal iron absorption. The Belgrade rat’s pathology has extended our knowledge of hepatic iron handling, pulmonary and olfactory iron transport as well as brain iron uptake and renal iron handling. For example, relationships between iron and manganese metabolism have been discerned since both are essential metals transported by DMT1. Pathophysiologic features of the Belgrade rat provide us with a unique and interesting animal model to understand iron homeostasis.
Collapse
Affiliation(s)
- Tania Veuthey
- Department of Genetics and Complex Diseases, Harvard School of Public Health Boston, MA, USA
| | | |
Collapse
|
15
|
Argüello G, Martinez P, Peña J, Chen O, Platt F, Zanlungo S, González M. Hepatic metabolic response to restricted copper intake in a Niemann–Pick C murine model. Metallomics 2014; 6:1527-39. [DOI: 10.1039/c4mt00056k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Niemann–Pick C disease (NPC) is a vesicular trafficking disorder primarily caused by mutations in theNpc1gene and characterized by liver dysfunction and neuropathology.
Collapse
Affiliation(s)
- Graciela Argüello
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| | - Pablo Martinez
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
- Santiago, Chile
| | - Juan Peña
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
| | - Oscar Chen
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Silvana Zanlungo
- FONDAP-Center of Genome Regulation (CGR)
- Santiago, Chile
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
| | - Mauricio González
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| |
Collapse
|
16
|
Li YQ, Cao XX, Bai B, Zhang JN, Wang MQ, Zhang YH. Severe Iron Deficiency Is Associated with a Reduced Conception Rate in Female Rats. Gynecol Obstet Invest 2014; 77:19-23. [DOI: 10.1159/000355112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
|
17
|
Gulec S, Collins JF. Investigation of iron metabolism in mice expressing a mutant Menke's copper transporting ATPase (Atp7a) protein with diminished activity (Brindled; Mo (Br) (/y) ). PLoS One 2013; 8:e66010. [PMID: 23776592 PMCID: PMC3679098 DOI: 10.1371/journal.pone.0066010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a) is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1). Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [MoBr/y]). Mutant mice were rescued by perinatal copper injections, and, after a 7–8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates). Adult MoBr/y mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived MoBr/y mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and MoBr/y) increased ∼3-fold when mice consumed a low-iron diet and ∼6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin) activity in MoBr/y mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, MoBr/y mice were able to adequately regulate iron absorption, but unlike in WT mice, concurrent increases in enterocyte and liver copper levels and serum ferroxidase activity may have contributed to maintenance of iron homeostasis.
Collapse
Affiliation(s)
- Sukru Gulec
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, United States of America
| | - James F. Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Effects of Methionine Hydroxy Analog Chelated Cu/Mn/Zn on Laying Performance, Egg Quality, Enzyme Activity and Mineral Retention of Laying Hens. J Poult Sci 2012. [DOI: 10.2141/jpsa.011055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Leitner DF, Connor JR. Functional roles of transferrin in the brain. Biochim Biophys Acta Gen Subj 2011; 1820:393-402. [PMID: 22138408 DOI: 10.1016/j.bbagen.2011.10.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/13/2011] [Accepted: 10/24/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transferrin is synthesized in the brain by choroid plexus and oligodendrocytes, but only that in the choroid plexus is secreted. Transferrin is a major iron delivery protein to the brain, but the amount transcytosed across the brain microvasculature is minimal. Transferrin is the major source of iron delivery to neurons. It may deliver iron to immature oligodendrocytes but this trophic effect declines over time while iron requirements for maintaining myelination continue. Finally, transferrin may play an important role in neurodegenerative diseases through its ability to mobilize iron. SCOPE OF REVIEW The role of transferrin in maintaining brain iron homeostasis and the mechanism by which it enters the brain and delivers iron will be discussed. Its relevance to neurological disorders will also be addressed. MAJOR CONCLUSIONS Transferrin is the major iron delivery protein for neurons and the microvasculature, but has a limited role for glial cells. The main source of transferrin in the brain is likely from the choroid plexus although the concentration of transferrin at any given time in the brain includes that synthesized in oligodendrocytes. Little is known about brain iron egress or the role of transferrin in this process. GENERAL SIGNIFICANCE Neuron survival requires iron, which is predominantly delivered by transferrin. The concentration of transferrin in the cerebrospinal fluid is reflective of brain iron availability and can function as a biomarker in disease. Accumulation of iron in the brain contributes to neurodegenerative processes, thus an understanding of the role that transferrin plays in regulating brain iron homeostasis is essential. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Dominique F Leitner
- Department of Neurosurgery, Penn State University, M.S. Hershey Medical Center, 500 University Dr., Hershey, PA 17033-0850, USA
| | | |
Collapse
|
20
|
Claus Henn B, Kim J, Wessling-Resnick M, Téllez-Rojo MM, Jayawardene I, Ettinger AS, Hernández-Avila M, Schwartz J, Christiani DC, Hu H, Wright RO. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models. Environ Health 2011; 10:97. [PMID: 22074419 PMCID: PMC3248860 DOI: 10.1186/1476-069x-10-97] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/10/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism. METHODS Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: HFE [hemochromatosis], TF [transferrin], and ALAD [δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data. RESULTS Percentage of participants carrying at least one copy of HFE C282Y, HFE H63D, TF P570S, and ALAD K59N variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either C282Y or H63D allele in HFE gene was 19.6%. Geometric mean (geometric standard deviation) manganese concentrations were 17.0 (1.5) μg/l. Women with any HFE variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]). TF and ALAD variants were not significant predictors of blood manganese. In animal models, Hfe(-/-) mice displayed a significant reduction in blood manganese compared with Hfe(+/+) mice, replicating the altered manganese metabolism found in our human research. CONCLUSIONS Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements.
Collapse
Affiliation(s)
- Birgit Claus Henn
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Jonghan Kim
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | - Martha María Téllez-Rojo
- Division of Statistics, Center for Evaluation Research and Surveys, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Innocent Jayawardene
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Adrienne S Ettinger
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Howard Hu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Robert O Wright
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
- Department of Emergency Medicine, Children's Hospital Boston, Boston, MA, USA
| |
Collapse
|
21
|
Jiang L, Ranganathan P, Lu Y, Kim C, Collins JF. Exploration of the copper-related compensatory response in the Belgrade rat model of genetic iron deficiency. Am J Physiol Gastrointest Liver Physiol 2011; 301:G877-86. [PMID: 21852364 PMCID: PMC3220320 DOI: 10.1152/ajpgi.00261.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Menkes copper ATPase (Atp7a) and metallothionein (Mt1a) are induced in the duodenum of iron-deficient rats, and serum and hepatic copper levels increase. Induction of a multi-copper ferroxidase (ceruloplasmin; Cp) has also been documented. These findings hint at an important role for Cu during iron deficiency. The intestinal divalent metal transporter 1 (Dmt1) is also induced during iron deficiency. The hypothesis that Dmt1 is involved in the copper-related compensatory response during iron deficiency was tested, utilizing a mutant Dmt1 rat model, namely the Belgrade (b/b) rat. Data from b/b rats were compared with phenotypically normal, heterozygous +/b rats. Intestinal Atp7a and Dmt1 expression was increased in b/b rats, whereas Mt1a expression was unchanged. Serum and liver copper levels did not increase in the Belgrades nor did Cp protein or activity. The lack of fully functional Dmt1 may thus partially blunt the compensatory response to iron deficiency by 1) decreasing copper levels in enterocytes, as exemplified by a lack of Mt1a induction and a lesser induction of Atp7a, 2) abolishing the frequently described increase in liver and serum copper, and 3) attenuating the documented increase in Cp expression and activity.
Collapse
Affiliation(s)
- Lingli Jiang
- Food Science & Human Nutrition Department, University of Florida, Gainesville, Florida
| | | | - Yan Lu
- Food Science & Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Changae Kim
- Food Science & Human Nutrition Department, University of Florida, Gainesville, Florida
| | - James F. Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake. Blood 2011; 118:3146-53. [PMID: 21768302 DOI: 10.1182/blood-2011-05-352112] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ∼ 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency.
Collapse
|
23
|
Abstract
Interactions between the essential dietary metals, iron and copper, have been known for many years. This review highlights recent advances in iron-copper interactions with a focus on tissues and cell types important for regulating whole-body iron and copper homeostasis. Cells that mediate dietary assimilation (enterocytes) and storage and distribution (hepatocytes) of iron and copper are considered, along with the principal users (erythroid cells) and recyclers of red cell iron (reticuloendothelial macrophages). Interactions between iron and copper in the brain are also discussed. Many unanswered questions regarding the role of these metals and their interactions in health and disease emerge from this synopsis, highlighting extensive future research opportunities.
Collapse
Affiliation(s)
- James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
24
|
Iron supplementation by intraperitoneal injection eliminates the accumulation of hepatic copper induced by excess calcium in rats. Br J Nutr 2009; 102:258-63. [PMID: 19138444 DOI: 10.1017/s0007114508184707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Excess calcium is well known to induce iron deficiency. Furthermore, excess calcium increases hepatic copper concentration and decreases renal copper concentration. We investigated the effect of iron supplementation on the tissue distribution of copper in rats given a high-calcium diet. Male rats (5 weeks old) were divided into four groups; a control group, and three groups given a diet containing 5-fold higher calcium than its requirement and an intraperitoneal iron supplementation of 0, 1 or 2 mg/week as iron dextran. The animals were fed their respective experimental diets with or without iron supplementation for 4 weeks. Although the high-calcium diet had no effect on calcium concentrations in the liver, kidney, testis, spleen and plasma, it reduced haematocrit and iron concentrations in the liver, kidney and testis and the rats had a moderate iron deficiency. The iron supplementation restored to normal these signs of iron deficiency. The high-calcium diet increased hepatic copper concentration but decreased plasma copper concentration and ceruloplasmin activity, which was restored by the iron supplementation. The copper concentration in bile was neither affected by the high-calcium diet nor the iron supplementation. The high-calcium diet decreased the copper concentration in the kidney, which was not restored by the iron supplementation. These results suggest that secondary iron deficiency stimulates hepatic accumulation of copper in rats given excess calcium by suppressing copper efflux into the circulation. The reduced renal copper concentration by excess calcium is independent of the iron deficiency.
Collapse
|
25
|
Youdim MBH. Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res 2009; 14:45-56. [PMID: 18790724 DOI: 10.1007/bf03033574] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
While iron deficiency is not perceived as a life threatening disorder, it is the most prevalent nutritional abnormality in the world, and a better understanding of modes and sites of action, can help devise better treatment programs for those who suffer from it. Nowhere is this more important than in infants and children that make up the bulk of iron deficiency in society. Although the effects of iron deficiency have been extensively studied in systemic organs, until very recently little attention was paid to its effects on brain function. The studies of Oski at Johns Hopkin Medical School in 1974, demonstrating the impairment of learning in young school children with iron deficiency, prompted us to study its relevance to brain biochemistry and function in an animal model of iron deficiency. Indeed, rats made iron deficient have lowered brain iron and impaired behaviours including learning. This can become irreversible especially in newborns, even after long-term iron supplementation. We have shown that in this condition it is the brain striatal dopaminergic-opiate system which becomes defective, resulting in alterations in circadian behaviours, cognitive impairment and neurochemical changes closely associated with them. More recently we have extended these studies and have established that cognitive impairment may be closely associated with neuroanatomical damage and zinc metabolism in the hippocampus due to iron deficiency, and which may result from abnormal cholinergic function. The hippocampus is the focus of many studies today, since this brain structure has high zinc concentration and is highly involved in many forms of cognitive deficits as a consequence of cholinergic deficiency and has achieved prominence because of dementia in ageing and Alzheimer's disease. Thus, it is now apparent that cognitive impairment may not be attributed to a single neurotransmitter, but rather, alterations and interactions of several systems in different brain regions. In animal models of iron deficiency it is apparent that dopaminergic interaction with the opiate system and cholinergic neurotransmission may be defective.
Collapse
Affiliation(s)
- M B H Youdim
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
26
|
Iron bioavailability of cocoa powder as determined by the Hb regeneration efficiency method. Br J Nutr 2008; 102:215-20. [DOI: 10.1017/s0007114508149182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fe deficiency is a public-health problem worldwide, and effective measures for preventing Fe deficiency are needed. The aim of the present study was to determine the bioavailability of Fe in cocoa using the Hb regeneration efficiency (HRE) method. Thirty-five F344/N male weanling rats were fed a low-Fe diet for 4 weeks to deplete body Fe stores. Then, four groups of seven animals each were repleted for 20 d using a modified AIN-93G diet fortified with ferrous sulphate, ferric citrate or two brands of cocoa powder to provide a total dietary Fe concentration of 20 mg/kg. As a negative control, seven rats were maintained on the low-Fe diet. The HRE were 0·733, 0·350, 0·357 and 0·336 for ferrous sulphate, ferric citrate and the two brands of cocoa powder, respectively. The relative biological values (RBV), defined as the ratio of the sample HRE to that of ferrous sulphate, were 0·478, 0·488 and 0·459 for ferric citrate and the two brands of cocoa powder, respectively. The Fe bioavailability of cocoa was significantly less than that of ferrous sulphate and was similar to that of ferric citrate. The difference in Fe bioavailability between the two brands of cocoa powder was negligible. When the negative control was used to correct the data, estimates of the RBV derived from Hb gain were similar to those derived from the HRE. These results suggest that cocoa is a significant source of moderately bioavailable Fe.
Collapse
|
27
|
Choi JH, Park JD, Choi BS. The Effect of Systemic Iron Level on the Transport and Distribution of Copper to the Brain. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.3.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Park JD, Kim KY, Kim DW, Choi SJ, Choi BS, Chung YH, Han JH, Sung JH, Kwon IH, Mun JH, Yu IJ. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure. Inhal Toxicol 2007; 19:563-72. [PMID: 17497534 DOI: 10.1080/08958370701276554] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Welders can be exposed to high levels of manganese through welding fumes. Although it has already been suggested that excessive manganese exposure causes neurotoxicity, called manganism, the pathway of manganese transport to the brain with welding-fume exposure remains unclear. Iron is an essential metal that maintains a homeostasis in the body. The divalent metal transporter 1 (DMT1) transports iron and other divalent metals, such as manganese, and the depletion of iron is known to upregulate DMT1 expression. Accordingly, this study investigated the tissue distribution of manganese in iron-sufficient and iron-deficient rats after welding-fume exposure. The feeding of an iron-deficient diet for 4 wk produced a depletion of body iron, such as decreased iron levels in the serum and tissues, and upregulated the DMT1 expression in the rat duodenum. The iron-sufficient and iron-deficient rats were then exposed to welding fumes generated from manual metal arc stainless steel at a concentration of 63.5 +/- 2.3 mg/m3 for 2 h per day over a 30-day period. Animals were sacrificed on days 1, 15, and 30. The level of body iron in the iron-deficient rats was restored to the control level after the welding-fume exposure. However, the tissue distributions of manganese after the welding-fume exposure showed similar patterns in both the iron-sufficient and iron-deficient groups. The concentration of manganese increased in the lungs and liver on days 15 and 30, and increased in the olfactory bulb on day 30. Slight and heterogeneous increases of manganese were observed in different brain regions. Consequently, these findings suggest that the presence of Fe in the inhaled welding fumes may not have a significant effect on the uptake of Mn into the brain. Thus, the condition of iron deficiency did not seem to have any apparent effect on the transport of Mn into the brain after the inhalation of welding fumes.
Collapse
|
29
|
Thompson K, Molina RM, Donaghey T, Schwob JE, Brain JD, Wessling-Resnick M. Olfactory uptake of manganese requires DMT1 and is enhanced by anemia. FASEB J 2006; 21:223-30. [PMID: 17116743 PMCID: PMC2432183 DOI: 10.1096/fj.06-6710com] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manganese, an essential nutrient, can also elicit toxicity in the central nervous system (CNS). The route of exposure strongly influences the potential neurotoxicity of manganese-containing compounds. Recent studies suggest that inhaled manganese can enter the rat brain through the olfactory system, but little is known about the molecular factors involved. Divalent metal transporter-1 (DMT1) is the major transporter responsible for intestinal iron absorption and its expression is regulated by body iron status. To examine the potential role of this transporter in uptake of inhaled manganese, we studied the Belgrade rat, since these animals display significant defects in both iron and manganese metabolism due to a glycine-to-arginine substitution (G185R) in their DMT1 gene product. Absorption of intranasally instilled 54Mn was significantly reduced in Belgrade rats and was enhanced in iron-deficient rats compared to iron-sufficient controls. Immunohistochemical experiments revealed that DMT1 was localized to both the lumen microvilli and end feet of the sustentacular cells of the olfactory epithelium. Importantly, we found that DMT1 protein levels were increased in anemic rats. The apparent function of DMT1 in olfactory manganese absorption suggests that the neurotoxicity of the metal can be modified by iron status due to the iron-responsive regulation of the transporter.
Collapse
Affiliation(s)
- Khristy Thompson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Garcia SJ, Gellein K, Syversen T, Aschner M. Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicol Sci 2006; 95:205-14. [PMID: 17060373 DOI: 10.1093/toxsci/kfl139] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Manganese (Mn) neurotoxicity in adults can result in psychological and neurological disturbances similar to Parkinson's disease, including extrapyramidal motor system defects and altered behaviors. Iron (Fe) deficiency is one of the most prevalent nutritional disorders in the world, affecting approximately 2 billion people, especially pregnant and lactating women, infants, toddlers, and adolescents. Fe deficiency can enhance brain Mn accumulation even in the absence of excess Mn in the environment or the diet. To assess the neurochemical interactions of dietary Fe deficiency and excess Mn during development, neonatal rats were exposed to either a control diet, a low-Fe diet (ID), or a low-Fe diet supplemented with Mn (IDMn) via maternal milk during the lactation period (postnatal days [PN] 4-21). In PN21 pups, both the ID and IDMn diets produced changes in blood parameters characteristic of Fe deficiency: decreased hemoglobin (Hb) and plasma Fe, increased plasma transferrin (Tf), and total iron binding capacity (TIBC). Treated ID and IDMn dams also had decreased Hb throughout lactation and ID dams had decreased plasma Fe and increased Tf and TIBC on PN21. Both ID and IDMn pups had decreased Fe and increased copper brain levels; in addition, IDMn pups also had increased brain levels of several other essential metals including Mn, chromium, zinc, cobalt, aluminum, molybdenum, and vanadium. Concurrent with altered concentrations of metals in the brain, transport proteins divalent metal transporter-1 and transferrin receptor were increased. No significant changes were determined for the neurotransmitters gamma aminobutyric acid and glutamate. The results of this study confirm that there is homeostatic relationship among several essential metals in the brain and not simply between Fe and Mn.
Collapse
Affiliation(s)
- Stephanie J Garcia
- Department of Physiology & Pharmacology, Wake Forest University Health Sciences, Winston Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
31
|
Alférez MJ, López-Aliaga I, Nestares T, Díaz-Castro J, Barrionuevo M, Ros PB, Campos MS. Dietary goat milk improves iron bioavailability in rats with induced ferropenic anaemia in comparison with cow milk. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2005.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Elsner RJF, Spangler JG. Neurotoxicity of inhaled manganese: public health danger in the shower? Med Hypotheses 2005; 65:607-16. [PMID: 15913899 DOI: 10.1016/j.mehy.2005.01.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
CONTEXT Manganese (Mn) is an essential trace element but is neurotoxic at high doses. Showering with Mn-laden water has never been evaluated as a central nervous system (CNS) delivery vector for Mn, even though intranasally administered Mn in laboratory animals circumvents the blood-brain barrier and passes directly into the brain via olfactory pathways. OBJECTIVE To review the literature on Mn and attempt to quantify potential human CNS exposure to manganese from showering. DATA SOURCES We systematically searched Medline 11/9/02 and again on 3/9/04. The following search terms were used: manganese, water, drinking water, shower, showering, bath, bathing and inhalation, then combined with "water or drinking water or showering or shower or bathing or inhalation." STUDY SELECTION Animal experimental investigations, human epidemiological studies, and consensus and governmental reports were utilized. DATA EXTRACTION Data were extracted by both authors and extrapolations to humans were calculated by one of us (JGS) controlling for age, length of exposure and known respiratory differences between rats and humans. DATA SYNTHESIS During a decade of showering in Mn-contaminated water, models for children and adults show higher doses of aerosolized Mn (3-fold and 112-fold greater, respectively) than doses reported to cause Mn brain deposition in rats. CONCLUSIONS Long-term shower exposure to Mn-laden water may pose a significant risk for CNS neurotoxicity via olfactory uptake in up to 8.7 million Americans. If our results are confirmed, regulatory agencies must rethink existing Mn drinking water standards.
Collapse
Affiliation(s)
- Robert J F Elsner
- Wake Forest University School of Medicine, Department of Family and Community Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1084, USA
| | | |
Collapse
|
33
|
TAKASUGI S, MATSUI T, YANO H. Effects of excess calcium as a different form on mineral metabolism in rats. Anim Sci J 2005. [DOI: 10.1111/j.1740-0929.2005.00292.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Thompson K, Molina R, Donaghey T, Brain JD, Wessling-Resnick M. The influence of high iron diet on rat lung manganese absorption. Toxicol Appl Pharmacol 2005; 210:17-23. [PMID: 15993455 DOI: 10.1016/j.taap.2005.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/05/2005] [Accepted: 05/19/2005] [Indexed: 11/16/2022]
Abstract
Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased approximately 2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration.
Collapse
Affiliation(s)
- Khristy Thompson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
35
|
Aschner M, Erikson KM, Dorman DC. Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 2005; 35:1-32. [PMID: 15742901 DOI: 10.1080/10408440590905920] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Manganese (Mn) is an essential mineral that is found at low levels in food, water, and the air. Under certain high-dose exposure conditions, elevations in tissue manganese levels can occur. Excessive manganese accumulation can result in adverse neurological, reproductive, and respiratory effects in both laboratory animals and humans. In humans, manganese-induced neurotoxicity (manganism) is the overriding concern since affected individuals develop a motor dysfunction syndrome that is recognized as a form of parkinsonism. This review primarily focuses on the essentiality and toxicity of manganese and considers contemporary studies evaluating manganese dosimetry and its transport across the blood-brain barrier, and its distribution within the central nervous system (CNS). These studies have dramatically improved our understanding of the health risks posed by manganese by determining exposure conditions that lead to increased concentrations of this metal within the CNS and other target organs. Most individuals are exposed to manganese by the oral and inhalation routes of exposure; however, parenteral injection and other routes of exposure are important. Interactions between manganese and iron and other divalent elements occur and impact the toxicokinetics of manganese, especially following oral exposure. The oxidation state and solubility of manganese also influence the absorption, distribution, metabolism, and elimination of manganese. Manganese disposition is influenced by the route of exposure. Rodent inhalation studies have shown that manganese deposited within the nose can undergo direct transport to the brain along the olfactory nerve. Species differences in manganese toxicokinetics and response are recognized with nonhuman primates replicating CNS effects observed in humans while rodents do not. Potentially susceptible populations, such as fetuses, neonates, individuals with compromised hepatic function, individuals with suboptimal manganese or iron intake, and those with other medical states (e.g., pre-parkinsonian state, aging), may have altered manganese metabolism and could be at greater risk for manganese toxicity.
Collapse
|
36
|
Cardozo-Pelaez F, Cox DP, Bolin C. Lack of the DNA repair enzyme OGG1 sensitizes dopamine neurons to manganese toxicity during development. Gene Expr 2005; 12:315-23. [PMID: 16358418 PMCID: PMC6009123 DOI: 10.3727/000000005783992007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Onset of Parkinson's disease (PD) and Parkinson-like syndromes has been associated with exposure to diverse environmental stimuli. Epidemiological studies have demonstrated that exposure to elevated levels of manganese produces neuropathological changes localized to the basal ganglia, including neuronal loss and depletions in striatal dopamine content. However, understanding the mechanisms associated with manganese neurotoxicity has been hampered by the lack of a good rodent model. Elevated levels of 8-hydroxy-2'-deoxyguanosine (oxo8dG) have been found in brain areas affected in PD. Whether increased DNA damage is responsible for neuronal degeneration or is a mere epiphenomena of neuronal loss remains to be elucidated. Thus, by using mice deficient in the ability to remove oxo8dG we aimed to determine if dysregulation of DNA repair coupled to manganese exposure would be detrimental to dopaminergic neurons. Wild-type and OGG1 knockout mice were exposed to manganese from conception to postnatal day 30; in both groups, exposure to manganese led to alterations in the neurochemistry of the nigrostriatal system. After exposure, dopamine levels were elevated in the caudate of wild-type mice. Dopamine was reduced in the caudate of OGG1 knockout mice, a loss that was paralleled by an increase in the dopamine index of turnover. In addition, the reduction of dopamine in caudate putamen correlated with the accumulation of oxo8dG in midbrain. We conclude that OGG1 function is essential in maintaining neuronal stability during development and identify DNA damage as a common pathway in neuronal loss after a toxicological challenge.
Collapse
Affiliation(s)
- Fernando Cardozo-Pelaez
- Centerfor Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
37
|
Heilig E, Molina R, Donaghey T, Brain JD, Wessling-Resnick M. Pharmacokinetics of pulmonary manganese absorption: evidence for increased susceptibility to manganese loading in iron-deficient rats. Am J Physiol Lung Cell Mol Physiol 2004; 288:L887-93. [PMID: 15618452 DOI: 10.1152/ajplung.00382.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High levels of airborne manganese can be neurotoxic, yet little is known about absorption of this metal via the lungs. Intestinal manganese uptake is upregulated by iron deficiency and is thought to be mediated by divalent metal transporter 1 (DMT1), an iron-regulated factor known to play a role in dietary iron absorption. To better characterize metal absorption from the lungs to the blood and test whether iron deficiency may modify this process, the pharmacokinetics of pulmonary manganese and iron absorption by control and iron-deficient rats were compared. Levels of DMT1 expression in the lungs were determined to explore potential changes induced by iron deficiency that might alter metal absorption. The pharmacokinetic curves for intratracheally instilled (54)Mn and (59)Fe were significantly different, suggesting that pulmonary uptake of the two metals involves different mechanisms. Intratracheally instilled iron-deficient rats had significantly higher blood (54)Mn levels, whereas blood (59)Fe levels were significantly reduced compared with controls. The same trend was observed when radioisotopes were delivered by intravenous injection, indicating that iron-deficient rats have altered blood clearance of manganese. In situ analysis revealed the presence of DMT1 transcripts in airway epithelium; however, mRNA levels did not change in iron deficiency. Although lung DMT1 levels and metal absorption did not appear to be influenced by iron deficiency, the differences in blood clearance of instilled manganese identified by this study support the idea that iron status can influence the potential toxicity of this metal.
Collapse
Affiliation(s)
- Elizabeth Heilig
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Gambling L, Dunford S, McArdle HJ. Iron deficiency in the pregnant rat has differential effects on maternal and fetal copper levels. J Nutr Biochem 2004; 15:366-72. [PMID: 15157943 DOI: 10.1016/j.jnutbio.2003.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/20/2003] [Accepted: 12/27/2003] [Indexed: 11/29/2022]
Abstract
Iron deficiency during pregnancy causes problems both for the mother and fetus. Iron deficiency is known to have secondary effects on copper metabolism. In this study, we use a rat model to examine the effect of iron deficiency on copper levels in maternal and fetal tissue. We assess whether the effects of iron deficiency on copper metabolism are due to alterations in mRNA levels of proteins of copper transport. Rowett Hooded Lister rats were fed diets with four different iron contents before and during pregnancy. Maternal and fetal samples were collected on day 21 of gestation. Copper and iron levels of liver and placenta were analyzed, mRNA levels of genes involved in copper transport were studied, and copper oxidase activity measured. Reduced dietary iron was found to increase maternal liver copper, inversely correlating with iron levels. Correspondingly, copper and ceruloplasmin increased in maternal serum. The placenta showed the greatest increase in copper levels. As the iron content of the maternal diet decreased so did the iron and copper levels in the fetal liver. In all tissues examined, mRNA expression for CTR1, ATOX1, ATP7A, and ATP7B was unchanged by iron deficiency. However, copper oxidase activity in maternal serum and placenta was increased. Our study in a rat model demonstrates that iron deficiency during pregnancy has a differential effect on copper metabolism in the mother and fetus. It is clear from this study that the changes in copper levels that accompany iron deficiency are not mediated by changes in transcription of the genes involved in copper transport.
Collapse
|
39
|
Rao DB, Wong BA, McManus BE, McElveen AM, James AR, Dorman DC. Inhaled iron, unlike manganese, is not transported to the rat brain via the olfactory pathway. Toxicol Appl Pharmacol 2003; 193:116-26. [PMID: 14613722 DOI: 10.1016/s0041-008x(03)00340-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Iron and manganese share structural, biochemical, and physiological similarities. The objective of this study was to determine whether iron, like manganese, is transported to the rat brain via the olfactory tract following inhalation exposure. Eight-week-old male CD rats were exposed to approximately 0.31 mg Fe per m(3) (mass median aerodynamic diameter = 2.99 microm; geometric standard deviation = 1.15) via inhalation for a target duration of 90 min. Following exposure, rats were euthanized immediately (0) or at 1, 2, 4, 8, or 21 days postexposure. In addition to nasal and regional brain tissues, blood, and viscera were also collected. 59Fe concentrations were determined by gamma spectrometry. Further, heads were collected and frozen, and autoradiograms were prepared to visualize the location of 59Fe from the nose to the brain. Finally, olfactory mucosa samples collected at 0, 2, 4, and 21 days postexposure were further analyzed using high-performance liquid chromatography (HPLC) plus gamma spectroscopy to determine the association between 59Fe and transferrin. Data obtained from gamma spectrometry revealed that most of the iron remained in the nasal regions of the olfactory system and that less than 4% of iron deposited on the olfactory mucosa was observed in the olfactory bulb. Autoradiograms confirmed the data obtained from gamma spectrometry. 59Fe activity was absent in the olfactory regions of the brain even 4 days postexposure. Further, HPLC-gamma spectroscopy analyses indicated that 59Fe in the olfactory mucosa was coeluted with transferrin. Hence iron, unlike manganese, is not readily transported to the brain via the olfactory tract.
Collapse
Affiliation(s)
- Deepa B Rao
- CIIT Centers for Health Research, Research Triangle Park, NC 27709-2137, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Gropper SS, Bader-Crowe DM, McAnulty LS, White BD, Keith RE. Non-anemic iron depletion, oral iron supplementation and indices of copper status in college-aged females. J Am Coll Nutr 2002; 21:545-52. [PMID: 12480800 DOI: 10.1080/07315724.2002.10719253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Indices of copper status, specifically serum copper and ceruloplasmin concentrations and erythrocyte superoxide dismutase activity, and iron status, including serum ferritin, transferrin receptors, hemoglobin and hematocrit, were studied in 27 college-aged females with adequate iron versus low iron stores. METHODS Serum copper and ceruloplasmin concentrations, erythrocyte superoxide dismutase activity, serum ferritin, transferrin receptors, hemoglobin and hematocrit were studied in 15 females with non-anemic iron depletion before and after five weeks of iron supplementation and in 12 healthy iron-adequate females aged 19 to 28 years. RESULTS Mean hemoglobin, hematocrit and ferritin concentrations of the control group (144 +/- 11 g/L, 43 +/- 3% and 38 +/- 15 micro g/L, respectively) were significantly higher than those of the iron depleted group prior to supplementation (134 +/- 9 g/L, 39 +/- 2% and 11 +/- 6 micro g/L, respectively). The serum transferrin receptor to serum ferritin ratio was significantly greater for the iron depleted group prior to supplementation (890 +/- 753) versus the control group (151 +/- 61). Mean serum copper and ceruloplasmin concentrations and erythrocyte superoxide dismutase activity of the iron-adequate control group (20.0 +/- 5.7 micro mol/L, 463 +/- 142 mg/L and 527 +/- 124 U/mL, respectively) were significantly higher than those of the iron depleted group (12.4 +/- 3.8 micro mol/L, 350 +/- 108 mg/L and 353 +/- 186 U/mL, respectively) prior to supplementation. Following iron supplementation, hematocrit and ferritin concentrations of the iron depleted group significantly increased to 42 +/- 3% and 26 +/- 8 micro g/L, respectively. Mean serum transferrin receptor concentrations and the serum transferrin receptor to ferritin ratios significantly decreased in the iron depleted group following supplementation (6.1 +/- 1.6 mg/L to 4.6 +/- 1.5 mg/L and 890 +/- 753 to 198 +/- 114, respectively). Iron supplementation also significantly increased the mean serum copper concentration to 14.2 +/- 5.4 micro mol/L and, in subjects with serum ferritin concentrations </=12 micro g/L, the mean serum ceruloplasmin concentration. CONCLUSIONS Non-anemic iron depletion characterized by low iron stores is associated with negative impacts on copper status. Iron supplements improved indices of iron status and serum copper and ceruloplasmin concentrations. Whether the diminished serum copper and ceruloplasmin concentrations and superoxide dismutase activity are associated with free radical damage to iron depleted cells requires further investigation.
Collapse
Affiliation(s)
- Sareen S Gropper
- Department of Nutrition and Food Science, Auburn University, Alabama 36849, USA.
| | | | | | | | | |
Collapse
|
41
|
Malecki EA, Cook BM, Devenyi AG, Beard JL, Connor JR. Transferrin is required for normal distribution of 59Fe and 54Mn in mouse brain. J Neurol Sci 1999; 170:112-8. [PMID: 10561526 DOI: 10.1016/s0022-510x(99)00203-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypotransferrinemia (hpx/hpx) is a genetic defect in mice resulting in <1% of normal plasma transferrin (Tf) concentrations; heterozygotes for this mutation (+/hpx) have low circulating Tf concentrations. These mice provide a unique opportunity to examine the role of Tf in Fe and Mn transport in the brain. Twenty weanling wild-type BALB/cJ mice, 15 +/hpx mice, and 12 hpx/hpx mice of both sexes were injected i.v. with either 54MnCl(2) or 59FeCl(3) either 1 h or 1 week before killing at 12 weeks of age. Total brain counts of 54Mn and 59Fe were measured, and regional brain distributions were assessed by autoradiography. Hypotransferrinemia did not affect total brain Mn uptake. However, 1 week after i.v. injection, hpx/hpx mice had less 54Mn in forebrain structures including cerebral cortex, corpus callosum, striatum, and substantia nigra. The +/hpx mice had the highest total brain 59Fe accumulation 1 h after i.v. injection. A striking effect of regional distribution of 59Fe was noted 1 week after injection; in hpx/hpx mice, 59Fe was located primarily in choroid plexus, whereas in +/+ and +/hpx mice 59Fe was widely distributed, with relatively high amounts in cerebral cortex and cerebellum. We interpret these data to mean that Tf is necessary for the transport of Fe but not Mn across the blood-brain barrier, and that there is a Tf-independent uptake mechanism for iron in the choroid plexus. Additionally, these data suggest that endogenous synthesis of Tf is necessary for Fe transport from the choroid plexus.
Collapse
Affiliation(s)
- E A Malecki
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
42
|
Chua AC, Morgan EH. Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol Trace Elem Res 1996; 55:39-54. [PMID: 8971353 DOI: 10.1007/bf02784167] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Manganese (Mn) is an essential trace element at low concentrations, but at higher concentrations is neurotoxic. It has several chemical and biochemical properties similar to iron (Fe), and there is evidence of metabolic interaction between the two metals, particularly at the level of absorption from the intestine. The aim of this investigation was to determine whether Mn and Fe interact during the processes involved in uptake from the plasma by the brain and other organs of the rat. Dams were fed control (70 mg Fe/kg), Fe-deficient (5-10 mg Fe/kg), or Fe-loaded (20 g carbonyl Fe/kg) diets, with or without Mn-loaded drinking water (2 g Mn/L), from day 18-19 of pregnancy, and, after weaning the young rats, were continued on the same dietary regimens. Measurements of brain, liver, and kidney Mn and nonheme Fe levels, and the uptake of 54Mn and 59Fe from the plasma by these organs and the femurs, were made when the rats were aged 15 and 63 d. Organ nonheme Fe levels were much higher than Mn levels, and in the liver and kidney increased much more with Fe loading than did Mn levels with Mn loading. However, in the brain the increases were greater for Mn. Both Fe depletion and loading led to increased brain Mn concentrations in the 15-d/rats, while Fe loading also had this effect at 63 d. Mn loading did not have significant effects on the nonheme Fe concentrations. 54Mn, injected as MnCl2 mixed with serum, was cleared more rapidly from the circulation than was 59Fe, injected in the form of diferric transferrin. In the 15-d-rats, the uptake of 54Mn by brain, liver, kidneys, and femurs was increased by Fe loading, but this was not seen in the 63-d rats. Mn supplementation led to increased 59Fe uptake by the brain, liver, and kidneys of the rats fed the control and Fe-deficient diets, but not in the Fe-loaded rats. It is concluded that Mn and Fe interact during transfer from the plasma to the brain and other organs and that this interaction is synergistic rather than competitive in nature. Hence, excessive intake of Fe plus Mn may accentuate the risk of tissue damage caused by one metal alone, particularly in the brain.
Collapse
Affiliation(s)
- A C Chua
- Department of Physiology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
43
|
Crowe A, Morgan EH. The effects of iron loading and iron deficiency on the tissue uptake of 64Cu during development in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:53-9. [PMID: 8781525 DOI: 10.1016/0304-4165(96)00044-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study examined the uptake of 64Cu by the brain, liver and other organs during development in rats aged 15, 21 and 63 days fed low, normal and high iron diets, using either a solution of 64CuCl2 chelated with nitrilo-triacetic acid (NTA) or 64Cu-ceruloplasmin (64Cu-Cp). 64Cu-NTA uptake was higher in the brain, spleen, kidneys, femurs and red cells at 15 days than at the later ages, while the liver took up most of the 64Cu in 63-day-old rats over the 2 h of the study. The brain had similar levels of 64Cu-NTA uptake at 15 and 21 days, even though liver uptake significantly increased, suggesting that Cu-NTA uptake by the brain increases from 15 to 21 days. The brain took up a greater percent of the injected dose of 64Cu-Cp than 64Cu-NTA yet, in either case, brain uptake was lower than that of the other organs. Iron loaded rats had significantly higher uptake of non-ceruloplasmin-bound 64Cu in all the organs examined, for at least one of the three ages, when compared with control rats. However, iron deficiency produced little change. Iron loading has a greater effect on 64Cu-Cp uptake than 64Cu-NTA, decreasing 64Cu uptake in the brain, liver, kidneys and femurs. Iron deficiency only increased 64Cu-Cp uptake in the liver. These results suggest that the mechanism of copper uptake by the liver is still maturing during suckling in the rat, and that ceruloplasmin receptor numbers are down regulated by iron loading, thus providing evidence of a new link between iron and copper metabolism.
Collapse
Affiliation(s)
- A Crowe
- Department of Physiology, University of Western Australia, Nedlands, Perth, Australia
| | | |
Collapse
|
44
|
Wienk KJ, Marx JJ, Lemmens AG, Brink EJ, Van Der Meer R, Beynen AC. Mechanism underlying the inhibitory effect of high calcium carbonate intake on iron bioavailability from ferrous sulphate in anaemic rats. Br J Nutr 1996; 75:109-20. [PMID: 8785180 DOI: 10.1079/bjn19960114] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of high CaCO3 intake on the bioavailability of Fe from FeSO4 was assessed during Fe repletion of rats with Fe-deficiency-induced anaemia. Fe-deficient rats with a mean blood haemoglobin concentration of 4.1 mmol/l were fed on purified Fe-adequate diets containing either 6.2 or 25.0 g CaCO3/kg (ten rats per group). Haemoglobin repletion after 14 d was significantly depressed by high CaCO3 intake (9.5 v. 9.8 mmol/l for high and low CaCO3 intake respectively; P = 0.03), as was apparent Fe retention (367 v. 552 micrograms/d during days 5-7, P < 0.001; 146 v. 196 micrograms/d during days 19-21, P < 0.001). The concentration of Fe in the liquid phase of the proximal half of the small intestine was significantly lower in the high-CaCO3 group (3.71 v. 5.20 micrograms/g digesta; P = 0.02). Mucosal uptake and mucosal transfer of Fe were determined with orally administered 59Fe and Cr as a non-absorbable marker. Mucosal transfer was significantly diminished by CaCO3 loading (90 v. 100% of mucosal uptake; P = 0.04), whereas mucosal uptake was not. 59Fe retention values at 14 d after administration were not significantly different (57.6 v. 51.9%; P = 0.14). Fe contents of liver and spleen were significantly decreased by high compared with low CaCO3 intake (879 v. 590 micrograms Fe in liver, P < 0.001; 92 v. 63 micrograms Fe in spleen, P < 0.001). It is concluded that high intake of CaCO3 depresses Fe bioavailability in rats. The CaCO3-induced decrease in Fe solubility in the digesta probably was associated with an increased efficiency of mucosal Fe uptake so that the amount of mucosal uptake remained unaltered. The CaCO3-induced decrease in Fe transfer through the mucosal cytoplasm and/or basolateral membrane may have been responsible for the concurrent decrease in Fe bioavailability.
Collapse
Affiliation(s)
- K J Wienk
- Department of Laboratory Animal Science, Utrecht University, Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The purpose of this study was to clarify the influence of iron on zinc status. The animals were divided into four groups, consisting of five rats in each group. The control group was fed on basal diet with adequate levels of zinc and iron, whereas the experimental group was fed diets containing different levels of iron ad libitum for 15 d. Low levels of iron (LFe) significantly increased the zinc absorption percentage but there was a decrease in high (HFe) and very high iron (VHFe) level groups (p < 0.001). The retention percentage changes were found to be parallel to the changes in the absorption percentage curve. It was found that zinc (per total dry tissue) and Zn-65 (per total tissue) increased in the rats fed the LFe, whereas in general they decreased in the rats fed the HFe and VHFe diets. Significant changes were found in the duodenum and liver. Zn-65 (per g wet tissue) significantly increased in the brain and liver in the LFe group, but there was a decrease in the duodenum, ileum, kidney, liver, and brain in the HFe and VHFe groups. Changes in the level of zinc (per g dried tissue) were found to be parallel to the changes in Zn-65 in all the groups. The dietary proportions of iron appear to influence zinc metabolism at the intestinal and cellular transport levels over a given period of time.
Collapse
Affiliation(s)
- N Dursun
- Department of Physiology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | | |
Collapse
|
46
|
Zhu Z, Kimura M, Itokawa Y. Mineral status in selenium-deficient rats compared to selenium-sufficient rats fed vitamin-free casein-based or torula yeast-based diet. Biol Trace Elem Res 1993; 37:219-31. [PMID: 7688535 DOI: 10.1007/bf02783797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To clarify the mineral status in selenium (Se)-deficient rats fed a vitamin-free casein (VFC)-based or torula yeast (TY)-based diet, 24 weanling male Wistar rats were divided into 4 groups fed diets using VFC or TY as the protein source and containing Se at sufficient (0.5 microgram/g, +Se) or deficient (0.019 microgram/g for VFC-based and < 0.005 microgram/g for TY-based diets, -Se) level for 8 wk. TY supplied a larger amount of extra minerals (Na, K, Ca, Mg, Fe, Mn, Zn, and Cu) except Se than VFC. Se concentration and glutathione peroxidase activity were significantly lower in TY-fed rats than in VFC-fed rats, as well as in -Se rats compared to +Se rats. Compared to +Se rats, Fe concentration was higher in liver and muscle of -Se rats fed the VFC-based diet and in plasma, heart, liver, and tibia of -Se rats fed the TY-based diet. Compared to +Se rats, decreases of Mn concentration appeared in plasma, heart, and tibia of VFC-fed -Se rats and in brain, heart, liver and tibia of TY-fed -Se rats. There was also a little imbalance in Ca, Mg, Na, K, and Cu caused by Se deficiency. The results indicated that Se deficiency induced the mineral imbalance in rats, especially an increase in Fe and decrease in Mn, which was more severe in TY-fed rats than VFC-fed rats. However, TY cannot be used as a model for both Se and other mineral deficiency because of the extra minerals except Se found in TY. Instead, VFC can be employed, which contains fewer minerals except Se than TY and also can produce a severe degree of Se deficiency.
Collapse
Affiliation(s)
- Z Zhu
- Department of Hygiene, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|