1
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cactus-associated yeasts. PLoS Biol 2024; 22:e3002832. [PMID: 39312572 PMCID: PMC11449361 DOI: 10.1371/journal.pbio.3002832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biology Department, Villanova University, Villanova, Pennsylvania, United States of America
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Trivellin C, Torello Pianale L, Olsson L. Robustness quantification of a mutant library screen revealed key genetic markers in yeast. Microb Cell Fact 2024; 23:218. [PMID: 39098937 PMCID: PMC11298085 DOI: 10.1186/s12934-024-02490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Microbial robustness is crucial for developing cell factories that maintain consistent performance in a challenging environment such as large-scale bioreactors. Although tools exist to assess and understand robustness at a phenotypic level, the underlying metabolic and genetic mechanisms are not well defined, which limits our ability to engineer more strains with robust functions. RESULTS This study encompassed four steps. (I) Fitness and robustness were analyzed from a published dataset of yeast mutants grown in multiple environments. (II) Genes and metabolic processes affecting robustness or fitness were identified, and 14 of these genes were deleted in Saccharomyces cerevisiae CEN.PK113-7D. (III) The mutants bearing gene deletions were cultivated in three perturbation spaces mimicking typical industrial processes. (IV) Fitness and robustness were determined for each mutant in each perturbation space. We report that robustness varied according to the perturbation space. We identified genes associated with increased robustness such as MET28, linked to sulfur metabolism; as well as genes associated with decreased robustness, including TIR3 and WWM1, both involved in stress response and apoptosis. CONCLUSION The present study demonstrates how phenomics datasets can be analyzed to reveal the relationship between phenotypic response and associated genes. Specifically, robustness analysis makes it possible to study the influence of single genes and metabolic processes on stable microbial performance in different perturbation spaces. Ultimately, this information can be used to enhance robustness in targeted strains.
Collapse
Affiliation(s)
- Cecilia Trivellin
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Luca Torello Pianale
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
3
|
Scholes AN, Stuecker TN, Hood SE, Locke CJ, Stacy CL, Zhang Q, Lewis JA. Natural variation in yeast reveals multiple paths for acquiring higher stress resistance. BMC Biol 2024; 22:149. [PMID: 38965504 PMCID: PMC11225312 DOI: 10.1186/s12915-024-01945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.
Collapse
Affiliation(s)
- Amanda N Scholes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Tara N Stuecker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Stephanie E Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Cader J Locke
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Carson L Stacy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Qingyang Zhang
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
4
|
Zhang H, Chen H, Zhang J, Wang K, Huang B, Wang Z. The role of MrUbp4, a deubiquitinase, in conidial yield, thermotolerance, and virulence in Metarhizium robertsii. J Invertebr Pathol 2024; 204:108111. [PMID: 38631560 DOI: 10.1016/j.jip.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Ubiquitin-specific proteases (UBPs), the largest subfamily of deubiquitinating enzymes, regulate ubiquitin homeostasis and play diverse roles in eukaryotes. Ubp4 is essential for the growth, development, and pathogenicity of various fungal pathogens. However, its functions in the growth, stress responses, and virulence of entomopathogenic fungi remain unclear. In this study, we elucidated the role of the homolog of Ubp4, MrUbp4, in the entomopathogenic fungus Metarhizium robertsii. Deletion of MrUbp4 led to a notable increase in ubiquitination levels, demonstrating the involvement of MrUbp4 in protein deubiquitination. Furthermore, the ΔMrUbp4 mutant displayed a significant reduction in conidial yield, underscoring the pivotal role of MrUbp4 in conidiation. Additionally, the mutant exhibited heightened resistance to conidial heat treatment, emphasizing the role of MrUbp4 in thermotolerance. Notably, insect bioassays unveiled a substantial impairment in the virulence of the ΔMrUbp4 mutant. This was accompanied by a notable decrease in cuticle penetration ability and appressorium formation upon further analysis. In summary, our findings highlight the essential role of MrUbp4 in regulating the conidial yield, thermotolerance, and contributions to the virulence of M. robertsii.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Hanyuan Chen
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Jianfeng Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Kui Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Zhangxun Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Wang XQ, Yuan B, Zhang FL, Liu CG, Auesukaree C, Zhao XQ. Novel Roles of the Greatwall Kinase Rim15 in Yeast Oxidative Stress Tolerance through Mediating Antioxidant Systems and Transcriptional Regulation. Antioxidants (Basel) 2024; 13:260. [PMID: 38539794 PMCID: PMC10967648 DOI: 10.3390/antiox13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.
Collapse
Affiliation(s)
- Xue-Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Choowong Auesukaree
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| |
Collapse
|
6
|
Wang Z, Su C, Zhang Y, Shangguan S, Wang R, Su J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol 2024; 14:1294182. [PMID: 38274755 PMCID: PMC10808364 DOI: 10.3389/fmicb.2023.1294182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Saccharomyces cerevisiae is a eukaryotic organism with a clear genetic background and mature gene operating system; in addition, it exhibits environmental tolerance. Therefore, S. cerevisiae is one of the most commonly used organisms for the synthesis of biological chemicals. The investigation of fatty acid catabolism in S. cerevisiae is crucial for the synthesis and accumulation of fatty acids and their derivatives, with β-oxidation being the predominant pathway responsible for fatty acid metabolism in this organism, occurring primarily within peroxisomes. The latest research has revealed distinct variations in β-oxidation among different fatty acids, primarily attributed to substrate preferences and disparities in the metabolic regulation of key enzymes involved in the S. cerevisiae fatty acid metabolic pathway. The synthesis of lipids, on the other hand, represents another crucial metabolic pathway for fatty acids. The present paper provides a comprehensive review of recent research on the key factors influencing the efficiency of fatty acid utilization, encompassing β-oxidation and lipid synthesis pathways. Additionally, we discuss various approaches for modifying β-oxidation to enhance the synthesis of fatty acids and their derivatives in S. cerevisiae, aiming to offer theoretical support and serve as a valuable reference for future studies.
Collapse
Affiliation(s)
- Zhaoyun Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Chunli Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sifan Shangguan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
7
|
Zhao Y, Coelho C, Hughes AL, Lazar-Stefanita L, Yang S, Brooks AN, Walker RSK, Zhang W, Lauer S, Hernandez C, Cai J, Mitchell LA, Agmon N, Shen Y, Sall J, Fanfani V, Jalan A, Rivera J, Liang FX, Bader JS, Stracquadanio G, Steinmetz LM, Cai Y, Boeke JD. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 2023; 186:5220-5236.e16. [PMID: 37944511 DOI: 10.1016/j.cell.2023.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/03/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Camila Coelho
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sandy Yang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, the University of Edinburgh, Edinburgh EH9 3BF
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Cindy Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Yue Shen
- BGI, Shenzhen, Beishan, Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI, Shenzhen, Shenzhen 518120, China
| | - Joseph Sall
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Viola Fanfani
- School of Biological Sciences, the University of Edinburgh, Edinburgh EH9 3BF
| | - Anavi Jalan
- Department of Biology, New York University, New York, NY, USA
| | - Jordan Rivera
- Department of Biology, New York University, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, NY 11201, USA.
| |
Collapse
|
8
|
Lipinski KA, Senn KA, Zeps NJ, Hoskins AA. Biochemical and genetic evidence supports Fyv6 as a second-step splicing factor in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1792-1802. [PMID: 37625852 PMCID: PMC10578475 DOI: 10.1261/rna.079607.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential process for gene expression in eukaryotes catalyzed by the spliceosome in two transesterification steps. The spliceosome is a large, highly dynamic complex composed of five small nuclear RNAs and dozens of proteins, some of which are needed throughout the splicing reaction while others only act during specific stages. The human protein FAM192A was recently proposed to be a splicing factor that functions during the second transesterification step, exon ligation, based on analysis of cryo-electron microscopy (cryo-EM) density. It was also proposed that Fyv6 might be the Saccharomyces cerevisiae functional and structural homolog of FAM192A; however, no biochemical or genetic data has been reported to support this hypothesis. Herein, we show that Fyv6 is a splicing factor and acts during exon ligation. Deletion of FYV6 results in genetic interactions with the essential splicing factors Prp8, Prp16, and Prp22 and decreases splicing in vivo of reporter genes harboring intron substitutions that limit the rate of exon ligation. When splicing is assayed in vitro, whole-cell extracts lacking Fyv6 accumulate first-step products and exhibit a defect in exon ligation. Moreover, loss of Fyv6 causes a change in 3' splice site (SS) selection in both a reporter gene and the endogenous SUS1 transcript in vivo. Together, these data suggest that Fyv6 is a component of the yeast spliceosome that influences 3' SS usage and the potential homolog of human FAM192A.
Collapse
Affiliation(s)
- Karli A Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Katherine A Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Natalie J Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
9
|
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023; 63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Na Liu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| |
Collapse
|
10
|
Itriago H, Marufee Islam Z, Cohn M. Characterization of the RAD52 Gene in the Budding Yeast Naumovozyma castellii. Genes (Basel) 2023; 14:1908. [PMID: 37895257 PMCID: PMC10606518 DOI: 10.3390/genes14101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Several sources of DNA damage compromise the integrity and stability of the genome of every organism. Specifically, DNA double-strand breaks (DSBs) can have lethal consequences for the cell. To repair this type of DNA damage, the cells employ homology-directed repair pathways or non-homologous end joining. Homology-directed repair requires the activity of the RAD52 epistasis group of genes. Rad52 is the main recombination protein in the budding yeast Saccharomyces cerevisiae, and rad52Δ mutants have been characterized to show severe defects in DSB repair and other recombination events. Here, we identified the RAD52 gene in the budding yeast Naumovozyma castellii. Our analysis showed that the primary amino acid sequence of N. castellii Rad52 shared 70% similarity with S. cerevisiae Rad52. To characterize the gene function, we developed rad52Δ mutant strains by targeted gene replacement transformation. We found that N. castellii rad52Δ mutants showed lowered growth capacity, a moderately altered cell morphology and increased sensitivity to genotoxic agents. The decreased viability of the N. castellii rad52Δ mutants in the presence of genotoxic agents indicates that the role of the Rad52 protein in the repair of DNA damage is conserved in this species.
Collapse
Affiliation(s)
| | | | - Marita Cohn
- Department of Biology, Genetics Group, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| |
Collapse
|
11
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cacti-associated yeasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557833. [PMID: 37745407 PMCID: PMC10515907 DOI: 10.1101/2023.09.14.557833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently ~17 times. Using machine-learning, we further found that cactophily can be predicted with 76% accuracy from functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which is likely associated with duplication and altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved through disparate molecular mechanisms. Remarkably, multiple cactophilic lineages and their close relatives are emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-may preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Present address: Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Present address: UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC 28223
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
Roy S, Zaker A, Mer A, D’Amours D. Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. NAR Cancer 2023; 5:zcad047. [PMID: 37705607 PMCID: PMC10495288 DOI: 10.1093/narcan/zcad047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer cells often experience large-scale alterations in genome architecture because of DNA damage and replication stress. Whether mutations in core regulators of chromosome structure can also lead to cancer-promoting loss in genome stability is not fully understood. To address this question, we conducted a systematic analysis of mutations affecting a global regulator of chromosome biology -the SMC5/6 complex- in cancer genomics cohorts. Analysis of 64 959 cancer samples spanning 144 tissue types and 199 different cancer genome studies revealed that the SMC5/6 complex is frequently altered in breast cancer patients. Patient-derived mutations targeting this complex associate with strong phenotypic outcomes such as loss of ploidy control and reduced overall survival. Remarkably, the phenotypic impact of several patient mutations can be observed in a heterozygous context, hence providing an explanation for a prominent role of SMC5/6 mutations in breast cancer pathogenesis. Overall, our findings suggest that genes encoding global effectors of chromosome architecture can act as key contributors to cancer development in humans.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvind Mer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
13
|
Ho Ahn J, Hwan Jung K, Seok Lim E, Min Kim S, Ok Han S, Um Y. Recent advances in microbial production of medium chain fatty acid from renewable carbon resources: a comprehensive review. BIORESOURCE TECHNOLOGY 2023; 381:129147. [PMID: 37169199 DOI: 10.1016/j.biortech.2023.129147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Microbial production of medium chain length fatty acids (MCFAs) from renewable resources is becoming increasingly important in establishing a sustainable and clean chemical industry. This review comprehensively summarizes current advances in microbial MCFA production from renewable resources. Detailed information is provided on two major MCFA production pathways using various renewable resources and other auxiliary pathways supporting MCFA production to help understand the fundamentals of bio-based MCFA production. In addition, conventional and well-studied MCFA producers are classified into two categories, natural and synthetic producers, and their characteristics on MCFA production are outlined. Moreover, various engineering strategies employed to achieve the highest MCFAs production up to date are showcased together with key enzymes suggested for MCFA overproduction. Finally, future challenges and perspectives are discussed towards more efficient production of bio-based MCFA production.
Collapse
Affiliation(s)
- Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kweon Hwan Jung
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
14
|
Lipinski KA, Senn KA, Zeps NJ, Hoskins AA. Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526368. [PMID: 36778415 PMCID: PMC9915624 DOI: 10.1101/2023.01.30.526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential process for gene expression in eukaryotes catalyzed by the spliceosome in two transesterification steps. The spliceosome is a large, highly dynamic complex composed of 5 small nuclear RNAs and dozens of proteins, some of which are needed throughout the splicing reaction while others only act during specific stages. The human protein FAM192A was recently proposed to be a splicing factor that functions during the second transesterification step, exon ligation, based on analysis of cryo-electron microscopy (cryo-EM) density. It was also proposed that Fyv6 might be the functional S. cerevisiae homolog of FAM192A; however, no biochemical or genetic data has been reported to support this hypothesis. Herein, we show that Fyv6 is a splicing factor and acts during exon ligation. Deletion of FYV6 results in genetic interactions with the essential splicing factors Prp8, Prp16, and Prp22; decreases splicing in vivo of reporter genes harboring intron substitutions that limit the rate of exon ligation; and changes 3’ splice site (SS) selection. Together, these data suggest that Fyv6 is a component of the spliceosome and the potential functional and structural homolog of human FAM192A.
Collapse
Affiliation(s)
- Karli A. Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Katherine A. Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Natalie J. Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Aaron A. Hoskins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
15
|
Ciamponi FE, Procópio DP, Murad NF, Franco TT, Basso TO, Brandão MM. Multi-omics network model reveals key genes associated with p-coumaric acid stress response in an industrial yeast strain. Sci Rep 2022; 12:22466. [PMID: 36577778 PMCID: PMC9797568 DOI: 10.1038/s41598-022-26843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The production of ethanol from lignocellulosic sources presents increasingly difficult issues for the global biofuel scenario, leading to increased production costs of current second-generation (2G) ethanol when compared to first-generation (1G) plants. Among the setbacks encountered in industrial processes, the presence of chemical inhibitors from pre-treatment processes severely hinders the potential of yeasts in producing ethanol at peak efficiency. However, some industrial yeast strains have, either naturally or artificially, higher tolerance levels to these compounds. Such is the case of S. cerevisiae SA-1, a Brazilian fuel ethanol industrial strain that has shown high resistance to inhibitors produced by the pre-treatment of cellulosic complexes. Our study focuses on the characterization of the transcriptomic and physiological impact of an inhibitor of this type, p-coumaric acid (pCA), on this strain under chemostat cultivation via RNAseq and quantitative physiological data. It was found that strain SA-1 tend to increase ethanol yield and production rate while decreasing biomass yield when exposed to pCA, in contrast to pCA-susceptible strains, which tend to decrease their ethanol yield and fermentation efficiency when exposed to this substance. This suggests increased metabolic activity linked to mitochondrial and peroxisomal processes. The transcriptomic analysis also revealed a plethora of differentially expressed genes located in co-expressed clusters that are associated with changes in biological pathways linked to biosynthetic and energetical processes. Furthermore, it was also identified 20 genes that act as interaction hubs for these clusters, while also having association with altered pathways and changes in metabolic outputs, potentially leading to the discovery of novel targets for metabolic engineering toward a more robust industrial yeast strain.
Collapse
Affiliation(s)
- F. E. Ciamponi
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - D. P. Procópio
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - N. F. Murad
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - T. T. Franco
- grid.411087.b0000 0001 0723 2494School of Chemical Engineering (FEQ), State University of Campinas (Unicamp), Av. Albert Einstein, 500, Campinas, SP 13083-852 Brazil
| | - T. O. Basso
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - M. M. Brandão
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| |
Collapse
|
16
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
17
|
de Mello FDSB, Coradini ALV, Carazzolle MF, Maneira C, Furlan M, Pereira GAG, Teixeira GS. Genetic mapping of a bioethanol yeast strain reveals new targets for hydroxymethylfurfural- and thermotolerance. Microbiol Res 2022; 263:127138. [DOI: 10.1016/j.micres.2022.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
|
18
|
Liu Z, Xing L, Huang W, Liu B, Wan F, Raffa KF, Hofstetter RW, Qian W, Sun J. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biol 2022; 20:190. [PMID: 36002826 PMCID: PMC9400205 DOI: 10.1186/s12915-022-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological invasions are responsible for substantial environmental and economic losses. The red turpentine beetle (RTB), Dendroctonus valens LeConte, is an important invasive bark beetle from North America that has caused substantial tree mortality in China. The lack of a high-quality reference genome seriously limits deciphering the extent to which genetic adaptions resulted in a secondary pest becoming so destructive in its invaded area. RESULTS Here, we present a 322.41 Mb chromosome-scale reference genome of RTB, of which 98% of assembled sequences are anchored onto fourteen linkage groups including the X chromosome with a N50 size of 24.36 Mb, which is significantly greater than other Coleoptera species. Repetitive sequences make up 45.22% of the genome, which is higher than four other Coleoptera species, i.e., Mountain pine beetle Dendroctonus ponderosae, red flour beetle Tribolium castaneum, blister beetle Hycleus cichorii, and Colorado potato beetle Leptinotarsa decemlineata. We identify rapidly expanded gene families and positively selected genes in RTB, which may be responsible for its rapid environmental adaptation. Population genetic structure of RTB was revealed by genome resequencing of geographic populations in native and invaded regions, suggesting substantial divergence of the North American population and illustrates the possible invasion and spread route in China. Selective sweep analysis highlighted the enhanced ability of Chinese populations in environmental adaptation. CONCLUSIONS Overall, our high-quality reference genome represents an important resource for genomics study of invasive bark beetles, which will facilitate the functional study and decipher mechanism underlying invasion success of RTB by integrating the Pinus tabuliformis genome.
Collapse
Affiliation(s)
- Zhudong Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China
| | - Longsheng Xing
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | | | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 1000101, China.
| |
Collapse
|
19
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Sanz AB, Díez-Muñiz S, Moya J, Petryk Y, Nombela C, Rodríguez-Peña JM, Arroyo J. Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. J Fungi (Basel) 2022; 8:jof8070718. [PMID: 35887473 PMCID: PMC9323250 DOI: 10.3390/jof8070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Conditions altering the yeast cell wall lead to the activation of an adaptive transcriptional response mainly governed by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway. Two high-throughput screenings were developed using the yTHC collection of yeast conditional mutant strains to systematically identify essential genes related to cell wall integrity, and those required for the transcriptional program elicited by cell wall stress. Depleted expression of 52 essential genes resulted in hypersensitivity to the dye Calcofluor white, with chromatin organization, Golgi vesicle transport, rRNA processing, and protein glycosylation processes, as the most highly representative functional groups. Via a flow cytometry-based quantitative assay using a CWI reporter plasmid, 97 strains exhibiting reduced gene-reporter expression levels upon stress were uncovered, highlighting genes associated with RNA metabolism, transcription/translation, protein degradation, and chromatin organization. This screening also led to the discovery of 41 strains displaying a basal increase in CWI-associated gene expression, including mainly putative cell wall-related genes. Interestingly, several members of the RSC chromatin remodelling complex were uncovered in both screenings. Notably, Rsc9 was necessary to regulate the gene expression of CWI-related genes both under stress and non-stress conditions, suggesting distinct requirements of the RSC complex for remodelling particular genes.
Collapse
|
21
|
Ylinen A, de Ruijter JC, Jouhten P, Penttilä M. PHB production from cellobiose with Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:124. [PMID: 35729556 PMCID: PMC9210708 DOI: 10.1186/s12934-022-01845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Replacement of petrochemical-based materials with microbially produced biodegradable alternatives calls for industrially attractive fermentation processes. Lignocellulosic materials offer non-edible alternatives for cultivated sugars, but require often use of expensive sugar releasing enzymes, such as β-glucosidases. These cellulose treatment costs could be reduced if microbial production hosts could use short cellodextrins such as cellobiose directly as their substrates. In this study, we demonstrate production of poly(hydroxybutyrate) (PHB) in yeast Saccharomyces cerevisiae using cellobiose as a sole carbon source. Yeast strains expressing PHB pathway genes from Cupriavidus necator and cellodextrin transporter gene CDT-1 from Neurospora crassa were complemented either with β-glucosidase gene GH1-1 from N. crassa or with cellobiose phosphorylase gene cbp from Ruminococcus flavefaciens. These cellobiose utilization routes either with Gh1-1 or Cbp enzymes differ in energetics and dynamics. However, both routes enabled higher PHB production per consumed sugar and higher PHB accumulation % of cell dry weight (CDW) than use of glucose as a carbon source. As expected, the strains with Gh1-1 consumed cellobiose faster than the strains with Cbp, both in flask and bioreactor batch cultures. In shake flasks, higher final PHB accumulation % of CDW was reached with Cbp route (10.0 ± 0.3%) than with Gh1-1 route (8.1 ± 0.2%). However, a higher PHB accumulation was achieved in better aerated and pH-controlled bioreactors, in comparison to shake flasks, and the relative performance of strains switched. In bioreactors, notable PHB accumulation levels per CDW of 13.4 ± 0.9% and 18.5 ± 3.9% were achieved with Cbp and Gh1-1 routes, respectively. The average molecular weights of accumulated PHB were similar using both routes; approximately 500 kDa and 450 kDa for strains expressing either cbp or GH1-1 genes, respectively. The formation of PHB with high molecular weights, combined with efficient cellobiose conversion, demonstrates a highly potential solution for improving attractiveness of sustainable polymer production using microbial cells.
Collapse
Affiliation(s)
- Anna Ylinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland
| | - Paula Jouhten
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| |
Collapse
|
22
|
Swaminathan AB, Soma S, Vicary AC, Zulkifli M, Kaur H, Gohil VM. A yeast suppressor screen links Coa4 to the mitochondrial copper delivery pathway for cytochrome c oxidase. Genetics 2022; 221:6603117. [PMID: 35666203 DOI: 10.1093/genetics/iyac090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cytochrome c oxidase (CcO) is a multimeric copper-containing enzyme of the mitochondrial respiratory chain that powers cellular energy production. The two core subunits of CcO, Cox1 and Cox2, harbor the catalytic CuB and CuA sites, respectively. Biogenesis of each copper site occurs separately and requires multiple proteins that constitute the mitochondrial copper delivery pathway. Currently, the identity of all the members of the pathway is not known, though several evolutionarily conserved twin CX9C motif-containing proteins have been implicated in this process. Here, we performed a targeted yeast suppressor screen that placed Coa4, a twin CX9C motif-containing protein, in the copper delivery pathway to the Cox1 subunit. Specifically, we show that overexpression of Cox11, a copper metallochaperone required for the formation of CuB site, can restore Cox1 abundance, CcO assembly, and mitochondrial respiration in coa4Δ cells. This rescue is dependent on the copper-coordinating cysteines of Cox11. The abundance of Coa4 and Cox11 in mitochondria is reciprocally regulated, further linking Coa4 to the CuB site biogenesis. Additionally, we find that coa4Δ cells have reduced levels of copper and exogenous copper supplementation can partially ameliorate its respiratory-deficient phenotype, a finding that connects Coa4 to cellular copper homeostasis. Finally, we demonstrate that human COA4 can replace the function of yeast Coa4 indicating its evolutionarily conserved role. Our work provides genetic evidences for the role of Coa4 in the copper delivery pathway to the CuB site of CcO.
Collapse
Affiliation(s)
- Abhinav B Swaminathan
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Shivatheja Soma
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Alison C Vicary
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Harman Kaur
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Lee YG, Kim C, Sun L, Lee TH, Jin YS. Selective production of retinol by engineered Saccharomyces cerevisiae through the expression of retinol dehydrogenase. Biotechnol Bioeng 2021; 119:399-410. [PMID: 34850377 DOI: 10.1002/bit.28004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/06/2022]
Abstract
Retinol is a fat-soluble vitamin A that is widely used in the food and pharmaceutical industries. Currently, retinol is commercially produced by chemical synthesis. Microbial production of retinol has been alternatively explored but restricted to a mixture of retinoids including retinol, retinal, and retinoic acid. Thus, we introduced heterologous retinol dehydrogenase into retinoids mixture-producing Saccharomyces cerevisiae for the selective production of retinol using xylose. Expression of human RDH10 and Escherichia coli ybbO led to increase in retinol production, but retinal remained as a major product. In contrast, S. cerevisiae harboring human RDH12 produced retinol selectively with negligible production of retinal. The resulting strain (SR8A-RDH12) produced retinol only. However, more glycerol was accumulated due to intracellular redox imbalance. Therefore, Lactococcus lactis noxE coding for H2 O-forming NADH oxidase was additionally introduced to resolve the redox imbalance. The resulting strain produced 52% less glycerol and more retinol with a 30% higher yield than a parental strain. As the produced retinol was not stable, we examined culture and storage conditions including temperature, light, and antioxidants for the optimal production of retinol. In conclusion, we achieved selective production of retinol efficiently from xylose by introducing human RDH12 and NADH oxidase into S. cerevisiae.
Collapse
Affiliation(s)
- Ye-Gi Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chanwoo Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tae-Hee Lee
- Solus BioTech, Yongin, Gyeonggi-do, South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
25
|
Cao C, Xue C. More Than Just Cleaning: Ubiquitin-Mediated Proteolysis in Fungal Pathogenesis. Front Cell Infect Microbiol 2021; 11:774613. [PMID: 34858882 PMCID: PMC8631298 DOI: 10.3389/fcimb.2021.774613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin-proteasome mediated protein turnover is an important regulatory mechanism of cellular function in eukaryotes. Extensive studies have linked the ubiquitin-proteasome system (UPS) to human diseases, and an array of proteasome inhibitors have been successfully developed for cancer therapy. Although still an emerging field, research on UPS regulation of fungal development and virulence has been rapidly advancing and has generated considerable excitement in its potential as a target for novel drugs. In this review, we summarize UPS composition and regulatory function in pathogenic fungi, especially in stress responses, host adaption, and fungal pathogenesis. Emphasis will be given to UPS regulation of pathogenic factors that are important for fungal pathogenesis. We also discuss future potential therapeutic strategies for fungal infections based on targeting UPS pathways.
Collapse
Affiliation(s)
- Chengjun Cao
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
26
|
Cooper DG, Jiang Y, Skuodas S, Wang L, Fassler JS. Possible Role for Allelic Variation in Yeast MED15 in Ecological Adaptation. Front Microbiol 2021; 12:741572. [PMID: 34733258 PMCID: PMC8558680 DOI: 10.3389/fmicb.2021.741572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.
Collapse
Affiliation(s)
- David G Cooper
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Yishuo Jiang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Sydney Skuodas
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Luying Wang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Jan S Fassler
- Biology Department, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
27
|
Kang NK, Lee JW, Ort DR, Jin YS. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Biotechnol J 2021; 17:e2000431. [PMID: 34390209 DOI: 10.1002/biot.202000431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
L-malic acid is widely used in the food, chemical, and pharmaceutical industries. Here, we report on production of malic acid from xylose, the second most abundant sugar in lignocellulosic hydrolysates, by engineered Saccharomyces cerevisiae. To enable malic acid production in a xylose-assimilating S. cerevisiae, we overexpressed PYC1 and PYC2, coding for pyruvate carboxylases, a truncated MDH3 coding for malate dehydrogenase, and SpMAE1, coding for a Schizosaccharomyces pombe malate transporter. Additionally, both the ethanol and glycerol-producing pathways were blocked to enhance malic acid production. The resulting strain produced malic acid from both glucose and xylose, but it produced much higher titers of malic acid from xylose than glucose. Interestingly, the engineered strain had higher malic acid yield from lower concentrations (10 g/L) of xylose, with no ethanol production, than from higher xylose concentrations (20 g/L and 40 g/L). As such, a fed-batch culture maintaining xylose concentrations at low levels was conducted and 61.2 g/L of malic acid was produced, with a productivity of 0.32 g/L∙h. These results represent successful engineering of S. cerevisiae for the production of malic acid from xylose, confirming that that xylose offers the efficient production of various biofuels and chemicals by engineered S. cerevisiae. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jae Won Lee
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
28
|
Pereira PR, Freitas CS, Paschoalin VMF. Saccharomyces cerevisiae biomass as a source of next-generation food preservatives: Evaluating potential proteins as a source of antimicrobial peptides. Compr Rev Food Sci Food Saf 2021; 20:4450-4479. [PMID: 34378312 DOI: 10.1111/1541-4337.12798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Saccharomyces cerevisiae is the main biotechnological tool for the production of Baker's or Brewer's biomasses, largely applied in beverage and fermented-food production. Through its gene expression reprogramming and production of compounds that inactivate the growth of other microorganisms, S. cerevisiae is able to grow in adverse environments and in complex microbial consortia, as in fruit pulps and root flour fermentations. The distinct set of up-regulated genes throughout yeast biomass propagation includes those involved in sugar fermentation, ethanol metabolization, and in protective responses against abiotic stresses. These high abundant proteins are precursors of several peptides with promising health-beneficial activities such as antihypertensive, antioxidant, antimicrobial, immunomodulatory, anti-obesity, antidiabetes, and mitogenic properties. An in silico investigation of these S. cerevisiae derived peptides produced during yeast biomass propagation or induced by physicochemical treatments were performed using four algorithms to predict antimicrobial candidates encrypted in abundantly expressed stress-related proteins encoded by different genes like AHP1, TSA1, HSP26, SOD1, HSP10, and UTR2, or metabolic enzymes involved in carbon source utilization, like ENO1/2, TDH1/2/3, ADH1/2, FBA1, and PDC1. Glyceraldehyde-3-phosphate dehydrogenase and enolase II are noteworthy precursor proteins, since they exhibited the highest scores concerning the release of antimicrobial peptide candidates. Considering the set of genes upregulated during biomass propagation, we conclude that S. cerevisiae biomass, a food-grade product consumed and marketed worldwide, should be considered a safe and nonseasonal source for designing next-generation bioactive agents, especially protein encrypting antimicrobial peptides that display broad spectra activity and could reduce the emergence of microbial resistance while also avoiding cytotoxicity.
Collapse
Affiliation(s)
- Patricia R Pereira
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909, Brazil
| | - Cyntia S Freitas
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909, Brazil
| | - Vania M F Paschoalin
- Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909, Brazil
| |
Collapse
|
29
|
Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Appl Environ Microbiol 2021; 87:e0058821. [PMID: 34105981 PMCID: PMC8315178 DOI: 10.1128/aem.00588-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High ethanol levels can severely inhibit the growth of yeast cells and fermentation productivity. The ethanologenic yeast Saccharomyces cerevisiae activates several well-defined cellular mechanisms of ethanol stress response (ESR); however, the involved regulatory control remains to be characterized. Here, we report a new transcription factor of ethanol stress adaptation called Znf1. It plays a central role in ESR by activating genes for glycerol and fatty acid production (GUP1, GPP1, GPP2, GPD1, GAT1, and OLE1) to preserve plasma membrane integrity. Importantly, Znf1 also activates genes implicated in cell wall biosynthesis (FKS1, SED1, and SMI1) and in the unfolded protein response (HSP30, HSP104, KAR1, and LHS1) to protect cells from proteotoxic stress. The znf1Δ strain displays increased sensitivity to ethanol, the endoplasmic reticulum (ER) stressor β-mercaptoethanol, and the cell wall-perturbing agent calcofluor white. To compensate for a defective cell wall, the strain lacking ZNF1 or its target SMI1 displays increased glycerol levels of 19.6% and 27.7%, respectively. Znf1 collectively regulates an intricate network of target genes essential for growth, protein refolding, and production of key metabolites. Overexpression of ZNF1 not only confers tolerance to high ethanol levels but also increases ethanol production by 4.6% (8.43 g/liter) or 2.8% (75.78 g/liter) when 2% or 20% (wt/vol) glucose, respectively, is used as a substrate, compared to that of the wild-type strain. The mutually stress-responsive transcription factors Msn2/4, Hsf1, and Yap1 are associated with some promoters of Znf1’s target genes to promote ethanol stress tolerance. In conclusion, this work implicates the novel regulator Znf1 in coordinating expression of ESR genes and illuminates the unifying transcriptional reprogramming during alcoholic fermentation. IMPORTANCE The yeast S. cerevisiae is a major microbe that is widely used in food and nonfood industries. However, accumulation of ethanol has a negative effect on its growth and limits ethanol production. The Znf1 transcription factor has been implicated as a key regulator of glycolysis and gluconeogenesis in the utilization of different carbon sources, including glucose, the most abundant sugar on earth, and nonfermentable substrates. Here, the role of Znf1 in ethanol stress response is defined. Znf1 actively reprograms expression of genes linked to the unfolded protein response (UPR), heat shock response, glycerol and carbohydrate metabolism, and biosynthesis of cell membrane and cell wall components. A complex interplay among transcription factors of ESR indicates transcriptional fine-tuning as the main mechanism of stress adaptation, and Znf1 plays a major regulatory role in the coordination. Understanding the adaptive ethanol stress mechanism is crucial to engineering robust yeast strains for enhanced stress tolerance or increased ethanol production.
Collapse
|
30
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
31
|
Xu M, Jin P, Liu T, Gao S, Zhang T, Zhang F, Han X, He L, Chen J, Yang J. Genome-wide identification and characterization of UBP gene family in wheat ( Triticum aestivum L.). PeerJ 2021; 9:e11594. [PMID: 34178465 PMCID: PMC8212830 DOI: 10.7717/peerj.11594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Ubiquitination is essential for plant growth and development. Deubiquitination cooperates with ubiquitination to regulate the ubiquitination levels of target proteins. The ubiquitin-specific protease (UBP) family is the largest group of deubiquitinases (DUBs), which perform extensive and significant roles in eukaryotic organisms. However, the UBP genes in wheat (TaUBPs) are not identified, and the functions of TaUBPs are unknown. The present study identified 97 UBP genes in the whole genome of T. aestivum. These genes were divided into 15 groups and non-randomly distributed on chromosomes of T. aestivum. Analyses of evolutionary patterns revealed that TaUBPs mainly underwent purification selection. The studies of cis-acting regulatory elements indicated that they might be involved in response to hormones. Quantitative real-time PCR (qRT-PCR) results showed that TaUBPs were differentially expressed in different tissues. Besides, several TaUBPs were significantly up-regulated when plants were treated with salicylic acid (SA), implying that these DUBs may play a role in abiotic stress responses in plants and few TaUBPs displayed differential expression after viral infection. Furthermore, TaUBP1A.1 (TraesCS1A02G432600.1) silenced by virus-induced gene silencing (VIGS) facilitates Chinese wheat mosaic virus (CWMV) infection in wheat, indicating that TaUBP1A.1 may be involved in a defense mechanism against viruses. This study comprehensively analyzed the UBP gene family in wheat and provided a basis for further research of TaUBPs functions in wheat plant response to viral infection.
Collapse
Affiliation(s)
- Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaolei Han
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
32
|
Porras-Agüera JA, Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Impact of CO 2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Int J Food Microbiol 2021; 348:109226. [PMID: 33964807 DOI: 10.1016/j.ijfoodmicro.2021.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
The "prise de mousse" stage during sparkling wine elaboration by the traditional method (Champenoise) involves a second fermentation in a sealed bottle followed by a prolonged aging period, known to contribute significantly to the unique organoleptic properties of these wines. During this stage, CO2 overpressure, nutrient starvation and high ethanol concentrations are stress factors that affect yeast cells viability and metabolism. Since mitochondria are responsible for energy generation and are required for cell aging and response to numerous stresses, we hypothesized that these organelles may play an essential role during the prise de mousse. The objective of this study is to characterize the mitochondrial response of a Saccharomyces cerevisiae strain traditionally used in sparkling wine production along the "prise de mousse" and study the effect of CO2 overpressure through a proteomic analysis. We observed that pressure negatively affects the content of mitochondrion-related proteome, especially to those proteins involved in tricarboxylic acid cycle. However, proteins required for the branched-amino acid synthesis, implied in wine aromas, and respiratory chain, also previously reported by transcriptomic analyses, were found over-represented in the sealed bottles. Multivariate analysis of proteins required for tricarboxylic cycle, respiratory chain and amino acid metabolism revealed differences in concentrations, allowing the wine samples to group depending on the time and CO2 overpressure parameters. Ethanol content along the second fermentation could be the main reason for this changing behavior observed at proteomic level. Further research including genetic studies, determination of ROS, characterization of mitochondrial activity and targeted metabolomics analyses is required. The list of mitochondrial proteins provided in this work will lead to a better understanding of the yeast behavior under these conditions of special interest in the wine industry.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| |
Collapse
|
33
|
Kim SH, Chelliah R, Ramakrishnan SR, Perumal AS, Bang WS, Rubab M, Daliri EBM, Barathikannan K, Elahi F, Park E, Jo HY, Hwang SB, Oh DH. Review on Stress Tolerance in Campylobacter jejuni. Front Cell Infect Microbiol 2021; 10:596570. [PMID: 33614524 PMCID: PMC7890702 DOI: 10.3389/fcimb.2020.596570] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Campylobacter spp. are the leading global cause of bacterial colon infections in humans. Enteropathogens are subjected to several stress conditions in the host colon, food complexes, and the environment. Species of the genus Campylobacter, in collective interactions with certain enteropathogens, can manage and survive such stress conditions. The stress-adaptation mechanisms of Campylobacter spp. diverge from other enteropathogenic bacteria, such as Escherichia coli, Salmonella enterica serovar Typhi, S. enterica ser. Paratyphi, S. enterica ser. Typhimurium, and species of the genera Klebsiella and Shigella. This review summarizes the different mechanisms of various stress-adaptive factors on the basis of species diversity in Campylobacter, including their response to various stress conditions that enhance their ability to survive on different types of food and in adverse environmental conditions. Understanding how these stress adaptation mechanisms in Campylobacter, and other enteric bacteria, are used to overcome various challenging environments facilitates the fight against resistance mechanisms in Campylobacter spp., and aids the development of novel therapeutics to control Campylobacter in both veterinary and human populations.
Collapse
Affiliation(s)
- Se-Hun Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea.,College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sudha Rani Ramakrishnan
- School of Food Science, Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | | | - Woo-Suk Bang
- Department of Food and Nutrition, College of Human Ecology and Kinesiology, Yeungnam University, Gyeongsan, South Korea
| | - Momna Rubab
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eric Banan-Mwine Daliri
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Kaliyan Barathikannan
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eunji Park
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyeon Yeong Jo
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Su-Bin Hwang
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog Hwan Oh
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
34
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
35
|
Sun S, Gresham D. Cellular quiescence in budding yeast. Yeast 2021; 38:12-29. [PMID: 33350503 DOI: 10.1002/yea.3545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
36
|
Dong Z, Zhao J, Chen S, Bao Y, Tao X, Wang S, Li J, Liu Q, Shao T. Effects of different additives on fermentation quality and aerobic stability of a total mixed ration prepared with local feed resources on Tibetan plateau. Anim Sci J 2020; 91:e13482. [PMID: 33277806 DOI: 10.1111/asj.13482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
To improve the utilization efficiency of total mixed ration (TMR) on Tibetan plateau, the effects of different additives on fermentation quality and aerobic stability of the ensiled TMR prepared with local feed resources were studied. A total of 150 experimental silos were prepared in a completely randomized design to evaluate the following treatments: (a) control; (b) Lactobacillus buchneri; (c) acetic acid; (d) propionic acid; (e) 1,2-propanediol; and (f) 1-propanol. After 90 days of ensiling, silos were opened for fermentation quality and in vitro parameters analysis, and then subjected to an aerobic stability test for 14 days. The acetic acid, 1,2-propanediol and 1-propanol treatments increased (p < .05) pH and acetic acid content, and lowered (p < .05) the lactic acid production in comparison to control. There were no statistically significant differences in in vitro digestibility parameters among the treatments. Treatments of acetic acid, 1,2-propanediol and 1-propanol substantially improved the aerobic stability of the ensiled TMR, as indicated by almost unchanged pH and lactic acid contents throughout the aerobic exposure test. These results indicated that acetic acid, 1,2-propanediol and 1-propanol had no adverse effect on in vitro digestibility and could be effective additives for enhancing the aerobic stability of ensiled TMR prepared on Tibetan plateau.
Collapse
Affiliation(s)
- Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Sifan Chen
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yuhong Bao
- Institute of Grassland Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xuxiong Tao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qinhua Liu
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Wang P, Lin Y, Zou C, Zhao F, Liang S, Zheng S, Han S. Construction and screening of a glycosylphosphatidylinositol protein deletion library in Pichia pastoris. BMC Microbiol 2020; 20:262. [PMID: 32838766 PMCID: PMC7446130 DOI: 10.1186/s12866-020-01928-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have diverse intrinsic functions in yeasts, and they also have different uses in vitro. In this study, the functions of potential GPI proteins in Pichia pastoris were explored by gene knockout approaches. Results Through an extensive knockout of GPI proteins in P. pastoris, a single-gene deletion library was constructed for 45 predicted GPI proteins. The knockout of proteins may lead to the activation of a cellular response named the ‘compensatory mechanism’, which is characterized by changes in the content and relationship between cell wall polysaccharides and surface proteins. Among the 45 deletion strains, five showed obvious methanol tolerance, four owned high content of cell wall polysaccharides, and four had a high surface hydrophobicity. Some advantages of these strains as production hosts were revealed. Furthermore, the deletion strains with high surface hydrophobicity were used as hosts to display Candida antarctica lipase B (CALB). The strain gcw22Δ/CALB-GCW61 showed excellent fermentation characteristics, including a faster growth rate and higher hydrolytic activity. Conclusions This GPI deletion library has some potential applications for production strains and offers a valuable resource for studying the precise functions of GPI proteins, especially their putative functions.
Collapse
Affiliation(s)
- Pan Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Chengjuan Zou
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
38
|
Sun L, Atkinson CA, Lee YG, Jin YS. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Biotechnol Bioeng 2020; 117:3522-3532. [PMID: 33616900 DOI: 10.1002/bit.27508] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023]
Abstract
β-Carotene is a natural pigment and health-promoting metabolite, and has been widely used in the nutraceutical, feed, and cosmetic industries. Here, we engineered a GRAS yeast Saccharomyces cerevisiae to produce β-carotene from xylose, the second most abundant and inedible sugar component of lignocellulose biomass. Specifically, a β-carotene biosynthetic pathway containing crtYB, crtI, and crtE from Xanthophyllomyces dendrorhous was introduced into a xylose-fermenting S. cerevisiae. The resulting strain produced β-carotene from xylose at a titer threefold higher than from glucose. Interestingly, overexpression of tHMG1, which has been reported as a critical genetic perturbation to enhance metabolic fluxes in the mevalonate pathway and β-carotene production in yeast when glucose is used, did not further improve the production of β-carotene from xylose. Through fermentation profiling, metabolites analysis, and transcriptional studies, we found the advantages of using xylose as a carbon source, instead of glucose, for β-carotene production to be a more respiratory feature of xylose consumption, a larger cytosolic acetyl-CoA pool, and an upregulated expression level of rate-limiting genes in the β-carotene-producing pathway, including ACS1 and HMG1. As a result, 772.8 mg/L of β-carotene was obtained in a fed-batch bioreactor culture with xylose feeding. Considering the inevitable large scale production of xylose when cellulosic biomass-based bioeconomy is implemented, our results suggest xylose utilization is a promising strategy for overproduction of carotenoids and other isoprenoids in engineered S. cerevisiae.
Collapse
Affiliation(s)
- Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Christine A Atkinson
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ye-Gi Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
39
|
Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:126. [PMID: 32695222 PMCID: PMC7364526 DOI: 10.1186/s13068-020-01761-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND High acetic acid tolerance is of major importance in industrial yeast strains used for second-generation bioethanol production, because of the high acetic acid content of lignocellulose hydrolysates. It is also important in first-generation starch hydrolysates and in sourdoughs containing significant acetic acid levels. We have previously identified snf4 E269* as a causative allele in strain MS164 obtained after whole-genome (WG) transformation and selection for improved acetic acid tolerance. RESULTS We have now performed polygenic analysis with the same WG transformant MS164 to identify novel causative alleles interacting with snf4 E269* to further enhance acetic acid tolerance, from a range of 0.8-1.2% acetic acid at pH 4.7, to previously unmatched levels for Saccharomyces cerevisiae. For that purpose, we crossed the WG transformant with strain 16D, a previously identified strain displaying very high acetic acid tolerance. Quantitative trait locus (QTL) mapping with pooled-segregant whole-genome sequence analysis identified four major and two minor QTLs. In addition to confirmation of snf4 E269* in QTL1, we identified six other genes linked to very high acetic acid tolerance, TRT2, MET4, IRA2 and RTG1 and a combination of MSH2 and HAL9, some of which have never been connected previously to acetic acid tolerance. Several of these genes appear to be wild-type alleles that complement defective alleles present in the other parent strain. CONCLUSIONS The presence of several novel causative genes highlights the distinct genetic basis and the strong genetic background dependency of very high acetic acid tolerance. Our results suggest that elimination of inferior mutant alleles might be equally important for reaching very high acetic acid tolerance as introduction of rare superior alleles. The superior alleles of MET4 and RTG1 might be useful for further improvement of acetic acid tolerance in specific industrial yeast strains.
Collapse
Affiliation(s)
- Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - María R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| |
Collapse
|
40
|
Cheng MH, Sun L, Jin YS, Dien B, Singh V. Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to β-carotene using an engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2020; 308:123275. [PMID: 32272391 DOI: 10.1016/j.biortech.2020.123275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
A new bioprocess has been developed that allows for producing β-carotene from the xylose portion of bioenergy sorghum. Bioenergy sorghum was pretreated in a pilot-scale continuous hydrothermal reactor followed by disc refining. Xylose was extracted using low-severity dilute acid hydrolysis. A xylose yield of 64.9% (17.4 g/L) was obtained by hydrolyzing at 120 °C for 5 min with 2% sulfuric acid. The xylose-enriched syrup was separated and concentrated to either 32 g xylose/L (medium-concentrated hydrolysate, MCB) or 66 g xylose/L (high-concentrated hydrolysate, HCB). The non- (NCB), medium-, and high-concentrated xylose syrup were neutralized and fermented to β-carotene using Saccharomyces cerevisiae strain SR8B, which had been engineered for xylose utilization and β-carotene production. In HCB, MCB, and NCB cultures, the yeast produced β-carotene titers of 114.50 mg/L, 93.56 mg/L, and 82.50 mg/L, which corresponds to specific yeast biomass productions of 7.32 mg/g DCW, 8.10 mg/g DCW, and 8.29 mg/g DCW, respectively.
Collapse
Affiliation(s)
- Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruce Dien
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
41
|
Morrissette VA, Rolfes RJ. The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae. Curr Genet 2020; 66:901-910. [PMID: 32322930 DOI: 10.1007/s00294-020-01078-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
Saccharomyces cerevisiae adapts to oxidative, osmotic stress and nutrient deprivation through transcriptional changes, decreased proliferation, and entry into other developmental pathways such as pseudohyphal formation and sporulation. Inositol pyrophosphates are necessary for these cellular responses. Inositol pyrophosphates are molecules composed of the phosphorylated myo-inositol ring that carries one or more diphosphates. Mutations in the enzymes that metabolize these molecules lead to altered patterns of stress resistance, altered morphology, and defective sporulation. Mechanisms to alter the synthesis of inositol pyrophosphates have been recently described, including inhibition of enzyme activity by oxidation and by phosphorylation. Cells with increased levels of 5-diphosphoinositol pentakisphosphate have increased nuclear localization of Msn2 and Gln3. The altered localization of these factors is consistent with the partially induced environmental stress response and increased expression of genes under the control of Msn2/4 and Gln3. Other transcription factors may also exhibit increased nuclear localization based on increased expression of their target genes. These transcription factors are each regulated by TORC1, suggesting that TORC1 may be inhibited by inositol pyrophosphates. Inositol pyrophosphates affect stress responses in other fungi (Aspergillus nidulans, Ustilago maydis, Schizosaccharomyces pombe, and Cryptococcus neoformans), in human and mouse, and in plants, suggesting common mechanisms and possible novel drug development targets.
Collapse
Affiliation(s)
- Victoria A Morrissette
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA.
| |
Collapse
|
42
|
Dong Z, Wang S, Zhao J, Li J, Liu Q, Bao Y, Shao T. Evaluating fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration ensiled with different additives on Tibet plateau. Anim Biosci 2020; 34:223-232. [PMID: 32299167 PMCID: PMC7876713 DOI: 10.5713/ajas.19.0972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the improvement in utilization efficiency of total mixed ration (TMR) on Tibetan plateau, TMR were ensiled with different additives. METHODS A total of 150 experimental silos were prepared in a completely randomized design to evaluate the six treatments: i) control (without additive), ii) Lactobacillus buchneri (L. buchneri), iii) acetic acid, iv) propionic acid, v) 1,2-propanediol; and vi) 1-propanol. After 90 days of ensiling, silos were opened for fermentation quality and in vitro analysis, and then subjected to an aerobic stability test for 14 days. RESULTS Treating with L. buchneri, acetic acid, 1,2-propanediol and 1-propanol decreased propionic acid contents and yeast number, whereas increased (p<0.05) pH, acetic acid and ethanol contents in the fermented TMR. Despite increased dry matter (DM) loss in the TMRs treated with 1,2-propanediol and 1-pronanol, additives did not affect (p>0.05) all in vitro parameters including gas production at 24 h (GP24), GP rate constant, potential GP, in vitro DM digestibility and in vitro neutral detergent fibre digestibility. All additives improved the aerobic stability of ensiled TMR to different extents. Specially, aerobic stability of the ensiled TMR were substantially improved by L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol, indicated by stable pH and lactic acid content during the aerobic stability test. CONCLUSION L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol had no adverse effect on in vitro digestibility, while ensiling TMR with the additives produced more acetic acid and ethanol, subsequently resulting in improvement of aerobic stability. There is a potential for some fermentation boosting additives to enhance aerobic stability of fermented TMR on Tibetan plateau.
Collapse
Affiliation(s)
- Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Qinhua Liu
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yuhong Bao
- Institute of Grassland Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
43
|
Wang Y, Zhang Z, Lu X, Zong H, Zhuge B. Transcription factor Hap5 induces gsh2 expression to enhance 2-phenylethanol tolerance and production in an industrial yeast Candida glycerinogenes. Appl Microbiol Biotechnol 2020; 104:4093-4107. [PMID: 32162090 DOI: 10.1007/s00253-020-10509-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
2-Phenylethanol (2-PE) is an important flavor compound but also impairs cell growth severely, which in turn blocks its bioproduction. However, the molecular mechanism of 2-PE tolerance is unclear. In this study, a superb 2-PE stress-tolerant and producing yeast, Candida glycerinogenes, was selected to uncover the underlying mechanism of 2-PE tolerance. We discovered that Hap5 is an essential regulator to 2-PE resistance, and its induction by 2-PE stress occurs at the post-transcriptional level, rather than at the transcriptional level. Under 2-PE stress, Hap5 is activated and imported into the nucleus rapidly. Then, the nuclear Hap5 binds to the glutathione synthetase (gsh2) promoter via CCAAT box, to induce the expression of gsh2 gene. The increased gsh2 expression contributes to enhanced cellular glutathione content, and consequently alleviates ROS accumulation, lipid peroxidation, and cell membrane damage caused by 2-PE toxicity. Specifically, increasing the expression of gsh2 is effective in improving not just 2-PE tolerance (33.7% higher biomass under 29 mM 2-PE), but also 2-PE production (16.2% higher). This study extends our knowledge of 2-PE tolerance mechanism and also provides a promising strategy to improve 2-PE production.
Collapse
Affiliation(s)
- Yuqin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongyuan Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
44
|
Kim DH, Liu JJ, Lee JW, Pelton JG, Yun EJ, Yu S, Jin YS, Kim KH. Biological upgrading of 3,6-anhydro-L-galactose from agarose to a new platform chemical. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2020; 22:1776-1785. [PMID: 33790689 PMCID: PMC8009285 DOI: 10.1039/c9gc04265b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, the utilization of renewable biomass instead of fossil fuels for producing fuels and chemicals is receiving much attention due to the global climate change. Among renewable biomass, marine algae are gaining importance as third generation biomass feedstocks owing to their advantages over lignocellulose. Particularly, red macroalgae have higher carbohydrate contents and simpler carbohydrate compositions than other marine algae. In red macroalgal carbphydrates, 3,6-anhydro-L-galactose (AHG) is the main sugar composing agarose along with D-galactose. However, AHG is not a common sugar and is chemically unstable. Thus, not only AHG but also red macroalgal biomass itself cannot be efficiently converted or utilized. Here, we biologically upgraded AHG to a new platform chemical, its sugar alcohol form, 3,6-anhydro-l-galactitol (AHGol), an anhydrohexitol. To accomplish this, we devised an integrated process encompassing a chemical hydrolysis process for producing agarobiose (AB) from agarose and a biological process for converting AB to AHGol using metabolically engineered Saccharomyces cerevisiae to efficiently produce AHGol from agarose with high titers and yields. AHGol was also converted to an intermediate chemical for plastics, isosorbide. To our knowledge, this is the first demonstration of upgrading a red macroalgal biomass component to a platform chemical via a new biological route, by using an engineered microorganism.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| |
Collapse
|
45
|
Differential effects of major inhibitory compounds from sugarcane-based lignocellulosic hydrolysates on the physiology of yeast strains and lactic acid bacteria. Biotechnol Lett 2020; 42:571-582. [DOI: 10.1007/s10529-020-02803-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
|
46
|
Sun L, Kwak S, Jin YS. Vitamin A Production by Engineered Saccharomyces cerevisiae from Xylose via Two-Phase in Situ Extraction. ACS Synth Biol 2019; 8:2131-2140. [PMID: 31374167 DOI: 10.1021/acssynbio.9b00217] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin A is an essential human micronutrient and plays critical roles in vision, reproduction, immune system, and skin health. Current industrial methods for the production of vitamin A rely on chemical synthesis from petroleum-derived substrates, such as acetone and acetylene. Here, we developed a biotechnological method for production of vitamin A from an abundant and nonedible sugar. Specifically, we engineered Saccharomyces cerevisiae to produce vitamin A from xylose-the second most abundant sugar in plant cell wall hydrolysates-by introducing a β-carotene biosynthetic pathway, and a gene coding for β-carotene 15,15'-dioxygenase (BCMO) into a xylose-fermenting S. cerevisiae. The resulting yeast strain produced vitamin A from xylose at a titer 4-fold higher than from glucose. When a two-phase in situ extraction strategy with dodecane or olive oil as an extractive agent was employed, vitamin A production improved additional 2-fold. Furthermore, a xylose fed-batch fermentation with dodecane in situ extraction achieved a final titer of 3350 mg/L vitamin A, which consisted of retinal (2094 mg/L) and retinol (1256 mg/L). These results suggest that potential limiting factors of vitamin A production in yeast, such as insufficient supply of isoprenoid precursors, and limited intracellular storage capacity, can be effectively addressed by using xylose as a carbon source, and two-phase in situ extraction. The engineered S. cerevisiae and fermentation strategies described in this study might contribute to sustainable and economic production of vitamin A, and vitamin A-enriched bioproducts from renewable biomass.
Collapse
|
47
|
Paramasivan K, Kumar HN P, Mutturi S. Systems-based Saccharomyces cerevisiae strain design for improved squalene synthesis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae. Appl Environ Microbiol 2019; 85:AEM.00551-19. [PMID: 31101611 DOI: 10.1128/aem.00551-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/09/2019] [Indexed: 11/20/2022] Open
Abstract
During fermentation, a high ethanol concentration is a major stress that influences the vitality and viability of yeast cells, which in turn leads to a termination of the fermentation process. In this study, we show that the BCK1 and SLT2 genes encoding mitogen-activated protein kinase kinase kinase (MAPKKK) and mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, respectively, are essential for ethanol tolerance, suggesting that the CWI pathway is involved in the response to ethanol-induced cell wall stress. Upon ethanol exposure, the CWI pathway induces the expression of specific cell wall-remodeling genes, including FKS2, CRH1, and PIR3 (encoding β-1,3-glucan synthase, chitin transglycosylase, and O-glycosylated cell wall protein, respectively), which eventually leads to the remodeling of the cell wall structure. Our results revealed that in response to ethanol stress, the high-osmolarity glycerol (HOG) pathway plays a collaborative role with the CWI pathway in inducing cell wall remodeling via the upregulation of specific cell wall biosynthesis genes such as the CRH1 gene. Furthermore, the substantial expression of CWI-responsive genes is also triggered by external hyperosmolarity, suggesting that the adaptive changes in the cell wall are crucial for protecting yeast cells against not only cell wall stress but also osmotic stress. On the other hand, the cell wall stress-inducing agent calcofluor white has no effect on promoting the expression of GPD1, a major target gene of the HOG pathway. Collectively, these findings suggest that during ethanol stress, the CWI and HOG pathways collaboratively regulate the transcription of specific cell wall biosynthesis genes, thereby leading to adaptive changes in the cell wall.IMPORTANCE The budding yeast Saccharomyces cerevisiae has been widely used in industrial fermentations, including the production of alcoholic beverages and bioethanol. During fermentation, an increased ethanol concentration is the main stress that affects yeast metabolism and inhibits ethanol production. This work presents evidence that in response to ethanol stress, both CWI and HOG pathways cooperate to control the expression of cell wall-remodeling genes in order to build the adaptive strength of the cell wall. These findings will contribute to a better understanding of the molecular mechanisms underlying adaptive responses and tolerance of yeast to ethanol stress, which is essential for successful engineering of yeast strains for improved ethanol tolerance.
Collapse
|
49
|
Bállega E, Carballar R, Samper B, Ricco N, Ribeiro MP, Bru S, Jiménez J, Clotet J. Comprehensive and quantitative analysis of G1 cyclins. A tool for studying the cell cycle. PLoS One 2019; 14:e0218531. [PMID: 31237904 PMCID: PMC6592645 DOI: 10.1371/journal.pone.0218531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, the cell cycle is driven by the actions of several cyclin dependent kinases (CDKs) and an array of regulatory proteins called cyclins, due to the cyclical expression patterns of the latter. In yeast, the accepted pattern of cyclin waves is based on qualitative studies performed by different laboratories using different strain backgrounds, different growing conditions and media, and different kinds of genetic manipulation. Additionally, only the subset of cyclins regulating Cdc28 was included, while the Pho85 cyclins were excluded. We describe a comprehensive, quantitative and accurate blueprint of G1 cyclins in the yeast Saccharomyces cerevisiae that, in addition to validating previous conclusions, yields new findings and establishes an accurate G1 cyclin blueprint. For the purposes of this research, we produced a collection of strains with all G1 cyclins identically tagged using the same and most respectful procedure possible. We report the contribution of each G1 cyclin for a broad array of growing and stress conditions, describe an unknown role for Pcl2 in heat-stress conditions and demonstrate the importance of maintaining the 3’UTR sequence of cyclins untouched during the tagging process.
Collapse
Affiliation(s)
- Elisabet Bállega
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Reyes Carballar
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariana P. Ribeiro
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Samuel Bru
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- * E-mail: (JJ); (JC)
| | - Josep Clotet
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- * E-mail: (JJ); (JC)
| |
Collapse
|
50
|
Modulation of Fatty Acid Composition of Aspergillus oryzae in Response to Ethanol Stress. Microorganisms 2019; 7:microorganisms7060158. [PMID: 31159383 PMCID: PMC6616634 DOI: 10.3390/microorganisms7060158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022] Open
Abstract
The koji mold Aspergillus oryzae is widely adopted for producing rice wine, wherein koji mold saccharifies rice starch and sake yeast ferments glucose to ethanol. During rice wine brewing, the accumulating ethanol becomes a major source of stress for A. oryzae, and there is a decline in hydrolysis efficiency. However, the protective mechanisms of A. oryzae against ethanol stress are poorly understood. In the present study, we demonstrate that ethanol adversity caused a significant inhibition of mycelium growth and conidia formation in A. oryzae, and this suppressive effect increased with ethanol concentration. Transmission electron microscopy analysis revealed that ethanol uptake triggered internal cellular perturbations, such as irregular nuclei and the aggregation of scattered vacuoles in A. oryzae cells. Metabolic analysis uncovered an increase in fatty acid unsaturation under high ethanol conditions, in which a large proportion of stearic acid was converted into linoleic acid, and the expression of related fatty acid desaturases was activated. Our results therefore improve the understanding of ethanol adaptation mechanisms in A. oryzae and offer target genes for ethanol tolerance enhancement via genetic engineering.
Collapse
|