1
|
Wonisch W, Tatzber F, Lindschinger M, Falk A, Resch U, Mörkl S, Zarkovic N, Cvirn G. Overview of Clinical Relevance of Antibodies Against Oxidized Low-Density Lipoprotein (oLAb) Within Three Decades by ELISA Technology. Antioxidants (Basel) 2024; 13:1560. [PMID: 39765889 PMCID: PMC11672888 DOI: 10.3390/antiox13121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
One of the most prominent actions of oxidative stress is the attack of free radicals on poylyunsaturated fatty acids (PUFAs), initiating a chain reaction to modify these PUFAs and generate oxidized modifications on all biomolecules. In the last quarter of the 20th century, intensive research was carried out to identify antibodies against such modifications. In the mid-1990s, the first enzyme-linked immunosorbent assay (ELISA) was introduced to the market, significantly accelerating research activities and knowledge gain. During this pioneering period, the main focus was on cardiovascular diseases, cancer, diabetes, and other diseases associated with oxidative stress. Subsequently, a standard range of these antibodies against oxidized LDL (oLAb) was determined in the population. Furthermore, the impact of exhaustive physical activity and diet on oLAb titers, and the correlation between newborns and mothers after delivery, as well as nutritional intake in newborns, were evaluated. Subsequently, the harmful effects of smoking and many other areas regarding oLAb titer were published, resulting in novel approaches for prognostic and therapeutic options, in particular through studies with antioxidants, which were able to influence oLAb significantly. This review presents an overview of the research activities obtained with this ELISA over the past three decades.
Collapse
Affiliation(s)
- Willibald Wonisch
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Styria, Austria;
| | - Franz Tatzber
- Omnignostica Ltd., 3421 Höflein an der Donau, Lower Austria, Austria
| | - Meinrad Lindschinger
- Institute of Nutritional and Metabolic Diseases, Outpatient Clinic Laßnitzhöhe, 8301 Laßnitzhöhe, Styria, Austria; (M.L.); (A.F.)
| | - Andreas Falk
- Institute of Nutritional and Metabolic Diseases, Outpatient Clinic Laßnitzhöhe, 8301 Laßnitzhöhe, Styria, Austria; (M.L.); (A.F.)
- BioNanoNet Forschungsgesellschaft mbH (BNN), 8010 Graz, Styria, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Vienna, Austria;
| | - Sabrina Mörkl
- Department of Medical Psychology, Psychosomatics and Psychotherapy, Medical University of Graz, 8036 Graz, Styria, Austria;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia;
| | - Gerhard Cvirn
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Styria, Austria;
| |
Collapse
|
2
|
A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Xu L, Tang X, Hao F, Gao Y. Hepatotoxicity and nephrotoxicity assessment on ethanol extract of Fructus Psoraleae in Sprague Dawley rats using a UPLC-Q-TOF-MS analysis of serum metabolomics. Biomed Chromatogr 2021; 35:e5064. [PMID: 33450093 DOI: 10.1002/bmc.5064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022]
Abstract
Fructus Psoraleae (FP) is commonly used in the treatment of vitiligo, osteoporosis, and other diseases in clinic. As a result, the toxicity caused by FP is frequently encountered in clinical practice; however, the underlying toxicity mechanism remains unclear. The purpose of this study was to investigate the toxic effect of the ethanol extract of FP (EEFP) in rats and to explore the underlying toxic mechanisms using a metabolomics approach. The toxicity was evaluated by hematological indicators, biochemical indicators, and histological changes. In addition, a serum metabolomic method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS (UPLC-Q-TOF-MS) had been established to investigate the hepatorenal toxicity of FP. Multivariate statistical approaches, such as partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis, were built to evaluate the toxic effects of FP and find potential biomarkers and metabolic pathways. Ten endogenous metabolites had been identified and the related metabolic pathways were involved in phospholipid metabolism, amino acid metabolism, purine metabolism, and antioxidant system activities. The results showed that long-term exposure to high-dose EEFP may cause hepatorenal toxicity in rats. Therefore, serum metabolomics can improve the diagnostic efficiency of FP toxicity and make it more accurate and comprehensive.
Collapse
Affiliation(s)
- Longlong Xu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xianglin Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Cultivation and Immortalization of Human B-Cells Producing a Human Monoclonal IgM Antibody Binding to MDA-LDL: Further Evidence for Formation of Atherogenic MDA-LDL Adducts in Humans In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6047142. [PMID: 29250300 PMCID: PMC5700503 DOI: 10.1155/2017/6047142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Oxidatively modified low-density lipoprotein (oLDL) is firmly believed to play an important role in the initiation and development of atherosclerosis, and malonic dialdehyde (MDA) is one of the major lipid peroxidation breakdown products involved in this process. In recent decades, antibodies against MDA-LDL have been detected in human and animal sera. In our study, human B-cells from the peripheral blood of a healthy female donor were fused with the SP2/0 mouse myeloma cell line. Antibody-producing hybridomas were detected by MDA-LDL-IgG/IgM enzyme-linked immunosorbent assays (ELISA) and Cu++-oxidized LDL IgG/IgM (oLAb) ELISA. Cells with supernatants emitting positive signals for antibodies were then cloned and after sufficient multiplication frozen and stored under liquid nitrogen. Due to the loss of antibody-producing ability, we established an MDA-LDL-IgM-producing cell line by recloning. This allowed isolation and immortalization of several human B-cells. The human donor had not been immunized with MDA-modified proteins, thus obviously producing MDA-LDL antibodies in vivo. Furthermore, using these antibodies for in vitro experiments, we were able to demonstrate that MDA epitopes are among the epitopes generated during Cu++-LDL oxidation as well. Finally, these antibodies compete in ELISA and cell culture experiments with MDA as a challenging toxin or ligand.
Collapse
|
5
|
Winklhofer-Roob BM, Faustmann G, Roob JM. Low-density lipoprotein oxidation biomarkers in human health and disease and effects of bioactive compounds. Free Radic Biol Med 2017; 111:38-86. [PMID: 28456641 DOI: 10.1016/j.freeradbiomed.2017.04.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
Abstract
Based on the significance of oxidized low-density lipoprotein (LDL) in health and disease, this review focuses on human studies addressing oxidation of LDL, including three lines of biomarkers, (i) ex vivo LDL resistance to oxidation, a "challenge test" model, (ii) circulating oxidized LDL, indicating the "current in vivo status", and (iii) autoantibodies against oxidized LDL as fingerprints of an immune response to oxidized LDL, along with circulating oxysterols and 4-hydroxynonenal as biomarkers of lipid peroxidation. Lipid peroxidation and oxidized LDL are hallmarks in the development of various metabolic, cardiovascular and other diseases. Changes further occur across life stages from infancy to older age as well as in athletes and smokers. Given their responsiveness to targeted nutritional interventions, markers of LDL oxidation have been employed in a rapidly growing number of human studies for more than 2 decades. There is growing interest in foods, which, besides providing energy and nutrients, exert beneficial effects on human health, such as protection of DNA, proteins and lipids from oxidative damage. Any health claim, however, needs to be substantiated by supportive evidence derived from human studies, using reliable biomarkers to demonstrate such beneficial effects. A large body of evidence has accumulated, demonstrating protection of LDL from oxidation by bioactive food compounds, including vitamins, other micronutrients and secondary plant ingredients, which will facilitate the selection of oxidation biomarkers for future human intervention studies and health claim support.
Collapse
Affiliation(s)
- Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Austria.
| | - Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Austria; Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Austria
| |
Collapse
|
6
|
Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 2017; 106:118-133. [PMID: 28189852 DOI: 10.1016/j.freeradbiomed.2017.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
The oxidative theory of atherosclerosis relies on the modification of low density lipoproteins (LDLs) in the vascular wall by reactive oxygen species. Modified LDLs, such as oxidized LDLs, are thought to participate in the formation of early atherosclerotic lesions (accumulation of foam cells and fatty streaks), whereas their role in advanced lesions and atherothrombotic events is more debated, because antioxidant supplementation failed to prevent coronary disease events and mortality in intervention randomized trials. As oxidized LDLs and oxidized lipids are present in atherosclerotic lesions and are able to trigger cell signaling on cultured vascular cells and macrophages, it has been proposed that they could play a role in atherogenesis and atherosclerotic vascular remodeling. Oxidized LDLs exhibit dual biological effects, which are dependent on extent of lipid peroxidation, nature of oxidized lipids (oxidized phospholipids, oxysterols, malondialdehyde, α,β-unsaturated hydroxyalkenals), concentration of oxidized LDLs and uptake by scavenger receptors (e.g. CD36, LOX-1, SRA) that signal through different transduction pathways. Moderate concentrations of mildly oxidized LDLs are proinflammatory and trigger cell migration and proliferation, whereas higher concentrations induce cell growth arrest and apoptosis. The balance between survival and apoptotic responses evoked by oxidized LDLs depends on cellular systems that regulate the cell fate, such as ceramide/sphingosine-1-phosphate rheostat, endoplasmic reticulum stress, autophagy and expression of pro/antiapoptotic proteins. In vivo, the intimal concentration of oxidized LDLs depends on the influx (hypercholesterolemia, endothelial permeability), residence time and lipid composition of LDLs, oxidative stress intensity, induction of defense mechanisms (antioxidant systems, heat shock proteins). As a consequence, the local cellular responses to oxidized LDLs may stimulate inflammatory or anti-inflammatory pathways, angiogenic or antiangiogenic responses, survival or apoptosis, thereby contributing to plaque growth, instability, complication (intraplaque hemorrhage, proteolysis, calcification, apoptosis) and rupture. Finally, these dual properties suggest that oxLDLs could be implicated at each step of atherosclerosis development, from early fatty streaks to advanced lesions, depending on the nature and concentration of their oxidized lipid content.
Collapse
Affiliation(s)
| | | | - Caroline Camaré
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.
| |
Collapse
|
7
|
Surowka AD, Pilling M, Henderson A, Boutin H, Christie L, Szczerbowska-Boruchowska M, Gardner P. FTIR imaging of the molecular burden around Aβ deposits in an early-stage 3-Tg-APP-PSP1-TAU mouse model of Alzheimer's disease. Analyst 2017; 142:156-168. [DOI: 10.1039/c6an01797e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High spatial resolution FTIR imaging of early-stage 3-Tg-APP-PSP1-TAU mouse brain identifies molecular burden around Aβ deposits.
Collapse
Affiliation(s)
- Artur Dawid Surowka
- AGH University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | - Michael Pilling
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| | - Alex Henderson
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| | - Herve Boutin
- Wolfson Molecular Imaging Centre
- University of Manchester
- Manchester
- UK
| | - Lidan Christie
- Wolfson Molecular Imaging Centre
- University of Manchester
- Manchester
- UK
| | | | - Peter Gardner
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| |
Collapse
|
8
|
Mahajan P, Nikam M, Asrondkar A, Bobade A, Gill C. Synthesis, Antioxidant, and Anti-Inflammatory Evaluation of Novel Thiophene-Fused Quinoline Based β-Diketones and Derivatives. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2722] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Pravin Mahajan
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad Maharashtra 431 004 India
| | - Mukesh Nikam
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad Maharashtra 431 004 India
| | - Ashish Asrondkar
- Haffkine Institute for Training, Research and Testing; Parel Mumbai Maharashtra 400 012 India
| | - Anil Bobade
- Haffkine Institute for Training, Research and Testing; Parel Mumbai Maharashtra 400 012 India
| | - Charansingh Gill
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad Maharashtra 431 004 India
| |
Collapse
|
9
|
Oxidized LDL stimulates lipid peroxidation-derived DNA and protein adducts in human vascular endothelial and smooth muscle cells. ACTA ACUST UNITED AC 2015; 35:200-205. [PMID: 25877352 DOI: 10.1007/s11596-015-1411-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/08/2015] [Indexed: 02/08/2023]
Abstract
Oxidized low density lipoprotein (oxLDL) can trigger intracellular production of reactive oxygen species and lipid peroxidation (LPO), and is thought to contribute to initiation and progression of atherosclerosis. In order to understand the correlation between oxLDL and macromolecular damage, we measured levels of LPO-derived miscoding etheno-DNA adducts and LPO-modified proteins in cultured human vascular endothelial and smooth muscle cells after incubation with oxLDL for up to 48 h. A semi-quantative analysis method for 1, N6-ethenodeoxyadenosine (ɛdA) by immunohistochemistry was applied. After oxLDL stimulation, ɛdA-stained nuclei were significantly increased in both endothelial and smooth muscle cells. Similarly, 4-hydroxy-2-nonenal (4-HNE)-modified proteins, as analyzed by immunohistochemistry and Western blotting, were also 3-5 fold increased. It was concluded LPO-derived etheno-DNA adducts and LPO-modified proteins are strongly induced by oxLDL in human vascular endothelial and smooth muscle cells. This macromolecular damage may contribute to the dysfunction of arterial endothelium and the onset of atherosclerosis.
Collapse
|
10
|
Wade KR, Hotze EM, Briles DE, Tweten RK. Mouse, but not human, ApoB-100 lipoprotein cholesterol is a potent innate inhibitor of Streptococcus pneumoniae pneumolysin. PLoS Pathog 2014; 10:e1004353. [PMID: 25188225 PMCID: PMC4154877 DOI: 10.1371/journal.ppat.1004353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3β-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease.
Collapse
Affiliation(s)
- Kristin R. Wade
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Eileen M. Hotze
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
11
|
Li Y, Dai F, Jin XL, Ma MM, Wang YH, Ren XR, Zhou B. An effective strategy to develop active cinnamic acid-directed antioxidants based on elongating the conjugated chains. Food Chem 2014; 158:41-7. [PMID: 24731312 DOI: 10.1016/j.foodchem.2014.02.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/15/2022]
Abstract
To optimize antioxidant activity and lipophilicity of cinnamic acid derivatives (CAs) including ferulic acid, sinapic acid, 3,4-dimethoxycinnamic acid, and p-hydroxycinnamic acid, four analogs bearing an additional double bond between their aromatic ring and propenoic acid moiety were designed and synthesized based on the conjugated chain elongation strategy. The antioxidant performance of the CAs were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-scavenging, ferric reducing/antioxidant power, cyclic voltammetry, DNA strand breakage-inhibiting and anti-haemolysis activity assays. It was found that CAs with elongation of conjugated chains display increased DPPH-scavenging, DNA strand breakage-inhibiting and anti-haemolysis activities as compared to their parent molecules, due to their improved hydrogen atom-donating ability and lipophilicity. Overall, this work highlights an effective strategy to develop potential CA-directed antioxidants by elongating their conjugated chain.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Meng-Meng Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi-Hua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao-Rong Ren
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
12
|
Liu YP, Li B, Zhang GH, Mi SP, Li H, Wei M. Metabonomic analysis of plasma samples from chronic hepatitis B patients with damp-heat stasis in the middle-jiao syndrome. Shijie Huaren Xiaohua Zazhi 2014; 22:107-113. [DOI: 10.11569/wcjd.v22.i1.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanisms of damp-heat stasis in the middle-jiao syndrome in patients with chronic hepatitis B.
METHODS: Plasma samples were collected prospectively from normal controls (n = 20) and patients with chronic hepatitis B and damp-heat stasis in the middle-jiao syndrome (DHSS) (TM1 group: n = 20) and analyzed using ultraperformance liquid chromatography (LC)/time-of-flight mass spectrometry (MS) coupled with orthogonal partial least squares-discriminant analysis (OPLS-DA).
RESULTS: Significant metabonomic differences were observed between the two groups. Plasma levels of 14 metabolites in the TM1 group were obviously altered compared with those in the control group (P < 0.05), among which taurochenodesoxycholic acid, 7b-hydroxy-3-oxo-5b-cholanoic acid, glycochenodeoxycholic acid 3-glucuronide, glycochenodeoxycholate-3-sulfate and cholic acid glucuronide are related to the metabolism of bile acids, lysophosphatidylcholine (lysoPC), lysophosphatidylethanolamine (LysoPE) (C22:1), 3b,16a-dihydroxyandrostenone sulfate, phosphatidylcholine (PC) (C22:6), phosphatidylethanolamine (PE) (C24:1), lysophosphatidylcholine (lysoPC) (C18:2) and 13'-hydroxy-alpha-tocopherol are related to the metabolism of lipids.
CONCLUSION: There are significant metabonomic differences between normal controls and patients with chronic hepatitis B and DHSS, and these metabolites may be used as potential biological markers for DHSS in patients with chronic hepatitis B.
Collapse
|
13
|
Holsworth RE, Cho YI, Weidman JJ, Sloop GD, Cyr JAS. Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables. Perfusion 2013; 29:102-16. [DOI: 10.1177/0267659113505637] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Renewed interest in the age-old concept of “bloodletting”, a therapeutic approach practiced until as recently as the 19th century, has been stimulated by the knowledge that blood loss, such as following regular donation, is associated with significant reductions in key hemorheological variables, including whole blood viscosity (WBV), plasma viscosity, hematocrit and fibrinogen. An elevated WBV appears to be both a strong predictor of cardiovascular disease and an important factor in the development of atherosclerosis. Elevated WBV through wall shear stress is the most direct physiological parameter that influences the rupture and erosion of vulnerable plaques. In addition to WBV reduction, phlebotomy may reduce an individual’s cardiovascular risk through reductions in excessive iron, oxidative stress and inflammation. Reflecting these findings, blood donation in males has shown significant drops in the incidence of cardiovascular events, as well as in procedures such as percutaneous transluminal coronary angioplasty and coronary artery bypass grafting. Collectively, the available data on the benefits of therapeutic phlebotomy point to the importance of monitoring WBV as part of a cardiovascular risk factor, along with other risk-modifying measures, whenever an increased cardiovascular risk is detected. The development of a scanning capillary tube viscometer allows the measurement of WBV in a clinical setting, which can prove to be valuable in providing an early warning sign of an increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- RE Holsworth
- Southeast Colorado Hospital, Springfield, CO, USA
| | - YI Cho
- Drexel University, Philadelphia, PA, USA
| | - J J Weidman
- Thomas Jefferson University, Philadelphia, PA, USA
| | - GD Sloop
- Benefis Hospitals, Great Falls, MT, USA
| | | |
Collapse
|
14
|
Antioxidant properties of Brazilian tropical fruits by correlation between different assays. BIOMED RESEARCH INTERNATIONAL 2013; 2013:132759. [PMID: 24106692 PMCID: PMC3782762 DOI: 10.1155/2013/132759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 12/02/2022]
Abstract
Four different assays (the Folin-Ciocalteu, DPPH, enzymatic method, and inhibitory activity on lipid peroxidation) based on radically different physicochemical principles and normally used to determine the antioxidant activity of food have been confronted and utilized to investigate the antioxidant activity of fruits originated from Brazil, with particular attention to more exotic and less-studied species (jurubeba, Solanum paniculatum; pequi, Caryocar brasiliense; pitaya, Hylocereus undatus; siriguela, Spondias purpurea; umbu, Spondias tuberosa) in order to (i) verify the correlations between results obtained by the different assays, with the final purpose to obtain more reliable results avoiding possible measuring-method linked mistakes and (ii) individuate the more active fruit species. As expected, the different methods give different responses, depending on the specific assay reaction. Anyhow all results indicate high antioxidant properties for siriguela and jurubeba and poor values for pitaya, umbu, and pequi. Considering that no marked difference of ascorbic acid content has been detected among the different fruits, experimental data suggest that antioxidant activities of the investigated Brazilian fruits are poorly correlated with this molecule, principally depending on their total polyphenolic content.
Collapse
|
15
|
Lu DL, Ding DJ, Yan WJ, Li RR, Dai F, Wang Q, Yu SS, Li Y, Jin XL, Zhou B. Influence of glucuronidation and reduction modifications of resveratrol on its biological activities. Chembiochem 2013; 14:1094-104. [PMID: 23703900 DOI: 10.1002/cbic.201300080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 12/18/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene, RES), a star among dietary polyphenols, shows a wide range of biological activities, but it is rapidly and extensively metabolized into its glucuronide and sulfate conjugates as well as to the corresponding reduced products. This begs the question of whether the metabolites of RES contribute to its in vivo biological activity. To explore this possibility, we synthesized its glucuronidation (3-GR and 4'-GR) and reduction (DHR) metabolites, and evaluated the effect of these structure modifications on biological activities, including binding ability with human serum albumin (HSA), antioxidant activity in homogeneous solutions and heterogeneous media, anti-inflammatory activity, and cytotoxicity against various cancer cell lines. We found that 1) 4'-GR, DHR and RES show nearly equal binding to HSA, mainly through hydrogen bonding, whereas 3-GR adopts a quite different orientation mode upon binding, thereby resulting in reduced ability; 2) 3-GR shows comparable (even equal) ability to RES in FRAP- and AAPH-induced DNA strand breakage assays; DHR, 3-GR, and 4'-GR exhibit anti-hemolysis activity comparable to that of RES; additionally, 3-GR and DHR retain some degree activity of the parent molecule in DPPH.-scavenging and cupric ion-initiated oxidation of LDL assays, respectively; 3) compared to RES, 4'-GR displays equipotent ability in the inhibition of COX-2, and DHR presents comparable activity in inhibiting NO production and growth of SMMC-7721 cells. Relative to RES, its glucuronidation and reduction metabolites showed equal, comparable, or some degree of activity in the above assays, depending on the specific compound and test model, which probably supports their roles in contributing to the in vivo biological activities of the parent molecule.
Collapse
Affiliation(s)
- Dong-Liang Lu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, Zhou S, Yang T, Mei Q. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 2013; 8:e54505. [PMID: 23342161 PMCID: PMC3546968 DOI: 10.1371/journal.pone.0054505] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022] Open
Abstract
Background The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro. Methods The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe2+ method and H2O2-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS. Conclusion Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H2O2-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (<30 µmol/L) increased the cell viability. The principal effect of resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Han Cui
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (SZ); (TY); (QM)
| | - Tiehong Yang
- National Key Lab Of Gastrointestinal Pharmacology of Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (SZ); (TY); (QM)
| | - Qibing Mei
- National Key Lab Of Gastrointestinal Pharmacology of Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (SZ); (TY); (QM)
| |
Collapse
|
17
|
Chang MK, Hartvigsen K, Ryu J, Kim Y, Han KH. The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine. JOURNAL OF INFLAMMATION-LONDON 2012; 9:42. [PMID: 23114023 PMCID: PMC3506444 DOI: 10.1186/1476-9255-9-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/17/2012] [Indexed: 12/03/2022]
Abstract
Rationale C-reactive protein (CRP) and lysophosphatidylcholine (LPC) are phosphorylcholine-(PC)-containing oxidized phospholipids (oxPLs) found in oxidized LDL (oxLDL), which trigger pro-atherogenic activities of macrophages during the process of atherosclerosis. It has been previously reported that CRP binds to the PC head group of oxLDL in a calcium-dependent manner. The aim of this study was to investigate the importance of binding between CRP and LPC to the pro-atherogenic activities of macrophages. Objectives and findings A chemiluminescent immunoassay and HPLC showed that human recombinant CRP formed a stable complex with LPC in the presence of calcium. The Kd value of the binding of the CRP-LPC complex to the receptors FcγRIA or FcγRIIA was 3–5 fold lower than that of CRP alone. The CRP-LPC complex triggered less potent generation of reactive oxygen species and less activation of the transcription factors AP-1 and NF-kB by human monocyte-derived macrophages in comparison to CRP or LPC alone. However, CRP did not affect activities driven by components of oxLDL lacking PC, such as upregulation of PPRE, ABCA1, CD36 and PPARγ and the enhancement of cholesterol efflux by human macrophages. The presence of CRP inhibited the association of Dil-labelled oxLDL to human macrophages. Conclusions The formation of complexes between CRP and PC-containing oxPLs, such as LPC, suppresses the pro-atherogenic effects of CRP and LPC on macrophages. This effect may in part retard the progression of atherosclerosis.
Collapse
Affiliation(s)
- Mi-Kyung Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Present address: Bayer Korea, 7th fl. Samsung-Boramae Omni Tower, 395-62, Sindaebang dong Dongzak-gu, Seoul, South Korea
| | - Karsten Hartvigsen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jewon Ryu
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| | - Yuna Kim
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| | - Ki Hoon Han
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| |
Collapse
|
18
|
Singh N, Singh N, Kumar Singh S, Kumar Singh A, kafle D, Agrawal N. Reduced Antioxidant Potential of LDL Is Associated With Increased Susceptibility to LDL Peroxidation in Type II Diabetic Patients. Int J Endocrinol Metab 2012; 10:582-6. [PMID: 23843827 PMCID: PMC3693637 DOI: 10.5812/ijem.5029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/26/2012] [Accepted: 06/05/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Type II diabetes mellitus is a complex heterogeneous group of metabolic conditions characterized by an increased level of blood glucose, due to impairment in insulin action and/or insulin secretion. Hyperglycemia is a major factor in the pathogenesis of atherosclerosis in diabetes. Oxidative modification of low density lipoprotein (LDL) is recognized as one of the major processes involved in the early stages of atherosclerosis in type II diabetes. LDL contains different antioxidants, which increase LDL resistance against oxidative modification, this is known as its antioxidant potential (AOP). OBJECTIVES The present study has been carried out to investigate the sensitivity of LDL to oxidation, AOP of LDL and to assess whether hyperglycemia in diabetes mellitus is associated with increased LDL oxidizability, and whether these relationships are related to diabetic complications. PATIENTS AND METHODS This study was carried out on 100 diabetic subjects, divided into two groups according to their glycosylated hemoglobin (HbA1c) values, either regulated ( < 0.50 M hexose/ M Hb) or unregulated ( > 0.50 M hexose/ M Hb.) A further 50 healthy subjects were included to determine the sensitivity of LDL oxidation and measurement of LDL AOP. LDL from the serum sample was precipitated by the heparin-citrate precipitation method. The LDL fractions were exposed to oxidation with copper sulphate and their sensitivity to oxidation was evaluated. AOP was measured by taking measurements from 30 subjects in each group. RESULTS The sensitivity of LDL oxidation was significantly higher in both diabetic groups compared to the control group. AOP was significantly decreased in all diabetic groups compared to the control group. CONCLUSIONS In type II diabetes, the increased susceptibility of LDL to oxidation is related to hyperglycemia and low AOP.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Biochemistry, GR Medical College, Gwalior, India
| | - Neelima Singh
- Department of Biochemistry, GR Medical College, Gwalior, India
| | | | | | - Deepak kafle
- Department of Biochemistry, GR Medical College, Gwalior, India
| | - Navneet Agrawal
- Department of Biochemistry, GR Medical College, Gwalior, India
| |
Collapse
|
19
|
Li XZ, Wei X, Zhang CJ, Jin XL, Tang JJ, Fan GJ, Zhou B. Hypohalous acid-mediated halogenation of resveratrol and its role in antioxidant and antimicrobial activities. Food Chem 2012; 135:1239-44. [PMID: 22953849 DOI: 10.1016/j.foodchem.2012.05.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/19/2012] [Accepted: 05/08/2012] [Indexed: 01/07/2023]
Abstract
The reactions of resveratrol with proinflammatory oxidants including hypochlorous and hypobromous acids in phosphate-buffered saline/methanol solution were carried out and eight halogenated resveratrol derivatives differing in the number and position of halogen atoms, and the configuration of double bond were obtained. Halogenation of resveratrol took place only at the aromatic A ring, and interestingly, the halogenation increased antioxidant activity of this parent molecule in the 2,2'-azobis(2-amidinopropane) hydrochloride-induced RBC haemolysis model. Additionally, antimicrobial activity of the derivatives against Gram-positive bacteria, Gram-negative bacteria and fungi were tested, and toward Candida albicans, 2-chloro-resveratrol and 2-bromo-resveratrol were more active than the unmodified form and the reference compound fluconazole.
Collapse
Affiliation(s)
- Xiu-Zhuang Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Palanisamy GS, Kirk NM, Ackart DF, Obregón-Henao A, Shanley CA, Orme IM, Basaraba RJ. Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs. PLoS One 2012; 7:e34148. [PMID: 22493658 PMCID: PMC3320102 DOI: 10.1371/journal.pone.0034148] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/23/2012] [Indexed: 12/26/2022] Open
Abstract
The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL) in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG) prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Randall J. Basaraba
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
21
|
LOSDAT S, HELFENSTEIN F, SALADIN V, RICHNER H. Higher in vitro resistance to oxidative stress in extra-pair offspring. J Evol Biol 2011; 24:2525-30. [DOI: 10.1111/j.1420-9101.2011.02374.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Wattamwar PP, Hardas SS, Butterfield DA, Anderson KW, Dziubla TD. Tuning of the pro-oxidant and antioxidant activity of trolox through the controlled release from biodegradable poly(trolox ester) polymers. J Biomed Mater Res A 2011; 99:184-91. [PMID: 21976443 DOI: 10.1002/jbm.a.33174] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 11/08/2022]
Abstract
In a variety of biomedical applications (e.g., tissue engineering, drug delivery, etc.), the role of a bioactive material is to serve as a platform by which one can modulate the cellular response into a desired role. Of the methods by which one may achieve this control (e.g., shape, structure, binding, growth factor release), the control of the cellular redox state has been under evaluated. Ideally, the ability to tune the redox state of a cell provides an additional level of control over a variety of cellular responses including, cell differentiation, proliferation, and apoptosis. Yet, in order to achieve such control, it is important to know both the overall oxidative status of the cell and what molecular targets are being oxidized. In this work, poly (trolox ester) nanoparticles were evaluated for their ability to either inhibit or induce cellular oxidative stress in a dose-dependent fashion. This polymer delivery form possessed a unique ability to suppress protein oxidation, a feature not seen in the free drug form, emphasizing the advantage of the delivery/dosage formulation has upon regulating cellular response.
Collapse
Affiliation(s)
- Paritosh P Wattamwar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | |
Collapse
|
23
|
Losdat S, Richner H, Blount JD, Helfenstein F. Immune activation reduces sperm quality in the great tit. PLoS One 2011; 6:e22221. [PMID: 21765955 PMCID: PMC3134482 DOI: 10.1371/journal.pone.0022221] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm.
Collapse
Affiliation(s)
- Sylvain Losdat
- Evolutionary Ecology Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
24
|
Losdat S, Helfenstein F, Gaude B, Richner H. Reproductive effort transiently reduces antioxidant capacity in a wild bird. Behav Ecol 2011. [DOI: 10.1093/beheco/arr116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
25
|
Tang JJ, Fan GJ, Dai F, Ding DJ, Wang Q, Lu DL, Li RR, Li XZ, Hu LM, Jin XL, Zhou B. Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radic Biol Med 2011; 50:1447-57. [PMID: 21376113 DOI: 10.1016/j.freeradbiomed.2011.02.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/16/2011] [Accepted: 02/23/2011] [Indexed: 12/26/2022]
Abstract
Resveratrol is the subject of intense research as a natural antioxidant and cancer chemopreventive agent. There has been a great deal of interest and excitement in understanding its action mechanism and developing analogs with antioxidant and cancer chemoprevention activities superior to that of the parent compound in the past decade. This work delineates that elongation of the conjugated links is an important strategy to improve the antioxidant activity of resveratrol analogs, including hydrogen atom- or electron-donating ability in homogeneous solutions and antihemolysis activity in heterogeneous media. More importantly, C3, a triene bearing 4,4'-dihydroxy groups, surfaced as an important lead compound displaying remarkably increased antioxidant, cytotoxic, and apoptosis-inducing activities compared with resveratrol.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hydroxychalcones as potent antioxidants: Structure–activity relationship analysis and mechanism considerations. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Lovastatin enhances paraoxonase enzyme activity and quells low-density lipoprotein susceptibility to oxidation in type 2 diabetic nephropathy. Clin Biochem 2011; 44:165-70. [DOI: 10.1016/j.clinbiochem.2010.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/27/2010] [Accepted: 10/11/2010] [Indexed: 02/02/2023]
|
28
|
Losdat S, Helfenstein F, Gaude B, Richner H. Effect of sibling competition and male carotenoid supply on offspring condition and oxidative stress. Behav Ecol 2010. [DOI: 10.1093/beheco/arq147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
29
|
Fang JG, Lu M, Ma LP, Yang L, Wu LM, Liu ZL. Protective Effects of Resveratrol and its Analogues against Free Radical-Induced Oxidative Hemolysis of Red Blood Cells†. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20020201126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
31
|
Trinker M, Smolle KH, Scheidl S, Tatzber F, Lindschinger M, Wonisch W. Serum total peroxides are increased in patients with stage IV compared to stage IIb peripheral arterial disease: Percutaneous transluminal angioplasty may generate epitopes for autoantibodies against oxidized low density lipoprotein. ACTA ACUST UNITED AC 2010. [DOI: 10.1556/cemed.4.2010.1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Liu ZQ, Tang YZ, Wu D. Antioxidant effects of phenothiazine, phenoxazine, and iminostilbene on free-radical-induced oxidation of linoleic acid and DNA. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Kinetic study of the prooxidant effect of alpha-tocopherol. Hydrogen abstraction from lipids by alpha-tocopheroxyl radical. Lipids 2009; 44:935-43. [PMID: 19763654 DOI: 10.1007/s11745-009-3339-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022]
Abstract
A kinetic study of the prooxidant effect of alpha-tocopherol was performed. The rates of allylic hydrogen abstraction from various unsaturated fatty acid esters (ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) by alpha-tocopheroxyl radical in toluene were determined, using a double-mixing stopped-flow spectrophotometer. The second-order rate constants (k (p)) obtained are <1 x 10(-2) M(-1 )s(-1) for 1, 1.90 x 10(-2) M(-1 )s(-1) for 2, 8.33 x 10(-2 )M(-1 )s(-1) for 3, 1.92 x 10(-1) M(-1 )s(-1) for 4, and 2.43 x 10(-1 )M(-1 )s(-1) for 5 at 25.0 degrees C. Fatty acid esters 3, 4, and 5 contain two, four, and six -CH(2)- hydrogen atoms activated by two pi-electron systems (-C=C-CH(2)-C=C-). On the other hand, fatty acid ester 2 has four -CH(2)- hydrogen atoms activated by a single pi-electron system (-CH(2)-C=C-CH(2)-). Thus, the rate constants, k (abstr)/H, given on an available hydrogen basis are k (p)/4 = 4.75 x 10(-3 )M(-1 )s(-1) for 2, k (p)/2 = 4.16 x 10(-2) M(-1 )s(-1) for 3, k (p)/4 = 4.79 x 10(-2 )M(-1 )s(-1) for 4, and k (p)/6 = 4.05 x 10(-2 )M(-1 )s(-1) for 5. The k (abstr)/H values obtained for 3, 4, and 5 are similar to each other, and are by about one order of magnitude higher than that for 2. From these results, it is suggested that the prooxidant effect of alpha-tocopherol in edible oils, fats, and low-density lipoproteins may be induced by the above hydrogen abstraction reaction.
Collapse
|
34
|
Samocha-Bonet D, Gal S, Schnitzer E, Lichtenberg D, Pinchuk I. Lipid Peroxidation in the Presence of Albumin, Inhibitory and Prooxidative Effects. Free Radic Res 2009; 38:1173-81. [PMID: 15621694 DOI: 10.1080/10715760400016113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oxidative modifications of LDL are involved in atherogenesis. Previously we have developed a simple assay to evaluate the susceptibility of lipids to copper-induced peroxidation in the relatively natural milieu of unfractionated serum in the presence of excess citrate. Based on our previous results we have proposed that the inducer of peroxidation in our optimized assay is a copper-citrate complex. Recent investigations indicate that under certain conditions a copper-albumin complex may induce peroxidation of ascorbate. Two different complexes may be formed in albumin-containing systems (e.g. serum) namely 1:1 and 2:1 copper-albumin complexes. The aim of the present work was to evaluate the possibility that at least one of these complexes may be responsible for the induction of peroxidation of lipids in lipidic systems containing copper and albumin, including our optimized assay. Towards this end, we have investigated the dependence of copper-induced peroxidation on the concentration of added albumin in lipidic systems in the absence and presence of citrate. In all the systems investigated in this study (PLPC liposomes, LDL, HDL and mixtures of HDL and LDL) we found that at low concentrations of free copper (e.g. in the presence of excess citrate) the 2:1 copper-albumin complex is redox-active and that this complex is the major contributor to the initiation of lipid peroxidation in these systems and in our optimized assay. The possible relevance of the induction of peroxidation in vivo by the latter complex has yet to be studied.
Collapse
Affiliation(s)
- Dorit Samocha-Bonet
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, 69978 Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
35
|
Luo Y, Chen G, Li B, Ji B, Guo Y, Tian F. Evaluation of antioxidative and hypolipidemic properties of a novel functional diet formulation of Auricularia auricula and Hawthorn. INNOV FOOD SCI EMERG 2009. [DOI: 10.1016/j.ifset.2008.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Protective effects of plicatin B on micronucleus induction in cultured human lymphocytes by different mutagens. Food Chem Toxicol 2009; 47:124-8. [DOI: 10.1016/j.fct.2008.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 10/09/2008] [Accepted: 10/15/2008] [Indexed: 01/22/2023]
|
37
|
Fang JG, Zhou B. Structure-activity relationship and mechanism of the tocopherol-regenerating activity of resveratrol and its analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11458-11463. [PMID: 18983156 DOI: 10.1021/jf802665s] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The present study investigated the mechanism of the synergistic antioxidant activity of alpha-tocopherol with resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,5,4'-THS) and its synthetic analogues, that is, 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-trans-stilbene (4-HS), and 3,5-dihydroxy-trans-stilbene (3,5-DHS). The reaction kinetics of alpha-tocopheroxyl radical with resveratrol and its analogues were studied in sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB) micelles using the stopped-flow electron paramagnetic resonance (EPR) technique. It was found that resveratrol and its analogues could regenerate alpha-tocopherol with rate constants (k(REG)) in the order of 3,4-DHS > 4,4'-DHS > resveratrol > or = 4-HS > or = 3,5-DHS in SDS and CTAB micelles. It was found that the analogues bearing o-dihydroxyl groups (3,4-DHS) and p-dihydroxyl groups (4,4'-HS) exhibited remarkably higher alpha-tocopherol-regenerating activity than those bearing no such groups (resveratrol, 4-HS, and 3,5-DHS). In addition, the alpha-tocopherol-regenerating activity of resveratrol and its analogues was correlated with their electrochemical behaviors, suggesting that electron transfer might play a critical role during the regeneration reaction.
Collapse
|
38
|
Marantos C, Mukaro V, Ferrante J, Hii C, Ferrante A. Inhibition of the lipopolysaccharide-induced stimulation of the members of the MAPK family in human monocytes/macrophages by 4-hydroxynonenal, a product of oxidized omega-6 fatty acids. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1057-66. [PMID: 18772336 DOI: 10.2353/ajpath.2008.071150] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The compound 4-hydroxynonenal (4-HNE) is the major aldehyde formed during lipid peroxidation of omega-6-polyunsaturated fatty acids and has been suggested to regulate inflammatory responses because it inhibits tumor necrosis factor (TNF) mRNA production in the human monocytic cell line THP-1. Here we demonstrate that 4-HNE inhibits TNF and interleukin-1beta production in human monocytes in response to lipopolysaccharide. The main action of 4-HNE occurred at the pretranscriptional level; there was no effect on TNF mRNA production or stability when 4-HNE was added after stimulation. The mechanism of action of 4-HNE appears to be downstream of lipopolysaccharide-receptor binding. In the human monocytic MonoMac 6 cell line, 4-HNE caused selective inhibition of the activity of the mitogen-activated protein kinases p38 and ERK1/ERK2, but not JNK. However, in monocytes, the activities of all three kinases were inhibited, suggesting that the effects of 4-HNE were exerted at points upstream of ERK1/ERK2 and JNK as the levels of the phosphorylated kinases were reduced. In contrast, p38 phosphorylation was not inhibited, suggesting that 4-HNE affects kinase activity. 4-HNE also inhibited nuclear factor-kappaB activation in monocytes. In view of the roles of p38, ERK1/ERK2, JNK, and nuclear factor-kappaB in inflammation, the data suggest that 4-HNE, at nontoxic concentrations, has anti-inflammatory properties, most likely through an effect on these signaling molecules, and could lead to the development of novel treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Christos Marantos
- The Sansom Institute and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | | | | | |
Collapse
|
39
|
Pouvreau JB, Morançais M, Taran F, Rosa P, Dufossé L, Guérard F, Pin S, Fleurence J, Pondaven P. Antioxidant and free radical scavenging properties of marennine, a blue-green polyphenolic pigment from the diatom Haslea ostrearia (Gaillon/Bory) Simonsen responsible for the natural greening of cultured oysters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6278-6286. [PMID: 18636683 DOI: 10.1021/jf073187n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Among microalgae, the marine diatom Haslea ostrearia has the distinctive feature of synthesizing and releasing, into the surrounding environment, a blue-green polyphenolic pigment called marennine. The oyster-breeding industry commonly makes use of this natural phenomenon for the greening of oysters grown in the ponds of the French Atlantic coast. This article reports the in vitro antioxidant properties of pure marennine. Two kinds of evaluation systems were adopted to test the antioxidative activity of marennine: antioxidant capacity assays (beta-carotene and thymidine protection assays and iron reducing power assay) and free radical scavenging assays (DPPH*, O2*-, and HO*). In almost all cases, marennine exhibited significantly higher antioxidative and free radical scavenging activities than natural and synthetic antioxidants commonly used in food, as shown by comparing median effective concentration (EC 50) values, for each test independently. This medium molecular weight polyphenol (around 10 kDa) from microalgae is thus a potentially useful natural antioxidant. Because of its blue-coloring property and water solubility, it could also be used as a natural food-coloring additive.
Collapse
Affiliation(s)
- Jean-Bernard Pouvreau
- Universite de Nantes, MMS, EA 2160, PML, UFR Sciences, 2 rue de la Houssiniere-BP 92208 Nantes cedex 3, Brittany, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karadeniz G, Acikgoz S, Tekin IO, Tascýlar O, Gun BD, Cömert M. Oxidized low-density-lipoprotein accumulation is associated with liver fibrosis in experimental cholestasis. Clinics (Sao Paulo) 2008; 63:531-40. [PMID: 18719767 PMCID: PMC2664132 DOI: 10.1590/s1807-59322008000400020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/28/2008] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the probable relationship between the accumulation of oxLDL and hepatic fibrogenesis in cholestatic rats. INTRODUCTION There is growing evidence to support the current theories on how oxidative stress that results in lipid peroxidation is involved in the pathogenesis of cholestatic liver injury and fibrogenesis. One of the major and early lipid peroxidation products, OxLDL, is thought to play complex roles in various immuno-inflammatory mechanisms. METHODS A prolonged (21-day) experimental bile duct ligation was performed on Wistar-albino rats. Biochemical analysis of blood, histopathologic evaluation of liver, measurement of the concentration of malondialdehyde (MDA) and superoxide-dismutase (SOD) in liver tissue homogenates, and immunofluorescent staining for oxLDL in liver tissue was conducted in bile-duct ligated (n=8) and sham-operated rats (n=8). RESULTS Significantly higher levels of MDA and lower concentrations of SOD were detected in jaundiced rats than in the sham-operated rats. Positive oxLDL staining was also observed in liver tissue sections of jaundiced rats. Histopathological examination demonstrated that neither fibrosis nor other indications of hepatocellular injury were found in the sham-operated group, while features of severe hepatocellular injury, particularly fibrosis, were found in jaundiced rats. CONCLUSION Our results support the finding that either oxLDLs are produced as an intermediate agent during exacerbated oxidative stress or they otherwise contribute to the various pathomechanisms underlying the process of liver fibrosis. Whatever the mechanism, it is clear that an association exists between elevated oxLDL levels and hepatocellular injury, particularly with fibrosis. Further studies are needed to evaluate the potential effects of oxLDLs on the progression of secondary biliary cirrhosis.
Collapse
|
41
|
Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophys Chem 2008; 135:76-83. [DOI: 10.1016/j.bpc.2008.03.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 01/08/2023]
|
42
|
ALONSO-ALVAREZ C, BERTRAND S, FAIVRE B, SORCI G. Increased susceptibility to oxidative damage as a cost of accelerated somatic growth in zebra finches. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01300.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Vejux A, Kahn E, Ménétrier F, Montange T, Lherminier J, Riedinger JM, Lizard G. Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation. Histochem Cell Biol 2007; 127:609-24. [PMID: 17226048 DOI: 10.1007/s00418-006-0268-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2006] [Indexed: 01/08/2023]
Abstract
Oxysterols, mainly those oxidized at the C7 position, induce a complex mode of cell death exhibiting some characteristics of apoptosis associated with a rapid induction of lipid rich multilamellar cytoplasmic structures (myelin figures) observed in various pathologies including atherosclerosis. The aim of this study was to determine the relationships between myelin figure formation, cell death, and lipid accumulation in various cell lines (U937, THP-1, MCF-7 [caspase-3 deficient], A7R5) treated either with oxysterols (7-ketocholesterol [7KC], 7beta-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 25-hydroxycholesterol) or cytotoxic drugs (etoposide, daunorubicin, tunicamycin, rapamycin). Cell death was assessed by the measurement of cellular permeability with propidium iodide, characterization of the morphological aspect of the nuclei with Hoechst 33342, and identification of myelin figures by transmission electron microscopy. Nile Red staining (distinguishing neutral and polar lipids) was used to identify lipid content by flow cytometry and spectral imaging microscopy. Whatever the cells considered, myelin figures were only observed with cytotoxic oxysterols (7KC, 7beta-hydroxycholesterol, cholesterol-5beta, 6beta-epoxide), and their formation was not inhibited by the broad spectrum caspase inhibitor z-VAD-fmk. When U937 cells were treated with oxysterols or cytotoxic drugs, polar lipid accumulation was mainly observed with 7KC and 7beta-hydroxycholesterol. The highest polar lipid accumulation, which was triggered by 7KC, was counteracted by z-VAD-fmk. These findings demonstrate that myelin figure formation is a caspase-independent event closely linked with the cytotoxicity of oxysterols, and they highlight a relationship between caspase activity and polar lipid accumulation.
Collapse
Affiliation(s)
- Anne Vejux
- INSERM UMR 866/IFR100, CHU-Hôpital du Bocage, BP77908, 21079, Dijon Cedex, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Cheng JC, Dai F, Zhou B, Yang L, Liu ZL. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.11.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Karabina SA, Brochériou I, Le Naour G, Agrapart M, Durand H, Gelb M, Lambeau G, Ninio E. Atherogenic properties of LDL particles modified by human group X secreted phospholipase A2 on human endothelial cell function. FASEB J 2006; 20:2547-9. [PMID: 17077289 DOI: 10.1096/fj.06-6018fje] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increasing evidence suggests that secreted phospholipases A2 (sPLA2s) play an important role in the pathophysiology of atherosclerosis. Among sPLA2s, the human group X (hGX) enzyme has the highest catalytic activity toward phosphatidylcholine, one of the major phospholipid species of cell membranes and low-density lipoprotein (LDL). Our study examined the presence of hGX sPLA2 in human atherosclerotic lesions and investigated the ability of hGX modified LDL to alter human endothelial cell (HUVEC) function. Our results show that hGX sPLA2 is present in human atherosclerotic lesions and that the hydrolysis of LDL by hGX sPLA2 results in a modified particle that induces lipid accumulation in human monocyte-derived macrophages. Acting on endothelial cells, hGX-modified LDL activates the MAP kinase pathway, which leads to increased arachidonic acid release, increased expression of adhesion molecules on the surface of HUVEC, and increased adhesion of monocytes to HUVEC monolayers. Together, our data suggest that LDL modified by hGX, rather than hGX itself may have strong proinflammatory and proatherogenic properties, which could play an important role in the propagation of atherosclerosis.
Collapse
Affiliation(s)
- Sonia-Athina Karabina
- INSERM UMRS 525, Faculté de Médecine Pierre et Marie Curie, 91, boulevard de l'Hôpital, 75634 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sudhahar V, Kumar SA, Varalakshmi P, Sundarapandiyan R. Mitigating role of lupeol and lupeol linoleate on hepatic lipemic-oxidative injury and lipoprotein peroxidation in experimental hypercholesterolemia. Mol Cell Biochem 2006; 295:189-98. [PMID: 16933029 DOI: 10.1007/s11010-006-9288-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Accepted: 07/24/2006] [Indexed: 11/26/2022]
Abstract
In the present study, the role of pentacyclic triterpenes, lupeol and its ester lupeol linoleate, was studied in relation to hepatic oxidative abnormalities and lipoprotein peroxidation in hypercholesterolemic rats. Hypercholesterolemia was induced in male Wistar rats by feeding them with high cholesterol diet (4% cholesterol + 1% cholic acid; HCD) for 30 days. Pentacyclic triterpenes, lupeol and lupeol linoleate were supplemented (50 mg/kg body wt/day) during the last 15 days. After the experimental period, there was a significant depression in hepatic activities of antioxidant enzymes, SOD (38.39%), CAT (25.03%) and GPx (30.26%) along with a marked fall in the levels of non-enzymic antioxidant molecules GSH (31.39%), vitamin C (46.07%) and vitamin E (42.28%), with a concomitant increase (p<0.001) in lipid peroxidation and in the activities of serum alkaline phosphatase, lactate dehydrogenase and aminotransferases when compared to controls. Treatment with triterpenes decreased lipid peroxidation and reverted the activities of antioxidants (p<0.001 and p<0.01) and marker enzymes to near control. Histopathological findings further confirmed the hepatoprotective nature of triterpenes by showing the normal architecture in treated rats, as against the fatty cellular changes in HCD fed rats. Further, the susceptibility of apo-B containing lipoprotein to oxidation by copper and Fenton's reagent was increased in in vitro condition in HCD fed rats, whereas the lipoproteins were less susceptible to oxidation in triterpenes treated animals. Therefore, it may be concluded that lupeol and its ester afford protection against the hepatic abnormalities and lipoprotein peroxidation in hypercholesterolemic rats.
Collapse
Affiliation(s)
- V Sudhahar
- Department of Medical Biochemistry, Dr. ALM. Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | | | | | | |
Collapse
|
47
|
Cheng JC, Fang JG, Chen WF, Zhou B, Yang L, Liu ZL. Structure–activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation. Bioorg Chem 2006; 34:142-57. [PMID: 16712899 DOI: 10.1016/j.bioorg.2006.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 03/28/2006] [Accepted: 04/05/2006] [Indexed: 12/23/2022]
Abstract
Resveratrol (3,5,4'-trans-trihydroxystibene) is a natural phytoalexin present in grapes and red wine, which possesses a variety of biological activities including antioxidative activity. To find more active antioxidants, with resveratrol as the lead compound, we synthesized resveratrol analogues, i.e., 3,4,3',4'-tetrahydroxy-trans-stilbene (3,4,3',4'-THS), 3,4,4'-trihydroxy-trans-stilbene (3,4,4'-THS), 2,4,4'-trihydroxy-trans-stilbene (2,4,4'-THS), 3,3'-dimethoxy-4,4'-dihydroxy-trans-stilbene (3,3'-DM-4,4'-DHS), 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 3,5-dihydroxy-trans-stilbene (3,5-DHS) and 2,4-dihydroxy-trans-stilbene (2,4-DHS). Antioxidative effects of resveratrol and its analogues against free-radical-induced peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu(2+)). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol (TOH) presented in the native LDL, or by the formation of thiobarbituric acid reactive substances (TBARS). Kinetic analysis of the antioxidation process demonstrates that these trans-stilbene derivatives are effective antioxidants against both AAPH- and Cu(2+)-induced LDL peroxidation with the activity sequence of 3,4,3',4'-THS approximately 3,3'-DM-4,4'-DHS>3,4-DHS approximately 3,4,4'-THS>2,4,4'-THS>resveratrol approximately 3,5-DHS>4,4'-DHS approximately 2,4-HS, and 3,4,3',4'-THS approximately 3,4-DHS approximately 3,4,4'-THS>3,3'-DM-4,4'-DHS>4,4'-DHS>resveratrol approximately 2,4-HS>2,4,4'-THS approximately 3,5-DHS, respectively. Molecules bearing ortho-dihydroxyl or 4-hydroxy-3-methoxyl groups possess significantly higher antioxidant activity than those bearing no such functionalities.
Collapse
Affiliation(s)
- Jin-Chun Cheng
- National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | | | | | | | | |
Collapse
|
48
|
Lin X, Xue LY, Wang R, Zhao QY, Chen Q. Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidation. FEBS J 2006; 273:1275-84. [PMID: 16519691 DOI: 10.1111/j.1742-4658.2006.05150.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Xin Lin
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, China
| | | | | | | | | |
Collapse
|
49
|
Kempaiah RK, Manjunatha H, Srinivasan K. Protective effect of dietary capsaicin on induced oxidation of low-density lipoprotein in rats. Mol Cell Biochem 2006; 275:7-13. [PMID: 16335782 DOI: 10.1007/s11010-005-7643-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An animal study was carried out to examine the beneficial influence of the known hypocholesterolemic spice principle-capsaicin on the susceptibility of low-density lipoprotein to oxidation in normal and hypercholesterolemic condition. In rats rendered hypercholeterolemic by maintaining them on a cholesterol-enriched diet for eight weeks, inclusion of capsaicin (0.015%) in the diet, produced significant hypocholesterolemic effect. Oxidation of low-density lipoprotein was induced either by copper ion in vitro after its isolation, or by ferrous ion in vivo in experimental rats under either normal or hypercholesterolemic situation and the beneficial effect of dietary capsaicin on the same was evaluated. LDL oxidation was measured by the thiobarbituric acid reactive substances (TBARS) formed and relative electrophoretic mobility of oxidized LDL. Dietary capsaicin was found to be protective to the LDL oxidation in vitro in the case of normal rats as indicated by reduction in TBARS by more than 40%. In the case of LDL isolated from hypercholesterolemic rats the extent of copper induced LDL oxidation was significantly lower than that of LDL isolated from normal rats. Dietary capsaicin did not make any difference in the extent of LDL oxidation in vitro in hypercholesterolemic rats. Ferrous ion induced in vivo oxidation of LDL was 71% lower in capsaicin fed normal rats. In high cholesterol feeding, Fe-induced in vivo oxidation of LDL was 73% lower, while the same was still marginally lower in capsaicin fed hypercholesterolemic rats. Hepatic lipid peroxidation was significantly decreased by dietary capsaicin in normal rats. While a significantly decreased level of lipid peroxidation was observed in hypercholesterolemic rats compared to normal rats, the same was not significantly altered by dietary capsaicin. Results suggest that dietary spice principle capsaicin is protective to LDL oxidation both in vivo and in vitro under normal situation, while in hypercholesterolemic situation where the extent of LDL oxidation is already lowered, capsaicin does not offer any further reduction.
Collapse
Affiliation(s)
- R K Kempaiah
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, India
| | | | | |
Collapse
|
50
|
Chen WF, Deng SL, Zhou B, Yang L, Liu ZL. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic Biol Med 2006; 40:526-35. [PMID: 16443168 DOI: 10.1016/j.freeradbiomed.2005.09.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 08/17/2005] [Accepted: 09/05/2005] [Indexed: 11/25/2022]
Abstract
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, 1) is a yellow ingredient isolated from turmeric (Curcumin longa). It has been shown to exhibit a variety of biological activities including antioxidative activity. In order to find more active antioxidants with 1 as the lead compound we synthesized curcumin analogues, i.e., 1,7-bis(3,4-dihydroxyphenyl)-1,6-heptadiene-3,5-dione (2), 1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (3), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (4), 1,7-bis (4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (5), 1-(3,4-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (6), 1,7-bis(3,4-dimethoxyphenyl)-1,6- heptadiene-3,5-dione (7), 1,7-bis(4-methoxyphenyl)-1,6-heptadiene-3,5-dione (8), and 1,7-diphenyl-1,6-heptadiene-3,5-dione (9). Antioxidative effects of curcumin and its analogues against free radical initiated peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu2+). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol present in the native LDL, or by the formation of thiobarbituric acid reactive substances. Kinetic analysis of the antioxidation process demonstrates that these compounds, except 7, 8, and 9, are effective antioxidants against AAPH- and Cu2+ -initiated LDL peroxidation by H-atom abstraction from the phenolic groups. Compounds 2 and 3 which bear ortho-diphenoxyl functionality possess significantly higher antioxidant activity than curcumin and other analogues, and the 4-hydroxy-3-methoxyphenyl group also play an important role in the antioxidative activity.
Collapse
Affiliation(s)
- Wei-Feng Chen
- National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | |
Collapse
|