1
|
Zhang Y, Tao X, MacKinnon R. Correlation between structure and function in phosphatidylinositol lipid-dependent Kir2.2 gating. Proc Natl Acad Sci U S A 2022; 119:e2114046119. [PMID: 35286194 PMCID: PMC8944589 DOI: 10.1073/pnas.2114046119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
SignificancePhosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels regulate cell membrane voltage by gluing two halves of a K+ channel together and opening the pore. PI(4)P competes with this process. Because both of these lipids are relatively abundant in the plasma membrane and are directly interconvertible through the action of specific enzymes, they may function together to regulate channel activity.
Collapse
Affiliation(s)
- Yuxi Zhang
- Laboratory of Molecular Neurobiology and Biophysics, HHMI, The Rockefeller University, New York, NY ,10065
| | - Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, HHMI, The Rockefeller University, New York, NY ,10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, HHMI, The Rockefeller University, New York, NY ,10065
| |
Collapse
|
2
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
3
|
Ozsvár A, Komlósi G, Oláh G, Baka J, Molnár G, Tamás G. Predominantly linear summation of metabotropic postsynaptic potentials follows coactivation of neurogliaform interneurons. eLife 2021; 10:65634. [PMID: 34308838 PMCID: PMC8360660 DOI: 10.7554/elife.65634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors are activated outside release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABAA responses and linear summation of metabotropic GABAB responses. Based on a model combining properties of volume transmission and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs can provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABAB receptors are simultaneously active.
Collapse
Affiliation(s)
- Attila Ozsvár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gergely Komlósi
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gáspár Oláh
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Judith Baka
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Bazard P, Frisina RD, Acosta AA, Dasgupta S, Bauer MA, Zhu X, Ding B. Roles of Key Ion Channels and Transport Proteins in Age-Related Hearing Loss. Int J Mol Sci 2021; 22:6158. [PMID: 34200434 PMCID: PMC8201059 DOI: 10.3390/ijms22116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory system is a fascinating sensory organ that overall, converts sound signals to electrical signals of the nervous system. Initially, sound energy is converted to mechanical energy via amplification processes in the middle ear, followed by transduction of mechanical movements of the oval window into electrochemical signals in the cochlear hair cells, and finally, neural signals travel to the central auditory system, via the auditory division of the 8th cranial nerve. The majority of people above 60 years have some form of age-related hearing loss, also known as presbycusis. However, the biological mechanisms of presbycusis are complex and not yet fully delineated. In the present article, we highlight ion channels and transport proteins, which are integral for the proper functioning of the auditory system, facilitating the diffusion of various ions across auditory structures for signal transduction and processing. Like most other physiological systems, hearing abilities decline with age, hence, it is imperative to fully understand inner ear aging changes, so ion channel functions should be further investigated in the aging cochlea. In this review article, we discuss key various ion channels in the auditory system and how their functions change with age. Understanding the roles of ion channels in auditory processing could enhance the development of potential biotherapies for age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Sneha Dasgupta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Soattin L, Borbas Z, Caldwell J, Prendergast B, Vohra A, Saeed Y, Hoschtitzky A, Yanni J, Atkinson A, Logantha SJ, Borbas B, Garratt C, Morris GM, Dobrzynski H. Structural and Functional Properties of Subsidiary Atrial Pacemakers in a Goat Model of Sinus Node Disease. Front Physiol 2021; 12:592229. [PMID: 33746765 PMCID: PMC7969524 DOI: 10.3389/fphys.2021.592229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background The sinoatrial/sinus node (SAN) is the primary pacemaker of the heart. In humans, SAN is surrounded by the paranodal area (PNA). Although the PNA function remains debated, it is thought to act as a subsidiary atrial pacemaker (SAP) tissue and become the dominant pacemaker in the setting of sinus node disease (SND). Large animal models of SND allow characterization of SAP, which might be a target for novel treatment strategies for SAN diseases. Methods A goat model of SND was developed (n = 10) by epicardially ablating the SAN and validated by mapping of emergent SAP locations through an ablation catheter and surface electrocardiogram (ECG). Structural characterization of the goat SAN and SAP was assessed by histology and immunofluorescence techniques. Results When the SAN was ablated, SAPs featured a shortened atrioventricular conduction, consistent with the location in proximity of atrioventricular junction. SAP recovery time showed significant prolongation compared to the SAN recovery time, followed by a decrease over a follow-up of 4 weeks. Like the SAN tissue, the SAP expressed the main isoform of pacemaker hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and Na+/Ca2+ exchanger 1 (NCX1) and no high conductance connexin 43 (Cx43). Structural characterization of the right atrium (RA) revealed that the SAN was located at the earliest activation [i.e., at the junction of the superior vena cava (SVC) with the RA] and was surrounded by the paranodal-like tissue, extending down to the inferior vena cava (IVC). Emerged SAPs were localized close to the IVC and within the thick band of the atrial muscle known as the crista terminalis (CT). Conclusions SAN ablation resulted in the generation of chronic SAP activity in 60% of treated animals. SAP displayed development over time and was located within the previously discovered PNA in humans, suggesting its role as dominant pacemaker in SND. Therefore, SAP in goat constitutes a promising stable target for electrophysiological modification to construct a fully functioning pacemaker.
Collapse
Affiliation(s)
- Luca Soattin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Zoltan Borbas
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Manchester Heart Centre, Central Manchester University Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Jane Caldwell
- Manchester Heart Centre, Central Manchester University Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Hull University Teaching Hospitals, Hull, United Kingdom.,Hull York Medical School, Hull, United Kingdom
| | - Brian Prendergast
- Manchester Heart Centre, Central Manchester University Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Akbar Vohra
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Manchester Heart Centre, Central Manchester University Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Yawer Saeed
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Manchester Heart Centre, Central Manchester University Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Andreas Hoschtitzky
- Adult Congenital Heart Disease Unit, Manchester Royal Infirmary, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Royal Brompton Hospital, London, United Kingdom.,Imperial College London, London, United Kingdom
| | - Joseph Yanni
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew Atkinson
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Sunil Jit Logantha
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Liverpool Centre for Cardiovascular Sciences, Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Balint Borbas
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clifford Garratt
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Manchester Heart Centre, Central Manchester University Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Gwilym Matthew Morris
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Manchester Heart Centre, Central Manchester University Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Department of Anatomy, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Liu Q, Sun J, Zhang L, Xu Y, Wu B, Cao J. The Agonist of Inward Rectifier Potassium Channel (I K1) Attenuates Rat Reperfusion Arrhythmias Linked to CaMKII Signaling. Int Heart J 2021; 62:1348-1357. [PMID: 34853227 DOI: 10.1536/ihj.21-379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inward rectifier potassium channels (IK1, Kir) are known to play critical roles in arrhythmogenesis. Thus, how IK1 agonist affects reperfusion arrhythmias needs to be clarified, and its underlying mechanisms should be determined. Reperfusion arrhythmias were modeled by coronary ligation (ischemia, 15 minutes) and release (reperfusion, 15 minutes). Zacopride (1.5-50 μg/kg in vivo, or 0.1-10 μmol/Lex vivo) was applied in the settings of pretreatment (3 minutes before coronary ligation) and posttreatment (5 minutes after coronary ligation). Hypoxia (45 minutes) /reoxygenation (30 minutes) model was established in cultured H9c2 (2-1) cardiomyocytes. Zacopride or KN93 was applied before hypoxia (pretreatment). In the setting of pre- or posttreatment, zacopride at 15 μg/kg in vivo or 1 μmol/Lin vitro exhibited superlative protections on reperfusion arrhythmias or intracellular calcium overload. Western blot data from ex vivo hearts or H9c2 (2-1) cardiomyocytes showed that I/R (H/R) induced the inhibition of Kir2.1 (the dominant subunit of IK1 channel in ventricle), phosphorylation and oxidation of CaMKII, downregulation of SERCA2, phosphorylation of phospholamban (at Thr17), and activation of caspase-3. Zacopride treatment (1 μmol/L) was noted to strikingly restore the expression of Kir2.1 and SERCA2 and decrease the activity of CaMKII, phospholamban, and caspase-3. These effects were largely eliminated by co-application of IK1 blocker BaCl2. CaMKII inhibitor KN93 attenuated calcium overload and p-PLB (Thr17) in an IK1-independent manner. IK1-depedent inhibition of CaMKII activity is found to be a key cardiac salvage signaling under Ca2+ dyshomeostasis and reactive oxygen species (ROS) stress. IK1 might be a novel target for pharmacological conditioning of reperfusion arrhythmia, especially for the application after unpredictable ischemia.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of Pathophysiology, Shanxi Medical University
| | - Jiaxing Sun
- Department of Pathophysiology, Shanxi Medical University
| | - Lijun Zhang
- Department of Pathophysiology, Shanxi Medical University
| | - Yanwu Xu
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine
| | - Bowei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University
| |
Collapse
|
7
|
Niu Y, Tao X, Touhara KK, MacKinnon R. Cryo-EM analysis of PIP 2 regulation in mammalian GIRK channels. eLife 2020; 9:e60552. [PMID: 32844743 PMCID: PMC7556866 DOI: 10.7554/elife.60552] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
G-protein-gated inward rectifier potassium (GIRK) channels are regulated by G proteins and PIP2. Here, using cryo-EM single particle analysis we describe the equilibrium ensemble of structures of neuronal GIRK2 as a function of the C8-PIP2 concentration. We find that PIP2 shifts the equilibrium between two distinguishable structures of neuronal GIRK (GIRK2), extended and docked, towards the docked form. In the docked form the cytoplasmic domain, to which Gβγ binds, becomes accessible to the cytoplasmic membrane surface where Gβγ resides. Furthermore, PIP2 binding reshapes the Gβγ binding surface on the cytoplasmic domain, preparing it to receive Gβγ. We find that cardiac GIRK (GIRK1/4) can also exist in both extended and docked conformations. These findings lead us to conclude that PIP2 influences GIRK channels in a structurally similar manner to Kir2.2 channels. In Kir2.2 channels, the PIP2-induced conformational changes open the pore. In GIRK channels, they prepare the channel for activation by Gβγ.
Collapse
Affiliation(s)
- Yiming Niu
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Kouki K Touhara
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
8
|
Wang M, Sun J, Yang Q. Modeling and simulation of excitation- contraction coupling of fast-twitch skeletal muscle fibers. Technol Health Care 2020; 28:13-24. [PMID: 32364140 PMCID: PMC7369047 DOI: 10.3233/thc-209003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND: The current excitation-contraction coupling model of fast-twitch skeletal muscle fibers cannot completely simulate the excitation-contraction process. OBJECTIVE: To solve this problem, this study proposes an excitation-contraction model of fast-twitch skeletal muscle fibers based on the physiological structure and contractile properties of half-sarcomeres. METHODS: The model includes the action potential model of fast-twitch fiber membranes and transverse tubule membranes, the cycle model of 𝐶𝑎2+ in myofibril, the cross-bridge cycle model, and the fatigue model of metabolism. RESULTS: Finally, detailed analyses of the results from the simulation are conducted using the Simulink toolbox in MATLAB. Two conditions, non-coincidence and coincidence, are analyzed for both the thick and thin myofilaments. CONCLUSIONS: The simulation results of two groups of models are the same as the previous research results, which validates the accuracy of models.
Collapse
Affiliation(s)
- Monan Wang
- Corresponding author: Monan Wang, Key Laboratory of Medical Biomechanics and Materials of Heilongjiang Province, Harbin University of Science and Technology, Xuefu Road, Harbin, Heilongjiang, 150080, China. Tel.: +86 451 86390530; Fax: +86 451 86390500; E-mail:
| | | | | |
Collapse
|
9
|
Li Z, He Q, Wu C, Chen L, Bi F, Zhou Y, Shan H. Apelin shorten QT interval by inhibiting Kir2.1/I K1 via a PI3K way in acute myocardial infarction. Biochem Biophys Res Commun 2019; 517:272-277. [PMID: 31349969 DOI: 10.1016/j.bbrc.2019.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
QT interval prolongation and depolarization of resting membrane potential (RMP) were found in acute myocardial infarction (MI) which is involved in the arrhythmogenic mechanism and raising the risk to initiate torsade de pointes. However, clinical anti-arrhythmic agents that primarily act on QT interval and RMP are not currently available. Our objective was to determine whether Apelin, an endogenous peptide ligand of receptor APJ, affects QT interval and RMP and underlying mechanisms. To test this viewpoint, mice were subjected to MI by ligating the left main coronary artery and Apelin was applied through tail vein at 5 min prior coronary occlusion in tested group. Compared to MI group, pretreatment of Apelin (15 μg/kg) shortened QTc and QT interval induced by MI, significantly elevated RMP and shortened action potential duration (APD) by increased IK1 currents recorded using whole-cell patch technique from cardiomyocytes underwent MI. In cultured neonatal mouse cardiomyocytes, Apelin (1 μmol/L) restored hypoxia-induced Kir2.1 down-regulation, which was abolished by IP3K inhibitor LY-294002. Additionally, Apelin elicited a time-dependent increase in phosphorylation of Akt leading to increase in PI3-kinase activity. These results showed that Apelin enhanced IK1/Kir2.1 currents via IP3K pathway as by rescue ischemia- and hypoxia-induced RMP depolarization and prolongation of QT interval, which may prevent or cure acute ischemic-mediated arrhythmias. This study brings new information to anti-arrhythmic theories and provides a potential target for the clinical management of acute ischemia-related arrhythmias.
Collapse
Affiliation(s)
- Zhongrui Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150081, China
| | - Qiufu He
- Department of General Practice, The Forth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150081, China
| | - Chengyu Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | | | - Fangfang Bi
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhong Zhou
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
10
|
Sanson C, Schombert B, Filoche-Rommé B, Partiseti M, Bohme GA. Electrophysiological and Pharmacological Characterization of Human Inwardly Rectifying K ir2.1 Channels on an Automated Patch-Clamp Platform. Assay Drug Dev Technol 2019; 17:89-99. [PMID: 30835490 PMCID: PMC6479253 DOI: 10.1089/adt.2018.882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inwardly rectifying IK1 potassium currents of the heart control the resting membrane potential of ventricular cardiomyocytes during diastole and contribute to their repolarization after each action potential. Mutations in the gene encoding Kir2.1 channels, which primarily conduct ventricular IK1, are associated with inheritable forms of arrhythmias and sudden cardiac death. Therefore, potential iatrogenic inhibition of Kir2.1-mediated IK1 currents is a cardiosafety concern during new drug discovery and development. Kir2.1 channels are part of the panel of cardiac ion channels currently considered for refined early compound risk assessment within the Comprehensive in vitro Proarrhythmia Assay initiative. In this study, we have validated a cell-based assay allowing functional quantification of Kir2.1 inhibitors using whole-cell recordings of Chinese hamster ovary cells stably expressing human Kir2.1 channels. We reproduced key electrophysiological and pharmacological features known for native IK1, including current enhancement by external potassium and voltage- and concentration-dependent blockade by external barium. Furthermore, the Kir inhibitors ML133, PA-6, and chloroquine, as well as the multichannel inhibitors chloroethylclonidine, chlorpromazine, SKF-96365, and the class III antiarrhythmic agent terikalant demonstrated slowly developing inhibitory activity in the low micromolar range. The robustness of this assay authorizes medium throughput screening for cardiosafety purposes and could help to enrich the currently limited Kir2.1 pharmacology.
Collapse
Affiliation(s)
- Camille Sanson
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Brigitte Schombert
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Bruno Filoche-Rommé
- 2 Integrated Drug Discovery, Medicinal Chemistry, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Michel Partiseti
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| | - G Andrees Bohme
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| |
Collapse
|
11
|
A Network Model Reveals That the Experimentally Observed Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern Separation Function of the Dentate Gyrus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-99103-0_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Salazar-Fajardo PD, Aréchiga-Figueroa IA, López-Serrano AL, Rodriguez-Elias JC, Alamilla J, Sánchez-Chapula JA, Tristani-Firouzi M, Navarro-Polanco RA, Moreno-Galindo EG. The voltage-sensitive cardiac M 2 muscarinic receptor modulates the inward rectification of the G protein-coupled, ACh-gated K + current. Pflugers Arch 2018; 470:1765-1776. [PMID: 30155776 DOI: 10.1007/s00424-018-2196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022]
Abstract
The acetylcholine (ACh)-gated inwardly rectifying K+ current (IKACh) plays a vital role in cardiac excitability by regulating heart rate variability and vulnerability to atrial arrhythmias. These crucial physiological contributions are determined principally by the inwardly rectifying nature of IKACh. Here, we investigated the relative contribution of two distinct mechanisms of IKACh inward rectification measured in atrial myocytes: a rapid component due to KACh channel block by intracellular Mg2+ and polyamines; and a time- and concentration-dependent mechanism. The time- and ACh concentration-dependent inward rectification component was eliminated when IKACh was activated by GTPγS, a compound that bypasses the muscarinic-2 receptor (M2R) and directly stimulates trimeric G proteins to open KACh channels. Moreover, the time-dependent component of IKACh inward rectification was also eliminated at ACh concentrations that saturate the receptor. These observations indicate that the time- and concentration-dependent rectification mechanism is an intrinsic property of the receptor, M2R; consistent with our previous work demonstrating that voltage-dependent conformational changes in the M2R alter the receptor affinity for ACh. Our analysis of the initial and time-dependent components of IKACh indicate that rapid Mg2+-polyamine block accounts for 60-70% of inward rectification, with M2R voltage sensitivity contributing 30-40% at sub-saturating ACh concentrations. Thus, while both inward rectification mechanisms are extrinsic to the KACh channel, to our knowledge, this is the first description of extrinsic inward rectification of ionic current attributable to an intrinsic voltage-sensitive property of a G protein-coupled receptor.
Collapse
Affiliation(s)
- Pedro D Salazar-Fajardo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Iván A Aréchiga-Figueroa
- CONACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Ana Laura López-Serrano
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Julio C Rodriguez-Elias
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Javier Alamilla
- CONACyT, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, COL, Mexico
| | - José A Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Ricardo A Navarro-Polanco
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico.
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico.
| |
Collapse
|
13
|
Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2017; 136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor - channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology 2017; 127:161-172. [PMID: 28716449 DOI: 10.1016/j.neuropharm.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Inwardly rectifying K+ (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K+ ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K+-selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca2+-activated and voltage-gated K+ channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
15
|
The IK1/Kir2.1 channel agonist zacopride prevents and cures acute ischemic arrhythmias in the rat. PLoS One 2017; 12:e0177600. [PMID: 28542320 PMCID: PMC5436763 DOI: 10.1371/journal.pone.0177600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Arrhythmogenesis in acute myocardial infarction (MI) is associated with depolarization of resting membraine potential (RMP) and decrease of inward rectifier potassium current (IK1) in cardiomyocytes. However, clinical anti-arrhythmic agents that primarily act on RMP by enhancing the IK1 channel are not currently available. We hypothesized that zacopride, a selective and moderate agonist of the IK1/Kir2.1 channels, prevents and cures acute ischemic arrhythmias. To test this viewpoint, adult Sprague-Dawley (SD) rats were subjected to MI by ligating the left main coronary artery. The antiarrhythmic effects of zacopride (i.v. infusion) were observed in the settings of pre-treatment (zacopride given 3 min prior to coronary occlusion), post-treatment (zacopride given 3 min after coronary occlusion) and therapeutic treatment (zacopride given 30 s after the onset of the first sustained ventricular tachycardia (VT)/ventricular fibrillation (VF) post MI). In all the three treatment modes, zacopride (15 μg/kg) inhibited MI-induced ventricular tachyarrhythmias, as shown by significant decreases in the premature ventricular contraction (PVC) and the duration and incidence of VT or VF. In Langendorff perfused rat hearts, the antiarrhythmic effect of 1 μmol/L zacopride were reversed by 1 μmol/L BaCl2, a blocker of IK1 channel. Patch clamp results in freshly isolated rat ventricular myocytes indicated that zacopride activated the IK1 channel and thereby reversed hypoxia-induced RMP depolarization and action potential duration (APD) prolongation. In addition, zacopride (1 μmol/L) suppressed hypoxia- or isoproterenol- induced delayed afterdepolarizations (DADs). In Kir2.x transfected Chinese hamster ovary (CHO) cells, zacopride activated the Kir2.1 homomeric channel but not the Kir2.2 or Kir2.3 channels. These results support our hypothesis that moderately enhancing IK1/Kir2.1 currents as by zacopride rescues ischemia- and hypoxia- induced RMP depolarization, and thereby prevents and cures acute ischemic arrhythmias. This study brings a new viewpoint to antiarrhythmic theories and provides a promising target for the treatment of acute ischemic arrhythmias.
Collapse
|
16
|
Structural Basis for Differences in Dynamics Induced by Leu Versus Ile Residues in the CD Loop of Kir Channels. Mol Neurobiol 2016; 53:5948-5961. [PMID: 26520451 PMCID: PMC5085999 DOI: 10.1007/s12035-015-9466-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
The effect of the conserved Leu/Ile site in the CD loop on the gating dynamics of Kir channels and corresponding micro-structural mechanism remains unclear. Molecular dynamics simulations were performed to investigate the structural mechanism of chicken Kir2.2. Compared to WT, the I223L mutant channel bound to PIP2 more strongly, was activated more rapidly, and maintained the activation state more stably after PIP2 dissociation. Cellular electrophysiology assays of mouse Kir2.1 and human Kir2.2 indicated that, consistent with simulations, the Leu residue increased the channel responses to PIP2 through increased binding affinity and faster activation kinetics, and the deactivation kinetics decreased upon PIP2 inhibition. The Ile residue induced the opposite responses. This difference was attributed to the distinct hydrophobic side chain symmetries of Leu and Ile; switching between these residues caused the interaction network to redistribute and offered effective conformation transduction in the Leu systems, which had more rigid and independent subunits.
Collapse
|
17
|
Mitragynine and its potential blocking effects on specific cardiac potassium channels. Toxicol Appl Pharmacol 2016; 305:22-39. [PMID: 27260674 DOI: 10.1016/j.taap.2016.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023]
Abstract
Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, IK1, a Kir current mediated by Kir2.1 channel and IKACh, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC50 value of 1.62μM and 1.15μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit IKACh current with an IC50 value of 3.32μM but has no significant effects on IK1. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks.
Collapse
|
18
|
Abstract
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| |
Collapse
|
19
|
Yakubovich D, Berlin S, Kahanovitch U, Rubinstein M, Farhy-Tselnicker I, Styr B, Keren-Raifman T, Dessauer CW, Dascal N. A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ. PLoS Comput Biol 2015; 11:e1004598. [PMID: 26544551 PMCID: PMC4636287 DOI: 10.1371/journal.pcbi.1004598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/13/2015] [Indexed: 12/02/2022] Open
Abstract
G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologously expressed neuronal GIRK1/2, and now show for native GIRK in hippocampal neurons, that Ibasal and Ievoked are interrelated: the extent of activation by neurotransmitter (activation index, Ra) is inversely related to Ibasal. To unveil the underlying mechanisms, we have developed a quantitative model of GIRK1/2 function. We characterized single-channel and macroscopic GIRK1/2 currents, and surface densities of GIRK1/2 and Gβγ expressed in Xenopus oocytes. Based on experimental results, we constructed a mathematical model of GIRK1/2 activity under steady-state conditions before and after activation by neurotransmitter. Our model accurately recapitulates Ibasal and Ievoked in Xenopus oocytes, HEK293 cells and hippocampal neurons; correctly predicts the dose-dependent activation of GIRK1/2 by coexpressed Gβγ and fully accounts for the inverse Ibasal-Ra correlation. Modeling indicates that, under all conditions and at different channel expression levels, between 3 and 4 Gβγ dimers are available for each GIRK1/2 channel. In contrast, available Gαi/o decreases from ~2 to less than one Gα per channel as GIRK1/2's density increases. The persistent Gβγ/channel (but not Gα/channel) ratio support a strong association of GIRK1/2 with Gβγ, consistent with recruitment to the cell surface of Gβγ, but not Gα, by GIRK1/2. Our analysis suggests a maximal stoichiometry of 4 Gβγ but only 2 Gαi/o per one GIRK1/2 channel. The unique, unequal association of GIRK1/2 with G protein subunits, and the cooperative nature of GIRK gating by Gβγ, underlie the complex pattern of basal and agonist-evoked activities and allow GIRK1/2 to act as a sensitive bidirectional detector of both Gβγ and Gα. Many neurotransmitters and hormones inhibit the electric activity of excitable cells (such as cardiac cells and neurons) by activating a K+ channel, GIRK (G protein-gated Inwardly Rectifying K+ channel). GIRK channels also possess constitutive “basal” activity which contributes to regulation of neuronal and cardiac excitability and certain disorders, but the mechanism of this activity and its interrelation with the neurotransmitter-evoked activity are poorly understood. In this work we show that key features of basal and neurotransmitter-evoked activities are similar in cultured hippocampal neurons and in two model systems (mammalian HEK293 cells and Xenopus oocytes). Using experimental data of the neuronal GIRK1/2 channel function upon changes in GIRK and G protein concentrations, we constructed a mathematical model that quantitatively accounts for basal and evoked activity, and for the inverse correlation between the two. Our analysis suggests a novel and unexpected mechanism of interaction of GIRK1/2 with the G protein subunits, where the tetrameric GIRK channel can assemble with 4 molecules of the Gβγ subunits but only 2 molecules of Gα. GIRK is a prototypical effector of Gβγ, and the unequal stoichiometry of interaction with G protein subunits may have general implications for G protein signaling.
Collapse
Affiliation(s)
- Daniel Yakubovich
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shai Berlin
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Isabella Farhy-Tselnicker
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tal Keren-Raifman
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nathan Dascal
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
20
|
Lyu C, Mulder J, Barde S, Sahlholm K, Zeberg H, Nilsson J, Århem P, Hökfelt T, Fried K, Shi TJS. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. Mol Pain 2015. [PMID: 26199148 PMCID: PMC4511542 DOI: 10.1186/s12990-015-0044-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Increased nociceptive neuronal excitability underlies chronic pain conditions. Various ion channels, including sodium, calcium and potassium channels have pivotal roles in the control of neuronal excitability. The members of the family of G protein-gated inwardly rectifying potassium (GIRK) channels, GIRK1–4, have been implicated in modulating excitability. Here, we investigated the expression and distribution of GIRK1 and GIRK2 in normal and injured dorsal root ganglia (DRGs) and spinal cord of rats. Results We found that ~70% of the DRG neurons expressed GIRK1, while only <10% expressed GIRK2. The neurochemical profiles of GIRK1- and GIRK2-immunoreactive neurons were characterized using the neuronal markers calcitonin gene-related peptide, isolectin-B4 and neurofilament-200, and the calcium-binding proteins calbindin D28k, calretinin, parvalbumin and secretagogin. Both GIRK subunits were expressed in DRG neurons with nociceptive characteristics. However, while GIRK1 was widely expressed in several sensory neuronal subtypes, GIRK2 was detected mainly in a group of small C-fiber neurons. In the spinal dorsal horn, GIRK1- and -2-positive cell bodies and processes were mainly observed in lamina II, but also in superficial and deeper layers. Abundant GIRK1-, but not GIRK2-like immunoreactivity, was found in the ventral horn (laminae VI–X). Fourteen days after axotomy, GIRK1 and GIRK2 were down-regulated in DRG neurons at the mRNA and protein levels. Both after axotomy and rhizotomy there was a reduction of GIRK1- and -2-positive processes in the dorsal horn, suggesting a presynaptic localization of these potassium channels. Furthermore, nerve ligation caused accumulation of both subunits on both sides of the lesion, providing evidence for anterograde and retrograde fast axonal transport. Conclusions Our data support the hypothesis that reduced GIRK function is associated with increased neuronal excitability and causes sensory disturbances in post-injury conditions, including neuropathic pain. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0044-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuang Lyu
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Johanna Nilsson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Peter Århem
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tie-Jun Sten Shi
- School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, China. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
21
|
Doupnik CA. RGS Redundancy and Implications in GPCR-GIRK Signaling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:87-116. [PMID: 26422983 DOI: 10.1016/bs.irn.2015.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Regulators of G protein signaling (RGS proteins) are key components of GPCR complexes, interacting directly with G protein α-subunits to enhance their intrinsic GTPase activity. The functional consequence is an accelerated termination of G protein effectors including certain ion channels. RGS proteins have a profound impact on the membrane-delimited gating behavior of G-protein-activated inwardly rectifying K(+) (GIRK) channels as demonstrated in reconstitution assays and recent RGS knockout mice studies. Akin to GPCRs and G protein αβγ subunits, multiple RGS isoforms are expressed within single GIRK-expressing neurons, suggesting functional redundancy and/or specificity in GPCR-GIRK channel signaling. The extent and impact of RGS redundancy in neuronal GPCR-GIRK channel signaling is currently not fully appreciated; however, recent studies from RGS knockout mice are providing important new clues on the impact of individual endogenous RGS proteins and the extent of RGS functional redundancy. Incorporating "tools" such as engineered RGS-resistant Gαi/o subunits provide an important assessment method for determining the impact of all endogenous RGS proteins on a given GPCR response and an accounting benchmark to assess the impact of individual RGS knockouts on overall RGS redundancy within a given neuron. Elucidating the degree of regulation attributable to specific RGS proteins in GIRK channel function will aid in the assessment of individual RGS proteins as viable therapeutic targets in epilepsy, ataxia's, memory disorders, and a growing list of neurological disorders.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
22
|
Glaaser IW, Slesinger PA. Structural Insights into GIRK Channel Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:117-60. [PMID: 26422984 DOI: 10.1016/bs.irn.2015.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK; Kir3) channels, which are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7), regulate excitability in the heart and brain. GIRK channels are activated following stimulation of G protein-coupled receptors that couple to the G(i/o) (pertussis toxin-sensitive) G proteins. GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg(2+) and polyamines that occlude the conduction pathway at membrane potentials positive to E(K). In the past 17 years, more than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insights into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating. In this chapter, we describe advances in our understanding of GIRK channel function based on recent high-resolution atomic structures of inwardly rectifying K(+) channels discussed in the context of classical structure-function experiments.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul A Slesinger
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
23
|
Logothetis DE, Mahajan R, Adney SK, Ha J, Kawano T, Meng XY, Cui M. Unifying Mechanism of Controlling Kir3 Channel Activity by G Proteins and Phosphoinositides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:1-26. [PMID: 26422981 DOI: 10.1016/bs.irn.2015.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The question that started with the pioneering work of Otto Loewi in the 1920s, to identify how stimulation of the vagus nerve decreased heart rate, is approaching its 100th year anniversary. In the meantime, we have learned that the neurotransmitter acetylcholine acting through muscarinic M2 receptors activates cardiac potassium (Kir3) channels via the βγ subunits of G proteins, an important effect that contributes to slowing atrial pacemaker activity. Concurrent stimulation of M1 or M3 receptors hydrolyzes PIP2, a signaling phospholipid essential to maintaining Kir3 channel activity, thus causing desensitization of channel activity and protecting the heart from overinhibition of pacemaker activity. Four mammalian members of the Kir3 subfamily, expressed in heart, brain, endocrine organs, etc., are modulated by a plethora of stimuli to regulate cellular excitability. With the recent great advances in ion channel structural biology, three-dimensional structures of Kir3 channels with PIP2 and the Gβγ subunits are now available. Mechanistic insights have emerged that explain how modulatory control of activity feeds into a core mechanism of channel-PIP2 interactions to regulate the conformation of channel gates. This complex but beautiful system continues to surprise us for almost 100 years with an apparent wisdom in its intricate design.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Rahul Mahajan
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Scott K Adney
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Junghoon Ha
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Takeharu Kawano
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xuan-Yu Meng
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Meng Cui
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
24
|
Longden TA, Nelson MT. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation 2015; 22:183-96. [PMID: 25641345 PMCID: PMC4404517 DOI: 10.1111/micc.12190] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022]
Abstract
For decades it has been known that external K(+) ions are rapid and potent vasodilators that increase CBF. Recent studies have implicated the local release of K(+) from astrocytic endfeet-which encase the entirety of the parenchymal vasculature-in the dynamic regulation of local CBF during NVC. It has been proposed that the activation of KIR channels in the vascular wall by external K(+) is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K(+) sensors in the control of CBF. We propose that K(+) is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR 2 subtype in particular, are present in both the endothelial and SM cells of parenchymal arterioles and propose that this dual positioning of KIR 2 channels increases the robustness of the vasodilation to external K(+), enables the endothelium to be actively engaged in NVC, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
25
|
Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015; 467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037, Marburg, Germany
| | | | | |
Collapse
|
26
|
DiFranco M, Yu C, Quiñonez M, Vergara JL. Inward rectifier potassium currents in mammalian skeletal muscle fibres. J Physiol 2015; 593:1213-38. [PMID: 25545278 DOI: 10.1113/jphysiol.2014.283648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/19/2014] [Indexed: 11/08/2022] Open
Abstract
Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface and the transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K(+)], and could be blocked by Ba(2+) or Rb(+). In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba(2+) (or Rb(+)) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K(+)] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10(-6 ) cm s(-1) and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K(+) depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
27
|
Dascal N, Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:27-85. [DOI: 10.1016/bs.irn.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Kolaj M, Zhang L, Hermes MLHJ, Renaud LP. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci 2014; 8:132. [PMID: 24860449 PMCID: PMC4029024 DOI: 10.3389/fnbeh.2014.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023] Open
Abstract
Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS) physiology and in CNS disorders that involve the dorsomedial thalamus.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Li Zhang
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Michael L H J Hermes
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Leo P Renaud
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
29
|
Chen J, Zhao HB. The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss. Neuroscience 2014; 265:137-46. [PMID: 24480364 DOI: 10.1016/j.neuroscience.2014.01.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 11/18/2022]
Abstract
The KCNJ10 gene which encodes an inwardly rectifying K(+) channel Kir4.1 subunit plays an essential role in the inner ear and hearing. Mutations or deficiency of KCNJ10 can cause hearing loss with EAST or SeSAME syndromes. This review mainly focuses on the expression and function of Kir4.1 potassium channels in the inner ear and hearing. We first introduce general information about inwardly rectifying potassium (Kir) channels. Then, we review the expression and function of Kir4.1 channels in the inner ear, especially in endocochlear potential (EP) generation. Finally, we review KCNJ10 mutation-induced hearing loss and functional impairments. Kir4.1 is strongly expressed on the apical membrane of intermediate cells in the stria vascularis and in the satellite cells of cochlear ganglia. Functionally, Kir4.1 has critical roles in cochlear development and hearing through two distinct aspects of extracellular K(+) homeostasis: First, it participates in the generation and maintenance of EP and high K(+) concentration in the endolymph inside the scala media. Second, Kir4.1 is the major K(+) channel in satellite glial cells surrounding spiral ganglion neurons to sink K(+) ions expelled by the ganglion neurons during excitation. Kir4.1 deficiency leads to hearing loss with the absence of EP and spiral ganglion neuron degeneration. Deafness mutants show loss-of-function and reduced channel membrane-targeting and currents, which can be rescued upon by co-expression with wild-type Kir4.1. This review provides insights for further understanding Kir potassium channel function in the inner ear and the pathogenesis of deafness due to KCNJ10 deficiency, and also provides insights for developing therapeutic strategies targeting this deafness.
Collapse
Affiliation(s)
- J Chen
- Department of Morphology, Medical College of China Three Gorges University, Yichang, Hubei 443002, PR China; Department of Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536-0293, USA
| | - H-B Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536-0293, USA.
| |
Collapse
|
30
|
Devaraju P, Sun MY, Myers TL, Lauderdale K, Fiacco TA. Astrocytic group I mGluR-dependent potentiation of astrocytic glutamate and potassium uptake. J Neurophysiol 2013; 109:2404-14. [PMID: 23427307 DOI: 10.1152/jn.00517.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the most important functions of astrocytes is removal of glutamate released during synaptic transmission. Surprisingly, the mechanisms by which astrocyte glutamate uptake is acutely modulated remain to be clarified. Astrocytes express metabotropic glutamate receptors (mGluRs) and other G protein-coupled receptors (GPCRs), which are activated during neuronal activity. Here, we test the hypothesis that astrocytic group I mGluRs acutely regulate glutamate uptake by astrocytes in situ. This hypothesis was tested in acute mouse hippocampal slices. Activation of astrocytic mGluRs, using a tetanic high-frequency stimulus (HFS) applied to Schaffer collaterals, led to potentiation of the amplitude of the synaptically evoked glutamate transporter currents (STCs) and associated charge transfer without changes in kinetics. Similar potentiation of STCs was not observed in the presence of group I mGluR antagonists or the PKC inhibitor, PKC 19-36, suggesting that HFS-induced potentiation of astrocyte glutamate uptake is astrocytic group I mGluR and PKC dependent. Pharmacological stimulation of a transgenic GPCR (MrgA1R), expressed exclusively in astrocytes, also potentiated STC amplitude and charge transfer, albeit quicker and shorter lasting compared with HFS-induced potentiation. The amplitude of the slow, inward astrocytic current due to potassium (K(+)) influx was also enhanced following activation of the endogenous mGluRs or the astrocyte-specific MrgA1 Gq GPCRs. Taken together, these findings suggest that astrocytic group I mGluR activation has a synergistic, modulatory effect on the uptake of glutamate and K(+).
Collapse
Affiliation(s)
- Prakash Devaraju
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA
| | | | | | | | | |
Collapse
|
31
|
Hermes MLHJ, Kolaj M, Coderre EM, Renaud LP. Gastrin-releasing peptide acts via postsynaptic BB2 receptors to modulate inward rectifier K+ and TRPV1-like conductances in rat paraventricular thalamic neurons. J Physiol 2013; 591:1823-39. [PMID: 23359674 DOI: 10.1113/jphysiol.2012.249227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gastrin-releasing peptide (GRP) is a bombesin-like peptide with a widespread distribution in mammalian CNS, where it has a role in food intake, circadian rhythm generation, fear memory, itch sensation and sexual behaviour. While it has been established that GRP predominantly excites neurons, details of the membrane mechanism involved in this action remain largely undefined. We used perforated patch clamp recording in acute brain slice preparations to investigate GRP-affected receptors and ionic conductances in neurons of the rat paraventricular thalamic nucleus (PVT). PVT is a component of the midline and intralaminar thalamus that participates in arousal, motivational drives and stress responses, and exhibits a prominence of GRP-like immunoreactive fibres. Exposure of PVT neurons to low nanomolar concentrations of GRP induced sustained TTX-resistant membrane depolarizations that could trigger rhythmic burst discharges or tonic firing. Membrane current analyses in voltage clamp revealed an underlying postsynaptic bombesin type 2 receptor-mediated inward current that resulted from the simultaneous suppression of a Ba(2+)-sensitive inward rectifier K(+) conductance and activation of a non-selective cation conductance with biophysical and pharmacological properties reminiscent of transient receptor potential vanilloid (TRPV) 1. A role for a TRPV1-like conductance was further implied by a significant suppressant influence of a TRPV1 antagonist on GRP-induced membrane depolarization and rhythmic burst or tonic firing. The results provide a detailed picture of the receptor and ionic conductances that are involved in GRP's excitatory action in midline thalamus.
Collapse
Affiliation(s)
- M L H J Hermes
- Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9.
| | | | | | | |
Collapse
|
32
|
Mobasheri A, Lewis R, Ferreira-Mendes A, Rufino A, Dart C, Barrett-Jolley R. Potassium channels in articular chondrocytes. Channels (Austin) 2012; 6:416-25. [PMID: 23064164 PMCID: PMC3536726 DOI: 10.4161/chan.22340] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chondrocytes are the resident cells of cartilage, which synthesize and maintain the extracellular matrix. The range of known potassium channels expressed by these unique cells is continually increasing. Since chondrocytes are non-excitable, and do not need to be repolarized following action potentials, the function of potassium channels in these cells has, until recently, remained completely unknown. However, recent advances in both traditional physiology and “omic” technologies have enhanced our knowledge and understanding of the chondrocyte channelome. A large number of potassium channels have been identified and a number of putative, but credible, functions have been proposed. Members of each of the potassium channel sub-families (calcium activated, inward rectifier, voltage-gated and tandem pore) have all been identified. Mechanotransduction, cell volume regulation, apoptosis and chondrogenesis all appear to involve potassium channels. Since evidence suggests that potassium channel gene transcription is altered in osteoarthritis, future studies are needed that investigate potassium channels as potential cellular biomarkers and therapeutic targets for treatment of degenerative joint conditions.
Collapse
Affiliation(s)
- Ali Mobasheri
- Musculoskeletal Research Group, Division of Veterinary Medicine, Faculty of Medicine and Health Sciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK. ali.
| | | | | | | | | | | |
Collapse
|
33
|
Stojilkovic SS, Kretschmannova K, Tomić M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol 2012; 24:1183-200. [PMID: 22564128 PMCID: PMC3421050 DOI: 10.1111/j.1365-2826.2012.02335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. We review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process.
Collapse
Affiliation(s)
- S S Stojilkovic
- Sections on Cellular Signalling and Endocrinology and Genetics, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
34
|
Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 2011; 477:495-8. [PMID: 21874019 PMCID: PMC3324908 DOI: 10.1038/nature10370] [Citation(s) in RCA: 483] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/15/2011] [Indexed: 11/10/2022]
Abstract
The regulation of ion channel activity by specific lipid molecules is widely recognized as an integral component of electrical signalling in cells. In particular, phosphatidylinositol 4,5-bisphosphate (PIP(2)), a minor yet dynamic phospholipid component of cell membranes, is known to regulate many different ion channels. PIP(2) is the primary agonist for classical inward rectifier (Kir2) channels, through which this lipid can regulate a cell's resting membrane potential. However, the molecular mechanism by which PIP(2) exerts its action is unknown. Here we present the X-ray crystal structure of a Kir2.2 channel in complex with a short-chain (dioctanoyl) derivative of PIP(2). We found that PIP(2) binds at an interface between the transmembrane domain (TMD) and the cytoplasmic domain (CTD). The PIP(2)-binding site consists of a conserved non-specific phospholipid-binding region in the TMD and a specific phosphatidylinositol-binding region in the CTD. On PIP(2) binding, a flexible expansion linker contracts to a compact helical structure, the CTD translates 6 Å and becomes tethered to the TMD and the inner helix gate begins to open. In contrast, the small anionic lipid dioctanoyl glycerol pyrophosphatidic acid (PPA) also binds to the non-specific TMD region, but not to the specific phosphatidylinositol region, and thus fails to engage the CTD or open the channel. Our results show how PIP(2) can control the resting membrane potential through a specific ion-channel-receptor-ligand interaction that brings about a large conformational change, analogous to neurotransmitter activation of ion channels at synapses.
Collapse
Affiliation(s)
- Scott B Hansen
- Laboratory of Molecular Neurobiology & Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
35
|
Lechner SG, Boehm S. Regulation of neuronal ion channels via P2Y receptors. Purinergic Signal 2011; 1:31-41. [PMID: 18404398 PMCID: PMC2096562 DOI: 10.1007/s11302-004-4746-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 11/25/2022] Open
Abstract
Within the last 15 years, at least 8 different G protein-coupled P2Y receptors have been characterized. These mediate slow metabotropic effects of nucleotides in neurons as well as non-neural cells, as opposed to the fast ionotropic effects which are mediated by P2X receptors. One class of effector systems regulated by various G protein-coupled receptors are voltage-gated and ligand-gated ion channels. This review summarizes the current knowledge about the modulation of such neuronal ion channels via P2Y receptors. The regulated proteins include voltage-gated Ca2+ and K+ channels, as well as N-methyl-d-aspartate, vanilloid, and P2X receptors, and the regulating entities include most of the known P2Y receptor subtypes. The functional consequences of the modulation of ion channels by nucleotides acting at pre- or postsynaptic P2Y receptors are changes in the strength of synaptic transmission. Accordingly, ATP and related nucleotides may act not only as fast transmitters (via P2X receptors) in the nervous system, but also as neuromodulators (via P2Y receptors). Hence, nucleotides are as universal transmitters as, for instance, acetylcholine, glutamate, or γ-aminobutyric acid.
Collapse
Affiliation(s)
- Stefan G Lechner
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
36
|
Wu Y, Wang HY, Lin CC, Lu HC, Cheng SJ, Chen CC, Yang HW, Min MY. GABAB receptor-mediated tonic inhibition of noradrenergic A7 neurons in the rat. J Neurophysiol 2011; 105:2715-28. [PMID: 21430282 DOI: 10.1152/jn.00459.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Noradrenergic (NAergic) A7 neurons that project axonal terminals to the dorsal horn of the spinal cord to modulate nociceptive signaling are suggested to receive tonic inhibition from local GABAergic interneurons, which are under the regulation of descending analgesic pathways. In support of this argument, we presently report GABA(B) receptor (GABA(B)R)-mediated tonic inhibition of NAergic A7 neurons. Bath application of baclofen induced an outward current (I(Bac)) in NAergic A7 neurons that was blocked by CGP 54626, a GABA(B)R blocker. The I(Bac) was reversed at about -99 mV, displayed inward rectification, and was blocked by Ba(2+) or Tertipian-Q, showing it was mediated by G protein-activated inward-rectifying K(+) (GIRK) channels. Single-cell RT-PCR results suggested that GIRK1/3 heterotetramers might dominate functional GIRK channels in NAergic A7 neurons. Under conditions in which GABA(A) and glycine receptors were blocked, bath application of GABA inhibited the spontaneous firing of NAergic A7 neurons in a dose-dependent manner. Interestingly, CGP 54626 application not only blocked the effect of GABA but also increased the firing rate to 126.9% of the control level, showing that GABA(B)Rs were constitutively active at an ambient GABA concentration of 2.8 μM and inhibited NAergic A7 neurons. GABA(B)Rs were also found at presynaptic excitatory and inhibitory axonal terminals in the A7 area. Pharmacological activation of these GABA(B)Rs inhibited the release of neurotransmitters. No physiological role was found for GABA(B)Rs on excitatory terminals, whereas those on the inhibitory terminals were found to exert autoregulatory control of GABA release.
Collapse
Affiliation(s)
- Yeechan Wu
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Uschakov A, Grivel J, Cvetkovic-Lopes V, Bayer L, Bernheim L, Jones BE, Mühlethaler M, Serafin M. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons. PLoS One 2011; 6:e16672. [PMID: 21347440 PMCID: PMC3035660 DOI: 10.1371/journal.pone.0016672] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/31/2010] [Indexed: 12/11/2022] Open
Abstract
We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA) of hypocretin/orexin (hcrt/orx) neurons was changed to an inhibition following sleep deprivation (SD). Here we describe that in control condition (CC), i.e. following 2 hours of natural sleep in the morning, the α(2)-adrenergic receptor (α(2)-AR) agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC), it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK) channels. Since concentrations of clonidine up to a thousand times (100 µM) higher than those effective in SDC (100 nM), were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABA(B) agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α(2)-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α(2)-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α(2)-ARs associated with GIRK channels is normally down-regulated (or desensitized) in hcrt/orx neurons to only become available for their inhibition following sleep deprivation.
Collapse
Affiliation(s)
- Aaron Uschakov
- Département de Neurosciences fondamentales, Centre Médical Universitaire, Genève, Switzerland
| | - Jeremy Grivel
- Département de Neurosciences fondamentales, Centre Médical Universitaire, Genève, Switzerland
| | - Vesna Cvetkovic-Lopes
- Département de Neurosciences fondamentales, Centre Médical Universitaire, Genève, Switzerland
| | - Laurence Bayer
- Département de Neurosciences fondamentales, Centre Médical Universitaire, Genève, Switzerland
| | - Laurent Bernheim
- Département de Neurosciences fondamentales, Centre Médical Universitaire, Genève, Switzerland
| | - Barbara E. Jones
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Michel Mühlethaler
- Département de Neurosciences fondamentales, Centre Médical Universitaire, Genève, Switzerland
| | - Mauro Serafin
- Département de Neurosciences fondamentales, Centre Médical Universitaire, Genève, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Hagenfeld D, Schulz T, Ehling P, Budde T, Schumacher U, Prehm P. Depolarization of the membrane potential by hyaluronan. J Cell Biochem 2011; 111:858-64. [PMID: 20665541 DOI: 10.1002/jcb.22772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The membrane potential is mainly maintained by the K(+) concentration gradient across the cell membrane between the cytosol and the extracellular matrix. Here, we show that extracellular addition of high-molecular weight hyaluronan depolarized the membrane potential of human fibroblasts, human embryonic kidney cells (HEK), and central nervous system neurons in a concentration-dependent manner, whereas digestion of cell surface hyaluronan by hyaluronidase caused hyperpolarization. This effect could not be achieved by other glycosaminoglycans or hyaluronan oligosaccharides, chondroitin sulfate, and heparin which did not affect the membrane potential. Mixtures of high-molecular weight hyaluronan and bovine serum albumin had a larger depolarization effect than expected as the sum of both individual components. The different behavior of high-molecular weight hyaluronan versus hyaluronan oligosaccharides and other glycosaminoglycans can be explained by a Donnan effect combined with a steric exclusion of other molecules from the water solvated chains of high-molecular weight hyaluronan. Depolarization of the plasma membrane by hyaluronan represents an additional pathway of signal transduction to the classical CD44 signal transduction pathway, which links the extracellular matrix to intracellular metabolism.
Collapse
Affiliation(s)
- Daniel Hagenfeld
- Münster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
40
|
Leal-Pinto E, Gómez-Llorente Y, Sundaram S, Tang QY, Ivanova-Nikolova T, Mahajan R, Baki L, Zhang Z, Chavez J, Ubarretxena-Belandia I, Logothetis DE. Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers. J Biol Chem 2010; 285:39790-800. [PMID: 20937804 DOI: 10.1074/jbc.m110.151373] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.
Collapse
Affiliation(s)
- Edgar Leal-Pinto
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dopamine inhibits GABAA currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels. Neuroscience 2010; 165:1159-69. [DOI: 10.1016/j.neuroscience.2009.11.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 11/20/2022]
|
42
|
Tao X, Avalos JL, Chen J, MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 2010; 326:1668-74. [PMID: 20019282 DOI: 10.1126/science.1180310] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inward-rectifier potassium (K+) channels conduct K+ ions most efficiently in one direction, into the cell. Kir2 channels control the resting membrane voltage in many electrically excitable cells, and heritable mutations cause periodic paralysis and cardiac arrhythmia. We present the crystal structure of Kir2.2 from chicken, which, excluding the unstructured amino and carboxyl termini, is 90% identical to human Kir2.2. Crystals containing rubidium (Rb+), strontium (Sr2+), and europium (Eu3+) reveal binding sites along the ion conduction pathway that are both conductive and inhibitory. The sites correlate with extensive electrophysiological data and provide a structural basis for understanding rectification. The channel's extracellular surface, with large structured turrets and an unusual selectivity filter entryway, might explain the relative insensitivity of eukaryotic inward rectifiers to toxins. These same surface features also suggest a possible approach to the development of inhibitory agents specific to each member of the inward-rectifier K+ channel family.
Collapse
Affiliation(s)
- Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
43
|
Berlin S, Keren-Raifman T, Castel R, Rubinstein M, Dessauer CW, Ivanina T, Dascal N. G alpha(i) and G betagamma jointly regulate the conformations of a G betagamma effector, the neuronal G protein-activated K+ channel (GIRK). J Biol Chem 2009; 285:6179-85. [PMID: 20018875 DOI: 10.1074/jbc.m109.085944] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable complexes among G proteins and effectors are an emerging concept in cell signaling. The prototypical G betagamma effector G protein-activated K(+) channel (GIRK; Kir3) physically interacts with G betagamma but also with G alpha(i/o). Whether and how G alpha(i/o) subunits regulate GIRK in vivo is unclear. We studied triple interactions among GIRK subunits 1 and 2, G alpha(i3) and G betagamma. We used in vitro protein interaction assays and in vivo intramolecular Förster resonance energy transfer (i-FRET) between fluorophores attached to N and C termini of either GIRK1 or GIRK2 subunit. We demonstrate, for the first time, that G betagamma and G alpha(i3) distinctly and interdependently alter the conformational states of the heterotetrameric GIRK1/2 channel. Biochemical experiments show that G betagamma greatly enhances the binding of GIRK1 subunit to G alpha(i3)(GDP) and, unexpectedly, to G alpha(i3)(GTP). i-FRET showed that both G alpha(i3) and G betagamma induced distinct conformational changes in GIRK1 and GIRK2. Moreover, GIRK1 and GIRK2 subunits assumed unique, distinct conformations when coexpressed with a "constitutively active" G alpha(i3) mutant and G betagamma together. These conformations differ from those assumed by GIRK1 or GIRK2 after separate coexpression of either G alpha(i3) or G betagamma. Both biochemical and i-FRET data suggest that GIRK acts as the nucleator of the GIRK-G alpha-G betagamma signaling complex and mediates allosteric interactions between G alpha(i)(GTP) and G betagamma. Our findings imply that G alpha(i/o) and the G alpha(i) betagamma heterotrimer can regulate a G betagamma effector both before and after activation by neurotransmitters.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | |
Collapse
|
44
|
Braun M, Ramracheya R, Amisten S, Bengtsson M, Moritoh Y, Zhang Q, Johnson PR, Rorsman P. Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia 2009; 52:1566-78. [PMID: 19440689 DOI: 10.1007/s00125-009-1382-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/09/2009] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to characterise electrical activity, ion channels, exocytosis and somatostatin release in human delta cells/pancreatic islets. METHODS Glucose-stimulated somatostatin release was measured from intact human islets. Membrane potential, currents and changes in membrane capacitance (reflecting exocytosis) were recorded from individual human delta cells identified by immunocytochemistry. RESULTS Somatostatin secretion from human islets was stimulated by glucose and tolbutamide and inhibited by diazoxide. Human delta cells generated bursting or sporadic electrical activity, which was enhanced by tolbutamide but unaffected by glucose. Delta cells contained a tolbutamide-insensitive, Ba(2+)-sensitive inwardly rectifying K(+) current and two types of voltage-gated K(+) currents, sensitive to tetraethylammonium/stromatoxin (delayed rectifying, Kv2.1/2.2) and 4-aminopyridine (A current). Voltage-gated tetrodotoxin (TTX)-sensitive Na(+) currents contributed to the action potential upstroke but TTX had no effect on somatostatin release. Delta cells are equipped with Ca(2+) channels blocked by isradipine (L), omega-agatoxin (P/Q) and NNC 55-0396 (T). Blockade of any of these channels interferes with delta cell electrical activity and abolishes glucose-stimulated somatostatin release. Capacitance measurements revealed a slow component of depolarisation-evoked exocytosis sensitive to omega-agatoxin. CONCLUSIONS/INTERPRETATION Action potential firing in delta cells is modulated by ATP-sensitive K(+)-channel activity. The membrane potential is stabilised by Ba(2+)-sensitive inwardly rectifying K(+) channels. Voltage-gated L- and T-type Ca(2+) channels are required for electrical activity, whereas Na(+) currents and P/Q-type Ca(2+) channels contribute to (but are not necessary for) the upstroke of the action potential. Action potential repolarisation is mediated by A-type and Kv2.1/2.2 K(+) channels. Exocytosis is tightly linked to Ca(2+)-influx via P/Q-type Ca(2+) channels. Glucose stimulation of somatostatin secretion involves both K(ATP) channel-dependent and -independent processes.
Collapse
Affiliation(s)
- M Braun
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX37 LJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Vikstrom KL, Vaidyanathan R, Levinsohn S, O'Connell RP, Qian Y, Crye M, Mills JH, Anumonwo JMB. SAP97 regulates Kir2.3 channels by multiple mechanisms. Am J Physiol Heart Circ Physiol 2009; 297:H1387-97. [PMID: 19633205 DOI: 10.1152/ajpheart.00638.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the impact of coexpressing the inwardly rectifying potassium channel, Kir2.3, with the scaffolding protein, synapse-associated protein (SAP) 97, and determined that coexpression of these proteins caused an approximately twofold increase in current density. A combination of techniques was used to determine if the SAP97-induced increase in Kir2.3 whole cell currents resulted from changes in the number of channels in the cell membrane, unitary channel conductance, or channel open probability. In the absence of SAP97, Kir2.3 was found predominantly in a cytoplasmic, vesicular compartment with relatively little Kir2.3 localized to the plasma membrane. The introduction of SAP97 caused a redistribution of Kir2.3, leading to prominent colocalization of Kir2.3 and SAP97 and a modest increase in cell surface Kir2.3. The median Kir2.3 single channel conductance in the absence of SAP97 was approximately 13 pS, whereas coexpression of SAP97 led to a wide distribution of channel events with three distinct peaks centered at 16, 29, and 42 pS. These changes occurred without altering channel open probability, current rectification properties, or pH sensitivity. Thus association of Kir2.3 with SAP97 in HEK293 cells increased channel cell surface expression and unitary channel conductance. However, changes in single channel conductance play the major role in determining whole cell currents in this model system. We further suggest that the SAP97 effect results from SAP97 binding to the Kir2.3 COOH-terminal domain and altering channel conformation.
Collapse
Affiliation(s)
- Karen L Vikstrom
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Osawa M, Yokogawa M, Muramatsu T, Kimura T, Mase Y, Shimada I. Evidence for the direct interaction of spermine with the inwardly rectifying potassium channel. J Biol Chem 2009; 284:26117-26. [PMID: 19620244 DOI: 10.1074/jbc.m109.029355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The inwardly rectifying potassium channel (Kir) regulates resting membrane potential, K+ homeostasis, heart rate, and hormone secretion. The outward current is blocked in a voltage-dependent manner, upon the binding of intracellular polyamines or Mg2+ to the transmembrane pore domain. Meanwhile, electrophysiological studies have shown that mutations of several acidic residues in the intracellular regions affected the inward rectification. Although these acidic residues are assumed to bind polyamines, the functional role of the binding of polyamines and Mg2+ to the intracellular regions of Kirs remains unclear. Here, we report thermodynamic and structural studies of the interaction between polyamines and the cytoplasmic pore of mouse Kir3.1/GIRK1, which is gated by binding of G-protein betagamma-subunit (Gbetagamma). ITC analyses showed that two spermine molecules bind to a tetramer of Kir3.1/GIRK1 with a dissociation constant of 26 microM, which is lower than other blockers. NMR analyses revealed that the spermine binding site is Asp-260 and its surrounding area. Small but significant chemical shift perturbations upon spermine binding were observed in the subunit-subunit interface of the tetramer, suggesting that spermine binding alters the relative orientations of the four subunits. Our ITC and NMR results postulated a spermine binding mode, where one spermine molecule bridges two Asp-260 side chains from adjacent subunits, with rearrangement of the subunit orientations. This suggests the functional roles of spermine binding to the cytoplasmic pore: stabilization of the resting state conformation of the channel, and instant translocation to the transmembrane pore upon activation through the Gbetagamma-induced conformational rearrangement.
Collapse
Affiliation(s)
- Masanori Osawa
- Division of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Young CC, Stegen M, Bernard R, Müller M, Bischofberger J, Veh RW, Haas CA, Wolfart J. Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 2009; 587:4213-33. [PMID: 19564397 DOI: 10.1113/jphysiol.2009.170746] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In humans, temporal lobe epilepsy (TLE) is often associated with Ammon's horn sclerosis (AHS) characterized by hippocampal cell death, gliosis and granule cell dispersion (GCD) in the dentate gyrus. Granule cells surviving TLE have been proposed to be hyperexcitable and to play an important role in seizure generation. However, it is unclear whether this applies to conditions of AHS. We studied granule cells using the intrahippocampal kainate injection mouse model of TLE, brain slice patch-clamp recordings, morphological reconstructions and immunocytochemistry. With progressing AHS and GCD, 'epileptic' granule cells of the injected hippocampus displayed a decreased input resistance, a decreased membrane time constant and an increased rheobase. The resting leak conductance was doubled in epileptic granule cells and roughly 70-80% of this difference were sensitive to K(+) replacement. Of the increased K(+) leak, about 50% were sensitive to 1 mm Ba(2+). Approximately 20-30% of the pathological leak was mediated by a bicuculline-sensitive GABA(A) conductance. Epileptic granule cells had strongly enlarged inwardly rectifying currents with a low micromolar Ba(2+) IC(50), reminiscent of classic inward rectifier K(+) channels (Irk/Kir2). Indeed, protein expression of Kir2 subunits (Kir2.1, Kir2.2, Kir2.3, Kir2.4) was upregulated in epileptic granule cells. Immunolabelling for two-pore weak inward rectifier K(+) channels (Twik1/K2P1.1, Twik2/K2P6.1) was also increased. We conclude that the excitability of granule cells in the sclerotic focus of TLE is reduced due to an increased resting conductance mainly due to upregulated K(+) channel expression. These results point to a local adaptive mechanism that could counterbalance hyperexcitability in epilepsy.
Collapse
Affiliation(s)
- Christina C Young
- Cellular Neurophysiology, Dept. of Neurosurgery, University Medical Center Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee YM, Thompson GA, Ashmole I, Leyland M, So I, Stanfield PR. Multiple residues in the p-region and m2 of murine kir 2.1 regulate blockage by external ba. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:61-70. [PMID: 19885028 PMCID: PMC2766715 DOI: 10.4196/kjpp.2009.13.1.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have examined the effects of certain mutations of the selectivity filter and of the membrane helix M2 on Ba(2+) blockage of the inward rectifier potassium channel, Kir 2.1. We expressed mutant and wild type murine Kir 2.1 in Chinese hamster ovary (CHO) cells and used the whole cell patch-clamp technique to record K(+) currents in the absence and presence of externally applied Ba(2+). Wild type Kir2.1 was blocked by externally applied Ba(2+) in a voltage and concentration dependent manner. Mutants of Y145 in the selectivity filter showed little change in the kinetics of Ba(2+) blockage. The estimated K(d)(0) was 108 microM for Kir2.1 wild type, 124 microM for a concatameric WT-Y145V dimer, 109 microM for a WT-Y145L dimer, and 267 microM for Y145F. Mutant channels T141A and S165L exhibit a reduced affinity together with a large reduction in the rate of blockage. In S165L, blockage proceeds with a double exponential time course, suggestive of more than one blocking site. The double mutation T141A/S165L dramatically reduced affinity for Ba(2+), also showing two components with very different time courses. Mutants D172K and D172R (lining the central, aqueous cavity of the channel) showed both a decreased affinity to Ba(2+) and a decrease in the on transition rate constant (k(on)). These results imply that residues stabilising the cytoplasmic end of the selectivity filter (T141, S165) and in the central cavity (D172) are major determinants of high affinity Ba(2+) blockage in Kir 2.1.
Collapse
Affiliation(s)
- Young Mee Lee
- Department of Physiology and Biophysics, Seoul National University, College of Medicine, Seoul 110-799, Korea
| | - Gareth A. Thompson
- Department of Cell Physiology & Pharmacology, University of Leicester, PO Box 138, Leicester, LE1 9HN, UK
| | - Ian Ashmole
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL; Ion Channel Group, UK
| | - Mark Leyland
- Department of Biochemistry, University of L:eicester, LE1 7RH, UK
| | - Insuk So
- Department of Physiology and Biophysics, Seoul National University, College of Medicine, Seoul 110-799, Korea
| | - Peter R. Stanfield
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL; Ion Channel Group, UK
| |
Collapse
|
49
|
Kharche S, Garratt CJ, Boyett MR, Inada S, Holden AV, Hancox JC, Zhang H. Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation--a simulation study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:186-97. [PMID: 19041665 DOI: 10.1016/j.pbiomolbio.2008.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atrial fibrillation (AF) has been linked to increased inward rectifier potassium current, I(K1), either due to AF-induced electrical remodelling, or from functional changes due to the Kir2.1 V93I mutation. The aim of this simulation study was to identify at cell and tissue levels' mechanisms by which increased I(K1) facilitates and perpetuates AF. The Courtemanche et al. human atrial cell action potential (AP) model was modified to incorporate reported changes in I(K1) induced by the Kir2.1 V93I mutation in both heterozygous (Het) and homozygous (Hom) mutant forms. The modified models for wild type (WT), Het and Hom conditions were incorporated into homogeneous 1D, 2D and 3D tissue models. Restitution curves of AP duration (APD), effective refractory period (ERP) and conduction velocity (CV) were computed and both the temporal and the spatial vulnerability of atrial tissue to re-entry were measured. The lifespan and tip meandering pattern of re-entry were also characterised. For comparison, parallel simulations were performed by incorporating into the Courtmanche et al. model a linear increase in maximal I(K1) conductance. It was found that the gain-in-function of V93I 'mutant'I(K1) led to abbreviated atrial APs and flattened APD, ERP and CV restitution curves. It also hyperpolarised atrial resting membrane potential and slowed down intra-atrial conduction. V93I 'mutant'I(K1) reduced the tissue's temporal vulnerability but increased spatial vulnerability to initiate and sustain re-entry, resulting in an increased overall susceptibility of atrial tissue to arrhythmogenesis. In the 2D model, spiral waves self-terminated for WT (lifespan < 3.3 s) tissue, but persisted in Het and Hom tissues for the whole simulation period (lifespan > 10 s). The tip of the spiral wave meandered more in WT tissue than in Het and Hom tissues. Increased I(K1) due to augmented maximal conductance produced similar results to those of Het and Hom Kir2.1 V93I mutant conditions. In the 3D model the dynamic behaviour of scroll waves was stabilized by increased I(K1). In conclusion, increased I(K1) current, either by the Kir2.1 V93I mutation or by augmented maximal conductance, increases atrial susceptibility to arrhythmia by increasing the lifespan of re-entrant spiral waves and the stability of scroll waves in 3D tissue, thereby facilitating initiation and maintenance of re-entrant circuits.
Collapse
Affiliation(s)
- Sanjay Kharche
- Biological Physics Group, The University of Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Lomazzi M, Slesinger PA, Lüscher C. Addictive drugs modulate GIRK-channel signaling by regulating RGS proteins. Trends Pharmacol Sci 2008; 29:544-9. [PMID: 18790542 DOI: 10.1016/j.tips.2008.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 01/20/2023]
Abstract
Regulator of G-protein signaling (RGS) proteins are strong modulators of G-protein-mediated pathways in the nervous system. One function of RGS proteins is to accelerate the activation-deactivation kinetics of G-protein-coupled inwardly rectifying potassium (GIRK) channels. The opening of GIRK channels reduces the firing rates of neurons. Recent studies indicate that RGS proteins also modulate the coupling efficiency between gamma-aminobutyric acid type B (GABA(B)) receptors and GIRK channels in dopamine neurons of the ventral tegmental area (VTA), the initial target for addictive drugs in the brain reward pathway. Chronic drug exposure can dynamically regulate the expression levels of RGS. Functional and behavioral studies now reveal that levels of RGS2 protein, through selective association with GIRK3, critically determine whether GABA(B) agonists are excitatory or inhibitory in the VTA. The regulation of RGS protein in the reward pathway might underlie adaptation to different types of addictive drugs.
Collapse
Affiliation(s)
- Marta Lomazzi
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1, Michel-Servet, CH-1211 Geneva, Switzerland
| | | | | |
Collapse
|