1
|
Lebecq A, Goldy C, Fangain A, Gascon E, Belcram K, Pastuglia M, Bouchez D, Caillaud MC. The phosphoinositide signature guides the final step of plant cytokinesis. SCIENCE ADVANCES 2023; 9:eadf7532. [PMID: 37467331 PMCID: PMC10355833 DOI: 10.1126/sciadv.adf7532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Plant cytokinesis, which fundamentally differs from that in animals, requires the outward expansion of a plasma membrane precursor named the cell plate. How the transition from a cell plate to a plasma membrane occurs remains poorly understood. Here, we report that the acquisition of plasma membrane identity occurs through lateral patterning of the phosphatidylinositol 4,5-bisphosphate PI(4,5)P2 at the newly formed cell plate membrane. There, the phosphoinositide phosphatase SAC9 emerges as a key regulator, colocalizing with and regulating the function of the microtubule-associated protein MAP65-3 at the cell plate leading zone. In sac9-3 mutant, the polar distribution of PI(4,5)P2 at the cell plate is altered, leading to ectopic recruitment of the cytokinesis apparatus and formation of an additional cell plate insertion site. We propose that at the cell plate, SAC9 drives the depletion of PI(4,5)P2, which acts as a polar cue to spatially separate cell plate expansion from the acquisition of plasma membrane identity during final step of cytokinesis.
Collapse
Affiliation(s)
- Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Camila Goldy
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Elsa Gascon
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Martine Pastuglia
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - David Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342 Lyon, France
| |
Collapse
|
2
|
Höftberger M, Althammer M, Foissner I, Tenhaken R. Galactose induces formation of cell wall stubs and cell death in Arabidopsis roots. PLANTA 2022; 256:26. [PMID: 35780431 PMCID: PMC9250921 DOI: 10.1007/s00425-022-03919-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 06/04/2023]
Abstract
Arabidopsis seedlings growing on low concentration of galactose stop regular root growth. Incomplete cell division with cell wall stubs, binuclear and giant cells and lignified root tips are observed. Galactose is a sugar abundant in root cell walls of Arabidopsis. Nevertheless, we found that the germination of Arabidopsis seedlings on galactose containing media causes a strong modification of the root development, as shown by analysing the root with microscopy methods ranging from the bright field over confocal to transmission electron microscopy. At concentrations of about 1 mM, the growth of the primary root stops after a few days though stem cell markers like WOX5 are still expressed. The root tip swells and forms a slightly opaque, partially lignified structure in parts of the cortex and the central cylinder. The formation of the cell plate after mitosis is impaired, often leading to cell wall stubs and binuclear cells. Some cells in the cortex and the central cylinder degenerate, while some rhizodermal and cortical cells increase massively in size. The galactose toxicity phenotype in Arabidopsis depends on the activity of galactokinase and is completely diminished in galactokinase knock-out lines. From the comparison of the galactose toxicity phenotype with those of cytokinesis mutants and plants treated with appropriate inhibitors we speculate that the toxicity syndrome of galactose is caused by interference with intracellular vesicle transport or cell wall biogenesis.
Collapse
Affiliation(s)
- Margit Höftberger
- Department of Environment & Biodiversity, Plant Physiology, All Paris-Lodron University Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Martina Althammer
- Department of Environment & Biodiversity, Plant Physiology, All Paris-Lodron University Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Ilse Foissner
- Department of Environment & Biodiversity, Plant Physiology, All Paris-Lodron University Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Raimund Tenhaken
- Department of Environment & Biodiversity, Plant Physiology, All Paris-Lodron University Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
3
|
Beuder S, Lara‐Mondragón C, Dorchak A, MacAlister CA. SEC1A is a major Arabidopsis Sec1/Munc18 gene in vesicle trafficking during pollen tube tip growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1353-1369. [PMID: 35306707 PMCID: PMC9322465 DOI: 10.1111/tpj.15742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 06/09/2023]
Abstract
Pollen tubes (PTs) grow by the targeted secretion of new cell wall material to their expanding tip region. Sec1/Munc18 (SM) proteins promote membrane fusion through regulation of the SNARE complex. We have previously shown that disruption of protein glycosylation in the Arabidopsis thaliana hpat1 hpat3 double mutant leads to PT growth defects that can be suppressed by reducing secretion. Here, we identified five point mutant alleles of the SM protein SEC1A as hpat1/3 suppressors. The suppressors increased seed set, reduced PT growth defects and reduced the rate of glycoprotein secretion. In the absence of the hpat mutations, sec1a reduced pollen germination and PT elongation producing shorter and wider PTs. Consistent with a defect in membrane fusion, sec1a PTs accumulated secretory vesicles. Though sec1a had significantly reduced male transmission, homozygous sec1a plants maintained full seed set, demonstrating that SEC1A was ultimately dispensable for pollen fertility. However, when combined with a mutation in another SEC1-like SM gene, keule, pollen fertility was totally abolished. Mutation in sec1b, the final member of the Arabidopsis SEC1 clade, did not enhance the sec1a phenotype. Thus, SEC1A is the major SM protein promoting pollen germination and tube elongation, but in its absence KEULE can partially supply this activity. When we examined the expression of the SM protein family in other species for which pollen expression data were available, we found that at least one Sec1-like protein was highly expressed in pollen samples, suggesting a conserved role in pollen fertility in other species.
Collapse
Affiliation(s)
- Steven Beuder
- Department of Molecular, Cellular and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Cecilia Lara‐Mondragón
- Department of Molecular, Cellular and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Alexandria Dorchak
- Department of Molecular, Cellular and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Cora A. MacAlister
- Department of Molecular, Cellular and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
4
|
Brejšková L, Hála M, Rawat A, Soukupová H, Cvrčková F, Charlot F, Nogué F, Haluška S, Žárský V. SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella (Physcomitrium patens). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:831-843. [PMID: 33599020 DOI: 10.1111/tpj.15205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Spatially directed cell division and expansion is important for plant growth and morphogenesis and relies on cooperation between the cytoskeleton and the secretory pathway. The phylogenetically conserved octameric complex exocyst mediates exocytotic vesicle tethering at the plasma membrane. Unlike other exocyst subunits of land plants, the core exocyst subunit SEC6 exists as a single paralog in Physcomitrium patens and Arabidopsis thaliana genomes. Arabidopsis SEC6 (AtSEC6) loss-of-function (LOF) mutation causes male gametophytic lethality. Our attempts to inactivate the P. patens SEC6 gene, PpSEC6, using targeted gene replacement produced two independent partial LOF ('weak allele') mutants via perturbation of the PpSEC6 gene locus. These mutants exhibited the same pleiotropic developmental defects: protonema with dominant chloronema stage; diminished caulonemal filament elongation rate; and failure in post-initiation gametophore development. Mutant gametophore buds, mostly initiated from chloronema cells, exhibited disordered cell file organization and cross-wall perforations, resulting in arrested development at the eight- to 10-cell stage. Complementation of both sec6 moss mutant lines by both PpSEC6 and AtSEC6 cDNA rescued gametophore development, including sexual organ differentiation. However, regular sporophyte formation and viable spore production were recovered only by the expression of PpSEC6, whereas the AtSEC6 complementants were only rarely fertile, indicating moss-specific SEC6 functions.
Collapse
Affiliation(s)
- Lucie Brejšková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Anamika Rawat
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Hana Soukupová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Samuel Haluška
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
5
|
Kalde M, Elliott L, Ravikumar R, Rybak K, Altmann M, Klaeger S, Wiese C, Abele M, Al B, Kalbfuß N, Qi X, Steiner A, Meng C, Zheng H, Kuster B, Falter-Braun P, Ludwig C, Moore I, Assaad FF. Interactions between Transport Protein Particle (TRAPP) complexes and Rab GTPases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:279-297. [PMID: 31264742 DOI: 10.1111/tpj.14442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Transport Protein Particle II (TRAPPII) is essential for exocytosis, endocytosis, protein sorting and cytokinesis. In spite of a considerable understanding of its biological role, little information is known about Arabidopsis TRAPPII complex topology and molecular function. In this study, independent proteomic approaches initiated with TRAPP components or Rab-A GTPase variants converge on the TRAPPII complex. We show that the Arabidopsis genome encodes the full complement of 13 TRAPPC subunits, including four previously unidentified components. A dimerization model is proposed to account for binary interactions between TRAPPII subunits. Preferential binding to dominant negative (GDP-bound) versus wild-type or constitutively active (GTP-bound) RAB-A2a variants discriminates between TRAPPII and TRAPPIII subunits and shows that Arabidopsis complexes differ from yeast but resemble metazoan TRAPP complexes. Analyzes of Rab-A mutant variants in trappii backgrounds provide genetic evidence that TRAPPII functions upstream of RAB-A2a, allowing us to propose that TRAPPII is likely to behave as a guanine nucleotide exchange factor (GEF) for the RAB-A2a GTPase. GEFs catalyze exchange of GDP for GTP; the GTP-bound, activated, Rab then recruits a diverse local network of Rab effectors to specify membrane identity in subsequent vesicle fusion events. Understanding GEF-Rab interactions will be crucial to unravel the co-ordination of plant membrane traffic.
Collapse
Affiliation(s)
- Monika Kalde
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Liam Elliott
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Raksha Ravikumar
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Katarzyna Rybak
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Christian Wiese
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Miriam Abele
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Benjamin Al
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Nils Kalbfuß
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Alexander Steiner
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| | - Chen Meng
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, H3B 1A1, Canada
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, 85354, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, 85764, Germany
- Faculty of Biology, Microbe-Host-Interactions, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, 82152, Germany
| | - Christina Ludwig
- BayBioMS, Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, 85354, Germany
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Farhah F Assaad
- Plant Science Department, Botany, Technische Universität München, Freising, 85354, Germany
| |
Collapse
|
6
|
Tang H, de Keijzer J, Overdijk EJR, Sweep E, Steentjes M, Vermeer JEM, Janson ME, Ketelaar T. Exocyst subunit Sec6 is positioned by microtubule overlaps in the moss phragmoplast prior to cell plate membrane arrival. J Cell Sci 2019; 132:jcs222430. [PMID: 30635445 DOI: 10.1242/jcs.222430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
During plant cytokinesis a radially expanding membrane-enclosed cell plate is formed from fusing vesicles that compartmentalizes the cell in two. How fusion is spatially restricted to the site of cell plate formation is unknown. Aggregation of cell-plate membrane starts near regions of microtubule overlap within the bipolar phragmoplast apparatus of the moss Physcomitrella patens Since vesicle fusion generally requires coordination of vesicle tethering and subsequent fusion activity, we analyzed the subcellular localization of several subunits of the exocyst, a tethering complex active during plant cytokinesis. We found that the exocyst complex subunit Sec6 but not the Sec3 or Sec5 subunits localized to microtubule overlap regions in advance of cell plate construction in moss. Moreover, Sec6 exhibited a conserved physical interaction with an ortholog of the Sec1/Munc18 protein KEULE, an important regulator for cell-plate membrane vesicle fusion in Arabidopsis Recruitment of the P. patens protein KEULE and vesicles to the early cell plate was delayed upon Sec6 gene silencing. Our findings, thus, suggest that vesicle-vesicle fusion is, in part, enabled by a pool of exocyst subunits at microtubule overlaps, which is recruited independently of vesicle delivery.
Collapse
Affiliation(s)
- Han Tang
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Elysa J R Overdijk
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Els Sweep
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maikel Steentjes
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Marcel E Janson
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Functional diversification of Arabidopsis SEC1-related SM proteins in cytokinetic and secretory membrane fusion. Proc Natl Acad Sci U S A 2018; 115:6309-6314. [PMID: 29844177 DOI: 10.1073/pnas.1722611115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sec1/Munc18 (SM) proteins contribute to membrane fusion by interacting with Qa-SNAREs or nascent trans-SNARE complexes. Gymnosperms and the basal angiosperm Amborella have only a single SEC1 gene related to the KEULE gene in Arabidopsis However, the genomes of most angiosperms including Arabidopsis encode three SEC1-related SM proteins of which only KEULE has been functionally characterized as interacting with the cytokinesis-specific Qa-SNARE KNOLLE during cell-plate formation. Here we analyze the closest paralog of KEULE named SEC1B. In contrast to the cytokinesis defects of keule mutants, sec1b mutants are homozygous viable. However, the keule sec1b double mutant was nearly gametophytically lethal, displaying collapsed pollen grains, which suggests substantial overlap between SEC1B and KEULE functions in secretion-dependent growth. SEC1B had a strong preference for interaction with the evolutionarily ancient Qa-SNARE SYP132 involved in secretion and cytokinesis, whereas KEULE interacted with both KNOLLE and SYP132. This differential interaction with Qa-SNAREs is likely conferred by domains 1 and 2a of the two SM proteins. Comparative analysis of all four possible combinations of the relevant SEC1 Qa-SNARE double mutants revealed that in cytokinesis, the interaction of SEC1B with KNOLLE plays no role, whereas the interaction of KEULE with KNOLLE is prevalent and functionally as important as the interactions of both SEC1B and KEU with SYP132 together. Our results suggest that functional diversification of the two SEC1-related SM proteins during angiosperm evolution resulted in enhanced interaction of SEC1B with Qa-SNARE SYP132, and thus a predominant role of SEC1B in secretion.
Collapse
|
8
|
Gillmor CS, Roeder AHK, Sieber P, Somerville C, Lukowitz W. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis. PLoS One 2016; 11:e0146492. [PMID: 26745275 PMCID: PMC4712874 DOI: 10.1371/journal.pone.0146492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.
Collapse
Affiliation(s)
- C. Stewart Gillmor
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Adrienne H. K. Roeder
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Patrick Sieber
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
| | - Chris Somerville
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Wolfgang Lukowitz
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- * E-mail:
| |
Collapse
|
9
|
DeBruhl H, Albertson R, Swider Z, Sullivan W. Rop, the Sec1/Munc18 homolog in Drosophila, is required for furrow ingression and stable cell shape during cytokinesis. J Cell Sci 2015; 129:430-43. [PMID: 26631487 DOI: 10.1242/jcs.179200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
Physically separating daughter cells during cytokinesis requires contraction of an actin-myosin ring and vesicle-mediated membrane addition at the cleavage furrow. To identify vesicle trafficking proteins that function in cytokinesis, we screened deficiencies and mutations of candidate genes by live imaging the mitotic domains of the Drosophila embryo. In embryos homozygous for some of these deficiencies, we observed several cytokinesis phenotypes, including slow furrow ingression and increased membrane blebbing. We also found that cytokinesis required the Sec1/Munc18 homolog Rop, which interacts with syntaxin and mediates exocytosis at the plasma membrane. In a temperature-sensitive Rop mutant (Rop(TS)), the contractile ring disassembled during furrow ingression, indicating that maintenance of the ring required vesicle addition. Furthermore, in some dividing Rop(TS) cells, the shape of the daughter cells became unstable, causing cytokinesis failure. These results further highlight the importance of vesicle trafficking in animal cytokinesis and show that vesicle fusion influences cell shape during cytokinesis.
Collapse
Affiliation(s)
- Heather DeBruhl
- Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Zachary Swider
- Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
10
|
Noguero M, Le Signor C, Vernoud V, Bandyopadhyay K, Sanchez M, Fu C, Torres-Jerez I, Wen J, Mysore KS, Gallardo K, Udvardi M, Thompson R, Verdier J. DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:453-66. [PMID: 25492260 PMCID: PMC4329604 DOI: 10.1111/tpj.12742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
The endosperm plays a pivotal role in the integration between component tissues of molecular signals controlling seed development. It has been shown to participate in the regulation of embryo morphogenesis and ultimately seed size determination. However, the molecular mechanisms that modulate seed size are still poorly understood especially in legumes. DASH (DOF Acting in Seed embryogenesis and Hormone accumulation) is a DOF transcription factor (TF) expressed during embryogenesis in the chalazal endosperm of the Medicago truncatula seed. Phenotypic characterization of three independent dash mutant alleles revealed a role for this TF in the prevention of early seed abortion and the determination of final seed size. Strong loss-of-function alleles cause severe defects in endosperm development and lead to embryo growth arrest at the globular stage. Transcriptomic analysis of dash pods versus wild-type (WT) pods revealed major transcriptional changes and highlighted genes that are involved in auxin transport and perception as mainly under-expressed in dash mutant pods. Interestingly, the exogenous application of auxin alleviated the seed-lethal phenotype, whereas hormonal dosage revealed a much higher auxin content in dash pods compared with WT. Together these results suggested that auxin transport/signaling may be affected in the dash mutant and that aberrant auxin distribution may contribute to the defect in embryogenesis resulting in the final seed size phenotype.
Collapse
Affiliation(s)
- Mélanie Noguero
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | | | - Vanessa Vernoud
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Kaustav Bandyopadhyay
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Myriam Sanchez
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Chunxiang Fu
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivone Torres-Jerez
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Karine Gallardo
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Michael Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Richard Thompson
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Jerome Verdier
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences3888 Chenhua road, 201602, Shanghai, China
- *
For correspondence (e-mail )
| |
Collapse
|
11
|
Jaber E, Thiele K, Kindzierski V, Loderer C, Rybak K, Jürgens G, Mayer U, Söllner R, Wanner G, Assaad FF. A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. THE NEW PHYTOLOGIST 2010; 187:751-63. [PMID: 20609115 DOI: 10.1111/j.1469-8137.2010.03331.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
*At the end of the cell cycle, the plant cell wall is deposited within a membrane compartment referred to as the cell plate. Little is known about the biogenesis of this transient membrane compartment. *We have positionally cloned and characterized a novel Arabidopsis gene, CLUB, identified by mutation. *CLUB/AtTRS130 encodes a putative TRAPPII tethering factor. club mutants are seedling-lethal and have a canonical cytokinesis-defective phenotype, characterized by the appearance of bi- or multinucleate cells with cell wall stubs, gaps and floating walls. Confocal microscopy showed that in club mutants, KNOLLE-positive vesicles formed and accumulated at the cell equator throughout cytokinesis, but failed to assemble into a cell plate. Similarly, electron micrographs showed large vesicles loosely connected as patchy, incomplete cell plates in club root tips. Neither the formation of KNOLLE-positive vesicles nor the delivery of these vesicles to the cell equator appeared to be perturbed in club mutants. Thus, the primary defect in club mutants appears to be an impairment in cell plate assembly. *As a putative tethering factor required for cell plate biogenesis, CLUB/AtTRS130 helps to define the identity of this membrane compartment and comprises an important handle on the regulation of cell plate assembly.
Collapse
Affiliation(s)
- Emad Jaber
- Technische Universität München, Botanik, Freising, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Thiele K, Wanner G, Kindzierski V, Jürgens G, Mayer U, Pachl F, Assaad FF. The timely deposition of callose is essential for cytokinesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:13-26. [PMID: 19067977 DOI: 10.1111/j.1365-313x.2008.03760.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The primary plant cell wall is laid down over a brief period of time during cytokinesis. Initially, a membrane network forms at the equator of a dividing cell. The cross-wall is then assembled and remodeled within this membrane compartment. Callose is the predominant luminal component of the nascent cross-wall or cell plate, but is not a component of intact mature cell walls, which are composed primarily of cellulose, pectins and xyloglucans. Widely accepted models postulate that callose comprises a transient, rapid spreading force for the expansion of membrane networks during cytokinesis. In this study, we clone and characterize an Arabidopsis gene, MASSUE/AtGSL8, which encodes a putative callose synthase. massue mutants are seedling-lethal and have a striking cytokinesis-defective phenotype. Callose deposition was delayed in the cell plates of massue mutants. Mutant cells were occasionally bi- or multi-nucleate, with cell-wall stubs, and we frequently observed gaps at the junction between cross-walls and parental cell walls. The results suggest that the timely deposition of callose is essential for the completion of plant cytokinesis. Surprisingly, confocal analysis revealed that the cell-plate membrane compartment forms and expands, seemingly as far as the parental wall, prior to the appearance of callose. We discuss the possibility that callose may be required to establish a lasting connection between the nascent cross-wall and the parental cell wall.
Collapse
Affiliation(s)
- Knut Thiele
- Technische Universität München, Botanik, Am Hochanger 4, D-85354 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Müller I, Voss U, Jürgens G, Ito M. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 2007; 134:1101-10. [PMID: 17287251 DOI: 10.1242/dev.02801] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
G2/M phase-specific gene transcription in tobacco cells is mediated by R1R2R3-Myb transcriptional activators, NtmybA1 and NtmybA2, which bind to mitosis-specific activator (MSA) elements. We show here that two structurally related genes, MYB3R1 and MYB3R4, which encode homologs of NtmybA1 and NtmybA2, play a partially redundant role in positively regulating cytokinesis in Arabidopsis thaliana. The myb3r1 myb3r4 double mutant often fails to complete cytokinesis, resulting in multinucleate cells with gapped walls and cell wall stubs in diverse tissues. These defects correlate with the selective reduction of transcript levels of several G2/M phase-specific genes, which include B2-type cyclin (CYCB2), CDC20.1 and KNOLLE (KN). These genes contain MSA-like motifs in their promoters and were activated by MYB3R4 in transient expression assays in tobacco cells. The KN gene encodes a cytokinesis-specific syntaxin that is essential for cell plate formation. The cytokinesis defects of myb3r1 myb3r4 double mutants were partially rescued by KN gene expression from heterologous promoters. In addition, a kn heterozygous mutation enhanced cytokinesis defects resulting from heterozygous or homozygous mutations in the MYB3R1 and MYB3R4 genes. Our results suggest that a pair of structurally related R1R2R3-Myb transcription factors may positively regulate cytokinesis mainly through transcriptional activation of the KN gene.
Collapse
Affiliation(s)
- Nozomi Haga
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Citterio S, Piatti S, Albertini E, Aina R, Varotto S, Barcaccia G. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis. Exp Cell Res 2006; 312:1050-64. [PMID: 16460730 DOI: 10.1016/j.yexcr.2005.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/16/2005] [Accepted: 12/16/2005] [Indexed: 01/11/2023]
Abstract
Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G1 and S. It becomes concentrated in punctuate and fibrillar structures in G2 as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death.
Collapse
Affiliation(s)
- Sandra Citterio
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Costa LM, Gutierrez-Marcos JF, Brutnell TP, Greenland AJ, Dickinson HG. The globby1-1 (glo1-1) mutation disrupts nuclear and cell division in the developing maize seed causing alterations in endosperm cell fate and tissue differentiation. Development 2003; 130:5009-17. [PMID: 12952903 DOI: 10.1242/dev.00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cereal endosperm tissues account for most of the world's calorific intake, yet the regulation of monocot seed development remains poorly understood. The maize endosperm originates with a series of free-nuclear divisions, followed by cellularisation and subsequent formation of a range of functional cellular domains. We describe the isolation and characterisation of a mutation that induces aberrant globular embryo and endosperm morphology, globby1-1 (glo1-1). Our data indicate that glo1-1 plays a role in nuclear division and cytokinesis in the developing seed. Pattern formation in the embryo is severely impaired with development arresting at premature stages, while in the endosperm, the effects of the glo1-1 mutation are manifest at the free-nuclear or syncytial stage. During cellularisation, and at later stages of development, aberrant cell division and localised domains of cell proliferation are apparent in glo1-1 endosperms. As a consequence, cell fate acquisition and subsequent differentiation of endosperm tissues are affected to varying degrees of severity. To date, it has been hypothesised that BETL cell fate is specified in the syncytium and that cell files subsequently develop in response to a gradient of signal(s) derived from the maternal pedicel region. Based on our findings, however, we propose that specification of BETL cells is an irreversible event that occurs within a narrow window of syncytial development, and that BETL cell identity is subsequently inherited in a lineage-dependent manner. Additionally, our data suggest that acquisition of aleurone cell fate does not solely rely upon signalling from the maternal surrounding tissue to the periphery of the endosperm, as previously thought, but that other factor(s) present within the endosperm are involved.
Collapse
Affiliation(s)
- Liliana M Costa
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | |
Collapse
|
16
|
Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y. NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 2003; 17:1055-67. [PMID: 12704083 PMCID: PMC196038 DOI: 10.1101/gad.1071103] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Accepted: 02/21/2003] [Indexed: 12/30/2022]
Abstract
The tobacco protein kinase NPK1 is a MAPKKK that regulates formation of the cell plate during cytokinesis. In the present study, we have identified tobacco NQK1/NtMEK1 and NRK1 as a MAPKK and a MAPK, respectively, downstream of NPK1. NQK1/NtMEK1 complements the mutation in the PBS2 MAPKK gene of yeast in a manner that depends on both NPK1 and its activator, NACK1, a kinesin-like protein. Active NPK1 and NQK1/NtMEK1 phosphorylate and activate NQK1/NtMEK1 and NRK1, respectively. Both NQK1/NtMEK1 and NRK1, as well as NPK1, are activated at the late M phase of the cell cycle in tobacco cells, and they are rapidly inactivated by depolymerization of phragmoplast microtubules. These results suggest the existence of a MAPK cascade that consists of NPK1, NQK1/NtMEK1, and NRK1 and functions in a process related to the architecture of phragmoplasts at the late M phase of the cell cycle. Overexpression of kinase-negative NQK1/NtMEK1 in tobacco cells generates multinucleate cells with incomplete cross-walls. Arabidopsis plants with a mutation in the ANQ1 gene, an ortholog of NQK1/NtMEK1, display a dwarf phenotype, with unusually large cells that contain multiple nuclei and cell-wall stubs in various organs. In addition, anq1 homozygotes set fewer flowers and produce large and malformed pollen grains with a tetrad structure. Thus, NQK1/NtMEK1 (ANQ1) MAPKK appears to be a positive regulator of plant cytokinesis during meiosis as well as mitosis.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Japan
| | | | | | | | | |
Collapse
|
17
|
Kang BH, Busse JS, Bednarek SY. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. THE PLANT CELL 2003; 15:899-913. [PMID: 12671086 PMCID: PMC524700 DOI: 10.1105/tpc.009670] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polarized membrane trafficking during plant cytokinesis and cell expansion are critical for plant morphogenesis, yet very little is known about the molecular mechanisms that guide this process. Dynamin and dynamin-related proteins are large GTP binding proteins that are involved in membrane trafficking. Here, we show that two functionally redundant members of the Arabidopsis dynamin-related protein family, ADL1A and ADL1E, are essential for polar cell expansion and cell plate biogenesis. adl1A-2 adl1E-1 double mutants show defects in cell plate assembly, cell wall formation, and plasma membrane recycling. Using a functional green fluorescent protein fusion protein, we show that the distribution of ADL1A is dynamic and that the protein is localized asymmetrically to the plasma membrane of newly formed and mature root cells. We propose that ADL1-mediated membrane recycling is essential for plasma membrane formation and maintenance in plants.
Collapse
Affiliation(s)
- Byung-Ho Kang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
18
|
Tsukaya H. Organ shape and size: a lesson from studies of leaf morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:57-62. [PMID: 12495752 DOI: 10.1016/s1369526602000055] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Control of the shape and size of indeterminate organs, such as roots and stems, is directly related to the control of the shape and size of the cells in these organs, as predicted by orthodox cell theory. For example, the polarity-dependent growth of leaf cells directly affects the polar expansion of leaves. Thus, the control of leaf shape is related to the control of the shape of cells within the leaf, as suggested by cell theory. By contrast, in determinate organs, such as leaves, the number of cells does not necessarily reflect organ shape or size. Genetic evidence shows that a compensatory system(s) is involved in leaf morphogenesis, and that an increase in cell volume can be triggered by a decrease in cell number and vice versa. Studies of chimeric leaves also suggest interaction between leaf cells that coordinates the behaviour of these cells at the organ level. Moreover, leaf size also appears to be coordinated at the whole-plant level. The recently hypothesised neo cell theory describes how leaf shape- and size-control mechanisms control leaf shape at the organ-level via cell-cell interaction.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- National Institute for Basic Biology/Centre for Integrated Bioscience, Okazaki National Institutes, Myodaiji-cho, Japan.
| |
Collapse
|
19
|
Cutler SR, Ehrhardt DW. Polarized cytokinesis in vacuolate cells of Arabidopsis. Proc Natl Acad Sci U S A 2002; 99:2812-7. [PMID: 11880633 PMCID: PMC122430 DOI: 10.1073/pnas.052712299] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2001] [Accepted: 12/31/2001] [Indexed: 01/17/2023] Open
Abstract
The view of plant-cell cytokinesis commonly depicted in textbooks is of a symmetrical process, with the phragmoplast initiating in the center of the cell and growing outward to the parental cell membrane. In contrast to this picture, we observe that cell-plate development in Arabidopsis shoot cells is highly polarized along the plane of division. Three-dimensional live-cell imaging reveals that the mitotic spindle and phragmoplast are laterally displaced, and that the growing cell plate anchors on one side of the cell at an early stage of cytokinesis. Growth of phragmoplast across the cell creates a new partition in its wake, giving the visual effect of a curtain being pulled across the cell. Throughout this process, the advancing front of the phragmoplast is in intimate contact with the parental wall, suggesting that short-range interactions between the phragmoplast and plasma membrane may play important roles in guiding the cell plate throughout much of its development. Polarized cytokinesis was observed in a wide variety of vacuolate shoot cells and in some small root cells, implying that it is not solely a function of cell size. This mode of cytokinesis may provide a mechanically robust mechanism for cell-plate formation in large cells and suggests a simple explanation for the occurrence of cell wall stubs observed upon drug treatment or in cytokinetic mutants.
Collapse
Affiliation(s)
- Sean R Cutler
- Carnegie Institution of Washington, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA.
| | | |
Collapse
|
20
|
Kim I, Hempel FD, Sha K, Pfluger J, Zambryski PC. Identification of a developmental transition in plasmodesmatal function during embryogenesis in Arabidopsis thaliana. Development 2002; 129:1261-72. [PMID: 11874921 DOI: 10.1242/dev.129.5.1261] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasmodesmata provide routes for communication and nutrient transfer between plant cells by interconnecting the cytoplasm of adjacent cells. A simple fluorescent tracer loading assay was developed to monitor patterns of cell-to-cell transport via plasmodesmata specifically during embryogenesis. A developmental transition in plasmodesmatal size exclusion limit was found to occur at the torpedo stage of embryogenesis in Arabidopsis; at this time, plasmodesmata are down-regulated, allowing transport of small (approx. 0.5 kDa) but not large (approx. 10 kDa) tracers. This assay system was used to screen for embryo-defective mutants, designated increased size exclusion limit of plasmodesmata(ise), that maintain dilated plasmodesmata at the torpedo stage. The morphology of ise1 and ise2 mutants discussed here resembled that of the wild-type during embryo development, although the rate of their embryogenesis was slower. The ISE1 gene was mapped to position 13 cM on chromosome I using PCR-based biallelic markers. ise2 was found to be allelic to the previously characterized mutant emb25 which maps to position 100 cM on chromosome I. The results presented have implications for intercellular signaling pathways that regulate embryonic development, and furthermore represent the first attempt to screen directly for mutants of Arabidopsis with altered size exclusion limit of plasmodesmata.
Collapse
Affiliation(s)
- Insoon Kim
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
21
|
Heese M, Gansel X, Sticher L, Wick P, Grebe M, Granier F, Jurgens G. Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J Cell Biol 2001; 155:239-49. [PMID: 11591731 PMCID: PMC2198836 DOI: 10.1083/jcb.200107126] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Revised: 08/30/2001] [Accepted: 09/04/2001] [Indexed: 12/29/2022] Open
Abstract
Cytokinesis requires membrane fusion during cleavage-furrow ingression in animals and cell plate formation in plants. In Arabidopsis, the Sec1 homologue KEULE (KEU) and the cytokinesis-specific syntaxin KNOLLE (KN) cooperate to promote vesicle fusion in the cell division plane. Here, we characterize AtSNAP33, an Arabidopsis homologue of the t-SNARE SNAP25, that was identified as a KN interactor in a yeast two-hybrid screen. AtSNAP33 is a ubiquitously expressed membrane-associated protein that accumulated at the plasma membrane and during cell division colocalized with KN at the forming cell plate. A T-DNA insertion in the AtSNAP33 gene caused loss of AtSNAP33 function, resulting in a lethal dwarf phenotype. atsnap33 plantlets gradually developed large necrotic lesions on cotyledons and rosette leaves, resembling pathogen-induced cellular responses, and eventually died before flowering. In addition, mutant seedlings displayed cytokinetic defects, and atsnap33 in combination with the cytokinesis mutant keu was embryo lethal. Analysis of the Arabidopsis genome revealed two further SNAP25-like proteins that also interacted with KN in the yeast two-hybrid assay. Our results suggest that AtSNAP33, the first SNAP25 homologue characterized in plants, is involved in diverse membrane fusion processes, including cell plate formation, and that AtSNAP33 function in cytokinesis may be replaced partially by other SNAP25 homologues.
Collapse
Affiliation(s)
- M Heese
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Völker A, Stierhof YD, Jürgens G. Cell cycle-independent expression of theArabidopsiscytokinesis-specific syntaxin KNOLLE results in mistargeting to the plasma membrane and is not sufficient for cytokinesis. J Cell Sci 2001; 114:3001-12. [PMID: 11686303 DOI: 10.1242/jcs.114.16.3001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Arabidopsis KNOLLE gene encodes a cytokinesis-specific syntaxin that localises to the plane of division and mediates cell-plate formation. KNOLLE mRNA and protein expression is tightly regulated during the cell cycle. To explore the significance of this regulation, we expressed KNOLLE protein under the control of two constitutive promoters, the flower-specific AP3 and the cauliflower mosaic virus 35Spromoter. The transgenic plants developed normally, although KNOLLEmRNA and protein accumulated to high levels in non-proliferating cells and protein was incorporated into membranes. Immunolocalisation studies in transgenic seedling roots revealed mistargeting of KNOLLE protein to the plasma membrane in tip-growing root hairs and in expanding root cells, whereas no mislocalisation was observed in proliferating cells. By comparative in situ hybridisation to embryo sections, the 35S promoter yielded, relative to the endogenous KNOLLE promoter, low levels of KNOLLE mRNA accumulation in proliferating cells that were insufficient to rescue cytokinesis-defective knolle mutant embryos. Our results suggest that in wild type, strong expression of KNOLLE protein during M phase is necessary to ensure efficient vesicle fusion during cytokinesis.
Collapse
Affiliation(s)
- A Völker
- Zentrum für Molekularbiologie der Pflanzen, Entwicklungsgenetik, Universität Tübingen, Germany
| | | | | |
Collapse
|
23
|
Abstract
Exquisitely regulated trafficking and fusion of vesicles is crucial for proper cell function. The molecules that regulate vesicle fusion are highly conserved among eukaryotes, but they have also undergone expansion and specialization within single genomes. With diversity comes the potential for functions in unique cell processes, and recent work in Arabidopsis reveals how a member of the SEC1 family, KEULE, functions in plant cell cytokinesis.
Collapse
|
24
|
Assaad FF, Huet Y, Mayer U, Jürgens G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J Cell Biol 2001; 152:531-43. [PMID: 11157980 PMCID: PMC2195996 DOI: 10.1083/jcb.152.3.531] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
KEULE is required for cytokinesis in Arabidopsis thaliana. We have positionally cloned the KEULE gene and shown that it encodes a Sec1 protein. KEULE is expressed throughout the plant, yet appears enriched in dividing tissues. Cytokinesis-defective mutant sectors were observed in all somatic tissues upon transformation of wild-type plants with a KEULE-green fluorescent protein gene fusion, suggesting that KEULE is required not only during embryogenesis, but at all stages of the plant's life cycle. KEULE is characteristic of a Sec1 protein in that it appears to exist in two forms: soluble or peripherally associated with membranes. More importantly, KEULE binds the cytokinesis-specific syntaxin KNOLLE. Sec1 proteins are key regulators of vesicle trafficking, capable of integrating a large number of intra- and/or intercellular signals. As a cytokinesis-related Sec1 protein, KEULE appears to represent a novel link between cell cycle progression and the membrane fusion apparatus.
Collapse
Affiliation(s)
- F F Assaad
- Genetics and Microbiology Institute, Ludwig Maximilians University, D-80638 Munich, Germany.
| | | | | | | |
Collapse
|
25
|
Sylvester AW. Division decisions and the spatial regulation of cytokinesis. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:58-66. [PMID: 10679454 DOI: 10.1016/s1369-5266(99)00042-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cytokinesis in plant cells in accomplished when a membranous cell plate is guided to a pre-established division site. The orientation of the new wall establishes the starting position of a cell in a growing tissue, but the impact of this position on future development varies. Recently, proteins have been identified that participate in forming, stabilizing and guiding the cell plate to the correct division site. Mutations that affect cytokinesis with varying impacts on plant development are providing information about the mechanics of cytokinesis and also about how the division site is selected.
Collapse
Affiliation(s)
- A W Sylvester
- Department of Botany, PO Box 3165, University of Wyoming, Laramie, 82071-3165, USA.
| |
Collapse
|
26
|
Abstract
Plant cells divide in two by constructing a new cell wall (cell plate) between daughter nuclei after mitosis. Golgi-derived vesicles are transported to the equator of a cytoskeletal structure called a phragmoplast, where they fuse together to form the cell plate. Orientation of new cell walls involves actindependent guidance of phragmoplasts and associated cell plates to cortical sites established prior to mitosis. Recent work has provided new insights into how actin filaments and other proteins in the phragmoplast and cell plate contribute to cytokinesis. Newly discovered mutations have identified a variety of genes required for cytokinesis or its spatial regulation.
Collapse
Affiliation(s)
- L G Smith
- Department of Biology, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
27
|
Abstract
The leaf epidermis is essential to plant survival not only because of its protective role at the interface with the plant's environment but also because of crucial developmental functions. The protoderm is set aside early in embryogenesis, possibly in the zygote. Epidermal identity is determined by the interactions of a complex set of factors, including developmental phase of the plant, regional identity within the leaf, and axiality. For the most part, these characteristics appear to be specified by internal tissues. On the other hand, the epidermis has a key role in regulating organ growth and expansion; thus interactions between the epidermis and internal tissues regulate the overall leaf architecture. Overlying this is the specification of different cell types within the epidermis. Some aspects of this appear to involve interactions with internal tissues but the patterning of many epidermal cell types seems to occur within the two-dimensional field of the epidermis itself and to require both cell signaling and cell lineage dependent mechanisms. Genetic analyses have provided much of the insight into the underlying principles that regulate epidermal development and a number of molecules important for various aspects of the process have been identified. Yet, for the most part, our understanding of the molecular basis for each component of epidermal development is still rudimentary and we have not yet scratched the surface of understanding how these pieces are integrated. The emerging technologies of functional genomics will provide powerful tools for solving these problems and the near future is likely to produce rapid progress.
Collapse
Affiliation(s)
- P W Becraft
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| |
Collapse
|
28
|
Heese M, Mayer U, Jürgens G. Cytokinesis in flowering plants: cellular process and developmental integration. CURRENT OPINION IN PLANT BIOLOGY 1998; 1:486-491. [PMID: 10066634 DOI: 10.1016/s1369-5266(98)80040-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In phragmoplast-assisted cytokinesis of somatic cells, vesicle fusion generates a cell plate that matures into a new cell wall and its flanking plasma membranes. Insight into this dynamic process has been gained in the past few years and additional molecular components of the basic machinery of cytokinesis have been identified. Specialized modes of cytokinesis occur in meiosis and gametophyte development, and recent studies indicate that they are genetically distinct from somatic cytokinesis.
Collapse
Affiliation(s)
- M Heese
- Lehrstuhl für Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
29
|
Nickle TC, Meinke DW. A cytokinesis-defective mutant of Arabidopsis (cyt1) characterized by embryonic lethality, incomplete cell walls, and excessive callose accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:321-32. [PMID: 9750345 DOI: 10.1046/j.1365-313x.1998.00212.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genetic control of cell division in eukaryotes has been addressed in part through the analysis of cytokinesis-defective mutants. Two allelic mutants of Arabidopsis (cyt1-1 and cyt1-2) altered in cytokinesis and cell-wall architecture during embryogenesis are described in this report. Mutant embryos appear slightly abnormal at the heart stage and then expand to form a somewhat disorganized mass of enlarged cells with occasional incomplete walls. In contrast to the keule and knolle mutants of Arabidopsis and the cyd mutant of pea, which also exhibit defects in cytokinesis during embryogenesis, cyt1 embryos cannot be rescued in culture, are desiccation-intolerant at maturity, and produce cell walls with excessive callose as revealed through staining with the aniline blue fluorochrome, Sirofluor. Some cyt1 defects can be partially phenocopied by treatment with the herbicide dichlobenil, which is thought to interfere with cellulose biosynthesis. The distribution of unesterified pectins in cyt1 cell walls is also disrupted as revealed through immunocytochemical localization of JIM 5 antibodies. These features indicate that CYT1 plays an essential and unique role in plant growth and development and the establishment of normal cell-wall architecture.
Collapse
Affiliation(s)
- T C Nickle
- Department of Botany, Oklahoma State University, Stillwater 74078, USA
| | | |
Collapse
|
30
|
Vaughn KC, Harper JD. Microtubule-organizing centers and nucleating sites in land plants. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:75-149. [PMID: 9522456 DOI: 10.1016/s0074-7696(08)60417-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microtubule-organizing centers (MTOCs) are morphologically diverse cellular sites involved in the nucleation and organization of microtubules (MTs). These structures are synonymous with the centrosome in mammalian cells. In most land plant cells, however, no such structures are observed and some have argued that plant cells may not have MTOCs. This review summarizes a number of experimental approaches toward the elucidation of those subcellular sites involved in microtubule nucleation and organization. In lower land plants, structurally well-defined MTOCs are present, such as the blepharoplast, multilayered structure, and polar organizer. In higher plants, much of the nucleation and organization of MTs occurs on the nuclear envelope or other endomembranes, such as the plasmalemma and smooth (tubular) endoplasmic reticulum. In some instances, one endomembrane may serve as a site of nucleation whereas others serve as the site of organization. Structural and motor microtubule-associated proteins also appear to be involved in MT nucleation and organization. Immunochemical evidence indicates that at least several of the proteins found in mammalian centrosomes, gamma-tubulin, centrin, pericentrin, and polypeptides recognized by the monoclonal antibodies MPM-2, 6C6, and C9 also recognize putative lower land plant MTOCs, indicating shared mechanisms of nucleation/organization in plants and animals. The most recent data from tubulin incorporation in vivo, mutants with altered MT organization, and molecular studies indicate the potential of these research tools in investigation of MTOCs in plants.
Collapse
Affiliation(s)
- K C Vaughn
- Southern Weed Science Laboratory, USDA-ARS, Stoneville, Mississippi 38776, USA
| | | |
Collapse
|
31
|
Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G. The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Biophys Biochem Cytol 1997; 139:1485-93. [PMID: 9396754 PMCID: PMC2132613 DOI: 10.1083/jcb.139.6.1485] [Citation(s) in RCA: 402] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In higher plant cytokinesis, plasma membrane and cell wall originate by vesicle fusion in the plane of cell division. The Arabidopsis KNOLLE gene, which is required for cytokinesis, encodes a protein related to vesicle-docking syntaxins. We have raised specific rabbit antiserum against purified recombinant KNOLLE protein to show biochemically and by immunoelectron microscopy that KNOLLE protein is membrane associated. Using immunofluorescence microscopy, KNOLLE protein was found to be specifically expressed during mitosis and, unlike the plasma membrane H+-ATPase, to localize to the plane of division during cytokinesis. Arabidopsis dynamin-like protein ADL1 accumulates at the plane of cell plate formation in knolle mutant cells as in wild-type cells, suggesting that cytokinetic vesicle traffic is not affected. Furthermore, electron microscopic analysis indicates that vesicle fusion is impaired. KNOLLE protein was detected in mitotically dividing cells of various parts of the developing plant, including seedling root, inflorescence meristem, floral meristems and ovules, and the cellularizing endosperm, but not during cytokinesis after the male second meiotic division. Thus, KNOLLE is the first syntaxin-like protein that appears to be involved specifically in cytokinetic vesicle fusion.
Collapse
Affiliation(s)
- M H Lauber
- Lehrstuhl für Entwicklungsgenetik, Universität Tübingen, D-72076 Tübingen, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|