1
|
Wong E, Nester C, Cavero T, Karras A, Le Quintrec M, Lightstone L, Eisenberger U, Soler MJ, Kavanagh D, Daina E, Praga M, Medjeral-Thomas NR, Gäckler A, Garcia-Carro C, Biondani A, Chaperon F, Kulmatycki K, Milojevic J, Webb NJ, Nidamarthy PK, Junge G, Remuzzi G. Efficacy and Safety of Iptacopan in Patients With C3 Glomerulopathy. Kidney Int Rep 2023; 8:2754-2764. [PMID: 38106570 PMCID: PMC10719607 DOI: 10.1016/j.ekir.2023.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Complement 3 glomerulopathy (C3G) is a rare inflammatory kidney disease mediated by dysregulation of the alternative complement pathway. No targeted therapy exists for this aggressive glomerulonephritis. Efficacy, safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) (measured by complement biomarkers) of iptacopan were assessed in patients with C3G. Methods In this phase 2, multicenter, open-label, single-arm, nonrandomized study, adults with biopsy-proven, native kidney C3G (native cohort) and kidney transplant recipients with C3G recurrence (recurrent kidney transplant [KT] cohort) received iptacopan twice daily (bid) for 84 days (days 1-21: 10-100 mg; days 22-84: 200 mg). The primary end point was the urine protein-to-creatinine ratio (UPCR; native cohort) and the change in the C3 deposit score of kidney biopsy (recurrent KT cohort). The complement pathway measures included Wieslab assay, soluble C5b9, and serum C3 levels. Results A total of 27 patients (16 native cohort and 11 recurrent KT cohort) were enrolled and all completed the study. In the native cohort, UPCR levels decreased by 45% from baseline to week 12 (P = 0.0003). In the recurrent KT cohort, the median C3 deposit score decreased by 2.50 (scale: 0-12) on day 84 versus baseline (P = 0.03). Serum C3 levels were normalized in most patients; complement hyperactivity observed pretreatment was reduced. Severe adverse events (AEs) included post-biopsy hematuria and hyperkalemia. No deaths occurred during the study. Conclusion Iptacopan resulted in statistically significant and clinically important reductions in UPCR and normalization of serum C3 levels in the native cohort and reduced C3 deposit scores in the recurrent KT cohort with favorable safety and tolerability. (ClinicalTrials.gov identifier: NCT03832114).
Collapse
Affiliation(s)
- Edwin Wong
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Carla Nester
- The University of Iowa Stead Family Children’s Hospital, Iowa City, Iowa, USA
| | - Teresa Cavero
- Nephrology Department, University Hospital Doce de Octubre, Madrid, Spain
| | - Alexandre Karras
- Department of Nephrology, Hôpital Européen Georges-Pompidou, APHP, Paris, France
| | - Moglie Le Quintrec
- Service de Néphrologie et Transplantation Rénale, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Liz Lightstone
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Ute Eisenberger
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Maria Jose Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Manuel Praga
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Nicholas R. Medjeral-Thomas
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Clara Garcia-Carro
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain
| | - Andrea Biondani
- Novartis Institutes for BioMedical Research, Translational Medicine, Novartis AG, Basel, Switzerland
| | - Frederique Chaperon
- Novartis Institutes for BioMedical Research, Translational Medicine, Novartis AG, Basel, Switzerland
| | - Kenneth Kulmatycki
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Julie Milojevic
- Novartis Institutes for BioMedical Research, Translational Medicine, Novartis AG, Basel, Switzerland
| | - Nicholas J.A. Webb
- Novartis Institutes for BioMedical Research, Translational Medicine, Novartis AG, Basel, Switzerland
| | | | - Guido Junge
- Novartis Institutes for BioMedical Research, Translational Medicine, Novartis AG, Basel, Switzerland
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Eshraghi Y, Abedi M, Gheisari Y. Proteomics to Metabolomics: A New Insight into the Pathogenesis of Hypertensive Nephropathy. Kidney Blood Press Res 2023; 48:710-726. [PMID: 37793351 PMCID: PMC10681119 DOI: 10.1159/000534354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Hypertensive nephropathy (HN) is a high-burden disorder and a leading cause of end-stage renal disease. Despite huge investigations, the underlying mechanisms are yet largely unknown. Systems biology is a promising approach to providing a comprehensive insight into this complex disorder. METHODS Proteome profiles of kidney tubulointerstitium and outer and inner cortex from a rat model of HN were retrieved from the proteomics identification database, and the quality of the datasets was assessed. Proteins that exhibited differential expression were detected and their interactions were analyzed in the kidney sub-compartments. Furthermore, enzymes were linked to the attributed metabolites. Functional enrichment analyses were performed to identify key pathways and processes based on the differentially expressed proteins and predicted metabolites. RESULTS Proteasome-mediated protein degradation, actin cytoskeleton organization, and Rho GTPase signaling pathway are involved in the pathogenesis of HN. Furthermore, tissue hypoxia and dysregulated energy homeostasis are among the key underlying events. The metabolism of purine and amino acids is also affected in HN. CONCLUSION Although the proposed pathogenic mechanisms remain to be further validated in experimental studies, this study contributes to the understanding of the molecular mechanisms of HN through a systematic unsupervised approach. Considering the significant alterations of metabolic pathways, HN can be viewed as an "acquired error of metabolism."
Collapse
Affiliation(s)
- Yasin Eshraghi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Abedi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Tang A, Zhao X, Tao T, Xie D, Xu B, Huang Y, Li M. Unleashing the power of complement activation: unraveling renal damage in human anti-glomerular basement membrane disease. Front Immunol 2023; 14:1229806. [PMID: 37781380 PMCID: PMC10540768 DOI: 10.3389/fimmu.2023.1229806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Anti-glomerular basement membrane (GBM) disease is a rare but life-threatening autoimmune disorder characterized by rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. Renal biopsies of anti-GBM patients predominantly show linear deposition of IgG and complement component 3 (C3), indicating a close association between antigen-antibody reactions and subsequent complement activation in the pathogenesis of the disease. All three major pathways of complement activation, including the classical, lectin, and alternative pathways, are involved in human anti-GBM disease. Several complement factors, such as C3, C5b-9, and factor B, show a positive correlation with the severity of the renal injury and act as risk factors for renal outcomes. Furthermore, compared to patients with single positivity for anti-GBM antibodies, individuals who are double-seropositive for anti-neutrophil cytoplasmic antibody (ANCA) and anti-GBM antibodies exhibit a unique clinical phenotype that lies between ANCA-associated vasculitis (AAV) and anti-GBM disease. Complement activation may serve as a potential "bridge" for triggering both AAV and anti-GBM conditions. The aim of this article is to provide a comprehensive review of the latest clinical evidence regarding the role of complement activation in anti-GBM disease. Furthermore, potential therapeutic strategies targeting complement components and associated precautions are discussed, to establish a theoretical basis for complement-targeted therapies.
Collapse
Affiliation(s)
- Anqi Tang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dengpiao Xie
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Ryu J, Baek E, Son HE, Ryu JY, Jeong JC, Kim S, Na KY, Chae DW, Kim SP, Kim SH, Jhee JH, Chang TI, Choi BS, Chin HJ. Comparison of dominant and nondominant C3 deposition in primary glomerulonephritis. Kidney Res Clin Pract 2023; 42:98-108. [PMID: 36747358 PMCID: PMC9902730 DOI: 10.23876/j.krcp.22.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/19/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Alternative complement pathway dysregulation plays a key role in glomerulonephritis (GN) and is associated with C3 deposition. Herein, we examined pathological and clinical differences between cases of primary GN with C3-dominant (C3D-GN) and nondominant (C3ND-GN) deposition. METHODS We extracted primary GN data from the Korean GlomeruloNEphritis sTudy (KoGNET). C3D-GN was defined as C3 staining two grades greater than C1q, C4, and immunoglobulin via immunofluorescence analysis. To overcome a large difference in the number of patients between the C3D-GN and C3ND-GN groups (31 vs. 9,689), permutation testing was used for analysis. RESULTS The C3D-GN group exhibited higher serum creatinine (p ≤ 0.001), a greater prevalence of estimated glomerular filtration rate of <60 mL/min/1.72 m2 (p ≤ 0.001), higher (but not significantly so) C-reactive protein level, and lower serum C3 level (p ≤ 0.001). Serum albumin, urine protein/creatinine ratio, number of patients who progressed to end-stage renal disease, and all-cause mortality were comparable between groups. Interstitial fibrosis and mesangial cellularity were greater in the C3D-GN group (p = 0.04 and p = 0.01, respectively) than in the C3ND-GN group. C3 deposition was dominant in the former group (p < 0.001), in parallel with increased subendothelial deposition (p ≤ 0.001). CONCLUSION Greater progression of renal injury and higher mortality occurred in patients with C3D-GN than with C3ND-GN, along with pathologic differences in interstitial and mesangial changes.
Collapse
Affiliation(s)
- Jiwon Ryu
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eunji Baek
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyung-Eun Son
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji-Young Ryu
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jong Cheol Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea,Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea,Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea,Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Dong-Wan Chae
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea,Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Seong Pyo Kim
- Interdisciplinary Program of Medical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Hwan Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Hyun Jhee
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Ik Chang
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea,Correspondence: Ho Jun Chin Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea. E-mail:
| | | |
Collapse
|
5
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
6
|
Autoantibodies against Complement Classical Pathway Components C1q, C1r, C1s and C1-Inh in Patients with Lupus Nephritis. Int J Mol Sci 2022; 23:ijms23169281. [PMID: 36012546 PMCID: PMC9409282 DOI: 10.3390/ijms23169281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/27/2023] Open
Abstract
Autoantibodies against the complement component C1q (anti-C1q) are among the main biomarkers in lupus nephritis (LN) known to contribute to renal injury. C1q, the recognition subcomponent of the complement classical pathway, forms a heterotetrameric complex with C1r and C1s, and can also associate a central complement regulator and C1 Inhibitor (C1-Inh). However, the frequency and the pathogenic relevance of anti-C1r, anti-C1s and anti-C1-Inh autoantibodies remain poorly studied in LN. In this paper, we screened for anti-C1q, anti-C1r, anti-C1s and anti-C1-Inh autoantibodies and evaluated their association with disease activity and severity in 74 LN patients followed up for 5 years with a total of 266 plasma samples collected. The presence of anti-C1q, anti-C1r, anti-C1s and anti-C1-Inh was assessed by ELISA. IgG was purified by Protein G from antigen-positive plasma and their binding to purified C1q, C1r and C1s was examined by surface plasmon resonance (SPR). The abilities of anti-C1q, anti-C1r and anti-C1s binding IgG on C1 complex formation were analyzed by ELISA. The screening of LN patients’ plasma revealed 14.9% anti-C1q positivity; only 4.2%, 6.9% and 0% were found to be positive for anti-C1r, anti-C1s and anti-C1-Inh, respectively. Significant correlations were found between anti-C1q and anti-dsDNA, and anti-nuclear antibodies, C3 and C4, respectively. High levels of anti-C1q antibodies were significantly associated with renal histologic lesions and correlated with histological activity index. Patients with the most severe disease (A class according to BILAG Renal score) had higher levels of anti-C1q antibodies. Anti-C1r and anti-C1s antibodies did not correlate with the clinical characteristics of the LN patients, did not interfere with the C1 complex formation, and were not measurable via SPR. In conclusion, the presence of anti-C1q, but not anti-C1s or anti-C1r, autoantibodies contribute to the autoimmune pathology and the severity of LN.
Collapse
|
7
|
Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction. Cell Death Dis 2022; 13:281. [PMID: 35351877 PMCID: PMC8964685 DOI: 10.1038/s41419-022-04737-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
Abstract
Podocyte damage mediated by in situ complement activation in the glomeruli is a key factor in the pathogenesis of membranous nephropathy (MN), but the molecular mechanism has not been fully elucidated. Pyroptosis is a special type of programmed cell death, mediate inflammatory response and induce tissue injury. However, it is not clear whether pyroptosis is involved in the development and progression of MN. Here, we report that pyroptosis plays an important role in promoting podocyte injury in MN. We first observed the occurrence of pyroptosis in the kidneys of MN patients and validated that complement stimulation triggered pyroptosis in podocytes and that inhibiting pyroptosis reversed complement-induced podocyte damage in vitro. In addition, stimulation of complement caused mitochondrial depolarization and reactive oxygen species (ROS) production in podocytes, and inhibition of ROS reversed complement-induced pyroptosis in podocytes. Interestingly, inhibition of pyroptosis in turn partially alleviated these effects. Furthermore, we also found the involvement of pyroptosis in the kidneys of passive Heymann nephritis (PHN) rats, and inhibitors of pyroptosis-related molecules relieved PHN-induced kidney damage in vivo. Our findings demonstrate that pyroptosis plays a critical role in complement-induced podocyte damage in MN and mitochondrial dysfunction is an important mechanism underlying this process. It provides new insight that pyroptosis may serve as a novel therapeutic target for MN treatment in future studies.
Collapse
|
8
|
The diagnostic value of immunohistochemical staining of the interstitial vascular C4d complement in membranous nephropathy. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Membranous glomerulonephritis (MGN) is the most common cause of adulthood nephrotic syndrome. Diagnosis of membranous nephritis is based on light electron immunofluorescence microscopy and clinical signs. Immune complex deposition against podocyte antigens such as phospholipase A2 receptor (PLA2R) activates the complement system. Of this, complement Component C4d (C4d) is involved in the classical and lectin pathways. This marker may be used by immunohistochemistry to diagnose MGN when other methods are not available. In this work, C4d expression was monitored by immunohistochemical analysis in the glomerular capillaries of patients with primary MGN (study group, N=33) versus patients with minimal change disease (MCD, control group, N=20) in a cross-sectional evaluation performed based on the diagnosis confirmed by light microscopy and immunofluorescence. There was no significant demographic difference between the two groups except for age (P=0.002). C4d immune-expression was positive in glomerular capillary (2+ to 4+) in most of the MGN patients, while it was negative in the MCD group. The sensitivity and specificity of C4d immunostaining were 95% and 100%, respectively. The Pearson correlation coefficient was 0.74 between C4d (immunohistochemistry) and immunoglobulins (IgG; immunofluorescence) and 0.65 between C4d (immunohistochemistry) and the C3 complement product (immunofluorescence). Immunohistochemical evaluation of C4d is, therefore, a sensitive and specific method that has a high correlation with IgG immunofluorescence.
Collapse
|
9
|
Liu J, Yin W, Westerberg LS, Lee P, Gong Q, Chen Y, Dong L, Liu C. Immune Dysregulation in IgG 4-Related Disease. Front Immunol 2021; 12:738540. [PMID: 34539675 PMCID: PMC8440903 DOI: 10.3389/fimmu.2021.738540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Immunoglobin G4-related disease (IgG4-RD) is one of the newly discovered autoimmune diseases characterized by elevated serum IgG4 concentrations and multi-organ fibrosis. Despite considerable research and recent advances in the identification of underlying immunological processes, the etiology of this disease is still not clear. Adaptive immune cells, including different types of T and B cells, and cytokines secreted by these cells play a vital role in the pathogenesis of IgG4-RD. Antigen-presenting cells are stimulated by pathogens and, thus, contribute to the activation of naïve T cells and differentiation of different T cell subtypes, including helper T cells (Th1 and Th2), regulatory T cells, and T follicular helper cells. B cells are activated and transformed to plasma cells by T cell-secreted cytokines. Moreover, macrophages, and some important factors (TGF-β, etc.) promote target organ fibrosis. Understanding the role of these cells and cytokines implicated in the pathogenesis of IgG4-RD will aid in developing strategies for future disease treatment and drug development. Here, we review the most recent insights on IgG4-RD, focusing on immune dysregulation involved in the pathogenesis of this autoimmune condition.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhong R, He Z, Zhang X, Han D, Wang H, Liu J. The strategy of modulation blood responses by surface modification with different functional groups on polyester film. J Biomed Mater Res A 2021; 109:1955-1966. [PMID: 34085403 DOI: 10.1002/jbm.a.37188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
A main problem in the design of blood-contacting biomaterials has been the deficiency of a systematic understanding of blood-biomaterial interactions and the strategy to modulate blood responses. In this work, different functional groups including carboxyl (COOH), hydroxyl (OH) and zwitterionic sulfobetaine group (⊕N((CH3 )2 )(CH2 )3 SO3-○- , SMDB) were grafted on the poly (butylene terephthalate) (PBT) film to study how the functional groups modulate blood responses and in terms of interaction with the coagulation system, the complement system, and platelets. The results showed protein absorption and platelet adhesion was stronger on the PBT bearing COOH group than PBT films bearing OH and zwitterionic sulfobetaine groups (total protein (μg/cm2 ): 32.92 ± 5.89 vs. 22.02 ± 1.44 vs. 19.09 ± 1.59; platelet adhesion (/mm2 ): 1,626.7 ± 120.1 vs. 1,395.6 ± 363.3 vs. 1,102.2 ± 373.7), which had a rougher and negatively charged surface, and the coagulation system was inhibited by binding fibrinogen (Fg) and coagulation factors. Meanwhile, PBT-PSMDB showed anticoagulant property and induced platelet activation. As a result, complement formation on these two films were less than PBT bearing OH groups by inhibiting the coagulation system (C3a (ng/ml): 3,745.4 ± 143.9 vs. 3,290.9 ± 249.7 vs. 4,887.9 ± 88.9; C5a (ng/ml): 22.1 ± 2.6 vs. 22.3 ± 1.8 vs. 27.9 ± 2.0). On the other hand, PBT bearing OH groups did not facilitate remarkable platelet adhesion and activation, and had no influence on platelet aggregation, hypotonic shock response, and coagulation system. The above results showed that the blood responses were highly interlinked, and could be modulated by grafting with different functional groups on the biomaterial surfaces. These findings may help identify a strategy to design materials with better hemocompatibility for blood contact, filtration, and purification applications.
Collapse
Affiliation(s)
- Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zeng He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuejun Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dingding Han
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Mavrogeorgis E, Mischak H, Beige J, Latosinska A, Siwy J. Understanding glomerular diseases through proteomics. Expert Rev Proteomics 2021; 18:137-157. [PMID: 33779448 DOI: 10.1080/14789450.2021.1908893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Chronic kidney disease is avery common and complex chronic disease. Uncovering the pathological patterns of CKD on the molecular level of bio-fluids and tissue appears to be both vital and promising for a more favorable outcome. We reviewed recently discovered proteomics biomarkers for CKD to provide new insight into disease pathology. AREAS COVERED We review the application of proteome analysis in the context of CKD with various etiologies within the last 5 years. Proteins and peptides associated with CKD as derived from multiple sources (urine, blood and tissue) are reported along with their various biological pathways. EXPERT OPINION A systematic and theoretical comprehension of the CKD pathology is essential for its successful management. The underlying complexity of the disease further requires specific conditions for reliable and interpretable results. In this context, clinical proteomics has resulted in first encouraging findings in CKD. A more complete understanding of the biological pathways related to the disease, based on the scope of a holistic proteomic approach, could improve substantially the management of CKD, especially when in conjunction with the current trend of personalized medicine.
Collapse
Affiliation(s)
| | - H Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J Beige
- Division of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany.,Department of Internal Medicine 2 (Nephrology, Rheumatology, Endocrinology), Martin-Luther-University Halle, Wittenberg, Germany
| | | | - J Siwy
- Mosaiques Diagnostics GmbH, Hannover, Germany
| |
Collapse
|
12
|
Ghosh S, Das S, Mukherjee J, Abdullah S, Mondal R, Sultana S, Sehgal A, Behl T. Enumerating the role of properdin in the pathogenesis of IgA nephropathy and its possible therapies. Int Immunopharmacol 2021; 93:107429. [PMID: 33571820 DOI: 10.1016/j.intimp.2021.107429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the most prevalent form of glomerulonephritis affecting almost 1.3% of the total population worldwide. It is an autoimmune disorder where the host autoantibody forms an immune complex with the defective galactose-deficient IgA1 and gets deposited at the mesangium and endocapillary region of glomeruli. IgA has the capability to activate alternative and lectin complement cascades which even aggravates the condition. Properdin is directly associated with IgAN by activating and stabilising the alternative complement pathway at the mesangium, thereby causing progressive renal damage. OBJECTIVE The present review mainly focuses on correlating the influence of properdin in activating the complement cascade at glomeruli which is the major cause of disease exacerbation. Secondly, we have described the probable therapies and new targets that are under trials to check their efficacy in IgAN. METHODS An in-depth research was carried out from different peer-reviewed articles till December 2020 from several renowned databases like PubMed, Frontier, and MEDLINE, and the information was analysed and written in a simplified manner. RESULTS Co-deposition of properdin is observed along with IgA and C3 in 75%-100% of the patients. It is not yet fully understood whether properdin inhibition can attenuate IgAN, as many conflicting reports have revealed worsening of IgAN after impeding properdin. CONCLUSION With no specific cure still available, the treatment strategies are of great concern to find a better target to restrict the disease progression. More research and clinical trials are required to find out a prominent target to combat IgAN.
Collapse
Affiliation(s)
- Srijit Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Srijita Das
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Joy Mukherjee
- Bengal School of Technology, Sugandha, Hooghly 712102, West Bengal, India
| | - Salik Abdullah
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Rupsa Mondal
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Shirin Sultana
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India.
| |
Collapse
|
13
|
Deshmukh H, Speth C, Sheppard DC, Neurauter M, Würzner R, Lass-Flörl C, Rambach G. Aspergillus-Derived Galactosaminogalactan Triggers Complement Activation on Human Platelets. Front Immunol 2020; 11:550827. [PMID: 33123129 PMCID: PMC7573070 DOI: 10.3389/fimmu.2020.550827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Invasive fungal infections caused by Aspergillus (A.) and Mucorales species still represent life-threatening diseases in immunocompromised individuals, and deeper knowledge about fungal interactions with elements of innate immunity, such as complement and platelets, appears essential for optimized therapy. Previous studies showed that galactosaminogalactan secreted by A. fumigatus and A. flavus is deposited on platelets, thereby inducing their activation. Since the altered platelet surface is a putative trigger for complement activation, we aimed to study the interplay of platelets with complement in the presence of fungal GAG. Culture supernatants (SN) of A. fumigatus and A. flavus both induced not only GAG deposition but also subsequent deposition of complement C3 fragments on the platelet surface. The SN of a Δuge3 mutant of A. fumigatus, which is unable to synthesize GAG, did not induce complement deposition on platelets, nor did the SN of other Aspergillus species and all tested Mucorales. Detailed analysis revealed that GAG deposition itself triggered the complement cascade rather than the GAG-induced phosphatidylserine exposure. The lectin pathway of complement could be shown to be crucially involved in this process. GAG-induced complement activation on the platelet surface was revealed to trigger processes that might contribute to the pathogenesis of invasive aspergillosis by A. fumigatus or A. flavus. Both pro-inflammatory anaphylatoxins C3a and C5a arose when platelets were incubated with SN of these fungal species; these processes might favor excessive inflammation after fungal infection. Furthermore, platelets were stimulated to shed microparticles, which are also known to harbor pro-inflammatory and pro-coagulant properties. Not only did early processes of the complement cascade proceed on platelets, but also the formation of the terminal complement C5b-9 complex was detected on platelets after incubation with fungal SN. Subsequently, reduced viability of the platelets could be shown, which might contribute to the lowered platelet numbers found in infected patients. In summary, fungal GAG initiates an interplay between complement and platelets that can be supposed to contribute to excessive inflammation, thrombocytopenia, and thrombosis, which are important hallmarks of fatal invasive mycoses.
Collapse
Affiliation(s)
- Hemalata Deshmukh
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Magdalena Neurauter
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| |
Collapse
|
14
|
Chen A, Lee K, Guan T, He JC, Schlondorff D. Role of CD8+ T cells in crescentic glomerulonephritis. Nephrol Dial Transplant 2020; 35:564-572. [PMID: 30879039 PMCID: PMC7139212 DOI: 10.1093/ndt/gfz043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023] Open
Abstract
Crescentic glomerulonephritis (cGN) comprises three main types according to the pathogenesis and immunofluorescence patterns: anti-glomerular basement membrane antibody cGN, vasculitis-associated cGN and post-infectious immune complex cGN. In this brief review of the immune-pathogenesis of cGN, the focus is mainly on the role of CD8+ T cells in the progression of cGN. Under control conditions, Bowman's capsule (BC) provides a protected immunological niche by preventing access of cytotoxic CD8+ T cells to Bowman's space and thereby podocytes. Even in experimental nephrotoxic nephritis, leukocytes accumulate around the glomeruli, but remain outside of BC, as long as the latter remains intact. However, when and where breaches in BC occur, the inflammatory cells can gain access to and destroy podocytes, thus converting cGN into rapidly progressive glomerulonephritis (RPGN). These conclusions also apply to human cGN, where biopsies show that loss of BC integrity is associated with RPGN and progression to end-stage kidney disease. We propose a two-hit hypothesis for the role of cytotoxic CD8+ T cells in the progression of cGN. The initial insult occurs in response to the immune complex formation or deposition, resulting in local capillary and podocyte injury (first hit). The injured podocytes release neo-epitopes, eventually causing T-cell activation and migration to the glomerulus. Upon generation of breaches in BC, macrophages and CD8+ T cells can now gain access to the glomerular space and destroy neo-epitope expressing podocytes (second hit), resulting in RPGN. While further investigation will be required to test this hypothesis, future therapeutic trials should consider targeting of CD8+ T cells in the therapy of progressive cGN.
Collapse
Affiliation(s)
- Anqun Chen
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian province, China
| | - Kyung Lee
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianjun Guan
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian province, China
| | - John Cijiang He
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Renal Section, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Detlef Schlondorff
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Carlisi M, Mancuso S, Caimi G, Siragusa S. Thrombotic risk in paroxysmal nocturnal hemoglobinuria-like (PNH-like) phenotype. Clin Hemorheol Microcirc 2020; 79:491-503. [PMID: 32116238 DOI: 10.3233/ch-190735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement system is an essential component of the innate immune defence that, if overly activated, may damage organs and tissues. For this reason, there is a fine complement regulatory system. The complement modulation system includes two proteins with important regulatory activity, CD55 or decay accelerating factor (DAF) and CD59 or membrane inhibitor of reactive lysis (MIRL).The paroxysmal nocturnal hemoglobinuria (PNH) is a clonal and non-neoplastic disease characterized by intravascular haemolysis, occurrence of thrombosis and bone marrow failure.In clinical practice, in opposition to PNH, a variety of pathological conditions have been observed with an acquired and non-genetic deficiency of the regulatory proteins CD55 and CD59. This abnormal, non-clonal, reduced expression of complement regulatory proteins configures what we may define as PNH-like phenotype.Similarly to PNH, even in the PNH-like phenotype diseases there has been a greater exposure to the mediated complement cellular lysis and, a likely increased risk of thromboembolic events.Therefore, the knowledge of the potential roles of the complement system becomes necessary for a deeper understanding of several pathological conditions and for an improved clinical management of the patients.
Collapse
Affiliation(s)
- Melania Carlisi
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Palermo, Italy
| | - Salvatrice Mancuso
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| | - Gregorio Caimi
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| | - Sergio Siragusa
- Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) Department, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Sun T, Guo X, Zhong R, Wang C, Liu H, Li H, Ma L, Guan J, You C, Tian M. Interactions of Alginate-Deferoxamine Conjugates With Blood Components and Their Antioxidation in the Hemoglobin Oxidation Model. Front Bioeng Biotechnol 2020; 8:53. [PMID: 32117933 PMCID: PMC7026261 DOI: 10.3389/fbioe.2020.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
While deferoxamine (DFO) has long been used as an FDA-approved iron chelator, its proangiogenesis ability attracts increasing number of research interests. To address its drawbacks such as short plasma half-life and toxicity, polymeric conjugated strategy has been proposed and shown superiority. Owing to intravenous injection and application in blood-related conditions, however, the blood interactions and antioxidation of the DFO-conjugates and the mechanisms underlying these outcomes remain to be elucidated. In this regard, incubating with three different molecular-weight (MW) alginate-DFO conjugates (ADs) red blood cells (RBCs), coagulation system, complement and platelet were investigated. To prove the antioxidant activity of ADs, we used hemoglobin oxidation model in vitro. ADs did not cause RBCs hemolysis while reversible aggregation and normal deformability ability were observed. However, the coagulation time, particularly APTT and TT, were significantly prolonged in a dose-dependent manner, and fibrinogen was dramatically decreased, suggesting ADs could dominantly inhibit the intrinsic pathways in the process of coagulation. The dose-dependent anticoagulation might be related with the functional groups along the alginate chains. The complements, C3a and C5a, were activated by ADs in a dose-dependent manner through alternative pathway. For platelet, ADs slightly suppressed the activation and aggregation at low concentration. Based on above results, the cross-talking among coagulation, complement and platelet induced by ADs was proposed. The antioxidation of ADs through iron chelation was proved and the antioxidant activity was shown in a MW-dependent manner.
Collapse
Affiliation(s)
- Tong Sun
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Guo
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chengwei Wang
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Tian
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Kiyanpour F, Abedi M, Gheisari Y. A systematic integrative approach reveals novel microRNAs in diabetic nephropathy. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:1. [PMID: 32055241 PMCID: PMC7003547 DOI: 10.4103/jrms.jrms_289_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/19/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022]
Abstract
Background: Despite huge efforts, the underlying molecular mechanisms of diabetic nephropathy (DN) are yet elusive, and holistic views have rarely been generated. Considering the complexity of DN pathogenesis, the integration of datasets from different molecular types to construct a multilayer map of DN can provide a comprehensive insight toward the disease mechanisms and also can generate new knowledge. Here, we have re-analyzed two mRNA microarray datasets related to glomerular and tubulointerstitial compartments of human diabetic kidneys. Materials and Methods: The quality of the datasets was confirmed by unsupervised hierarchical clustering and principal component analysis. For each dataset, differentially expressed (DE) genes were identified, and transcription factors (TFs) regulating these genes and kinases phosphorylating the TFs were enriched. Furthermore, microRNAs (miRNAs) targeting the DE genes, TFs, and kinases were detected. Based on the harvested genes for glomeruli and tubulointerstitium, key signaling pathways and biological processes involved in diseases pathogenesis were recognized. In addition, the interaction of different elements in each kidney compartment was depicted in multilayer networks, and topology analysis was performed to identify key nodes. Central miRNAs whose target genes were most likely to be related to DN were selected, and their expressions were quantitatively measured in a streptozotocin-induced DN mouse model. Results: Among the examined miRNAs, miR-208a-3p and miR-496a-3p are, for the first time, found to be significantly overexpressed in the cortex of diabetic kidneys compared to controls. Conclusion: We predict that miR-208 is involved in oxygen metabolism and regulation of cellular energy balance. Furthermore, miR-496 potentially regulates protein metabolism and ion transport. However, their exact functions remain to be investigated in future studies. Taken together, starting from transcriptomics data, we have generated multilayer interaction networks and introduced novel players in DN.
Collapse
Affiliation(s)
- Farnoush Kiyanpour
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Abedi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.,Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.,Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Andrighetto S, Leventhal J, Zaza G, Cravedi P. Complement and Complement Targeting Therapies in Glomerular Diseases. Int J Mol Sci 2019; 20:ijms20246336. [PMID: 31888179 PMCID: PMC6940904 DOI: 10.3390/ijms20246336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
The complement cascade is part of the innate immune system whose actions protect hosts from pathogens. Recent research shows complement involvement in a wide spectrum of renal disease pathogenesis including antibody-related glomerulopathies and non-antibody-mediated kidney diseases, such as C3 glomerular disease, atypical hemolytic uremic syndrome, and focal segmental glomerulosclerosis. A pivotal role in renal pathogenesis makes targeting complement activation an attractive therapeutic strategy. Over the last decade, a growing number of anti-complement agents have been developed; some are approved for clinical use and many others are in the pipeline. Herein, we review the pathways of complement activation and regulation, illustrate its role instigating or amplifying glomerular injury, and discuss the most promising novel complement-targeting therapies.
Collapse
Affiliation(s)
- Sofia Andrighetto
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy;
| | - Jeremy Leventhal
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy;
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, 1 Levy Place, New York, NY 10029, USA; (S.A.); (J.L.)
- Correspondence: ; Tel.: +1-212-241-3349; Fax: +1-212-987-0389
| |
Collapse
|
19
|
Zhang J, Yang J, Xu C, Hu Q, Hu J, Chen J, Jiang H. Down-regulation of Suv39h1 attenuates neointima formation after carotid artery injury in diabetic rats. J Cell Mol Med 2019; 24:973-983. [PMID: 31736204 PMCID: PMC6933362 DOI: 10.1111/jcmm.14809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with diabetes have an increased risk of vascular complications. Suv39h1, a histone methyltransferase, plays a protective role against myocardial injury in diabetes. Herein, we intend to explore whether Suv39h1 could affect neointimal formation after vascular injury in diabetic rats and reveal the underlying mechanism. In this study, we generated adenovirus expressing Suv39h1 as well as lentivirus expressing Suv39h1‐targeting shRNA and evaluated the significance of Suv39h1 in vascular smooth muscle cells (VSMCs) under diabetic conditions. In vitro, we examined proliferative and migratory behaviours as well as the underlying signalling mechanisms in VSMCs in response to high glucose treatment. In vivo, we induced diabetes in SD rats with streptozocin and established the common carotid artery balloon injury model. Suv39h1 was found to be both necessary and sufficient to promote VSMC proliferation and migration under high glucose conditions. We observed corresponding changes in intracellular signalling molecules including complement C3 and phosphor‐ERK1/2. However, either up‐regulating or down‐regulating Suv39h1, phosphor‐p38 level was not significantly affected. Consistently, Suv39h1 overexpression led to accelerated neointima formation, while knocking down Suv39h1 reduced it following carotid artery injury in diabetic rats. Using microarray analyses, we showed that altering the Suv39h1 level in vivo dramatically altered the expression of myriad genes mediating different biological processes and molecular function. This study reveals the novel role of Suv39h1 in VSMCs of diabetes and suggests its potential role as a therapeutic target in diabetic vascular injury.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Hu
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
ImmGen report: sexual dimorphism in the immune system transcriptome. Nat Commun 2019; 10:4295. [PMID: 31541153 PMCID: PMC6754408 DOI: 10.1038/s41467-019-12348-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/29/2019] [Indexed: 11/24/2022] Open
Abstract
Sexual dimorphism in the mammalian immune system is manifested as more frequent and severe infectious diseases in males and, on the other hand, higher rates of autoimmune disease in females, yet insights underlying those differences are still lacking. Here we characterize sex differences in the immune system by RNA and ATAC sequence profiling of untreated and interferon-induced immune cell types in male and female mice. We detect very few differentially expressed genes between male and female immune cells except in macrophages from three different tissues. Accordingly, very few genomic regions display differences in accessibility between sexes. Transcriptional sexual dimorphism in macrophages is mediated by genes of innate immune pathways, and increases after interferon stimulation. Thus, the stronger immune response of females may be due to more activated innate immune pathways prior to pathogen invasion. Sexual dimorphism is observed frequently in immune disorders, but the underlying insights are still unclear. Here the authors analyze transcriptome and epigenome changes induced by interferon in various mouse immune cell types, and find only a restricted set of sexual dimorphism genes in innate immunity and macrophages.
Collapse
|
21
|
Eldewi DM, Alhabibi AM, El Sayed HME, Mahmoud SAK, El Sadek SM, Gouda RM, Hassan MAEM, Ibrahim AH, Abd El Haliem NF. Expression levels of complement regulatory proteins (CD35, CD55 and CD59) on peripheral blood cells of patients with chronic kidney disease. Int J Gen Med 2019; 12:343-351. [PMID: 31571973 PMCID: PMC6754524 DOI: 10.2147/ijgm.s216989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
Background Altered regulation of the complement system is associated with multiple kidney diseases. CD35, CD55 and CD59 regulate the complement system, and changes in their expression have previously been linked with kidney disease. This study assessed whether changes in the expression levels of these proteins are associated specifically with chronic kidney disease (CKD) to understand its pathogenesis. Materials and methods Sixty CKD patients and 60 age-matched controls were enrolled and divided into two groups: Group I (n=30 pediatric patients and n=30 controls) and Group II (n=30 adult patients and n=30 controls). The expression of CD35, CD55 and CD59 on peripheral blood cells was evaluated by flow cytometry as the proportion of positive cells expressing the marker and mean fluorescence intensity (MFI), also the relation of these markers to the stage of CKD was also evaluated. Results Pediatric and adult CKD patients had significantly lower proportion of erythrocytes expressing CD35, CD55 and CD59 than healthy controls (P<0.001). In pediatric CKD patients, there was no significant difference in the three studied markers on neutrophils, lymphocytes and monocytes. The changes in expression of CD35, CD55 and CD59 on leukocytes were more pronounced in adult patients, who had lower proportion of CD59-positive neutrophils, CD35- and CD59-positive lymphocytes, and CD59-positive monocytes, as well as lower expression of CD59 on neutrophils and monocytes than adult controls (P<0.001, P=0.019, P<0.001, P=0.026, P<0.001 and P=0.003, respectively). The eGFR directly correlated with the proportion of positivity of some of those markers on peripheral leukocytes while there was inverse correlation between the disease stage and the same markers. Conclusion There are alterations in the patterns of expression of complement regulatory proteins CD35, CD55 and CD59 on peripheral blood cells of patients with CKD compared with healthy controls.
Collapse
Affiliation(s)
- Dalia Mahmoud Eldewi
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Alshaymaa M Alhabibi
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Rasha Mahmoud Gouda
- Pediatric Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Amal H Ibrahim
- Internal Medicine Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Naglaa F Abd El Haliem
- Medical Microbiology and Immunology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Kamburova EG, Hoitsma A, Claas FH, Otten HG. Results and reflections from the PROfiling Consortium on Antibody Repertoire and Effector functions in kidney transplantation: A mini-review. HLA 2019; 94:129-140. [PMID: 31099989 PMCID: PMC6772180 DOI: 10.1111/tan.13581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Kidney transplantation is the best treatment option for patients with end-stage renal disease (ESRD). The waiting time for a deceased donor kidney in the Netherlands is approximately 3 years. Mortality among patients on the waiting list is high. The aim of the PROCARE consortium (PROfiling Consortium on Antibody Repertoire and Effector functions) was to decrease the waiting time by providing a matching algorithm yielding a prolonged graft survival and less HLA-immunization compared with the currently used Eurotransplant Kidney allocation system. In this study, 6097 kidney transplants carried out between January 1995 and December 2005 were re-examined with modern laboratory techniques and insights that were not available during that time period. In this way, we could identify potential new parameters that can be used to improve the matching algorithm and prolong graft survival. All eight University Medical Centers in the Netherlands participated in this multicenter study. To improve the matching algorithm, we used as central hypothesis that the combined presence of class-I and -II single-antigen bead (SAB)-defined donor-specific HLA antibodies (DSA) prior to transplantation, non-HLA antibodies, the number of B- and/or T-cell epitopes recognized on donor HLA, and specific polymorphisms in effector mechanisms of IgG were associated with an increased risk for graft failure. The purpose of this article is to relate the results obtained from the PROCARE consortium study to other studies published in recent years. The clinical relevance of SAB-defined DSA, complement-fixing DSA, non-HLA antibodies, and the effector functions of (non)-HLA-antibodies will be discussed.
Collapse
Affiliation(s)
- Elena G. Kamburova
- Laboratory of Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Andries Hoitsma
- Dutch Organ Transplant Registry (NOTR)Dutch Transplant Foundation (NTS)LeidenThe Netherlands
| | - Frans H. Claas
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Henny G. Otten
- Laboratory of Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
23
|
Semis M, Gugiu GB, Bernstein EA, Bernstein KE, Kalkum M. The Plethora of Angiotensin-Converting Enzyme-Processed Peptides in Mouse Plasma. Anal Chem 2019; 91:6440-6453. [PMID: 31021607 DOI: 10.1021/acs.analchem.8b03828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme (ACE) converts angiotensin I into the potent vasoconstrictor angiotensin II, which regulates blood pressure. However, ACE activity is also essential for other physiological functions, presumably through processing of peptides unrelated to angiotensin. The goal of this study was to identify novel natural substrates and products of ACE through a series of mass-spectrometric experiments. This included comparing the ACE-treated and untreated plasma peptidomes of ACE-knockout (KO) mice, validation with select synthetic peptides, and a quantitative in vivo study of ACE substrates in mice with distinct genetic ACE backgrounds. In total, 244 natural peptides were identified ex vivo as possible substrates or products of ACE, demonstrating high promiscuity of the enzyme. ACE prefers to cleave substrates with Phe or Leu at the C-terminal P2' position and Gly in the P6 position. Pro in P1' and Iso in P1 are typical residues in peptides that ACE does not cleave. Several of the novel ACE substrates are known to have biological activities, including a fragment of complement C3, the spasmogenic C3f, which was processed by ACE ex vivo and in vitro. Analyses with N-domain-inactive (NKO) ACE allowed clarification of domain selectivity toward substrates. The in vivo ACE-substrate concentrations in WT, transgenic ACE-KO, NKO, and CKO mice correspond well with the in vitro observations in that higher levels of the ACE substrates were observed when the processing domain was knocked out. This study highlights the vast extent of ACE promiscuity and provides a valuable platform for further investigations of ACE functionality.
Collapse
Affiliation(s)
- Margarita Semis
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Gabriel B Gugiu
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Ellen A Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| |
Collapse
|
24
|
Post-transplant Alternative Complement Pathway Activation Influences Kidney Allograft Function. Arch Immunol Ther Exp (Warsz) 2019; 67:171-177. [PMID: 31028405 PMCID: PMC6509066 DOI: 10.1007/s00005-019-00541-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
The complement system is one of the crucial pathophysiological mechanisms that directly influence the function of a transplanted kidney. Since the complement pathways’ activation potential can be easily determined via their functional activity measurement, we focused on fluctuation in the cascade activity in the early post-transplant period. The aim of the study was to relate the kidney transplantation-induced complement system response to allograft outcome. Forty-two kidney recipients (aged: 53.5 [37–52], 17 females/25 males) and 24 healthy controls (aged: 40.5 [34–51], 13 females/11 males) were enrolled in the study. The functional activities of alternative, classical, and lectin pathways were determined before and in the first week after transplantation using Wielisa®-kit. We observed that the baseline functional activity of the alternative pathway (AP) was higher in chronic kidney disease patients awaiting transplantation compared to healthy controls and that its level depended on the type of dialysis. AP-functional activity was decreased following transplantation procedure and its post-transplant level was related to allograft function. The baseline and transplantation-induced functional activities of the classical and lectin pathways were not influenced by dialysis type and were not associated with transplant outcome. Moreover, our study showed that intraoperative graft surface cooling had a protective effect on AP activation. Our study confirms the influence of dialysis modality on persistent AP complement activation and supports the role of AP in an early phase after kidney transplantation and allograft outcome.
Collapse
|
25
|
Pan M, Zhou Q, Zheng S, You X, Li D, Zhang J, Chen C, Xu F, Li Z, Zhou Z, Zhang J. Serum C3/C4 ratio is a novel predictor of renal prognosis in patients with IgA nephropathy: a retrospective study. Immunol Res 2019; 66:381-391. [PMID: 29850970 DOI: 10.1007/s12026-018-8995-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IgA nephropathy (IgAN) is an autoimmune disease associated with complement activation. It is unclear whether the ratio of serum C3 and C4 concentrations (C3/C4 ratio) can predict renal outcomes in IgAN patients. A total of 1503 patients diagnosed with IgAN via renal biopsy were recorded in this study. Poor renal outcomes were defined as > 50% decrease in the baseline estimated glomerular filtration rate (eGFR) or development of end-stage renal disease (ESRD) during follow-up. In total, 712 patients meeting the exclusion/inclusion criteria were selected, and the mean follow-up period was 40.6 (12.34) months. Patients with decreased C3/C4 ratios displayed significantly more severe clinical characteristics and renal pathological features and a higher proportion of poor renal outcomes and ESRD. The optimal multivariate Cox regression models identified the C3/C4 ratio (hazard ratio (HR) 0.63, 95% CI 0.5-0.9), serum uric acid (HR 1.58, 95% CI 1.2-2.2), serum creatinine (HR 1.3, 95% CI 1.1-1.6), systolic blood pressure (HR 1.57, 95% CI 1.2-2.0) and T score (relative to T0, T1: HR 1.96, 95% CI 1.1-3.7, T2: HR 3.03, 95% CI 1.6-5.9) as strong predictors of poor renal outcomes. Subgroup analysis showed that patients with low C3/C4 ratios benefited from glucocorticoids or other immunosuppressive agents (hazard ratio 0.30 and 0.18, 95% CI 0.13-0.72 and 0.07-0.46, respectively). Serum C3/C4 ratios may be an independent novel predictor of renal outcomes in IgAN patients. Decreased C3/C4 ratios suggest poor renal outcomes and the potential to benefit from aggressive immunosuppressive therapies.
Collapse
Affiliation(s)
- Min Pan
- Department of Nephrology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - QiongXiu Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - ShuBei Zheng
- Department of Nephrology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - XiaoHan You
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Duo Li
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - ChaoSheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - FeiFei Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - ZhanYuan Li
- Department of Nephrology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - ZhiHong Zhou
- Department of Nephrology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - JianNa Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
26
|
Wang R, He D, Zhao L, Liang S, Liang D, Xu F, Zhang M, Zhu X, Chen H, Xie H, Zeng C, Tang Z, Liu Z. Role of complement system in patients with biopsy-proven immunoglobulin G4–related kidney disease. Hum Pathol 2018; 81:220-228. [DOI: 10.1016/j.humpath.2018.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
|
27
|
Bartoszek D, Mazanowska O, Kościelska-Kasprzak K, Kamińska D, Lepiesza A, Chudoba P, Myszka M, Żabińska M, Klinger M. Functional Activity of the Complement System in Deceased Donors in Relation to Kidney Allograft Outcome. Transplant Proc 2018; 50:1697-1700. [PMID: 30056884 DOI: 10.1016/j.transproceed.2018.02.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/06/2018] [Indexed: 11/28/2022]
Abstract
Complement activation is considered one of the mediators of renal ischemia-reperfusion injury. Elevated levels of C5b-9, C3a, and C5a are detected in sera of deceased kidney donors. The goal of the study was to characterize the functional activity of complement pathways in donor sera and to assess their influence on transplant outcome. MATERIALS AND METHODS Sixty-four deceased kidney donors (age 45 ± 16 years; 28 female, 36 male) and 27 healthy controls (age 42 ± 12 years; 14 female, 13 male) were enrolled in the study. The results of transplantation for the respective 122 kidney recipients were included in the analysis. The functional activities of classical (CP), lectin (LP), and alternative (AP) pathways were measured using Wielisa-kit (reference normal level = 100%). In most cases, decreased functional activity reflects the activation status of the pathway. RESULTS The median (interquartile range) functional activities of the pathways in donor sera were CP 118 (89-150)%, LP 80 (20-127)%, and AP 74 (50-89)%, and did not differ from the control values CP 110 (102-115)%, LP 81 (26-106)%, AP 76 (61-88)%. The frequency of pathway activation observed in controls was CP 0%, LP 11%, and AP 0%. Deceased donors did not differ in activation of classical (11%) and lectin (13%) pathways, but presented a higher rate of alternative pathway activation (19%, P = .03). No significant influence of any pathway functional activity or its activation was proved to influence the transplant outcome. CONCLUSION Complement activation via alternative pathway was observed in diseased donor sera. No predictive potential of donor complement functional activity on the transplant outcome could be proved.
Collapse
Affiliation(s)
- D Bartoszek
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - O Mazanowska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - K Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - D Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - A Lepiesza
- Department of Vascular, General, and Transplant Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - P Chudoba
- Department of Vascular, General, and Transplant Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - M Myszka
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - M Żabińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - M Klinger
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
28
|
Affiliation(s)
- J H Foley
- Freeline Therapeutics, Stevenage, UK
| | - E M Conway
- Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
De Miguel C, Obi IE, Ho DH, Loria AS, Pollock JS. Early life stress induces immune priming in kidneys of adult male rats. Am J Physiol Renal Physiol 2018; 314:F343-F355. [PMID: 28971994 PMCID: PMC5899229 DOI: 10.1152/ajprenal.00590.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Early life stress (ELS) in humans is associated with elevated proinflammatory markers. We hypothesized that ELS induces activation of the immune response in a rat model of ELS, maternal separation (MatSep), in adulthood. MatSep involves separating pups from the dam from postnatal day 2 to postnatal day 14 for 3 h/day. Control rats are nonseparated littermates. We determined circulating and renal immune cell numbers, renal immune cell activation markers, renal cytokine levels, and the renal inflammatory gene expression response to low-dose lipopolysaccharide (LPS) in male MatSep and control rats. We observed that MatSep did not change the percentage of gated events for circulating CD3+, CD4+, CD8+, and CD4+/Foxp3+ cells or absolute numbers of mononuclear and T cells in the circulation and kidneys; however, MatSep led to an increase in activation of renal neutrophils as well as CD44+ cells. Renal toll-like receptor 4 (TLR4) and interleukin 1 beta (IL-1β) was significantly increased in MatSep rats, specifically in the outer and inner medulla and distal nephron, respectively. Evaluation of renal inflammatory genes showed that in response to a low-dose LPS challenge (2 mg/kg iv) a total of 20 genes were significantly altered in kidneys from MatSep rats (17 genes were upregulated and 3 were downregulated), as opposed to no significant differences in gene expression in control vs. control + LPS groups. Taken together, these findings indicate that MatSep induces priming of the immune response in the kidney.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ijeoma E Obi
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Dao H Ho
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Medicine, Augusta University , Augusta, Georgia
| |
Collapse
|
30
|
Łukawska E, Polcyn-Adamczak M, Niemir ZI. The role of the alternative pathway of complement activation in glomerular diseases. Clin Exp Med 2018; 18:297-318. [DOI: 10.1007/s10238-018-0491-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/12/2018] [Indexed: 01/20/2023]
|
31
|
Wang Z, Yang H, Guo M, Han Z, Tao J, Chen H, Ge Y, Wang K, Tan R, Wei JF, Gu M. Impact of complement component 3/4/5 single nucleotide polymorphisms on renal transplant recipients with antibody-mediated rejection. Oncotarget 2017; 8:94539-94553. [PMID: 29212248 PMCID: PMC5706894 DOI: 10.18632/oncotarget.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023] Open
Abstract
Antibody-mediated rejection (ABMR) is an important risk of allograft dysfunction in kidney transplantation. The complement system is considered to be associated with the generation of alloreative antibodies and donor-specific antibodies. However, the association of complement single nucleotide polymorphisms (SNPs) with ABMR still remained unclear. Blood samples of 199 renal transplant recipients containing 68 with ABMR and 131 with stable graft function were collected, and analyzed by next-generation sequencing with an established gene panel. High quality readout was obtained in 18 C3 SNPs, 9 C4 SNPs and 22 C5 SNPs. Concerning C3 gene polymorphisms, after being adjusted with age, sex and immunosuppressive protocols, rs10411506 and rs2230205 were found to be statistically associated with ABMR in dominant model (rs10411506: OR=2.73, 95% CIs: 1.16, 6.68, P=0.028; rs2230205: OR=2.52, 95% CIs: 1.07, 5.92, P=0.034); rs10411506, rs2230205 and rs2230201 were found different in HET model (rs10411506: OR=3.05, 95% CIs: 1.22, 7.64, P=0.017; rs2230205: OR=2.90, 95% CIs: 1.20, 7.00, P=0.018; rs2230201: OR=2.41, 95% CIs: 1.03, 5.64, P=0.042). The linkage analysis showed relatively high linkage disequilibrium among these SNPs. In addition, no significant correlation was found between C4 SNPs, or C5 SNPs, and the development of ABMR. Our study firstly identified the two SNPs (rs10411506 and rs2230205) in C3 gene were statistically correlated with ABMR in kidney transplantation. These findings may have implications for the diagnosis and prevention of ABMR.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Haiwei Yang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Zhijian Han
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Jun Tao
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Hao Chen
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Yuqiu Ge
- School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Ke Wang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Ruoyun Tan
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Min Gu
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| |
Collapse
|
32
|
Affiliation(s)
- S. Reuter
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - R. Mrowka
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
33
|
Rhodes DCJ. Human Tamm-Horsfall protein, a renal specific protein, serves as a cofactor in complement 3b degradation. PLoS One 2017; 12:e0181857. [PMID: 28742158 PMCID: PMC5524369 DOI: 10.1371/journal.pone.0181857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/07/2017] [Indexed: 11/18/2022] Open
Abstract
Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement.
Collapse
Affiliation(s)
- Diana C. J. Rhodes
- Department of Anatomy, Pacific Northwest University of Health Sciences, Yakima, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Li S, Guo Q, Zhu H, Li Z, Su Y, Dong B. Increased Mer and Axl receptor tyrosine kinase expression on glomeruli in lupus nephritis. Clin Rheumatol 2017; 36:1063-1070. [PMID: 28127639 DOI: 10.1007/s10067-017-3550-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 12/14/2022]
Abstract
Mer and Axl receptor tyrosine kinases (MerTK and AxlTK) play important roles in the clearance of apoptotic cells and the inhibition of inflammatory responses. Previous studies demonstrated that they might participate in glomerular injury in mice model. This study aimed to elucidate the expression of MerTK and AxlTK on glomeruli and analyze their clinical significance in lupus nephritis (LN) patients. Twenty-nine LN and 10 primary nephrotic syndrome (NS) patients were recruited. The expression of MerTK and AxlTK on glomeruli was measured by immunohistochemistry. Correlations between the levels of MerTK and AxlTK and clinical data were investigated. Statistical differences in each group were calculated by one-way analysis of variance, t test, or Mann-Whitney U test. Correlations were evaluated with Pearson's or Spearman's correlation tests. Both MerTK and AxlTK were expressed mainly on mesangial cells. LN patients demonstrated more expression of MerTK and AxlTK than primary NS patients (1.19 ± 1.01 × 10-2 vs 0.21 ± 0.29 × 10-2, 7.25 ± 2.69 × 10-2 vs 3.10 ± 1.22 × 10-2, p < 0.01). In LN patients, MerTK expression correlated with AxlTK (r = 0.529, p < 0.01). LN patients with class IV expressed more MerTK and AxlTK (1.50 ± 1.03 × 10-2 and 7.56 ± 2.93 × 10-2). The expression of MerTK and AxlTK varied according to the deposition of immunoglobulin and complements on glomeruli. Both MerTK and AxlTK expressions were increased on glomeruli and varied according to pathological classifications. Thus, we assumed that both two subsets might participate in the pathogenesis of LN.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Qianyu Guo
- Department of Rheumatology and Immunology, Shanxi DaYi Hospital, Shanxi Academy of Medical Science, Taiyuan, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China.
| | - Bao Dong
- Department of Nephrology, People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
35
|
Fabiano RCG, Pinheiro SVB, de Almeida Araújo S, Simões E Silva AC. Immunoglobulin a nephropathy: Pathological markers of renal survival in paediatric patients. Nephrology (Carlton) 2017; 21:995-1002. [PMID: 27414046 DOI: 10.1111/nep.12850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 02/03/2023]
Abstract
IgA nephropathy (IgAN) is one of the leading causes of glomerulonephritis characterized by the findings of IgA and IgG immune deposits in the mesangium of kidney biopsies from patients with persistent microscopic haematuria. IgAN is frequently detected among adolescents and young adults. IgAN presents a highly variable course that includes a spectrum from a very mild disease to end-stage renal disease (ESRD). There are several clinical and histological factors that strongly determined the final outcome of patients with IgAN. Pathological variables associated with unfavorable outcomes are mesangial hypercellularity, segmental glomerulosclerosis, endocapillary hypercellularity and interstitial fibrosis/tubular atrophy, according to the Oxford classification. Moreover, some studies also suggest a role for complement activation in the pathogenesis of IgAN. In this regard, staining for C4d may be an independent risk factor for the development of ESRD in IgAN. Despite the growing number of studies assessing IgAN risk factors, this kind of investigation in paediatric patients is still very limited. The aim of this article is to revise pathological markers related to deterioration of renal function in paediatric patients with IgAN, particularly those that can independently affect renal survival.
Collapse
Affiliation(s)
- Rafaela Cabral Gonçalves Fabiano
- Division of Clinical Nephrology, Clinics Hospital, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Ana Cristina Simões E Silva
- Unit of Pediatric Nephrology, Faculty of Medicine, UFMG, Belo Horizonte, Minas Gerais, Brazil.,Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
36
|
Prohászka Z, Nilsson B, Frazer-Abel A, Kirschfink M. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control. Immunobiology 2016; 221:1247-58. [PMID: 27475991 DOI: 10.1016/j.imbio.2016.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
In recent years, complement analysis of body fluids and biopsies, going far beyond C3 and C4, has significantly enhanced our understanding of the disease process. Such expanded complement analysis allows for a more precise differential diagnosis and for critical monitoring of complement-targeted therapy. These changes are a result of the growing understanding of the involvement of complement in a diverse set of disorders. To appreciate the importance of proper complement analysis, it is important to understand the role it plays in disease. Historically, it was the absence of complement as manifested in severe infection that was noted. Since then complement has been connected to a variety of inflammatory disorders, such as autoimmune diseases and hereditary angioedema. While the role of complement in the rejection of renal grafts has been known longer, the significant impact of complement. In certain nephropathies has now led to the reclassification of some rare kidney diseases and an increased role for complement analysis in diagnosis. Even more unexpected is that complement has also been implicated in neural, ophtalmological and dermatological disorders. With this level of involvement in some varied and impactful health issues proper complement testing is clearly important; however, analysis of the complement system varies widely among laboratories. Except for a few proteins, such as C3 and C4, there are neither well-characterized standard preparations nor calibrated assays available. This is especially true for the inter-laboratory variation of tests which assess classical, alternative, or lectin pathway function. In addition, there is a need for the standardization of the measurement of complement activation products that are so critical in determining whether clinically relevant complement activation has occurred in vivo. Finally, autoantibodies to complement proteins (e.g. anti-C1q), C3 and C4 convertases (C3 and C4 nephritic factor) or to regulatory proteins (e.g. anti-C1inhibitor, anti-factor H) are important in defining autoimmune processes and diseases based on complement dysregulation. To improve the quality of complement laboratory analysis a standardization commmittee of the International Complement Society (ICS) and the International Union of Immunological Societies (IUIS) was formed to provide guidelines for modern complement analysis and standards for the development of international testing programs.
Collapse
Affiliation(s)
- Zoltán Prohászka
- 3rd Department of Internal Medicine, Research Laboratory and Füst György Complement Diagnostic Laboratory, Semmelweis University, Budapest, Hungary
| | - Bo Nilsson
- Clinical Immunology, Rudbeck Laboratory (C5), University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
37
|
Salivary levels of inflammatory cytokines and their association to periodontal disease in systemic lupus erythematosus patients. A case-control study. Cytokine 2016; 85:165-70. [PMID: 27371775 DOI: 10.1016/j.cyto.2016.06.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
Both Systemic Lupus Erythematosus (SLE) and periodontal disease (PD) present a similar immunological profile mainly characterized by altered cytokine levels. In this study we sought to investigate the salivary levels of inflammatory cytokines and their association with PD in SLE patients. 60 patients with SLE and 54 systemically healthy individuals underwent a full periodontal clinical examination. They were then grouped according to their periodontal status. Stimulated saliva was collected in order to evaluate the salivary levels of interferon (IFN-γ), Interleukin (IL)-10, IL-17, IL-1β, and IL-4. Systemically healthy individuals with periodontitis (group P) presented higher levels of cytokines when compared to systemically healthy individuals, with no periodontal disease (group S) (p<0.05). Additionally, in the P group, patients presented similar levels of cytokines to those of the patients with SLE, regardless of the presence of PD (p>0.05), for most of the analyzed cytokines. There was a positive correlation in SLE patients, including IL-1β and all periodontal clinical parameters (p<0.05), and between IL-4 and gingival bleeding index and the presence of biofilm (p<0.05). Thus, our results confirmed, that patients with PD showed higher salivary levels of cytokines and, in SLE patients, the increased levels of salivary cytokines were observed even in the absence of periodontitis. IL-1β and IL-4 salivary levels were also positively correlated with periodontal status indicating their potential as markers of the amount and extent of periodontal damage in patients with SLE.
Collapse
|
38
|
Huang Z, Cheng C, Jiang L, Yu Z, Cao F, Zhong J, Guo Z, Sun X. Intraventricular apolipoprotein ApoJ infusion acts protectively in Traumatic Brain Injury. J Neurochem 2016; 136:1017-25. [PMID: 26670094 DOI: 10.1111/jnc.13491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Zhijian Huang
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Chongjie Cheng
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Li Jiang
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Zhanyang Yu
- Department of Neurology and Radiology; Neuroprotection Research Laboratory; Harvard Medical School; Cambridge MA USA
| | - Fang Cao
- Department of Cerebrovascular; the Affiliated Hospital of Zunyi Medical College; Guizhou China
| | - Jianjun Zhong
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Zongduo Guo
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Xiaochuan Sun
- Department of Neurosurgery; the First Affiliated Hospital of Chongqing Medical University; Chongqing China
| |
Collapse
|
39
|
Simmonds MJ. Using Genetic Variation to Predict and Extend Long-term Kidney Transplant Function. Transplantation 2016; 99:2038-48. [PMID: 26262502 DOI: 10.1097/tp.0000000000000836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal transplantation has transformed the life of patients with end-stage renal disease and other chronic kidney disorders by returning endogenous kidney function and enabling patients to cease dialysis. Several clinical indicators of graft outcome and long-term function have been established. Although rising creatinine levels and graft biopsy can be used to determine graft loss, identifying early predictors of graft function will not only improve our ability to predict long-term graft outcome but importantly provide a window of opportunity to therapeutically intervene to preserve graft function before graft failure has occurred. Since understanding the importance of matching genetic variation at the HLA region between donors and recipients and translating this into clinical practise to improve transplant outcome, much focus has been placed on trying to identify additional genetic predictors of transplant outcome/function. This review will focus on how candidate gene studies have identified variants within immunosuppression, immune response, fibrotic pathways, and specific ethnic groups, which correlate with graft outcome. We will also discuss the challenges faced by candidate gene studies, such as differences in donor and recipient selection criteria and use of small data sets, which have led to many genes failing to be consistently associated with transplant outcome. This review will also look at how recent advances in our understanding of and ability to screen the genome are starting to provide new insights into the mechanisms behind long-term graft loss and with it the opportunity to target these pathways therapeutically to ultimately increase graft lifespan and the associated benefits to patients.
Collapse
Affiliation(s)
- Matthew J Simmonds
- 1 Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
40
|
Ali A, Schlanger L, Nasr SH, Sethi S, Gorbatkin SM. Proliferative C4 Dense Deposit Disease, Acute Thrombotic Microangiopathy, a Monoclonal Gammopathy, and Acute Kidney Failure. Am J Kidney Dis 2015; 67:479-82. [PMID: 26704376 DOI: 10.1053/j.ajkd.2015.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/03/2015] [Indexed: 11/11/2022]
Abstract
Dense deposit disease (DDD) is a rare form of glomerulonephritis that has recently been reclassified under the broad group of C3 glomerulopathy, which also includes C3 glomerulonephritis. C3 glomerulopathy is characterized by predominant C3 staining on immunofluorescence microscopy and dysregulation of the alternative complement pathway. We present a case of DDD concurrent with acute thrombotic microangiopathy (TMA) in a 54-year-old white man. The patient presented with acute kidney injury, and a kidney biopsy showed segmental highly electron-dense intramembranous deposits and large rounded mesangial electron-dense deposits consistent with DDD and coexisting glomerular and vascular thrombosis consistent with concurrent acute TMA. However, immunofluorescence microscopy did not show C3 staining in nonsclerotic glomeruli, excluding C3 DDD. Rather, there was dense staining for C4d along the glomerular capillaries, suggesting C4 DDD. Activity of the alternative complement pathway was normal. To our knowledge, this is the first reported case of C4 DDD concurrent with TMA. One previous case report of C4 DDD had been reported, though in a teenage girl. These 2 cases suggest that C4 DDD is a rare entity and should be distinguished from the C3 glomerulopathies.
Collapse
Affiliation(s)
- Arshad Ali
- Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, GA.
| | - Lynn Schlanger
- Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, GA
| | | | | | - Steven M Gorbatkin
- Emory University School of Medicine and Atlanta Veterans Affairs Medical Center, Atlanta, GA
| |
Collapse
|
41
|
Preußel K, Milde-Busch A, Schmich P, Wetzstein M, Stark K, Werber D. Risk Factors for Sporadic Non-Pregnancy Associated Listeriosis in Germany-Immunocompromised Patients and Frequently Consumed Ready-To-Eat Products. PLoS One 2015; 10:e0142986. [PMID: 26599484 PMCID: PMC4658106 DOI: 10.1371/journal.pone.0142986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023] Open
Abstract
Non-pregnancy associated (N-PA) listeriosis, caused by Listeria monocytogenes, is a rare but severe disease, and is predominantly food-borne. Most cases appear sporadic and their infection vehicle remains unknown. Incidence has increased since 2008 in Germany. We aimed to identify underlying conditions and foods associated with sporadic N-PA listeriosis in Germany. We performed a nationwide case-control study from March 2012-December 2013. Cases were sporadic N-PA listeriosis patients notified to public health. Control subjects were age (40-65 years, 66-75 years, ≥ 76 years) frequency-matched persons from a nationwide random telephone sample. A structured questionnaire collected information on underlying diseases, therapies and >60 food items. We conducted multivariable logistic regression analysis, adjusting for host factors identified by causal diagram theory, and calculated population attributable fractions. We enrolled 109 cases and 1982 controls. Cases' median age was 69 years, 55% were male, 44% received immunosuppressive therapy within 3 months prior to illness onset; a further 28% had at least one immunocompromising disease. In multivariable analysis, immunosuppressive therapy (OR 8.8, 95%CI 4.9-15.6), immunocompromising disease (OR 2.7; 95%CI 1.4-5.2), gastric acid suppression (OR 3.0; 95%CI 1.4-6.3), the consumption of cold cooked sausages (OR 2.6; 95%CI 1.6-4.4), the preferred consumption of packaged cheese (OR 2.1; 95%CI 1.3-3.5) and pre-sliced cheese (OR 2.2; 95%CI 1.3-3.7) were significantly associated with N-PA listeriosis. These foods accounted for 59% of all cases. Typical high risk foods, e.g. cold seafood, certain types of cheeses, tended to be negatively associated with disease. In conclusion, immunosuppressive therapy and frequently consumed ready-to-eat foods are the main risk factors for sporadic N-PA listeriosis in Germany. To reduce their risk, immunocompromised persons should consume the identified foods well before the 'use-by' date. The microbiological criteria for Listeria monocytogenes in ready-to-eat foods may insufficiently protect persons who are markedly immunocompromised.
Collapse
Affiliation(s)
- Karina Preußel
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Astrid Milde-Busch
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Patrick Schmich
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Matthias Wetzstein
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Klaus Stark
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dirk Werber
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
42
|
Li L, Xia Y, Chen C, Cheng P, Peng C. Neutrophil-lymphocyte ratio in systemic lupus erythematosus disease: a retrospective study. Int J Clin Exp Med 2015; 8:11026-11031. [PMID: 26379900 PMCID: PMC4565283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Lupus nephritis (LN) is an important cause of morbidity and even mortality in patients with SLE. Some evidences suggest that neutrophil-lymphocyte ratio (NLR) associated with different inflammatory malignancies, ischemic injury and cardiovascular disease. Few scholars have investigated the relationship between NLR and SLE. This study aims to evaluate the role of NLR in SLE without nephritis and LN patients. METHODS A total of 228 subjects were participated in this study. 79 diagnosed with SLE in patients group and 149 healthy age-and sex-matched in control group. In patient team, 20 of them were diagnosed with LN. RESULTS The SLE without nephritis group showed significantly higher NLR than control group (control=2.00±0.76, SLE=4.26±3.38, P<0.001), and the NLR values of the patients with LN were higher than those of the patients without LN (SLE=4.26±3.38, LN=7.21±6.01, P<0.001). Receiver-operating characteristics analysis (ROC) of NLR to predict SLE showed that the area under the curve (AUC) was 0.757. The cutoff value using the ROC curve was 3.13 (sensitivity, 0.574; specificity, 0.926; 95% confidence interval (CI), 0.668-0.845; P<0.001). While ROC analysis of NLR to predict LN showed that the AUC was 0.828). Logistic regression analysis showed that SLE without nephritis and LN were independently related to NLR. CONCLUSION NLR is independently associated with SLE, and it may be a promising marker that reflects renal involvement in patients with SLE.
Collapse
Affiliation(s)
- Lixiu Li
- Clinical Laboratory, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Kidney Disease, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yuncheng Xia
- Institute of Kidney Disease, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Chunmei Chen
- Clinical Laboratory, The Fifth Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Ping Cheng
- Institute of Kidney Disease, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Canhui Peng
- Clinical Laboratory, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
43
|
Salvadori M, Rosso G, Bertoni E. Complement involvement in kidney diseases: From physiopathology to therapeutical targeting. World J Nephrol 2015; 4:169-184. [PMID: 25949931 PMCID: PMC4419127 DOI: 10.5527/wjn.v4.i2.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/04/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Complement cascade is involved in several renal diseases and in renal transplantation. The different components of the complement cascade might represent an optimal target for innovative therapies. In the first section of the paper the authors review the physiopathology of complement involvement in renal diseases and transplantation. In some cases this led to a reclassification of renal diseases moving from a histopathological to a physiopathological classification. The principal issues afforded are: renal diseases with complement over activation, renal diseases with complement dysregulation, progression of renal diseases and renal transplantation. In the second section the authors discuss the several complement components that could represent a therapeutic target. Even if only the anti C5 monoclonal antibody is on the market, many targets as C1, C3, C5a and C5aR are the object of national or international trials. In addition, many molecules proved to be effective in vitro or in preclinical trials and are waiting to move to human trials in the future.
Collapse
|
44
|
Nozal P, Garrido S, Martínez-Ara J, Picazo ML, Yébenes L, Álvarez-Doforno R, Pinto S, de Córdoba SR, López-Trascasa M. Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation. BMC Nephrol 2015; 16:40. [PMID: 25886501 PMCID: PMC4415395 DOI: 10.1186/s12882-015-0032-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Glomerulonephritis is one of the most severe complications of lupus, a systemic disease with multi-organ involvement, with tissue damage produced mainly by complement activation. As a result of this activation, patients with active lupus present hypocomplementemia during disease flares, but C3 and C4 levels are recovered between episodes. Case presentation We present a patient who suffered two lupus nephritis episodes in 5 years, achieving complete remission with treatment after both of them, but with C3 levels persistently below normal range. Genetic study revealed that the patient carried a mutation in heterozygosis in the C3 gene. Serial sera samples were analyzed, and autoantibodies to complement alternative pathway proteins (Factor I, Factor B, C3 and Properdin) were found. Functional assays showed that these autoantibodies cause alternative pathway activation. Conclusion This case is the first reported of a heterozygous C3 mutation associated with lupus nephritis and autoantibodies against complement alternative pathway proteins (Factor I, Factor B, C3 and Properdin).These autoantibodies cause activation of this pathway and this fact could explain that the tissue damage is restricted to the kidney. Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0032-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pilar Nozal
- Immunology Unit, University Hospital La Paz, IdiPAZ, Madrid, Spain. .,Unit 754, Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| | - Sofía Garrido
- Immunology Unit, University Hospital La Paz, IdiPAZ, Madrid, Spain. .,Unit 754, Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| | - Jorge Martínez-Ara
- Department of Nephrology, University Hospital La Paz, IdiPAZ, Madrid, Spain.
| | - María Luz Picazo
- Department of Pathological Anatomy, University Hospital, IdiPAZ, Madrid, Spain.
| | - Laura Yébenes
- Department of Pathological Anatomy, University Hospital, IdiPAZ, Madrid, Spain.
| | | | - Sheila Pinto
- Biological Research Center, CSIC, Madrid, Spain. .,Unit 738, Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| | - Santiago Rodríguez de Córdoba
- Biological Research Center, CSIC, Madrid, Spain. .,Unit 738, Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| | - Margarita López-Trascasa
- Immunology Unit, University Hospital La Paz, IdiPAZ, Madrid, Spain. .,Unit 754, Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
45
|
Abstract
Lupus nephritis is a serious potential feature of systemic lupus erythematous (SLE). Though SLE typically cycles through periods of flares and remission, patients often eventually succumb to end-stage kidney or cardiovascular damage. This review of the pathogenesis of lupus nephritis examines the role of the complement cascade; the significance of autoantibodies, the breaking of tolerance, and the implications of altered apoptosis in breaking tolerance; and the contributions of adaptive immunity and cross-talk with the innate immune system in driving renal damage. Delineation of basic mechanisms underlying the development of acute and chronic renal damage in lupus nephritis can result in the continued development of more specific and effective treatments.
Collapse
Affiliation(s)
- Rosalie M Sterner
- Department of Laboratory Medicine & Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA ; Medical Scientist Training Program, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Stella P Hartono
- Department of Laboratory Medicine & Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA ; Medical Scientist Training Program, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Joseph P Grande
- Department of Laboratory Medicine & Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
46
|
Hofer J, Rosales A, Fischer C, Giner T. Extra-renal manifestations of complement-mediated thrombotic microangiopathies. Front Pediatr 2014; 2:97. [PMID: 25250305 PMCID: PMC4157546 DOI: 10.3389/fped.2014.00097] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022] Open
Abstract
Thrombotic microangiopathies (TMA) are rare but severe disorders, characterized by endothelial cell activation and thrombus formation leading to hemolytic anemia, thrombocytopenia, and organ failure. Complement over activation in combination with defects in its regulation is described in an increasing number of TMA and if primary for the disease denominated as atypical hemolytic-uremic syndrome. Although TMA predominantly affects the renal microvasculature, extra-renal manifestations are observed in 20% of patients including involvement of the central nerve system, cardiovascular system, lungs, skin, skeletal muscle, and gastrointestinal tract. Prompt diagnosis and treatment initiation are therefore crucial for the prognosis of disease acute phase and the long-term outcome. This review summarizes the available evidence on extra-renal TMA manifestations and discusses the role of acute and chronic complement activation by highlighting its complex interaction with inflammation, coagulation, and endothelial homeostasis.
Collapse
Affiliation(s)
- Johannes Hofer
- Department of Pediatrics I, Innsbruck Medical University , Innsbruck , Austria
| | - Alejandra Rosales
- Department of Pediatrics I, Innsbruck Medical University , Innsbruck , Austria
| | - Caroline Fischer
- Department of Pediatrics I, Innsbruck Medical University , Innsbruck , Austria
| | - Thomas Giner
- Department of Pediatrics I, Innsbruck Medical University , Innsbruck , Austria
| |
Collapse
|
47
|
Complement C3c as a biomarker in heart failure. Mediators Inflamm 2013; 2013:716902. [PMID: 24489446 PMCID: PMC3892932 DOI: 10.1155/2013/716902] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022] Open
Abstract
Introduction. Experimental data indicates an important role of the innate immune system in cardiac remodeling and heart failure (HF). Complement is a central effector pathway of the innate immune system. Animals lacking parts of the complement system are protected from adverse remodeling. Based on these data, we hypothesized that peripheral complement levels could be a good marker for adverse remodeling and prognosis in patients with HF. Methods and Results. Since complement activation converges on the complement factor C3, we measured serum C3c, a stable C3-conversion product, in 197 patients with stable systolic HF. Subgroups with normal and elevated C3c levels were compared. C3c levels were elevated in 17% of the cohort. Patients with elevated C3c levels exhibited a trend to better survival, slightly higher LVEF, and lower NTpro-BNP values in comparison to patients with normal C3c values. No differences were found regarding NYHA functional class. Significantly more patients with elevated C3c had preexisting diabetes. The prevalence of CAD, arterial hypertension, and atrial fibrillation was not increased in patients with elevated C3c. Conclusion. Elevated C3c levels are associated with less adverse remodeling and improved survival in patients with stable systolic heart failure.
Collapse
|