1
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Aebisher D, Woźnicki P, Bartusik-Aebisher D. Photodynamic Therapy and Adaptive Immunity Induced by Reactive Oxygen Species: Recent Reports. Cancers (Basel) 2024; 16:967. [PMID: 38473328 DOI: 10.3390/cancers16050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is one of the most significant causes of death worldwide. Despite the rapid development of modern forms of therapy, results are still unsatisfactory. The prognosis is further worsened by the ability of cancer cells to metastasize. Thus, more effective forms of therapy, such as photodynamic therapy, are constantly being developed. The photodynamic therapeutic regimen involves administering a photosensitizer that selectively accumulates in tumor cells or is present in tumor vasculature prior to irradiation with light at a wavelength corresponding to the photosensitizer absorbance, leading to the generation of reactive oxygen species. Reactive oxygen species are responsible for the direct and indirect destruction of cancer cells. Photodynamically induced local inflammation has been shown to have the ability to activate an adaptive immune system response resulting in the destruction of tumor lesions and the creation of an immune memory. This paper focuses on presenting the latest scientific reports on the specific immune response activated by photodynamic therapy. We present newly discovered mechanisms for the induction of the adaptive response by analyzing its various stages, and the possible difficulties in generating it. We also present the results of research over the past 10 years that have focused on improving the immunological efficacy of photodynamic therapy for improved cancer therapy.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Xiao Y, Zhong J, Yang J, Fu Z, Wang B, Peng L, Zuo X, Zhao X, He D, Yuan J. Myeloid-derived suppressor cells ameliorate corneal alkali burn through IL-10-dependent anti-inflammatory properties. Transl Res 2023; 262:25-34. [PMID: 37543286 DOI: 10.1016/j.trsl.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/03/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
This study aims to investigate the efficiency and the underlying mechanism of myeloid-derived suppressor cells (MDSCs) in corneal alkali burns (CAB). In the study, CD11b+ Gr-1+ cells from C57BL/6J mice bone marrow were cultured and induced. Cell activity and immunoregulatory function were assessed by flow cytometry in vitro. The optimal strategy of MDSCs therapy was assessed by slit-lamp microscopy, and flow cytometry in vivo. The therapeutic effects of MDSCs and the critical signaling pathway were investigated by hematoxylin-eosin (HE) staining, slit-lamp microscopy, flow cytometry, and immunofluorescence. The expression level of the NLRP3 inflammasome pathway was examined. The crucial biochemical parameters of MDSCs were examined by RNA-seq and qPCR to screen out the key regulators. The mechanism of MDSCs' therapeutic effects was explored using MDSCs with IL-10 knockout/rescue by slit-lamp microscopy, HE staining, and qPCR evaluation. The cell frequencies of macrophages and neutrophils in the cornea were examined by flow cytometry in vivo. The results demonstrated that the induced MDSCs meet the standard of phenotypic and functional characteristics. The treatment of 5 × 105 MDSCs conjunctival injection on alternate days significantly ameliorated the disease development, downregulated the NLRP3 inflammasome pathway, and decreased the cell frequencies of macrophages and neutrophils in vivo significantly. IL-10 was screened out to be the critical factor for MDSCs therapy. The therapeutic effects of MDSCs were impaired largely by IL-10 knock-out and saved by the IL-10 supplement. In conclusion, MDSCs therapy is a promising therapeutic solution for CAB. MDSCs fulfilled immunoregulatory roles for CAB by IL-10-dependent anti-inflammatory properties.
Collapse
Affiliation(s)
- Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Zhenyuan Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Lulu Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Lee JY, Kim S, Sohn HJ, Kim CH, Kim TG, Lee HS. Local Myeloid-Derived Suppressor Cells Impair Progression of Experimental Autoimmune Uveitis by Alleviating Oxidative Stress and Inflammation. Invest Ophthalmol Vis Sci 2023; 64:39. [PMID: 37878302 PMCID: PMC10615146 DOI: 10.1167/iovs.64.13.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Purpose To evaluate the immune regulatory effect of human cord blood myeloid-derived suppressor cells (MDSCs) in experimental autoimmune uveitis (EAU) models. Methods MDSCs (1 × 106) or PBS were injected into established C57BL/6 EAU mice via the subconjunctival route on days 0 and 7. The severity of intraocular inflammation was evaluated for up to 3 weeks. Tissue injury and inflammation were analyzed using immunolabelled staining, real-time PCR, and ELISA. In addition, immune cells in draining lymph nodes (LNs) were quantified using flow cytometry. Results After 21 days, the clinical scores and histopathological grades of EAU were lower in the MDSCs group compared with the PBS group. Local administration of MDSCs suppressed the oxidative stress and the expression of TNF-α and IL-1β in the retinal tissues. In addition, it inhibited the activation of pathogenic T helper 1 (Th1) and Th17 cells in draining LNs. MDSCs increased the frequency of CD25+ Foxp3+ regulatory T cells and the mRNA expression of IL-10, as an immune modulator. Conclusions MDSCs suppressed inflammation and oxidative stress in the retina and inhibited pathogenic T cells in the LNs in EAU. Therefore, ocular administration of MDSCs has therapeutic potential for uveitis.
Collapse
Affiliation(s)
- Jae-Young Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sueon Kim
- ViGenCell Inc., Seoul, Republic of Korea
| | | | | | - Tai-Gyu Kim
- ViGenCell Inc., Seoul, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Soo Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
5
|
Carlson E, Savardekar H, Hu X, Lapurga G, Johnson C, Sun SH, Carson WE, Peterson BR. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib. ACS Pharmacol Transl Sci 2023; 6:738-747. [PMID: 37200815 PMCID: PMC10186365 DOI: 10.1021/acsptsci.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that expand dramatically in many cancer patients. This expansion contributes to immunosuppression in cancer and reduces the efficacy of immune-based cancer therapies. One mechanism of immunosuppression mediated by MDSCs involves production of the reactive nitrogen species peroxynitrite (PNT), where this strong oxidant inactivates immune effector cells through destructive nitration of tyrosine residues in immune signal transduction pathways. As an alternative to analysis of nitrotyrosines indirectly generated by PNT, we used an endoplasmic reticulum (ER)-targeted fluorescent sensor termed PS3 that allows direct detection of PNT produced by MDSCs. When the MDSC-like cell line MSC2 and primary MDSCs from mice and humans were treated with PS3 and antibody-opsonized TentaGel microspheres, phagocytosis of these beads led to production of PNT and generation of a highly fluorescent product. Using this method, we show that splenocytes from a EMT6 mouse model of cancer, but not normal control mice, produce high levels of PNT due to elevated numbers of granulocytic (PMN) MDSCs. Similarly, peripheral blood mononuclear cells (PBMCs) isolated from blood of human melanoma patients produced substantially higher levels of PNT than healthy human volunteers, coincident with higher peripheral MDSC levels. The kinase inhibitor dasatinib was found to potently block the production of PNT both by inhibiting phagocytosis in vitro and by reducing the number of granulocytic MDSCs in mice in vivo, providing a chemical tool to modulate the production of this reactive nitrogen species (RNS) in the tumor microenvironment.
Collapse
Affiliation(s)
- Erick
J. Carlson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Himanshu Savardekar
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojun Hu
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabriella Lapurga
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Johnson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - William E. Carson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blake R. Peterson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Zhang MN, Yuan YL, Ao SH. Advances in the study of myeloid-derived suppressor cells in infectious lung diseases. Front Immunol 2023; 14:1125737. [PMID: 37063919 PMCID: PMC10090681 DOI: 10.3389/fimmu.2023.1125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells capable of inhibiting T-cell responses. MDSCs have a crucial role in the regulation of the immune response of the body to pathogens, especially in inflammatory response and pathogenesis during anti-infection. Pathogens such as bacteria and viruses use MDSCs as their infectious targets, and even some pathogens may exploit the inhibitory activity of MDSCs to enhance pathogen persistence and chronic infection of the host. Recent researches have revealed the pathogenic significance of MDSCs in pathogens such as bacteria and viruses, despite the fact that the majority of studies on MDSCs have focused on tumor immune evasion. With the increased prevalence of viral respiratory infections, the resurgence of classical tuberculosis, and the advent of medication resistance in common bacterial pneumonia, research on MDSCs in these illnesses is intensifying. The purpose of this work is to provide new avenues for treatment approaches to pulmonary infectious disorders by outlining the mechanism of action of MDSCs as a biomarker and therapeutic target in pulmonary infectious diseases.
Collapse
Affiliation(s)
- Meng-Nan Zhang
- College of Integrated Chinese and Western Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Lai Yuan
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-Hua Ao
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Su-Hua Ao,
| |
Collapse
|
7
|
Borgna E, Prochetto E, Gamba JC, Marcipar I, Cabrera G. Role of myeloid-derived suppressor cells during Trypanosoma cruzi infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:117-163. [PMID: 36967151 DOI: 10.1016/bs.ircmb.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is the third largest parasitic disease burden globally. Currently, more than 6 million people are infected, mainly in Latin America, but international migration has turned CD into an emerging health problem in many nonendemic countries. Despite intense research, a vaccine is still not available. A complex parasite life cycle, together with numerous immune system manipulation strategies, may account for the lack of a prophylactic or therapeutic vaccine. There is substantial experimental evidence supporting that T. cruzi acute infection generates a strong immunosuppression state that involves numerous immune populations with regulatory/suppressive capacity. Myeloid-derived suppressor cells (MDSCs), Foxp3+ regulatory T cells (Tregs), regulatory dendritic cells and B regulatory cells are some of the regulatory populations that have been involved in the acute immune response elicited by the parasite. The fact that, during acute infection, MDSCs increase notably in several organs, such as spleen, liver and heart, together with the observation that depletion of those cells can decrease mouse survival to 0%, strongly suggests that MDSCs play a major role during acute T. cruzi infection. Accumulating evidence gained in different settings supports the capacity of MDSCs to interact with cells from both the effector and the regulatory arms of the immune system, shaping the outcome of the response in a very wide range of scenarios that include pathological and physiological processes. In this sense, the aim of the present review is to describe the main knowledge about MDSCs acquired so far, including several crosstalk with other immune populations, which could be useful to gain insight into their role during T. cruzi infection.
Collapse
|
8
|
Sun Y, Wang X, Liu T, Zhu X, Pan X. The multifaceted role of the SASP in atherosclerosis: from mechanisms to therapeutic opportunities. Cell Biosci 2022; 12:74. [PMID: 35642067 PMCID: PMC9153125 DOI: 10.1186/s13578-022-00815-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The global population of older individuals is growing, and ageing is a key risk factor for atherosclerotic cardiovascular diseases. Abnormal accumulation of senescent cells can cause potentially deleterious effects on the organism with age. As a vital marker of cellular senescence, the senescence-associated secretory phenotype (SASP) is a novel mechanism to link cellular senescence with atherosclerosis. MAIN BODY In this review, we concretely describe the characteristics of the SASP and its regulation mechanisms. Importantly, we provide novel perspectives on how the SASP can promote atherosclerosis. The SASP from different types of senescent cells have vital roles in atherosclerosis progression. As a significant mediator of the harmful effects of senescent cells, it can play a pro-atherogenic role by producing inflammation and immune dysfunction. Furthermore, the SASP can deliver senescence signals to the surrounding vascular cells, gradually contributing to the development of atherosclerosis. Finally, we focus on a variety of novel therapeutic strategies aimed to reduce the burden of atherosclerosis in elderly individuals by targeting senescent cells and inhibiting the regulatory mechanisms of the SASP. CONCLUSION This review systematically summarizes the multiple roles of the SASP in atherosclerosis and can contribute to the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianwei Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Du J, Li XK, Peng XF, Xu W, Zhang XA, Li H, Yang T, Yuan C, Chen WW, Li C, Lu QB, Liu W. Expansion of granulocytic myeloid-derived suppressor cells in patients with severe fever with thrombocytopenia syndrome. J Med Virol 2022; 94:4329-4337. [PMID: 35562326 DOI: 10.1002/jmv.27854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS), caused by novel bunyavirus (SFTSV) is a hemorrhagic fever with a high mortality rate of over 10%. We have previously shown that granulocytic myeloid-derived suppressor cell (gMDSC) might affect arginine metabolism which was associated with decreased platelet count and T lymphocyte dysfunction in this disease. OBJECTIVES The study was designed to investigate the expression of the gMDSCs subsets in SFTS patients, and to evaluate its association with disease severity. METHODS A prospective study was performed on 166 confirmed SFTSV infected patients. Sequential blood samples were collected during hospitalization and after recovery. SFTSV RNA was quantified by real-time RT-PCR. The gMDSCs and NK cells were determined by Flow cytometry analysis, which were associated with disease severity. RESULTS Elevation of the activated gMDSC was observed in SFTS patients at acute phase, with a significantly higher level of gMDSC attained in 79 severe and 29 fatal SFTS patients than in the mild patients. The NK cells were depleted at the early infection and not restored to normal level until four months after disease. The expansion of gMDSC was accompanied by the elevated expressions of CD3-ζ of NK and Arginase-1, in contrast with the decreased ROS in gMDSC. The levels of NK, CD3-ζ of NK, viral load and platelet count were significantly associated with the level of gMDSC. CONCLUSIONS Expansion of gMDSC was demonstrated in SFTS, which was associated with severe disease and suppressed antiviral NK cell via other mechanism than Arginase-1 or ROS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Wen Xu
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Chun Yuan
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan province, P. R. China
| | - Wei-Wei Chen
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, P. R. China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Chuangchun, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China.,School of Public Health, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
10
|
Calahorra L, Camacho-Toledano C, Serrano-Regal MP, Ortega MC, Clemente D. Regulatory Cells in Multiple Sclerosis: From Blood to Brain. Biomedicines 2022; 10:335. [PMID: 35203544 PMCID: PMC8961785 DOI: 10.3390/biomedicines10020335] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, and neurodegenerative disease of the central nervous system (CNS) that affects myelin. The etiology of MS is unclear, although a variety of environmental and genetic factors are thought to increase the risk of developing the disease. Historically, T cells were considered to be the orchestrators of MS pathogenesis, but evidence has since accumulated implicating B lymphocytes and innate immune cells in the inflammation, demyelination, and axonal damage associated with MS disease progression. However, more recently the importance of the protective role of immunoregulatory cells in MS has become increasingly evident, such as that of myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) and B (Breg) cells, or CD56bright natural killer cells. In this review, we will focus on how peripheral regulatory cells implicated in innate and adaptive immune responses are involved in the physiopathology of MS. Moreover, we will discuss how these cells are thought to act and contribute to MS histopathology, also addressing their promising role as promoters of successful remyelination within the CNS. Finally, we will analyze how understanding these protective mechanisms may be crucial in the search for potential therapies for MS.
Collapse
Affiliation(s)
| | | | | | | | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain; (L.C.); (C.C.-T.); (M.P.S.-R.); (M.C.O.)
| |
Collapse
|
11
|
TGF-β Increases MFGE8 Production in Myeloid-Derived Suppressor Cells to Promote B16F10 Melanoma Metastasis. Biomedicines 2021; 9:biomedicines9080896. [PMID: 34440100 PMCID: PMC8389657 DOI: 10.3390/biomedicines9080896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
There is growing evidence that myeloid-derived suppressor cells (MDSCs) are directly involved in all stages leading to metastasis. Many mechanisms for this effect have been proposed, but mechanisms of coregulation between tumor cells and MDSCs remain poorly understood. In this study, we demonstrate that MDSCs are a source of milk fat globule-epidermal growth factor (EGF) factor 8 (MFGE8), which is known to be involved in tumor metastasis. Interestingly, TGF-β, an abundant cytokine in the tumor microenvironment (TME), increased MFGE8 production by MDSCs. In addition, co-culturing MDSCs with B16F10 melanoma cells increased B16F10 cell migration, while MFGE8 neutralization decreased their migration. Taken together, these findings suggest that MFGE8 is an important effector molecule through which MDSCs promote tumor metastasis, and the TME positively regulates MFGE8 production by MDSCs through TGF-β.
Collapse
|
12
|
Park MJ, Baek JA, Kim SY, Jung KA, Choi JW, Park SH, Kwok SK, Cho ML. Myeloid-derived suppressor cells therapy enhance immunoregulatory properties in acute graft versus host disease with combination of regulatory T cells. J Transl Med 2020; 18:483. [PMID: 33317573 PMCID: PMC7734831 DOI: 10.1186/s12967-020-02657-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) play a critical role in modulating the immune response and promoting immune tolerance in models of autoimmunity and transplantation. Regulatory T cells (Tregs) exert therapeutic potential due to their immunomodulatory properties, which have been demonstrated both in vitro and in clinical trials. Cell-based therapy for acute graft-versus-host disease (aGVHD) may enable induction of donor-specific tolerance in the preclinical setting. Methods We investigated whether the immunoregulatory activity of the combination of MDSCs and Tregs on T cell and B cell subset and alloreactive T cell response. We evaluated the therapeutic effects of combined cell therapy for a murine aGVHD model following MHC-mismatched bone marrow transplantation. We compared histologic analysis from the target tissues of each groups were and immune cell population by flow cytometric analysis. Results We report a novel approach to inducing immune tolerance using a combination of donor-derived MDSCs and Tregs. The combined cell-therapy modulated in vitro the proliferation of alloreactive T cells and the Treg/Th17 balance in mice and human system. Systemic infusion of MDSCs and Tregs ameliorated serverity and inflammation of aGVHD mouse model by reducing the populations of proinflammatory Th1/Th17 cells and the expression of proinflammatory cytokines in target tissue. The combined therapy promoted the differentiation of allogeneic T cells toward Foxp3 + Tregs and IL-10-producing regulatory B cells. The combination treatment control also activated human T and B cell subset. Conclusions Therefore, the combination of MDSCs and Tregs has immunomodulatory activity and induces immune tolerance to prevent of aGVHD severity. This could lead to the development of new clinical approaches to the prevent aGVHD.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Kyung-Ah Jung
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, South Korea.
| |
Collapse
|
13
|
Kelly-Scumpia KM, Choi A, Shirazi R, Bersabe H, Park E, Scumpia PO, Ochoa MT, Yu J, Ma F, Pellegrini M, Modlin RL. ER Stress Regulates Immunosuppressive Function of Myeloid Derived Suppressor Cells in Leprosy that Can Be Overcome in the Presence of IFN-γ. iScience 2020; 23:101050. [PMID: 32339990 PMCID: PMC7190750 DOI: 10.1016/j.isci.2020.101050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs) are a population of immature myeloid cells that suppress adaptive immune function, yet the factors that regulate their suppressive function in patients with infection remain unclear. We studied MDSCs in patients with leprosy, a disease caused by Mycobacterium leprae, where clinical manifestations present on a spectrum that correlate with immunity to the pathogen. We found that HLA-DR-CD33+CD15+ MDSCs were increased in blood from patients with disseminated/progressive lepromatous leprosy and possessed T cell-suppressive activity as compared with self-limiting tuberculoid leprosy. Mechanistically, we found ER stress played a critical role in regulating the T cell suppressive activity in these MDSCs. Furthermore, ER stress augmented IL-10 production, contributing to MDSC activity, whereas IFN-γ allowed T cells to overcome MDSC suppressive activity. These studies highlight a regulatory mechanism that links ER stress to IL-10 in mediating MDSC suppressive function in human infectious disease. Cells with an MDSC phenotype are increased in blood and skin of patients with leprosy Only MDSCs from patients with leprosy with disseminated infection suppress T cell function MDSC function is dependent on increased ER stress and IL-10 production MDSC function can be reversed in the presence of IFN-γ
Collapse
Affiliation(s)
| | - Aaron Choi
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roksana Shirazi
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Hannah Bersabe
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Esther Park
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Maria T Ochoa
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Yu
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
15
|
Kauppinen A, Kaarniranta K, Salminen A. Potential Role of Myeloid-Derived Suppressor Cells (MDSCs) in Age-Related Macular Degeneration (AMD). Front Immunol 2020; 11:384. [PMID: 32265903 PMCID: PMC7099658 DOI: 10.3389/fimmu.2020.00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid cells, such as granulocytes/neutrophils and macrophages, have responsibilities that include pathogen destruction, waste material degradation, or antigen presentation upon inflammation. During persistent stress, myeloid cells can remain partially differentiated and adopt immunosuppressive functions. Myeloid-derived suppressor cells (MDSCs) are primarily beneficial upon restoring homeostasis after inflammation. Because of their ability to suppress adaptive immunity, MDSCs can also ameliorate autoimmune diseases and semi-allogenic responses, e.g., in pregnancy or transplantation. However, immunosuppression is not always desirable. In certain conditions, such as cancer or chronically inflamed tissue, MDSCs prevent restorative immune responses and thereby aggravate disease progression. Age-related macular degeneration (AMD) is the most common disease in Western countries that severely threatens the central vision of aged people. The pathogenesis of this multifactorial disease is not fully elucidated, but inflammation is known to participate in both dry and wet AMD. In this paper, we provide an overview about the potential role of MDSCs in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
17
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
18
|
Phenotypic and Functional Diversities of Myeloid-Derived Suppressor Cells in Autoimmune Diseases. Mediators Inflamm 2018; 2018:4316584. [PMID: 30670926 PMCID: PMC6323474 DOI: 10.1155/2018/4316584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a heterogeneous population of cells with the function to suppress innate as well as adaptive immune responses. The initial studies of MDSCs were primarily focused on the field of animal tumor models or cancer patients. In cancer, MDSCs play the deleterious role to inhibit tumor immunity and to promote tumor development. Over the past few years, an increasing number of studies have investigated the role of MDSCs in autoimmune diseases. The beneficial effects of MDSCs in autoimmunity have been reported by some studies, and thus, immunosuppressive MDSCs may be a novel therapeutic target in autoimmune diseases. There are some controversial findings as well. Many questions such as the activation, differentiation, and suppressive functions of MDSCs and their roles in autoimmune diseases remain unclear. In this review, we have discussed the current understanding of MDSCs in autoimmune diseases.
Collapse
|
19
|
|
20
|
Salminen A, Kaarniranta K, Kauppinen A. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res Rev 2018; 48:1-10. [PMID: 30248408 DOI: 10.1016/j.arr.2018.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
A chronic low-grade inflammation is one of the hallmarks of the aging process. This gradually augmenting inflammatory state has been termed inflammaging. Inflammaging is associated with increased myelopoiesis in the bone marrow. This myelopoiesis-biased process increases the generation not only of mature myeloid cells, e.g. monocytes, macrophages, and neutrophils, but also immature myeloid progenitors and myeloid-derived suppressor cells (MDSCs). It is known that the aging process is associated with a significant increase in the presence of MDSCs in the bone marrow, blood, spleen, and peripheral lymph nodes. Consequently, MDSCs will become recruited into inflamed tissues where they suppress acute inflammatory responses and trigger the resolution of inflammation. However, if the perpetrator cannot be eliminated, the long-term presence of MDSCs suppresses the host's immune defence and increases the susceptibility to infections and tumorigenesis. Chronic immunosuppression also impairs the clearance of waste products and dead cells, impairs energy metabolism, and disturbs tissue proteostasis. This immunosuppressive state is reminiscent of the immunosenescence observed in inflammaging. It seems that proinflammatory changes in tissues with aging stimulate the myelopoietic production of MDSCs which subsequently induces immunosenescence and maintains the chronic inflammaging process. We will briefly describe the functions of MDSCs and then examine in detail how inflammaging enhances the generation MDSCs and how MDSCs are involved in the control of immunosenescence occurring in inflammaging.
Collapse
|
21
|
Characterization of Multiple Cytokine Combinations and TGF-β on Differentiation and Functions of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2018; 19:ijms19030869. [PMID: 29543758 PMCID: PMC5877730 DOI: 10.3390/ijms19030869] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) regulate T cell immunity, and this population is a new therapeutic target for immune regulation. A previous study showed that transforming growth factor-β (TGF-β) is involved in controlling MDSC differentiation and immunoregulatory function in vivo. However, the direct effect of TGF-β on MDSCs with various cytokines has not previously been tested. Thus, we examined the effect of various cytokine combinations with TGF-β on MDSCs derived from bone marrow cells. The data show that different cytokine combinations affect the differentiation and immunosuppressive functions of MDSCs in different ways. In the presence of TGF-β, interleukin-6 (IL-6) was the most potent enhancer of MDSC function, whereas granulocyte colony-stimulating factors (G-CSF) was the most potent in the absence of TGF-β. In addition, IL-4 maintained MDSCs in an immature state with an increased expression of arginase 1 (Arg1). However, regardless of the cytokine combinations, TGF-β increased expansion of the monocytic MDSC (Mo-MDSC) population, expression of immunosuppressive molecules by MDSCs, and the ability of MDSCs to suppress CD4⁺ T cell proliferation. Thus, although different cytokine combinations affected the MDSCs in different ways, TGF-β directly affects monocytic-MDSCs (Mo-MDSCs) expansion and MDSCs functions.
Collapse
|
22
|
Lamurias A, Ferreira JD, Clarke LA, Couto FM. Generating a Tolerogenic Cell Therapy Knowledge Graph from Literature. Front Immunol 2017; 8:1656. [PMID: 29238346 PMCID: PMC5712582 DOI: 10.3389/fimmu.2017.01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
Tolerogenic cell therapies provide an alternative to conventional immunosuppressive treatments of autoimmune disease and address, among other goals, the rejection of organ or stem cell transplants. Since various methodologies can be followed to develop tolerogenic therapies, it is important to be aware and up to date on all available studies that may be relevant to their improvement. Recently, knowledge graphs have been proposed to link various sources of information, using text mining techniques. Knowledge graphs facilitate the automatic retrieval of information about the topics represented in the graph. The objective of this work was to automatically generate a knowledge graph for tolerogenic cell therapy from biomedical literature. We developed a system, ICRel, based on machine learning to extract relations between cells and cytokines from abstracts. Our system retrieves related documents from PubMed, annotates each abstract with cell and cytokine named entities, generates the possible combinations of cell–cytokine pairs cooccurring in the same sentence, and identifies meaningful relations between cells and cytokines. The extracted relations were used to generate a knowledge graph, where each edge was supported by one or more documents. We obtained a graph containing 647 cell–cytokine relations, based on 3,264 abstracts. The modules of ICRel were evaluated with cross-validation and manual evaluation of the relations extracted. The relation extraction module obtained an F-measure of 0.789 in a reference database, while the manual evaluation obtained an accuracy of 0.615. Even though the knowledge graph is based on information that was already published in other articles about immunology, the system we present is more efficient than the laborious task of manually reading all the literature to find indirect or implicit relations. The ICRel graph will help experts identify implicit relations that may not be evident in published studies.
Collapse
Affiliation(s)
- Andre Lamurias
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - João D Ferreira
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luka A Clarke
- BioISI: Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco M Couto
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Zhang X, Xu W. Neutrophils diminish T-cell immunity to foster gastric cancer progression: the role of GM-CSF/PD-L1/PD-1 signalling pathway. Gut 2017; 66:1878-1880. [PMID: 28348197 PMCID: PMC5739856 DOI: 10.1136/gutjnl-2017-313923] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
24
|
Hu Y, Chen Z, Jiang L, Chen F, Jin R, Cheng L. Effects of oral and subcutaneous administration of HSP60 on myeloid-derived suppressor cells and atherosclerosis in ApoE-/- mice. Biochem Biophys Res Commun 2017; 498:701-706. [PMID: 29107690 DOI: 10.1016/j.bbrc.2017.10.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
HSP60 has been proved to be closely related to atherosclerosis due to its antigenicity. To determine this antigenicity effect, the ApoE-/- mice were fed with western-type diet and HSP60 was administrated orally or subcutaneously (SC) for potential vaccine against atherosclerosis. Here, we observed the ApoE-/- mice with oral HSP60 administration group showed a significant reduction in plaque size at the aortic root; accompanied by increased MSDCs (CD11b+Gr1+) in peripheral blood and spleen which was mostly composed of M-MDSCs (CD11b+LY6G-LY6Chigh), and increased plasma IL-10 and splenic Foxp3, Arg1, iNOS mRNA as well as decreased plasma IFN-γ and splenic T-bet mRNA compared to control group. Surprisingly, ApoE-/- mice with subcutaneous HSP60 administration group showed contrary results and their MDSCs were mostly composed of G-MDSCs (CD11b+LY6G+LY6Clow). As expected, both PBS-oral and PBS-SC groups showed no significant effects on both the immune response and atherosclerotic plaque formation. In contrast, subcutaneous administration of HSP60 causes the opposite response. Thus, we propose the proper method for administering HSP60 as a new immunologic agent for prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhuyue Chen
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lili Jiang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Chen
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Longxian Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Bikle DD. Vitamin D Prevents Sunburn: Tips for the Summer? J Invest Dermatol 2017; 137:2045-2047. [PMID: 28941472 DOI: 10.1016/j.jid.2017.07.840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/17/2022]
Abstract
In the article by Scott et al, a high dose of vitamin D attenuated the inflammatory response to UV radiation in a small group of normal volunteers. The best results were in those subjects who had the greatest increase in circulating 25hydroxyvitamin D. Using microarray analyses these subjects showed a reduction in the expression of inflammatory markers with an increase in markers of skin barrier repair.
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, VA Medical Center, San Francisco, California, USA; and University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
26
|
Ballbach M, Dannert A, Singh A, Siegmund DM, Handgretinger R, Piali L, Rieber N, Hartl D. Expression of checkpoint molecules on myeloid-derived suppressor cells. Immunol Lett 2017; 192:1-6. [PMID: 28987474 DOI: 10.1016/j.imlet.2017.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population expanded in cancer, infection and autoimmunity capable of suppressing T-cell functions. Checkpoint inhibitors have emerged as a key therapeutic strategy in immune-oncology. While checkpoint molecules were initially associated with T cell functions, recent evidence suggests a broader expression and function in innate myeloid cells. Previous studies provided first evidence for a potential role for checkpoints on MDSCs, yet the human relevance remained poorly understood. Therefore, we investigated the expression and functional relevance of checkpoint molecules in human MDSC-T-cell interactions. Our studies demonstrate that programmed death-ligand 1 (PD-L1) is expressed on granulocytic MDSCs upon co-culture with T cells. Transwell experiments showed that cell-to-cell contact was required for MDSC-T-cell interactions and antibody blocking studies showed that targeting PD-L1 partially impaired MDSC-mediated T-cell suppression. Collectively, these studies suggest a role for PD-L1 in human MDSC function and thereby expand the functionality of this checkpoint beyond T cells, which could pave the way for further understanding and therapeutic targeting of PD-1/PD-L1 in innate immune-mediated diseases.
Collapse
Affiliation(s)
- Marlene Ballbach
- Department of Pediatrics I, University of Tuebingen, 72076 Tuebingen, Germany
| | - Angelika Dannert
- Department of Pediatrics I, University of Tuebingen, 72076 Tuebingen, Germany
| | - Anurag Singh
- Department of Pediatrics I, University of Tuebingen, 72076 Tuebingen, Germany
| | - Darina M Siegmund
- Department of Pediatrics I, University of Tuebingen, 72076 Tuebingen, Germany
| | | | - Luca Piali
- Roche Pharma Research & Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Switzerland
| | - Nikolaus Rieber
- Department of Pediatrics I, University of Tuebingen, 72076 Tuebingen, Germany; Department of Pediatrics, Kinderklinik Muenchen Schwabing, Klinikum Schwabing, StKM GmbH und Klinikum rechts der Isar, Technical University of Munich, 80804 Munich, Germany
| | - Dominik Hartl
- Department of Pediatrics I, University of Tuebingen, 72076 Tuebingen, Germany; Roche Pharma Research & Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Switzerland.
| |
Collapse
|
27
|
Lee SE, Lim JY, Kim TW, Jeon YW, Yoon JH, Cho BS, Eom KS, Kim YJ, Kim HJ, Lee S, Cho SG, Kim DW, Lee JW, Min WS, Shin DM, Choi EY, Min CK. Matrix Metalloproteinase-9 in Monocytic Myeloid-Derived Suppressor Cells Correlate with Early Infections and Clinical Outcomes in Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2017; 24:32-42. [PMID: 28844945 DOI: 10.1016/j.bbmt.2017.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
The recovery of myeloid-derived suppressor cells (MDSCs) and its relevance in clinical acute graft-versus-host disease (GVHD) and post-hematopoietic stem cell transplantation (HSCT) infections remain to be fully characterized. We examined the expansion of circulating monocytic (M-) MDSCs and granulocytic (G-) MDSCs at the time of engraftment in 130 patients undergoing allogeneic HSCT (allo-HSCT). Compared with the G-MDSC group, the high M-MDSC group had a higher infection rate within 100 days, along with worse 1-year cumulative incidence of treatment-related mortality (TRM) and 2-year probability of event-free survival (EFS). The frequency of M-MDSCs was associated with preceding severe mucositis. Transcriptome profiling analysis of 2 isolated MDSC subtype showed significantly greater matrix metalloproteinase-9 (MMP-9) expression in M-MDSCs than in G-MDSCs. M-MDSCs produced abundantly more MMP-9. Importantly, compared with G-MDSCs, M-MDSCs isolated from patients post-HSCT had a greater capacity to suppress T cell responses, and MMP-9 blockade more forcefully inhibited their immunosuppressive effect. MMP-9 levels also were associated with the occurrence of infections and with transplantation outcomes. Based on these findings, we identify M-MDSCs as a major contributor to infections early after allo-HSCT and worse clinical outcomes via MMP-9.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Young Lim
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Woo Kim
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Woo Jeon
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Ho Yoon
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Sik Cho
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Seong Eom
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Lee
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Wook Lee
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Sung Min
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Mi Shin
- College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Ki Min
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4234061. [PMID: 28070230 PMCID: PMC5192343 DOI: 10.1155/2016/4234061] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed.
Collapse
|