1
|
Shehata AH, Anter AF, Mohamed Naguib Abdel Hafez S, Rn Ibrahim A, Kamel ES, Ahmed ASF. Pioglitazone ameliorates sepsis-associated encephalopathy through SIRT1 signaling pathway. Int Immunopharmacol 2024; 139:112757. [PMID: 39067401 DOI: 10.1016/j.intimp.2024.112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Sepsis is a severe immune response to an infection. It is associated with multiple organ dysfunction syndrome (MODs) along with systemic and neuronal inflammatory response. This study focused on the acute neurologic dysfunction associated with sepsis by exploring the role of PPARγ/SIRT1 pathway against sepsis. We studied the role of this axis in ameliorating sepsis-associated encephalopathy (SAE) and its linked neurobehavioral disorders by using pioglitazone (PIO). This PPARγ agonist showed neuroprotective actions in neuroinflammatory disorders. Sepsis was induced in mice by LPS (10 mg/kg). Survival rate and MODs were assessed. Furthermore, behavioral deficits, cerebral oxidative, inflammatory, and apoptotic markers, and the cerebral expression level of SIRT1 were determined. In this study, we observed that PIO attenuated sepsis-induced cerebral injury. PIO significantly enhanced survival rate, attenuated MODs, and systemic inflammatory response in septic mice. PIO also promoted cerebral SIRT1 expression and reduced cerebral activation of microglia, oxidative stress, HMGB, iNOS, NLRP3 and caspase-3 along with an obvious improvement in behavioral deficits and cerebral pathological damage induced by LPS. Most of the neuroprotective effects of PIO were abolished by EX-527, a SIRT1 inhibitor. These results highlight that the neuroprotective effect of PIO in SAE is mainly SIRT1-dependent.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Ahmed Rn Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| |
Collapse
|
2
|
Koyama S, Weber EL, Heinbockel T. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration. Int J Mol Sci 2024; 25:10353. [PMID: 39408681 PMCID: PMC11476926 DOI: 10.3390/ijms251910353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erin L. Weber
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
3
|
Nasrabadi ME, Al-Harrasi A, Mohammadi S, Zarif Azam Kardani F, Rahmati M, Memarian A. Pioglitazone as a potential modulator in autoimmune diseases: a review on its effects in systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and multiple sclerosis. Expert Rev Clin Immunol 2024:1-11. [PMID: 39279585 DOI: 10.1080/1744666x.2024.2401614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Current medications for autoimmune disorders often induce broad-ranging side effects, prompting a growing interest in therapies with more specific immune system modulation. Pioglitazone, known for its anti-diabetic properties, is increasingly recognized for significant immunomodulatory potential. Beyond its traditional use in diabetes management, pioglitazone emerges as a promising therapeutic candidate for autoimmune disorders. AREAS COVERED This comprehensive review explores pioglitazone's impact on four prominent autoimmune conditions: systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and multiple sclerosis. We focus on pioglitazone's diverse effects on immune cells and cytokines in these diseases, highlighting its potential as a valuable therapeutic option for autoimmune diseases. Here we have reviewed the latest and most current research literature available on PubMed, based on research published in the last 15 years. EXPERT OPINION Pioglitazone as an immunomodulatory agent can regulate T cell differentiation, inhibit inflammatory cytokines, and promote anti-inflammatory macrophages. While further clinical studies are needed to fully understand its mechanisms and optimize treatment strategies, pioglitazone represents a potential therapeutic approach to improve outcomes for patients with these challenging autoimmune conditions. The future of autoimmune disease research may involve personalized treatment approaches, and collaborative efforts to improve patient quality of life.
Collapse
Affiliation(s)
- Mohammad Esmail Nasrabadi
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fateme Zarif Azam Kardani
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Memarian
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Li M, Zhu X, Zhang M, Yu J, Jin S, Hu X, Piao H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci 2024; 19:20220905. [PMID: 39220595 PMCID: PMC11365469 DOI: 10.1515/biol-2022-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024] Open
Abstract
Pain has been a prominent medical concern since ancient times. Despite significant advances in the diagnosis and treatment of pain in contemporary medicine, there is no a therapeutic cure for chronic pain. Chinese herbaceous peony, a traditional Chinese analgesic herb has been in clinical use for millennia, with widespread application and substantial efficacy. Paeoniflorin (PF), the main active ingredient of Chinese herbaceous peony, has antioxidant, anti-inflammatory, anticancer, analgesic, and antispasmodic properties, among others. The analgesic effect of PF, involving multiple critical targets and pain regulatory pathways, has been a hot spot for current research. This article reviews the literature related to the analgesic effect of PF in the past decade and discusses the molecular mechanism of the analgesic effect of PF, including the protective effects of nerve cells, inhibition of inflammatory reactions, antioxidant effects, reduction of excitability in nociceptor, inhibition of the nociceptive excitatory neuroreceptor system, activation of the nociceptive inhibitory neuroreceptor system and regulation of other receptors involved in nociceptive sensitization. Thus, providing a theoretical basis for pain prevention and treatment research. Furthermore, the prospect of PF-based drug development is presented to propose new ideas for clinical analgesic therapy.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Mingxue Zhang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Jun Yu
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Shengbo Jin
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Xiaoli Hu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| |
Collapse
|
5
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
6
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
7
|
Fujikawa R, Tsuda M. The Functions and Phenotypes of Microglia in Alzheimer's Disease. Cells 2023; 12:cells12081207. [PMID: 37190116 DOI: 10.3390/cells12081207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, but therapeutic strategies to slow down AD pathology and symptoms have not yet been successful. While attention has been focused on neurodegeneration in AD pathogenesis, recent decades have provided evidence of the importance of microglia, and resident immune cells in the central nervous system. In addition, new technologies, including single-cell RNA sequencing, have revealed heterogeneous cell states of microglia in AD. In this review, we systematically summarize the microglial response to amyloid-β and tau tangles, and the risk factor genes expressed in microglia. Furthermore, we discuss the characteristics of protective microglia that appear during AD pathology and the relationship between AD and microglia-induced inflammation during chronic pain. Understanding the diverse roles of microglia will help identify new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Kyushu University Institute for Advanced Study, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
9
|
Roginskaya AI, Dyomina AV, Kovalenko AA, Zakharova MV, Schwarz AP, Melik-Kasumov TB, Zubareva OE. Effect of Anakinra on the Gene Expression of Receptors Activated by the Peroxisome Proliferator in the Rat Brain in the Lithium Pilocarpine Model of Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Guo S, Wang H, Yin Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:815347. [PMID: 35250543 PMCID: PMC8888930 DOI: 10.3389/fnagi.2022.815347] [Citation(s) in RCA: 280] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia-mediated neuroinflammation is a common feature of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Microglia can be categorized into two opposite types: classical (M1) or alternative (M2), though there’s a continuum of different intermediate phenotypes between M1 and M2, and microglia can transit from one phenotype to another. M1 microglia release inflammatory mediators and induce inflammation and neurotoxicity, while M2 microglia release anti-inflammatory mediators and induce anti-inflammatory and neuroprotectivity. Microglia-mediated neuroinflammation is considered as a double-edged sword, performing both harmful and helpful effects in neurodegenerative diseases. Previous studies showed that balancing microglia M1/M2 polarization had a promising therapeutic prospect in neurodegenerative diseases. We suggest that shifting microglia from M1 to M2 may be significant and we focus on the modulation of microglia polarization from M1 to M2, especially by important signal pathways, in neurodegenerative diseases.
Collapse
|
11
|
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis 2022; 13:1146-1165. [PMID: 35855338 PMCID: PMC9286903 DOI: 10.14336/ad.2021.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | - Zhongbao Gao
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenfu Wang
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect 2021; 9:e00766. [PMID: 34676987 PMCID: PMC8532137 DOI: 10.1002/prp2.766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of researches on the NR1 and NR4 nuclear receptors involved in the regulation of microglial functions. Nuclear receptors are attractive candidates for drug targets in the therapies of the central nervous system disorders, because the activation of these receptors is expected to regulate the functions and the phenotypes of microglia, by controlling the expression of specific gene subsets and also by regulating the cellular signaling mechanisms in a nongenomic manner. Several members of NR1 nuclear receptor subfamily have been examined for their ability to regulate microglial functions. For example, stimulation of vitamin D receptor inhibits the production of pro-inflammatory factors and increases the production of anti-inflammatory cytokines. Similar regulatory actions of nuclear receptor ligands on inflammation-related genes have also been reported for other NR1 members such as retinoic acid receptors, peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). In addition, stimulation of PPARγ and LXRs may also result in increased phagocytic activities of microglia. Consistent with these actions, the agonists at nuclear receptors of NR1 subfamily are shown to produce therapeutic effects on animal models of various neurological disorders such as experimental allergic encephalomyelitis, Alzheimer's disease, Parkinson's disease, and ischemic/hemorrhagic stroke. On the other hand, increasing lines of evidence suggest that the stimulation of NR4 subfamily members of nuclear receptors such as Nur77 and Nurr1 also regulates microglial functions and alleviates neuropathological events in several disease models. Further advancement of these research fields may prove novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico‐Pharmacological SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
14
|
Zhang X, Deng F, Zhang Y, Zhang X, Chen J, Jiang Y. PPARγ attenuates hepatic inflammation and oxidative stress of non‑alcoholic steatohepatitis via modulating the miR‑21‑5p/SFRP5 pathway. Mol Med Rep 2021; 24:823. [PMID: 34558644 PMCID: PMC8485121 DOI: 10.3892/mmr.2021.12463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation and oxidative stress are key steps in the progression of non‑alcoholic steatohepatitis (NASH). Intervention in these two processes will therefore benefit NASH treatment. Peroxisome proliferator‑activated receptor γ (PPARγ), as a multiple functional transcription factor, has been reported to be involved in the prevention of NASH progression. However, the mechanism by which PPARγ prevents NASH remains to be elucidated. The present study demonstrated that the level of PPARγ was inversely correlated with that of microRNA (miRNA/miRs)‑21‑5p in both mice and humans with NASH. Activation of PPARγ inhibited lipid droplet accumulation, hepatic inflammation and oxidative stress by downregulating miR‑21‑5p in an in vitro model. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that PPARγ suppressed transcriptional activity of miR‑21‑5p and bound to miR‑21‑5p promoter region. Furthermore, PPARγ downregulated miR‑21‑5p while miR‑21‑5p upregulated secreted frizzled‑related protein 5 (SFRP5) by targeting the 3'‑UTR of its mRNA. In vivo experiments revealed that PPARγ repressed inflammation and oxidative stress and miR‑21‑5p expression while increased SFRP5 level in a NASH mouse model. In summary, PPARγ attenuates inflammation and oxidative stress in NASH by modulating the miR‑21‑5p/SFRP5 pathway, thus holding promise of a new target for NASH treatment.
Collapse
Affiliation(s)
- Xiying Zhang
- Department of Endocrinology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Fang Deng
- Department of Endocrinology, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yuping Zhang
- Department of Endocrinology, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiaohong Zhang
- Department of Endocrinology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Jianfei Chen
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Youzhao Jiang
- Department of Endocrinology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| |
Collapse
|
15
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
16
|
Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res 2021; 46:2800-2831. [PMID: 34282491 DOI: 10.1007/s11064-021-03402-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-ɣ) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-ɣ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-ɣ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-ɣ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Harmeet Kaur Kang
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Han Y, Wang J, Jin M, Jia L, Yan C, Wang Y. Shentong Zhuyu Decoction Inhibits Inflammatory Response, Migration, and Invasion and Promotes Apoptosis of Rheumatoid Arthritis Fibroblast-like Synoviocytes via the MAPK p38/PPAR γ/CTGF Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6187695. [PMID: 33511203 PMCID: PMC7826240 DOI: 10.1155/2021/6187695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The current study is aimed at exploring the effect of Shentong Zhuyu Decoction on the proliferation, migration, invasion, and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its underlying molecular mechanism. MATERIALS AND METHODS The type II collagen-induced arthritis (CIA) model was established. Subsequently, the RA-FLS were isolated from the CIA rat model and identified by immunohistochemistry. The viability, apoptosis, cell cycle, migration, and invasion of RA-FLS were detected by the cell counting kit 8 (CCK-8) assay, flow cytometry, wound-healing assay, and transwell invasion assay, respectively. The levels of MAPK p38, PPARγ, CTGF, Bcl-2, Bax, caspase-3, IL-1β, MMP-3, CDK4, and cyclin D1 were determined by qRT-PCR and western blotting, respectively. RESULTS After treatment with Shentong Zhuyu Decoction medicated serum, the OD570 value, migrative and invasive abilities, and the secretion of IL-1β, MMP-3 were remarkably decreased in RA-FLS, while the apoptosis rate was increased. Further, results showed that Shentong Zhuyu Decoction inhibited the transition from the G1 phase to S phase. Additionally, Shentong Zhuyu Decoction significantly inhibited the expression of Bcl-2, CDK4, cyclin D1, MAPK p-p38, and CTGF, whereas elevated the levels of Bax, caspase-3, and PPARγ. Importantly, the effects of Shentong Zhuyu Decoction were consistent with the trends of MAPK P38 inhibitor (SB203580) and PPARγ agonist (GW1929). CONCLUSIONS Shentong Zhuyu Decoction inhibited viability, inflammatory response, migration, invasion, and transition from the G1 phase to S phase and promoted apoptosis of RA-FLS via the MAPK p38/PPARγ/CTGF pathway.
Collapse
Affiliation(s)
- Ying Han
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Wang
- Department of Chinese Medicine Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Jin
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Jia
- Department II of Respiratory, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Cuihuan Yan
- Institute of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yali Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Xu J, Pei Y, Lu J, Liang X, Li Y, Wang J, Zhang Y. LncRNA SNHG7 alleviates IL-1β-induced osteoarthritis by inhibiting miR-214-5p-mediated PPARGC1B signaling pathways. Int Immunopharmacol 2021; 90:107150. [PMID: 33296783 DOI: 10.1016/j.intimp.2020.107150] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND As a common joint disease, osteoarthritis (OA) is the main cause of limited joint mobility and disability. The role of lncRNAs in the regulation of OA is increasingly discovered. Therefore, further exploring the function of SNHG7 in OA is of great significance for understanding its occurrence and development. METHODS We used interleukin-1β (IL-1β) to treat to establish an OA model primary on chondrocytes in vitro, and gain- and loss of function assays of SNHG7 and miR-214-5p were conducted. The cell viability and apoptosis of chondrocytes were detected by CCK8 assay, BrdU assay and flow cytometry. The inflammatory cytokines (IL-1β, IL-6 and TNF-α), NLRP3 inflammasome, protein level of PPARGC1B, PPARγ, P38 and NF-κB were determined by RT-PCR and/or western blot. RESULTS The results showed that SNHG7 was distinctly downregulated, while miR-214-5p was significantly upregulated in OA patients and primary chondrocytes treated with IL-1β. In addition, SNHG7 enhanced cell viability, inhibited apoptosis and inflammation of IL-1β-mediated chondrocytes. In contrast, miR-214-5p upregulation reduced viability, promoted apoptosis and inflammation of chondrocytes. Mechanistically, SNHG7 served as a competitive endogenous RNA by sponging miR-214-5p, which targeted PPARGC1B. Besides, the results of the compensation experiment affirmed that miR-214-5p attenuates SNHG7-mediated protective effects on IL-1β-mediated chondrocytes against apoptosis and inflammation, and activating PPARγ pathway markedly dampened the cytotoxic effects of miR-214-5p. CONCLUSIONS Collectively, The above results confirmed that SNHG7 prevents IL-1β induced OA by inhibiting NLRP3 inflammasome and apoptosis through miR-214-5p/PPARGC1B axis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Case-Control Studies
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Humans
- Inflammasomes/metabolism
- Inflammation Mediators/metabolism
- Interleukin-1beta/toxicity
- Knee Joint/drug effects
- Knee Joint/metabolism
- Knee Joint/pathology
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Junkui Xu
- Foot Ankle Center, The Xi'an Honghui Hospital, Xi'an 710054, Shaanxi, China
| | - Yanjiang Pei
- Department of Urology Surgery, The Xi'an Honghui Hospital, Xi'an 710054, Shaanxi, China
| | - Jun Lu
- Foot Ankle Center, The Xi'an Honghui Hospital, Xi'an 710054, Shaanxi, China
| | - Xiaojun Liang
- Foot Ankle Center, The Xi'an Honghui Hospital, Xi'an 710054, Shaanxi, China
| | - Yi Li
- Foot Ankle Center, The Xi'an Honghui Hospital, Xi'an 710054, Shaanxi, China
| | - Junhu Wang
- Foot Ankle Center, The Xi'an Honghui Hospital, Xi'an 710054, Shaanxi, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
19
|
Brys R, Gibson K, Poljak T, Van Der Plas S, Amantini D. Discovery and development of ASK1 inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:101-179. [PMID: 32362327 DOI: 10.1016/bs.pmch.2020.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of mitogen-activated protein kinases (MAPKs) like c-Jun N-terminal kinase (JNK) and p38 is an event involved in the pathophysiology of numerous human diseases. The apoptosis signal-regulating kinase 1 (ASK1) is an upstream target that gets activated only under pathological conditions and as such is a promising target for therapeutic intervention. In the first part of this review the molecular mechanisms leading to ASK1 activation and regulation will be described as well as the evidences supporting a pathogenic role for ASK1 in human disease. In the second part, an update on drug discovery efforts towards the discovery and development of ASK1-targeting therapies will be provided.
Collapse
Affiliation(s)
| | - Karl Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House Discovery ParkSandwich, Kent, United Kingdom
| | | | | | | |
Collapse
|
20
|
Morris G, Puri BK, Maes M, Olive L, Berk M, Carvalho AF. The role of microglia in neuroprogressive disorders: mechanisms and possible neurotherapeutic effects of induced ketosis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109858. [PMID: 31923453 DOI: 10.1016/j.pnpbp.2020.109858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/23/2022]
Abstract
A comprehensive review of molecular mechanisms involved in the promotion and maintenance of distinct microglia phenotypes is provided. The acquisition and perpetuation of predominantly pro-inflammatory microglial phenotypes have been implicated in the pathophysiology of several neuroprogressive diseases and is associated with reduced ATP production via oxidative phosphorylation, increased ATP generation by glycolysis, elevated oxidative and nitrosative stress and other metabolic, inflammatory and hormonal insults. Microglia can also adopt a predominantly anti-inflammatory phenotypes with neuroprotective properties. Strategies that promote and maintain a predominantly anti-inflammatory phenotype may hold promise as novel therapeutic opportunities for neuroprogressive illness. Induced ketosis may promote a transition towards predominantly anti-inflammatory microglial states/phenotypes by several mechanisms, including inhibition of glycolysis and increased NAD+ production; engagement of microglial GPR109A receptors; histone deacetylase inhibition; and elevated n-3 polyunsaturated fatty acids levels. Since microglia activation can now be assessed in vivo, these data provide a clear rationale for the design of transdiagnostic randomized controlled trials of the ketogenic diet and other ketosis-inducing strategies for neuroprogressive diseases, which may also provide mechanistic insights through the assessment of "target engagement".
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | | | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Lisa Olive
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
21
|
Piers TM, Cosker K, Mallach A, Johnson GT, Guerreiro R, Hardy J, Pocock JM. A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC-derived microglia. FASEB J 2019; 34:2436-2450. [PMID: 31907987 PMCID: PMC7027848 DOI: 10.1096/fj.201902447r] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
Abstract
Loss‐of‐function genetic variants of triggering receptor expressed on myeloid cells 2 (TREM2) are linked with an enhanced risk of developing dementias. Microglia, the resident immune cell of the brain, express TREM2, and microglial responses are implicated in dementia pathways. In a normal surveillance state, microglia use oxidative phosphorylation for their energy supply, but rely on the ability to undergo a metabolic switch to glycolysis to allow them to perform rapid plastic responses. We investigated the role of TREM2 on the microglial metabolic function in human patient iPSC‐derived microglia expressing loss of function variants in TREM2. We show that these TREM2 variant iPSC‐microglia, including the Alzheimer's disease R47H risk variant, exhibit significant metabolic deficits including a reduced mitochondrial respiratory capacity and an inability to perform a glycolytic immunometabolic switch. We determined that dysregulated PPARγ/p38MAPK signaling underlies the observed phenotypic deficits in TREM2 variants and that activation of these pathways can ameliorate the metabolic deficit in these cells and consequently rescue critical microglial cellular function such as β‐Amyloid phagocytosis. These findings have ramifications for microglial focussed‐treatments in AD.
Collapse
Affiliation(s)
- Thomas M Piers
- Department of Neuroinflammation, University College London Queen Square Institute of Neurology, London, UK
| | - Katharina Cosker
- Department of Neuroinflammation, University College London Queen Square Institute of Neurology, London, UK
| | - Anna Mallach
- Department of Neuroinflammation, University College London Queen Square Institute of Neurology, London, UK
| | - Gabriel Thomas Johnson
- Department of Neuroinflammation, University College London Queen Square Institute of Neurology, London, UK
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - John Hardy
- Department of Neurodegenerative Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
22
|
Platycodigenin as Potential Drug Candidate for Alzheimer's Disease via Modulating Microglial Polarization and Neurite Regeneration. Molecules 2019; 24:molecules24183207. [PMID: 31487775 PMCID: PMC6767002 DOI: 10.3390/molecules24183207] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammatory microenvironment, regulating neurite regrowth and neuronal survival, plays a critical role in Alzheimer’s disease (AD). During neuroinflammation, microglia are activated, inducing the release of inflammatory or anti-inflammatory factors depending on their polarization into classical M1 microglia or alternative M2 phenotype. Therefore, optimizing brain microenvironment by small molecule-targeted microglia polarization and promoting neurite regeneration might be a potential therapeutic strategy for AD. In this study, we found platycodigenin, a naturally occurring triterpenoid, promoted M2 polarization and inhibited M1 polarization in lipopolysaccharide (LPS)-stimulated BV2 and primary microglia. Platycodigenin downregulated pro-inflammatory molecules such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 and nitric oxide (NO), while upregulated anti-inflammatory cytokine IL-10. Further investigation confirmed that platycodigenin inhibited cyclooxygenase-2 (Cox2) positive M1 but increased Ym1/2 positive M2 microglial polarization in primary microglia. In addition, platycodigenin significantly decreased LPS-induced the hyperphosphorylation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65 subunits. Furthermore, the inactivation of peroxisome proliferators-activated receptor γ (PPARγ) induced by LPS was completely ameliorated by platycodigenin. Platycodigenin also promoted neurite regeneration and neuronal survival after Aβ treatment in primary cortical neurons. Taken together, our study for the first time clarified that platycodigenin effectively ameliorated LPS-induced inflammation and Aβ-induced neurite atrophy and neuronal death.
Collapse
|
23
|
Microglia as possible therapeutic targets for autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:223-245. [PMID: 31601405 DOI: 10.1016/bs.pmbts.2019.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malfunctions of the nervous and immune systems are now recognized to be fundamental causes of autism spectrum disorders (ASDs). Studies have suggested that the brain's resident immune cells, microglia are possible key players in ASDs. Specifically, deficits in synaptic pruning by microglia may underlie the pathogenesis of ASDs, in which excess synapses are occasionally reported. This idea has driven researchers to investigate causal links between microglial dysfunction and ASDs. In this review, we first introduce the characteristics of microglia in ASD brains and discuss their possible roles in the pathogenesis of ASDs. We also refer to immunomodulatory agents that could be potentially used as symptomatic therapies for ASDs in light of their ability to modify microglial functions. Finally, we will mention a possible strategy to radically cure some of the symptoms reported in ASDs through reorganizing neural circuits via microglia-dependent synaptic pruning.
Collapse
|
24
|
Zhou D, Zhang S, Hu L, Gu YF, Cai Y, Wu D, Liu WT, Jiang CY, Kong X, Zhang GQ. Inhibition of apoptosis signal-regulating kinase by paeoniflorin attenuates neuroinflammation and ameliorates neuropathic pain. J Neuroinflammation 2019; 16:83. [PMID: 30975172 PMCID: PMC6458750 DOI: 10.1186/s12974-019-1476-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuropathic pain is a serious clinical problem that needs to be solved urgently. ASK1 is an upstream protein of p38 and JNK which plays important roles in neuroinflammation during the induction and maintenance of chronic pain. Therefore, inhibition of ASK1 may be a novel therapeutic approach for neuropathic pain. Here, we aim to investigate the effects of paeoniflorin on ASK1 and neuropathic pain. METHODS The mechanical and thermal thresholds of rats were measured using the Von Frey test. Cell signaling was assayed using western blotting and immunohistochemistry. RESULTS Chronic constrictive injury (CCI) surgery successfully decreased the mechanical and thermal thresholds of rats and decreased the phosphorylation of ASK1 in the rat spinal cord. ASK1 inhibitor NQDI1 attenuated neuropathic pain and decreased the expression of p-p38 and p-JNK. Paeoniflorin mimicked ASK1 inhibitor NQDI1 and inhibited ASK1 phosphorylation. Paeoniflorin decreased the expression of p-p38 and p-JNK, delayed the progress of neuropathic pain, and attenuated neuropathic pain. Paeoniflorin reduced the response of astrocytes and microglia to injury, decreased the expression of IL-1β and TNF-α, and downregulated the expression of CGRP induced by CCI. CONCLUSIONS Paeoniflorin is an effective drug for the treatment of neuropathic pain in rats via inhibiting the phosphorylation of ASK1, suggesting it may be effective in patients with neuropathic pain.
Collapse
Affiliation(s)
- Danli Zhou
- Department of Clinical Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Siqi Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yu-Feng Gu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yimei Cai
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wen-Tao Liu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chun-Yi Jiang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China. .,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guang-Qin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Vezza T, Algieri F, Garrido-Mesa J, Utrilla MP, Rodríguez-Cabezas ME, Baños A, Guillamón E, García F, Rodríguez-Nogales A, Gálvez J. The Immunomodulatory Properties of Propyl-Propane Thiosulfonate Contribute to its Intestinal Anti-Inflammatory Effect in Experimental Colitis. Mol Nutr Food Res 2019; 63:e1800653. [PMID: 30516875 DOI: 10.1002/mnfr.201800653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/13/2018] [Indexed: 12/16/2022]
Abstract
SCOPE Propyl-propane thiosulfonate (PTSO) is a component isolated from garlic (Allium sativum) with antioxidant, anti-inflammatory, immunomodulatory, and antimicrobial properties. In consequence, PTSO can be a potential candidate for the treatment of inflammatory bowel diseases. METHODS AND RESULTS The anti-inflammatory effects of PTSO are studied in two mice models of colitis: 2,4-dinitrobenzene sulfonic acid (DNBS) (PTSO doses: 0.01-10 mg kg-1 ) and dextran sodium sulfate (DSS) (PTSO doses: 0.01-0.1 mg kg-1 ). The immunomodulatory effects of PTSO (0.1-25 µm) are also shown in vitro in Caco-2 and THP-1 cells, reducing the production of pro-inflammatory mediators and downregulating mitogen-activated protein kinases (MAPKs) signaling pathways. This compound displays beneficial effects in both models of mouse colitis by reducing the expression of different pro-inflammatory mediators and improving the intestinal epithelial barrier integrity. Moreover, PTSO ameliorates the altered gut microbiota composition observed in DSS colitic mice. CONCLUSION PTSO exerts intestinal anti-inflammatory activity in experimental colitis in mice. This anti-inflammatory activity can be associated with the immunomodulatory properties of PTSO through the regulation of the activity of cells involved in the inflammatory response. Furthermore, PTSO is able to restore the intestinal epithelial barrier function and to ameliorate the intestinal microbiota homeostasis, thus supporting its future development in human IBD.
Collapse
Affiliation(s)
- Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - María Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - María Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | | | | | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.,Clinical Microbiology Service, Red de Investigación en SIDA, Hospital Universitario San Cecilio, 18016, Granada, Spain
| | - Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
26
|
Fumagalli M, Lombardi M, Gressens P, Verderio C. How to reprogram microglia toward beneficial functions. Glia 2018; 66:2531-2549. [PMID: 30195261 PMCID: PMC6585737 DOI: 10.1002/glia.23484] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Microglia, brain cells of nonneural origin, orchestrate the inflammatory response to diverse insults, including hypoxia/ischemia or maternal/fetal infection in the perinatal brain. Experimental studies have demonstrated the capacity of microglia to recognize pathogens or damaged cells activating a cytotoxic response that can exacerbate brain damage. However, microglia display an enormous plasticity in their responses to injury and may also promote resolution stages of inflammation and tissue regeneration. Despite the critical role of microglia in brain pathologies, the cellular mechanisms that govern the diverse phenotypes of microglia are just beginning to be defined. Here we review emerging strategies to drive microglia toward beneficial functions, selectively reporting the studies which provide insights into molecular mechanisms underlying the phenotypic switch. A variety of approaches have been proposed which rely on microglia treatment with pharmacological agents, cytokines, lipid messengers, or microRNAs, as well on nutritional approaches or therapies with immunomodulatory cells. Analysis of the molecular mechanisms relevant for microglia reprogramming toward pro‐regenerative functions points to a central role of energy metabolism in shaping microglial functions. Manipulation of metabolic pathways may thus provide new therapeutic opportunities to prevent the deleterious effects of inflammatory microglia and to control excessive inflammation in brain disorders.
Collapse
Affiliation(s)
- Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9 -20133, Milan, Italy
| | | | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France.,Centre for the Developing Brain, Department of Perinatal Health and Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Claudia Verderio
- IRCCS Humanitas, via Manzoni 56, 20089, Rozzano, Italy.,CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
27
|
Ibudilast produces anti-allodynic effects at the persistent phase of peripheral or central neuropathic pain in rats: Different inhibitory mechanism on spinal microglia from minocycline and propentofylline. Eur J Pharmacol 2018; 833:263-274. [DOI: 10.1016/j.ejphar.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
|
28
|
Lecca D, Janda E, Mulas G, Diana A, Martino C, Angius F, Spolitu S, Casu MA, Simbula G, Boi L, Batetta B, Spiga S, Carta AR. Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARγ agonist MDG548 in Parkinson's disease models. Br J Pharmacol 2018; 175:3298-3314. [PMID: 29570770 DOI: 10.1111/bph.14214] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Microglial phenotype and phagocytic activity are deregulated in Parkinson's disease (PD). PPARγ agonists are neuroprotective in experimental PD, but their role in regulating microglial phenotype and phagocytosis has been poorly investigated. We addressed it by using the PPARγ agonist MDG548. EXPERIMENTAL APPROACH Murine microglial cell line MMGT12 was stimulated with LPS and/or MDG548, and their effect on phagocytosis of fluorescent microspheres or necrotic neurons was investigated by flow cytometry. Cytokines and markers of microglia phenotype, such as mannose receptor C type 1; MRC1), Ym1 and CD68 were measured by elisa and fluorescent immunohistochemistry. Levels of Beclin-1, which plays a role in microglial phagocytosis, were measured by Western blotting. In the in vivo MPTP-probenecid (MPTPp) model of PD in mice, MDG548 was tested on motor impairment, nigral neurodegeneration, microglial activation and phenotype. KEY RESULTS In LPS-stimulated microglia, MDG548 increased phagocytosis of both latex beads and necrotic cells, up-regulated the expression of MRC1, CD68 and to a lesser extent IL-10, while blocking the LPS-induced increase of TNF-α and iNOS. MDG548 also induced Beclin-1. Chronic MPTPp treatment in mice down-regulated MRC1 and TGF-β and up-regulated TNF-α and IL-1β immunoreactivity in activated CD11b-positive microglia, causing the death of nigral dopaminergic neurons. MDG548 arrested MPTPp-induced cell death, enhanced MRC1 and restored cytokine levels. CONCLUSIONS AND IMPLICATIONS This study adds a novel mechanism for PPARγ-mediated neuroprotection in PD and suggests that increasing phagocytic activity and anti-inflammatory markers may represent an effective disease-modifying approach.
Collapse
Affiliation(s)
- Daniela Lecca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Concetta Martino
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Fabrizio Angius
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Spolitu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Gabriella Simbula
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Batetta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
29
|
Localization of cannabinoid receptors CB1, CB2, GPR55, and PPARα in the canine gastrointestinal tract. Histochem Cell Biol 2018; 150:187-205. [DOI: 10.1007/s00418-018-1684-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/26/2022]
|
30
|
Liu X, Li A, Ju Y, Liu W, Shi H, Hu R, Zhou Z, Sun X. β4GalT1 Mediates PPARγ N-Glycosylation to Attenuate Microglia Inflammatory Activation. Inflammation 2018; 41:1424-1436. [DOI: 10.1007/s10753-018-0789-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Coburn JL, Cole TB, Dao KT, Costa LG. Acute exposure to diesel exhaust impairs adult neurogenesis in mice: prominence in males and protective effect of pioglitazone. Arch Toxicol 2018. [PMID: 29523932 DOI: 10.1007/s00204-018-2180-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adult neurogenesis is the process by which neural stem cells give rise to new functional neurons in specific regions of the adult brain, a process that occurs throughout life. Significantly, neurodegenerative and psychiatric disorders present suppressed neurogenesis, activated microglia, and neuroinflammation. Traffic-related air pollution has been shown to adversely affect the central nervous system. As the cardinal effects of air pollution exposure are microglial activation, and ensuing oxidative stress and neuroinflammation, we investigated whether acute exposures to diesel exhaust (DE) would inhibit adult neurogenesis in mice. Mice were exposed for 6 h to DE at a PM2.5 concentration of 250-300 μg/m3, followed by assessment of adult neurogenesis in the hippocampal subgranular zone (SGZ), the subventricular zone (SVZ), and olfactory bulb (OB). DE impaired cellular proliferation in the SGZ and SVZ in males, but not females. DE reduced adult neurogenesis, with male mice showing fewer new neurons in the SGZ, SVZ, and OB, and females showing fewer new neurons only in the OB. To assess whether blocking microglial activation protected against DE-induced suppression of adult hippocampal neurogenesis, male mice were pre-treated with pioglitazone (PGZ) prior to DE exposure. The effects of DE exposure on microglia, as well as neuroinflammation and oxidative stress, were reduced by PGZ. PGZ also antagonized DE-induced suppression of neurogenesis in the SGZ. These results suggest that DE exposure impairs adult neurogenesis in a sex-dependent manner, by a mechanism likely to involve microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Jacki L Coburn
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA.
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.
| | - Khoi T Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA.
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
32
|
Peña-Altamira E, Petralla S, Massenzio F, Virgili M, Bolognesi ML, Monti B. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging and Alzheimer's Disease. Front Aging Neurosci 2017. [PMID: 28638339 PMCID: PMC5461295 DOI: 10.3389/fnagi.2017.00175] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of microglia, the immune cells of the brain, has experienced a renaissance after the discovery of microglia polarization. In fact, the concept that activated microglia can shift into the M1 pro-inflammatory or M2 neuroprotective phenotypes, depending on brain microenvironment, has completely changed the understanding of microglia in brain aging and neurodegenerative diseases. Microglia polarization is particularly important in aging since an increased inflammatory status of body compartments, including the brain, has been reported in elderly people. In addition, inflammatory markers, mainly derived from activated microglia, are widely present in neurodegenerative diseases. Microglial inflammatory dysfunction, also linked to microglial senescence, has been extensively demonstrated and associated with cognitive impairment in neuropathological conditions related to aging. In fact, microglia polarization is known to influence cognitive function and has therefore become a main player in neurodegenerative diseases leading to dementia. As the life span of human beings increases, so does the prevalence of cognitive dysfunction. Thus, therapeutic strategies aimed to modify microglia polarization are currently being developed. Pharmacological approaches able to shift microglia from M1 pro-inflammatory to M2 neuroprotective phenotype are actually being studied, by acting on many different molecular targets, such as glycogen synthase kinase-3 (GSK3) β, AMP-activated protein kinase (AMPK), histone deacetylases (HDACs), etc. Furthermore, nutritional approaches can also modify microglia polarization and, consequently, impact cognitive function. Several bioactive compounds normally present in foods, such as polyphenols, can have anti-inflammatory effects on microglia. Both pharmacological and nutritional approaches seem to be promising, but still need further development. Here we review recent data on these approaches and propose that their combination could have a synergistic effect to counteract cognitive aging impairment and Alzheimer's disease (AD) through immunomodulation of microglia polarization, i.e., by driving the shift of activated microglia from the pro-inflammatory M1 to the neuroprotective M2 phenotype.
Collapse
Affiliation(s)
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
33
|
Hyperexcitability in Spinal WDR Neurons following Experimental Disc Herniation Is Associated with Upregulation of Fractalkine and Its Receptor in Nucleus Pulposus and the Dorsal Root Ganglion. Int J Inflam 2016; 2016:6519408. [PMID: 28116212 PMCID: PMC5220471 DOI: 10.1155/2016/6519408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction. Lumbar radicular pain following intervertebral disc herniation may be associated with a local inflammatory response induced by nucleus pulposus (NP) cells. Methods. In anaesthetized Lewis rats, extracellular single unit recordings of wide dynamic range (WDR) neurons in the dorsal horn and qPCR were used to explore the effect of NP application onto the dorsal nerve roots (L3-L5). Results. A clear increase in C-fiber response was observed following NP conditioning. In the NP tissue, the expression of interleukin-1β (IL-1β), colony stimulating factor 1 (Csf1), fractalkine (CX3CL1), and the fractalkine receptor CX3CR1 was increased. Minocycline, an inhibitor of microglial activation, inhibited the increase in neuronal activity and attenuated the increase in IL-1β, Csf1, CX3L1, and CX3CR1 expression in NP tissue. In addition, the results demonstrated an increase in the expression of TNF, CX3CL1, and CX3CR1 in the dorsal root ganglions (DRGs). Conclusion. Hyperexcitability in the pain pathways and the local inflammation after disc herniation may involve upregulation of CX3CL1 signaling in both the NP and the DRG.
Collapse
|
34
|
PPARγ regulates inflammatory reaction by inhibiting the MAPK/NF-κB pathway in C2C12 skeletal muscle cells. J Physiol Biochem 2016; 73:49-57. [DOI: 10.1007/s13105-016-0523-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/21/2016] [Indexed: 11/26/2022]
|
35
|
Roqué PJ, Dao K, Costa LG. Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. Neurotoxicology 2016; 56:204-214. [PMID: 27543421 DOI: 10.1016/j.neuro.2016.08.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
In addition to the well-established effects of air pollution on the cardiovascular and respiratory systems, emerging evidence has implicated it in inducing negative effects on the central nervous system. Diesel exhaust particulate matter (DEP), a major component of air pollution, is a complex mixture of numerous toxicants. Limited studies have shown that DEP-induced dopaminergic neuron dysfunction is mediated by microglia, the resident immune cells of the brain. Here we show that mouse microglia similarly mediate primary cerebellar granule neuron (CGN) death in vitro. While DEP (0, 25, 50, 100μg/2cm2) had no effect on CGN viability after 24h of treatment, in the presence of primary cortical microglia neuronal cell death increased by 2-3-fold after co-treatment with DEP, suggesting that microglia are important contributors to DEP-induced CGN neurotoxicity. DEP (50μg/2cm2) treatment of primary microglia for 24h resulted in morphological changes indicative of microglia activation, suggesting that DEP may induce the release of cytotoxic factors. Microglia-conditioned medium after 24h treatment with DEP, was also toxic to CGNs. DEP caused a significant increase in reactive oxygen species in microglia, however, antioxidants failed to protect neurons from DEP/microglia-induced toxicity. DEP increased mRNA levels of the pro-inflammatory cytokines IL-6 and IL1-β, and the release of IL-6. The antibiotic minocycline (50μM) and the peroxisome proliferator-activated receptor-γ agonist pioglitazone (50μM) attenuated DEP-induced CGN death in the co-culture system. Microglia and CGNs from male mice appeared to be somewhat more susceptible to DEP neurotoxicity than cells from female mice possibly because of lower paraoxonase-2 expression. Together, these results suggest that microglia-induced neuroinflammation may play a critical role in modulating the effect of DEP on neuronal viability. .
Collapse
Affiliation(s)
- Pamela J Roqué
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Italy.
| |
Collapse
|
36
|
Pioglitazone Protected against Cardiac Hypertrophy via Inhibiting AKT/GSK3β and MAPK Signaling Pathways. PPAR Res 2016; 2016:9174190. [PMID: 27110236 PMCID: PMC4826695 DOI: 10.1155/2016/9174190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator activated receptor γ (PPARγ) has been closely involved in the process of cardiovascular diseases. This study was to investigate whether pioglitazone (PIO), a PPARγ agonist, could protect against pressure overload-induced cardiac hypertrophy. Mice were orally given PIO (2.5 mg/kg) from 1 week after aortic banding and continuing for 7 weeks. The morphological examination and biochemical analysis were used to evaluate the effects of PIO. Neonatal rat ventricular cardiomyocytes were also used to verify the protection of PIO against hypertrophy in vitro. The results in our study demonstrated that PIO remarkably inhibited hypertrophic response induced by aortic banding in vivo. Besides, PIO also suppressed cardiac fibrosis in vivo. PIO treatment also inhibited the activation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinase (MAPK) in the heart. In addition, PIO alleviated angiotensin II-induced hypertrophic response in vitro. In conclusion, PIO could inhibit cardiac hypertrophy via attenuation of AKT/GSK3β and MAPK pathways.
Collapse
|
37
|
Wang P, Yu X, Guan PP, Guo JW, Wang Y, Zhang Y, Zhao H, Wang ZY. Magnesium ion influx reduces neuroinflammation in Aβ precursor protein/Presenilin 1 transgenic mice by suppressing the expression of interleukin-1β. Cell Mol Immunol 2015; 14:451-464. [PMID: 26549801 DOI: 10.1038/cmi.2015.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) has been associated with magnesium ion (Mg2+) deficits and interleukin-1β (IL-1β) elevations in the serum or brains of AD patients. However, the mechanisms regulating IL-1β expression during Mg2+ dyshomeostasis in AD remain unknown. We herein studied the mechanism of IL-1β reduction using a recently developed compound, magnesium-L-threonate (MgT). Using human glioblastoma A172 and mouse brain D1A glial cells as an in vitro model system, we delineated the signaling pathways by which MgT suppressed the expression of IL-1β in glial cells. In detail, we found that MgT incubation stimulated the activity of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways by phosphorylation, which resulted in IL-1β suppression. Simultaneous inhibition of the phosphorylation of ERK1/2 and PPARγ induced IL-1β upregulation in MgT-stimulated glial cells. In accordance with our in vitro data, the intracerebroventricular (i.c.v) injection of MgT into the ventricles of APP/PS1 transgenic mice and treatment of Aβ precursor protein (APP)/PS1 brain slices suppressed the mRNA and protein expression of IL-1β. These in vivo observations were further supported by the oral administration of MgT for 5 months. Importantly, Mg2+ influx into the ventricles of the mice blocked the effects of IL-1β or amyloid β-protein oligomers in the cerebrospinal fluid. This reduced the stimulation of IL-1β expression in the cerebral cortex of APP/PS1 transgenic mice, which potentially contributed to the inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Jing-Wen Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Yan Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Hang Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
38
|
Protective effect of pioglitazone on morphine-induced neuroinflammation in the rat lumbar spinal cord. J Biomed Sci 2015; 22:82. [PMID: 26394827 PMCID: PMC4580127 DOI: 10.1186/s12929-015-0187-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Background Morphine-induced tolerance is associated with the spinal neuroinflammation. The aim of this study was to explore the effects of oral administration of the pioglitazone, the peroxisome proliferator activated receptor gamma (PPAR-γ) agonist, on the morphine-induced neuroinflammation in the lumbar region of the male Wistar rat spinal cord. Results Co-administration of the pioglitazone with morphine not only attenuated morphine-induced tolerance, but also prevented the up-regulation of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1beta, and interleukin 6) and nuclear factor-kappa B activity. Administration of the GW-9662 antagonized the above mentioned effects of the pioglitazone. Conclusions It is concluded that oral administration of the pioglitazone attenuates morphine-induced tolerance and the neuroinflammation in the lumbar region of the rat spinal cord. This action of the pioglitazone may be, at least in part, due to an interaction with the spinal pro-inflammatory cytokine expression and the nuclear factor-kappa B activity.
Collapse
|
39
|
Kole L, Sarkar M, Deb A, Giri B. Pioglitazone, an anti-diabetic drug requires sustained MAPK activation for its anti-tumor activity in MCF7 breast cancer cells, independent of PPAR-γ pathway. Pharmacol Rep 2015; 68:144-54. [PMID: 26721366 DOI: 10.1016/j.pharep.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND The thiazolidinedione (TZD) class of peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands are known for their ability to induce adipocyte differentiation, to increase insulin sensitivity including anticancer properties. But, whether or not upstream events like MAPK activation or PPAR-γ signaling are involved or associated with this anticancer activity is not well understood in breast cancer cells. The role of MAPK and PPAR pathways during the pioglitazone (Pio) induced PPAR-γ independent anticancer activity in MCF7 cells has been focused here. METHODS The anticancer activity of Pio has been investigated in breast cancer cells in vitro. Anti-tumor effects were assessed by alamar blue assay, Western blot analysis, cell cycle analysis, and annexin V-FITC/PI binding assay by flow cytometry, Hoechst staining and luciferase assay. RESULTS The anticancer activity of Pio is found to be correlating with the up regulation of CDKIs (p21/p27) and down regulation of CDK-4. This study demonstrates that the induction of CDKIs by Pio is due to the sustained activation of MAPK. The Pio-mediated activation of MAPK is transmitted to activate ELK-1 and the related anti-proliferation is blocked by MEK inhibitor (PD-184352). CONCLUSIONS Pio suppresses the proliferation of MCF7 cells, at least partly by a PPAR-γ-independent mechanism involving the induction of p21 which in turn requires sustained activation of MAPK. These findings implicate the utility of Pio in the treatment of PPAR positive or negative human cancers and the development of a new class of compounds to enhance the effectiveness of Pio.
Collapse
Affiliation(s)
- Labanyamoy Kole
- Discovery Research SBU, Dr. Reddy's Laboratories Ltd., Hyderabad, India
| | - Mrinmoy Sarkar
- Experimental Medicine & Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Kolkata, India
| | - Anwesha Deb
- Experimental Medicine & Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Kolkata, India
| | - Biplab Giri
- Experimental Medicine & Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Kolkata, India.
| |
Collapse
|
40
|
Rizvi SMD, Shaikh S, Waseem SMA, Shakil S, Abuzenadah AM, Biswas D, Tabrez S, Ashraf GM, Kamal MA. Role of anti-diabetic drugs as therapeutic agents in Alzheimer's disease. EXCLI JOURNAL 2015; 14:684-96. [PMID: 27152105 PMCID: PMC4849108 DOI: 10.17179/excli2015-252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022]
Abstract
Recent data have suggested a strong possible link between Type 2 Diabetes Mellitus and Alzheimer's disease (AD), although exact mechanisms linking the two are still a matter of research and debate. Interestingly, both are diseases with high incidence and prevalence in later years of life. The link appears so strong that some scientists use Alzheimer's and Type 3 Diabetes interchangeably. In depth study of recent data suggests that the anti diabetic drugs not only have possible role in treatment of Alzheimer's but may also arrest the declining cognitive functions associated with it. The present review gives an insight into the possible links, existing therapeutics and clinical trials of anti diabetic drugs in patients suffering from AD primarily or as co-morbidity. It may be concluded that the possible beneficial effects and usefulness of the current anti diabetic drugs in AD cannot be neglected and further research is required to achieve positive results. Currently, several drug trials are in progress to give conclusive evidence based data.
Collapse
Affiliation(s)
| | | | - Shah Mohammad Abbas Waseem
- Department of Physiology, Integral Institute of Medical Sciences & Research, Integral University, Lucknow, India
| | - Shazi Shakil
- Center of Innovation in Personalized Medicine, Faculty of Applied Medical Sciences,King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M. Abuzenadah
- Center of Innovation in Personalized Medicine, Faculty of Applied Medical Sciences,King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoic, 7 Peterlee Pl, Hebersham, NSW 2770, Australia
| |
Collapse
|
41
|
Lecca D, Nevin DK, Mulas G, Casu MA, Diana A, Rossi D, Sacchetti G, Fayne D, Carta AR. Neuroprotective and anti-inflammatory properties of a novel non-thiazolidinedione PPARγ agonist in vitro and in MPTP-treated mice. Neuroscience 2015; 302:23-35. [PMID: 25907448 DOI: 10.1016/j.neuroscience.2015.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/12/2015] [Accepted: 04/11/2015] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)γ is a potential pharmacological target for disease-modification in Parkinson's disease (PD), mainly acting by modulating the neuroinflammatory response. However, currently available agonists thiazolidinediones (TZDs) present limitations due to safety concerns. We evaluated a novel thiobarbituric-like compound MDG548, which acts as a functional PPARγ agonist displaying higher and selective binding affinity as compared to TZDs. Neuroprotection by MDG548 was tested in vitro and in a mouse MPTP model of PD, and neuroinflammation was investigated as a putative underlying mechanism. Viability assay on rat cortical neurons showed lack of cytotoxic effect in the dose-range of 100 nM-10 μM, which was therefore used for testing in vitro protection against H2O2 and MPP+ neurotoxicity. MDG548 dose-dependently increased cell viability of rat cortical neurons co-treated with H2O2 or pre-exposed to MDG548 prior to H2O2. Moreover, MDG548 induced neuroprotection in MPP+-treated PC12 cells. NF-kB activation was investigated to assess anti-inflammatory activity. MDG548 dose-dependently decreased NF-kB activation induced by LPS (100 ng/100ml) in HEK-Blue-hTLR4 cells. Given the supposed cancer risk of other PPARγ agonists, Ames test for genotoxicity was performed in Salmonella typhimurium TA100 and TA98 strains, showing that MDG548 was not genotoxic. In vivo, BL/6J mice were treated with MPTP (20mg/kg i.p. once/day for 4 days) in association with saline or MDG548 (2, 5, 10 mg/kg i.p.). Stereological counting showed that MDG548 prevented the MPTP-induced reduction in TH-positive cells in the substantia nigra compacta (SNc) at all doses tested. Moreover, MDG548 reduced reactive microglia and iNOS induction in the SNc. MDG548, being a non-TZD compound with high PPARγ affinity, void of genotoxicity, and with in vitro as well as in vivo neuroprotective properties, provides a promising alternative in the search for safer PPARγ agonists to be tested as potential disease-modifying drugs in PD.
Collapse
Affiliation(s)
- D Lecca
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D K Nevin
- School of Biochemistry & Immunology, Trinity College, Dublin, Ireland
| | - G Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M A Casu
- CNR-Institute of Translational Pharmacology, U.O.S. of Cagliari, Italy
| | - A Diana
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D Rossi
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | - G Sacchetti
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | | | - A R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
42
|
Ghavimi H, Hassanzadeh K, Maleki-Dizaji N, Azarfardian A, Ghasami S, Zolali E, Charkhpour M. Pioglitazone prevents morphine antinociception tolerance and withdrawal symptoms in rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:811-21. [DOI: 10.1007/s00210-014-0996-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/20/2014] [Indexed: 12/22/2022]
|
43
|
Li X, Wu L, Liu W, Jin Y, Chen Q, Wang L, Fan X, Li Z, Cheng Y. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PLoS One 2014; 9:e95004. [PMID: 24817581 PMCID: PMC4015902 DOI: 10.1371/journal.pone.0095004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Chinese medicine is a complex system guided by traditional Chinese medicine (TCM) theories, which has proven to be especially effective in treating chronic and complex diseases. However, the underlying modes of action (MOA) are not always systematically investigated. Herein, a systematic study was designed to elucidate the multi-compound, multi-target and multi-pathway MOA of a Chinese medicine, QiShenYiQi (QSYQ), on myocardial infarction. QSYQ is composed of Astragalus membranaceus (Huangqi), Salvia miltiorrhiza (Danshen), Panax notoginseng (Sanqi), and Dalbergia odorifera (Jiangxiang). Male Sprague Dawley rat model of myocardial infarction were administered QSYQ intragastrically for 7 days while the control group was not treated. The differentially expressed genes (DEGs) were identified from myocardial infarction rat model treated with QSYQ, followed by constructing a cardiovascular disease (CVD)-related multilevel compound-target-pathway network connecting main compounds to those DEGs supported by literature evidences and the pathways that are functionally enriched in ArrayTrack. 55 potential targets of QSYQ were identified, of which 14 were confirmed in CVD-related literatures with experimental supporting evidences. Furthermore, three sesquiterpene components of QSYQ, Trans-nerolidol, (3S,6S,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol and (3S,6R,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol from Dalbergia odorifera T. Chen, were validated experimentally in this study. Their anti-inflammatory effects and potential targets including extracellular signal-regulated kinase-1/2, peroxisome proliferator-activated receptor-gamma and heme oxygenase-1 were identified. Finally, through a three-level compound-target-pathway network with experimental analysis, our study depicts a complex MOA of QSYQ on myocardial infarction.
Collapse
Affiliation(s)
- Xiang Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Leihong Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yecheng Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linli Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheng Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Rosiglitazone regulates anti-inflammation and growth inhibition via PTEN. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787924. [PMID: 24757676 PMCID: PMC3971553 DOI: 10.1155/2014/787924] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/18/2014] [Accepted: 02/01/2014] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) agonist has anti-inflammatory and anticancer properties. However, the mechanisms by which PPARγ agonist rosiglitazone interferes with inflammation and cancer via phosphatase and tensin homolog-(PTEN)-dependent pathway remain unclear. We found that lower doses (<25 μ M) of rosiglitazone significantly inhibited lipopolysaccharide-(LPS)-induced nitric oxide (NO) release (via inducible nitric oxide synthase, iNOS), prostaglandin E2 (PGE2) production (via cyclooxygenase-2, COX-2), and activation of Akt in RAW 264.7 murine macrophages. However, rosiglitazone did not inhibit the production of reactive oxygen species (ROS). In PTEN knockdown (shPTEN) cells exposed to LPS, rosiglitazone did not inhibit NO release, PGE2 production, and activation of Akt. These cells had elevated basal levels of iNOS, COX-2, and ROS. However, higher doses (25-100 μ M) of rosiglitazone, without LPS stimulation, did not block NO release and PGE2 productions, but they inhibited p38 MAPK phosphorylation and blocked ROS generation in shPTEN cells. In addition, rosiglitazone caused G1 arrest and reduced the number of cells in S + G2/M phase, leading to growth inhibition. These results indicate that the anti-inflammatory property of rosiglitazone is related to regulation of PTEN independent of inhibition on ROS production. However, rosiglitazone affected the dependence of PTEN-deficient cell growth on ROS.
Collapse
|
45
|
Duelsner A, Gatzke N, Hillmeister P, Glaser J, Zietzer A, Nagorka S, Janke D, Pfitzner J, Stawowy P, Meyborg H, Urban D, Bondke Persson A, Buschmann IR. PPARγ activation inhibits cerebral arteriogenesis in the hypoperfused rat brain. Acta Physiol (Oxf) 2014; 210:354-68. [PMID: 24119262 DOI: 10.1111/apha.12179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022]
Abstract
AIMS PPARγ stimulation improves cardiovascular (CV) risk factors, but without improving overall clinical outcomes. PPARγ agonists interfere with endothelial cell (EC), monocyte and smooth muscle cell (SMC) activation, function and proliferation, physiological processes critical for arterial collateral growth (arteriogenesis). We therefore assessed the effect of PPARγ stimulation on cerebral adaptive and therapeutic collateral growth. METHODS In a rat model of adaptive cerebral arteriogenesis (3-VO), collateral growth and function were assessed (i) in controls, (ii) after PPARγ stimulation (pioglitazone 2.8 mg kg(-1); 10 mg kg(-1) compared with metformin 62.2 mg kg(-1) or sitagliptin 6.34 mg kg(-1)) for 21 days or (iii) after adding pioglitazone to G-CSF (40 μg kg(-1) every other day) to induce therapeutic arteriogenesis for 1 week. Pioglitazone effects on endothelial and SMC morphology and proliferation, monocyte activation and migration were studied. RESULTS PPARγ stimulation decreased cerebrovascular collateral growth and recovery of hemodynamic reserve capacity (CVRC controls: 12 ± 7%; pio low: -2 ± 9%; pio high: 1 ± 7%; metformin: 9 ± 13%; sitagliptin: 11 ± 12%), counteracted G-CSF-induced therapeutic arteriogenesis and interfered with EC activation, SMC proliferation, monocyte activation and migration. CONCLUSION Pharmacologic PPARγ stimulation inhibits pro-arteriogenic EC activation, monocyte function, SMC proliferation and thus adaptive as well as G-CSF-induced cerebral arteriogenesis. Further studies should evaluate whether this effect may underlie the CV risk associated with thiazolidinedione use in patients.
Collapse
Affiliation(s)
- A. Duelsner
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - N. Gatzke
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - P. Hillmeister
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - J. Glaser
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - A. Zietzer
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - S. Nagorka
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - D. Janke
- Julius Wolff Institute and Berlin-Brandenburg Center for Regenerative Therapies (CVK); Charité-Universitaetsmedizin Berlin; Berlin Germany
- Institute for Chemistry and Biochemistry; FU Berlin; Berlin Germany
| | - J. Pfitzner
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - P. Stawowy
- Department of Internal Medicine/Cardiology; German Heart Institute Berlin (DHZB); Berlin Germany
| | - H. Meyborg
- Department of Internal Medicine/Cardiology; German Heart Institute Berlin (DHZB); Berlin Germany
| | - D. Urban
- Department of Internal Medicine/Cardiology; German Heart Institute Berlin (DHZB); Berlin Germany
| | - A. Bondke Persson
- Institute of Vegetative Physiology; Charité - Universitaetsmedizin Berlin; Berlin Germany
| | - I. R. Buschmann
- Center for Cardiovascular Research (CCR); Richard-Thoma-Laboratories for Arteriogenesis; Charité - Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
46
|
Anderson G, Berk M, Dean O, Moylan S, Maes M. Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 2014; 28:1-10. [PMID: 24150993 DOI: 10.1007/s40263-013-0119-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulating data have led to a re-conceptualization of depression that emphasizes the role of immune-inflammatory processes, coupled to oxidative and nitrosative stress (O&NS). These in turn drive the production of neuroregulatory tryptophan catabolites (TRYCATs), driving tryptophan away from serotonin, melatonin, and N-acetylserotonin production, and contributing to central dysregulation. This revised perspective better encompasses the diverse range of biological changes occurring in depression and in doing so provides novel and readily attainable treatment targets, as well as potential screening investigations prior to treatment initiation. We briefly review the role that immune-inflammatory, O&NS, and TRYCAT pathways play in the etiology, course, and treatment of depression. We then discuss the pharmacological treatment implications arising from this, including the potentiation of currently available antidepressants by the adjunctive use of immune- and O&NS-targeted therapies. The use of such a frame of reference and the treatment benefits attained are likely to have wider implications and utility for depression-associated conditions, including the neuroinflammatory and (neuro)degenerative disorders.
Collapse
|
47
|
Freilich RW, Woodbury ME, Ikezu T. Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 2013; 8:e79416. [PMID: 24244499 PMCID: PMC3823621 DOI: 10.1371/journal.pone.0079416] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/23/2013] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation contributes to many neurologic disorders including Alzheimer’s disease, multiple sclerosis, and stroke. Microglia is brain resident myeloid cells and have emerged as a key driver of the neuroinflammatory responses. MicroRNAs (miRNAs) provide a novel layer of gene regulation and play a critical role in regulating the inflammatory response of peripheral macrophages. However, little is known about the miRNA in inflammatory activation of microglia. To elucidate the role that miRNAs have on microglial phenotypes under classical (M1) or alternative (M2) activation under lipopolysaccharide (‘M1’-skewing) and interleukin-4 (‘M2a’-skewing) stimulation conditions, we performed microarray expression profiling and bioinformatics analysis of both mRNA and miRNA using primary cultured murine microglia. miR-689, miR-124, and miR-155 were the most strongly associated miRNAs predicted to mediate pro-inflammatory pathways and M1-like activation phenotype. miR-155, the most strongly up-regulated miRNA, regulates the signal transducer and activator of transcription 3 signaling pathway enabling the late phase response to M1-skewing stimulation. Reduced expression in miR-689 and miR-124 are associated with dis-inhibition of many canonical inflammatory pathways. miR-124, miR-711, miR-145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and M2-like activation phenotype. Reductions in miR-711 and miR-124 may regulate inflammatory signaling pathways and peroxisome proliferator-activated receptor-gamma pathway. miR-145 potentially regulate peripheral monocyte/macrophage differentiation and faciliate the M2-skewing phenotype. Overall, through combined miRNA and mRNA expression profiling and bioinformatics analysis we have identified six miRNAs and their putative roles in M1 and M2-skewing of microglial activation through different signaling pathways.
Collapse
Affiliation(s)
- Robert W. Freilich
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maya E. Woodbury
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Tsuneya Ikezu
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Neurology and Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Papa S, Ferrari R, De Paola M, Rossi F, Mariani A, Caron I, Sammali E, Peviani M, Dell'Oro V, Colombo C, Morbidelli M, Forloni G, Perale G, Moscatelli D, Veglianese P. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Release 2013; 174:15-26. [PMID: 24225226 DOI: 10.1016/j.jconrel.2013.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/11/2013] [Accepted: 11/01/2013] [Indexed: 01/24/2023]
Abstract
The possibility to control the fate of the cells responsible for secondary mechanisms following spinal cord injury (SCI) is one of the most relevant challenges to reduce the post traumatic degeneration of the spinal cord. In particular, microglia/macrophages associated inflammation appears to be a self-propelling mechanism which leads to progressive neurodegeneration and development of persisting pain state. In this study we analyzed the interactions between poly(methyl methacrylate) nanoparticles (PMMA-NPs) and microglia/macrophages in vitro and in vivo, characterizing the features that influence their internalization and ability to deliver drugs. The uptake mechanisms of PMMA-NPs were in-depth investigated, together with their possible toxic effects on microglia/macrophages. In addition, the possibility to deliver a mimetic drug within microglia/macrophages was characterized in vitro and in vivo. Drug-loaded polymeric NPs resulted to be a promising tool for the selective administration of pharmacological compounds in activated microglia/macrophages and thus potentially able to counteract relevant secondary inflammatory events in SCI.
Collapse
Affiliation(s)
- Simonetta Papa
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Raffaele Ferrari
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Massimiliano De Paola
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Ambiente e Salute, via La Masa 19, 20156 Milan, Italy
| | - Filippo Rossi
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Alessandro Mariani
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Ambiente e Salute, via La Masa 19, 20156 Milan, Italy
| | - Ilaria Caron
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Eliana Sammali
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Marco Peviani
- Università di Pavia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", via Ferrata, 9, 27100 Pavia, Italy
| | - Valentina Dell'Oro
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Claudio Colombo
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, ETH Zurich, Campus Hoenggerberg, HCI F125, Wolfgang Pauli Str. 10, 8093 Zurich, Switzerland
| | - Gianluigi Forloni
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Giuseppe Perale
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy; Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, via Cantonale, CH-6928 Manno, Switzerland; Swiss Institute for Regenerative Medicine, CH-6807 Taverne, Switzerland
| | - Davide Moscatelli
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Pietro Veglianese
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy.
| |
Collapse
|
49
|
Kashani L, Omidvar T, Farazmand B, Modabbernia A, Ramzanzadeh F, Tehraninejad ES, Ashrafi M, Tabrizi M, Akhondzadeh S. Does pioglitazone improve depression through insulin-sensitization? Results of a randomized double-blind metformin-controlled trial in patients with polycystic ovarian syndrome and comorbid depression. Psychoneuroendocrinology 2013; 38:767-76. [PMID: 22999261 DOI: 10.1016/j.psyneuen.2012.08.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022]
Abstract
Thiazolidinediones have shown beneficial effects in short-term treatment of depression. However, it is unclear whether the antidepressant efficacy of these agents is related to their insulin-sensitizing action. We conducted the present study to compare the antidepressant efficacy of pioglitazone with another insulin-sensitizer, metformin, in obese patients with concomitant polycystic ovarian syndrome (PCOS) and major depressive disorder (MDD). In a six-week double-blind study, 50 patients with PCOS and MDD (DSM-IV-TR criteria) with Hamilton depression rating scale (HDRS) score of <20, randomly received pioglitazone (15 mg twice daily; PO) or metformin (750 mg twice daily; PO). Assessment was done using HDRS (weeks 0, 3, 6) together with fasting Insulin, glucose, and lipid profile, liver enzymes, homeostatic model assessment of insulin resistance (HOMA-IR), anthropometric measures, and serum androgens (weeks 0 and 6). Pioglitazone was superior to metformin in reducing HDRS scores at the end of the study [38.3% versus 8.3% reduction from baseline scores, F(1, 37) = 73.513, P<0.001]. Changes from baseline in HOMA-IR values at week 6 were not significantly different between the two groups (P = 0.888). Baseline (but not follow-up) HDRS and HOMA-IR values were significantly correlated (r = 0.393, P = 0.012). In multiple regression analysis, treatment with pioglitazone independent of HOMA-IR values predicted greater score reduction on HDRS at week 6 (standardized beta = 0.801, P<0.001). Biochemical and hormonal profile did not differ between the two groups at week 6. Metformin was associated with higher frequency of gastrointestinal side effects (P = 0.014). In summary, we showed that pioglitazone improved depression with mechanisms largely unrelated to its insulin-sensitizing action (registration number: IRCT201106081556N23).
Collapse
Affiliation(s)
- Ladan Kashani
- Infertility Ward, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716:106-19. [PMID: 23500198 DOI: 10.1016/j.ejphar.2013.01.072] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|