1
|
Tan Z, Hall P, Costin A, Crawford SA, Ramm G, Wong CHY, Kitching AR, Hickey MJ. Removal of the endothelial surface layer via hyaluronidase does not modulate monocyte and neutrophil interactions with the glomerular endothelium. Microcirculation 2023; 30:e12823. [PMID: 37494581 PMCID: PMC10909409 DOI: 10.1111/micc.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The endothelial surface layer (ESL), a layer of macromolecules on the surface of endothelial cells, can both impede and facilitate leukocyte recruitment. However, its role in monocyte and neutrophil recruitment in glomerular capillaries is unknown. METHODS We used multiphoton intravital microscopy to examine monocyte and neutrophil behavior in the glomerulus following ESL disruption with hyaluronidase. RESULTS Constitutive retention and migration of monocytes and neutrophils within the glomerular microvasculature was unaltered by hyaluronidase. Consistent with this, inhibition of the hyaluronan-binding molecule CD44 also failed to modulate glomerular trafficking of these immune cells. To investigate the contribution of the ESL during acute inflammation, we induced glomerulonephritis via in situ immune complex deposition. This resulted in increases in glomerular retention of monocytes and neutrophils but did not induce marked reduction in the glomerular ESL. Furthermore, hyaluronidase treatment did not modify the prolonged retention of monocytes and neutrophils in the acutely inflamed glomerular microvasculature. CONCLUSIONS These observations indicate that, despite evidence that the ESL has the capacity to inhibit leukocyte-endothelial cell interactions while also containing adhesive ligands for immune cells, neither of these functions modulate trafficking of monocytes and neutrophils in steady-state or acutely-inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Simon A. Crawford
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Connie H. Y. Wong
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
- Department of NephrologyMonash Medical CentreClaytonVictoriaAustralia
- Department of Pediatric NephrologyMonash Medical CentreClaytonVictoriaAustralia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| |
Collapse
|
2
|
Lee S, Kim H, Nam W. Efficacy of submucosal injection of hyaluronidase after mandibular third molar surgery: a randomized controlled trial. J Korean Assoc Oral Maxillofac Surg 2022; 48:363-370. [PMID: 36579908 PMCID: PMC9807377 DOI: 10.5125/jkaoms.2022.48.6.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives This study aimed to investigate the efficacy of postoperative submucosal injection of hyaluronidase (HUD) for reducing sequelae and quality of life (QOL) after mandibular third molar (M3M) surgery. Materials and Methods Participants with bilateral impacted M3M underwent surgical extraction with a split-mouth randomized controlled study design. M3M were removed by the same surgeon in 2 sessions, one a control and the other experimental. Submucosal injection of HUD was performed in the experimental session and submucosal injection of saline in the control session. Mouth opening, facial swelling, and pain intensity were measured before surgery, and then 2 and 7 days after surgery. The QOL of participants following surgery was evaluated by means of a patient-centered outcome questionnaire (PCOQ). Results A total of 36 patients was included in the final data analysis. There was a significant reduction in the maximal mouth opening and postoperative pain in the experimental side at the 2 and 7 days after surgery (P<0.05), and a remarkable difference in facial swelling was reported on the experimental side 7 days after surgery (P<0.05). The PCOQ demonstrated that participants reported less pain and swelling on the experimental side. Conclusion The present study provides clinical evidence that submucosal administration of HUD immediately after M3M surgery reduced postoperative discomfort and improved patients' QOL.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Korea,Department of Oral and Maxillofacial Surgery, Private Clinic, Seoul, Korea
| | - Hyounmin Kim
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Korea
| | - Woong Nam
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Korea,Woong Nam, Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea, TEL: +82-2-2228-2971, E-mail: , ORCID: https://orcid.org/0000-0003-0146-3624
| |
Collapse
|
3
|
Antiulcerogenic Potential of the Ethanolic Extract of Ceiba speciosa (A. St.-Hil.) Ravenna Evaluated by In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms232415634. [PMID: 36555275 PMCID: PMC9779658 DOI: 10.3390/ijms232415634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal diseases, such as peptic ulcers, are caused by a damage in the gastric mucosa provoked by several factors. This stomach injury is regulated by many inflammatory mediators and is commonly treated with proton-pump inhibitors, histamine H2 receptor blockers and antacids. However, various medicinal plants have demonstrated positive effects on gastric ulcer treatment, including plants of the Ceiba genus. The aim of this study was to evaluate the antiulcer and anti-inflammatory activities of the stem bark ethanolic extract of Ceiba speciosa (A. St.-Hil.) Ravenna. We performed a preliminary quantification of phenolic compounds by high-performance liquid chromatography-diode array detection (HPLC-DAD), followed by the prospection of other chemical groups through nuclear magnetic resonance (NMR) spectroscopy. A set of in vitro assays was used to evaluate the extract potential regarding its antioxidant activity (DPPH: 19.83 ± 0.34 µg/mL; TPC: 307.20 ± 6.20 mg GAE/g of extract), effects on cell viability and on the release of TNF-α in whole human blood. Additionally, in vivo assays were performed to evaluate the leukocyte accumulation and total protein quantification in carrageenan-induced air pouch, as well as the antiulcerogenic effect of the extract on an ethanol-induced ulcer in rats. The extract contains flavonoids and phenolic compounds, as well as sugars and quinic acid derivatives exhibiting potent antioxidant activity and low toxicity. The extract reduced the release of TNF-α in human blood and inhibited the activity of p38α (1.66 µg/mL), JAK3 (5.25 µg/mL), and JNK3 (8.34 µg/mL). Moreover, it reduced the leukocyte recruitment on the pouch exudate and the formation of edema, reverting the effects caused by carrageenan. The extract presented a significant prevention of ulcer formation and a higher reduction than the reference drug, Omeprazole. Therefore, C. speciosa extract has demonstrated relevant therapeutic potential for the treatment of gastric diseases, deserving the continuation of further studies to unveil the mechanisms of action of plant bioactive ingredients.
Collapse
|
4
|
Pang B, He J, Zhang W, Huang H, Wang Y, Wang M, Du G, Kang Z. Active Expression of Human Hyaluronidase PH20 and Characterization of Its Hydrolysis Pattern. Front Bioeng Biotechnol 2022; 10:885888. [PMID: 35646856 PMCID: PMC9136067 DOI: 10.3389/fbioe.2022.885888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Hyaluronidases are a group of glycosidases catalyzing the degradation of hyaluronic acid (HA). Because of the advantages of effectively hydrolyzing the HA-rich matrix and low immunogenicity, human hyaluronidase PH20 (hPH20) is widely used in the medical field. Here, we realized the active expression of recombinant hPH20 by Pichia pastoris under a methanol-induced promoter PAOX1. By optimizing the composition of the C-terminal domain and fusing protein tags, we constructed a fusion mutant AP2-△491C with the extracellular hyaluronidase activity of 258.1 U·L-1 in a 3-L bioreactor, the highest expression level of recombinant hPH20 produced by microbes. Furthermore, we found recombinant hPH20 hydrolyzed the β-1,4 glycosidic bonds sequentially from the reducing end of o-HAs, with HA6 NA as the smallest substrate. The result will provide important theoretical guidance for the directed evolution of the enzyme to prepare multifunctional o-HAs with specific molecular weights.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jing He
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Inhibitor of Hyaluronic Acid Synthesis 4-Methylumbelliferone Suppresses the Secretory Processes That Ensure the Invasion of Neutrophils into Tissues and Induce Inflammation. Biomedicines 2022; 10:biomedicines10020314. [PMID: 35203523 PMCID: PMC8869632 DOI: 10.3390/biomedicines10020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Integrin-dependent adhesion of neutrophils to tissue, accompanied by the development of neutrophil-induced inflammation, occurs both in the focus of infection and in the absence of infection in metabolic disorders such as reperfusion after ischemia, diabetes mellitus, or the development of pneumonia in patients with cystic fibrosis or viral diseases. Hyaluronic acid (HA) plays an important role in the recruitment of neutrophils to tissues. 4-methylumbilliferon (4-MU), an inhibitor of HA synthesis, is used to treat inflammation, but its mechanism of action is unknown. We studied the effect of 4-MU on neutrophil adhesion and concomitant secretion using adhesion to fibronectin as a model for integrin-dependent adhesion. 4-MU reduced the spreading of neutrophils on the substrate and the concomitant secretion of granule proteins, including pro-inflammatory components. 4-MU also selectively blocked adhesion-induced release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, which can influence cell invasion by modifying the extracellular matrix. Finally, 4-MU inhibited the formation of cytonemes, the extracellular membrane secretory structures containing the pro-inflammatory bactericides of the primary granules. The anti-inflammatory effect of 4-MU may be associated with the suppression of secretory processes that ensure the neutrophil invasion and initiate inflammation. We suggest that HA, due to the peculiarities of its synthesis, can promote the release of secretory carriers from the cell and 4-MU can block this process.
Collapse
|
6
|
Plasma hyaluronan, hyaluronidase activity and endogenous hyaluronidase inhibition in sepsis: an experimental and clinical cohort study. Intensive Care Med Exp 2021; 9:53. [PMID: 34632531 PMCID: PMC8502523 DOI: 10.1186/s40635-021-00418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background Plasma hyaluronan concentrations are increased during sepsis but underlying mechanisms leading to high plasma hyaluronan concentration are poorly understood. In this study we evaluate the roles of plasma hyaluronan, effective plasma hyaluronidase (HYAL) activity and its endogenous plasma inhibition in clinical and experimental sepsis. We specifically hypothesized that plasma HYAL acts as endothelial glycocalyx shedding enzyme, sheddase. Methods Plasma hyaluronan, effective HYAL activity and HYAL inhibition were measured in healthy volunteers (n = 20), in patients with septic shock (n = 17, day 1 and day 4), in patients with acute pancreatitis (n = 7, day 1 and day 4) and in anesthetized and mechanically ventilated pigs (n = 16). Sixteen pigs were allocated (unblinded, open label) into three groups: Sepsis-1 with infusion of live Escherichia coli (E. coli) 1 × 108 CFU/h of 12 h (n = 5), Sepsis-2 with infusion of E. coli 1 × 108 CFU/h of 6 h followed by 1 × 109 CFU/h of the remaining 6 h (n = 5) or Control with no E. coli infusion (n = 6). Results In experimental E. coli porcine sepsis and in time controls, plasma hyaluronan increases with concomitant decrease in effective plasma HYAL activity and increase of endogenous HYAL inhibition. Plasma hyaluronan increased in patients with septic shock but not in acute pancreatitis. Effective plasma HYAL was lower in septic shock and acute pancreatitis as compared to healthy volunteers, while plasma HYAL inhibition was only increased in septic shock. Conclusion Elevated plasma hyaluronan levels coincided with a concomitant decrease in effective plasma HYAL activity and increase of endogenous plasma HYAL inhibition both in experimental and clinical sepsis. In acute pancreatitis, effective plasma HYAL activity was decreased which was not associated with increased plasma hyaluronan concentrations or endogenous HYAL inhibition. The results suggest that plasma HYAL does not act as sheddase in sepsis or pancreatitis. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00418-3.
Collapse
|
7
|
Anti-Inflammatory and Healing Activity of the Hydroalcoholic Fruit Extract of Solanum diploconos (Mart.) Bohs. J Immunol Res 2021; 2021:9957451. [PMID: 34337087 PMCID: PMC8315888 DOI: 10.1155/2021/9957451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Solanum diploconos (Mart.) Bohs is a native Brazilian plant belonging to the Solanaceae family, popularly known as “tomatinho do mato” and poorly investigated. Herein, we presented for the first time evidence for the anti-inflammatory and wound healing activities of S. diploconos fruit hydroalcoholic extract. Material and Methods. In vitro fMLP-induced chemotaxis, LPS-induced inflammatory mediator levels (cytokines by ELISA and NO release by Griess reaction), and adhesion molecule expression (CD62L, CD49d, and CD18, by flow-cytometry) were assessed in neutrophils treated with different concentrations of the extract. Inflammation resolution was measured by the efferocytosis assay and the healing activity by in vivo and in vitro assays. The air pouch model of carrageenan-induced inflammation in Swiss mice was used to investigate the in vivo anti-inflammatory effects of the extract. Leukocyte influx (by optical microscopy) and cytokine release were quantified in the pouch exudates. Additionally, the acute and subacute toxic and genotoxic effects of the extract were evaluated. Results In vitro, the extract impaired neutrophil chemotaxis and its ability to produce and/or release cytokines (TNFα, IL-1β, and IL-6) and NO upon LPS stimuli (p < 0.01). LPS-treated neutrophils incubated with the extract presented increased CD62L expression (p < 0.01), indicating a reduced activation. An enhanced efferocytosis of apoptotic neutrophils by macrophages was observed and accompanied by higher IL-10 and decreased TNFα secretion (p < 0.01). In vivo, similar results were noted, including reduction of neutrophil migration, protein exudation, and cytokine release (p < 0.01). Also, the extract increased fibroblast proliferation and promoted skin wound healing (p < 0.01). No signs of toxicity or genotoxicity were observed for the extract. Conclusion S. diploconos fruit extract is anti-inflammatory by modulating neutrophil migration/activation as well macrophage-dependent efferocytosis and inflammatory mediator release. It also indicates its potential use as a healing agent. Finally, the absence of acute toxic and genotoxic effects reinforces its possible use as medicinal product.
Collapse
|
8
|
Kwoen MJ, Choi YH, Kim KS, Chang NH, Kim YK, Lee HJ. Efficacy of local hyaluronidase administration in guided bone regeneration surgery: a randomized controlled trial. J Korean Assoc Oral Maxillofac Surg 2021; 47:91-98. [PMID: 33911041 PMCID: PMC8084749 DOI: 10.5125/jkaoms.2021.47.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives Hyaluronoglucosaminidase (hyaluronidase) increases the local intercellular permeability of the peripheral lymphatic channel and capillaries, which may help reduce edema. In the present study, the effects of hyaluronidase on postoperative edema and pain reduction were evaluated. Materials and Methods The study included 38 patients who underwent guided bone regeneration (GBR) surgery before implantation. Patients were randomly assigned to either the control group (n=20) or the test group (n=18). Hyaluronidase was injected into the GBR site of subjects in the test group. Postoperative edema was evaluated by measuring the distance between specific facial landmarks immediately after surgery (T1) and 2-4 days after surgery (T2). The degree of pain at T2 and at 10-14 days after surgery (T3) was assessed. Results In the test group, the degree of swelling was lower than in the control group, however, only two measurements, from the tragus to the mouth corner and from the outer canthus to the mouth corner, showed statistically significant differences (P=0.012 and P=0.001, respectively). The anti-edema effect of hyaluronidase was more effective in the maxilla than in the mandible. In the maxilla, the percentage of facial swelling was significant for three measurements. However, in the mandible, the percentage of facial swelling was significant for only one measurement. Low levels of pain that were similar at T2 and T3 were reported in both groups. Conclusion The results indicate the degree of swelling was lower in the test group and hyaluronidase appeared to be more effective in the maxilla. The degree of pain reduction was similar between groups. Further in vivo and randomized controlled trials with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Min-Jeong Kwoen
- Department of Oral and Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seoul, Korea
| | - Yong-Hoon Choi
- Department of Conservative Dentistry, Section of Dentistry, Seoul National University Bundang Hospital, Seoul, Korea
| | - Keun-Suh Kim
- Department of Oral and Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seoul, Korea
| | - Na-Hee Chang
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seoul, Korea
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seoul, Korea.,Department of Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hyo-Jung Lee
- Department of Oral and Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seoul, Korea
| |
Collapse
|
9
|
Katarzyna Greda A, Nowicka D. Hyaluronidase inhibition accelerates functional recovery from stroke in the mouse brain. J Neurochem 2021; 157:781-801. [PMID: 33345310 DOI: 10.1111/jnc.15279] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Perineuronal nets (PNNs) are presumed to limit plasticity in adult animals. Ischaemic stroke results in the massive breakdown of PNNs resulting in rejuvenating states of neuronal plasticity, but the mechanisms of this phenomenon are largely unknown. As hyaluronic acid (HA) is the structural backbone of PNNs, we hypothesized that these changes are a consequence of the altered expression of HA metabolism enzymes. Additionally, we investigated whether early hyaluronidase inhibition interferes with post-stroke PNN reduction and behavioural recovery. We investigated the mRNA/protein expression of these enzymes in the perilesional, remote and contralateral cortical regions in mice at different time points after photothrombosis, using quantitative real-time polymerase chain reaction and immunofluorescence. A skilled reaching test was employed to test hyaluronidase inhibitor L-ascorbic acid 6-hexadecanoate influence on post-stroke recovery. We found the simultaneous up-regulation of mRNA of HA synthesizing and degrading enzymes in the perilesional area early after stroke, suggesting an acceleration of HA turnover in ischaemic animals. Immunostaining revealed differential cellular localization of enzymes, with hyaluronidase 1 in astrocytes and hyaluronan synthase 2 in astrocytes and neurons, and post-stroke up-regulation of both of them in astrocytes. β-glucuronidase was observed in neurons but post-stroke up-regulation occurred in microglia. Inhibition of hyaluronidase activity early after stroke resulted in improved performance in skilled reaching test, without affecting the numbers of PNNs. These results suggest that after stroke, a substantial reorganization of polysaccharide content occurs, and interfering with this process at early time has a beneficial effect on recovery.
Collapse
Affiliation(s)
- Anna Katarzyna Greda
- Nencki Institute of Experimental Biology PAS, Laboratory of Epileptogenesis, Warsaw, Poland
| | - Dorota Nowicka
- Nencki Institute of Experimental Biology PAS, Laboratory of Epileptogenesis, Warsaw, Poland
| |
Collapse
|
10
|
de Araújo Moreira MDR, Sales-Campos H, Fontanari C, Galvão Meireles AF, Borges Prado MK, Zoccal KF, Sorgi CA, Tefé da Silva C, Groppo M, Faccioli LH. The ethanolic extract of Terminalia argentea Mart. & Zucc. bark reduces the inflammation through the modulation of cytokines and nitric oxide mediated by the downregulation of NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113150. [PMID: 32730887 DOI: 10.1016/j.jep.2020.113150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia argentea Mart. & Zucc. (Combretaceae), popularly known as "capitão do campo", is native from the Brazilian cerrado, which is used in folk medicine to treat inflammatory diseases. AIM OF THE STUDY We aimed to investigate the anti-inflammatory effects, toxicity and mechanisms of action regarding the use of the hydroalcoholic extract of T. argentea bark. MATERIALS AND METHODS Toxicity was determinate in vitro using the macrophage lineage J774.1 without LPS. Cells were treated with 0.5; 2; 8; 32 and 125 μg/mL of the plant extract. Cell viability was assessed by MTT colorimetric assay. The production of nitrite and cytokines was also determined in the supernatants. A NF-κB reporter assay using RAW macrophages was employed to elucidate the impact of the plant extract on the expression of such molecule. In mice, toxicity was assessed by orally given an intermediate to high concentration of the plant extract on a single dose (1000 or 5000 mg/kg) or low and intermediate doses (300 or 1000 mg/kg) twice daily for 14 days. Blood samples were collected for biochemical analysis. The anti-inflammatory activity was assessed using the air-pouch model with or without pre-inoculation with the inflammatory stimuli LPS (0.5 μg/mL), followed by treatment with plant extract at 5, 60 or 300 mg/kg administered in the air pouch (subcutaneous injection). After 4 h, mice were euthanized and the air pouches washed with 2 mL heparinized PBS (10 IU/mL). Then, the local production in the air pouch wash of cytokines, total proteins and leukocytes was assessed. RESULTS No signals of toxicity were observed either in cells or mice. Regardless the concentration used in vitro, the extract exhibited a significant anti-inflammatory activity, as perceived by the reduction of the inflammatory cytokines IL-1β, TNF-α and IL-6 and nitrites on cell supernatants. This was concomitant with a downregulation in NF-κB and elevated levels of IL-10. In mice, similar effects were observed, especially when the plant extract was given at 300 mg/kg, inhibiting the release of IL-1β, TNF-α, IL-6 and proteins, as well as increasing the release of IL-10. CONCLUSIONS Altogether, our results demonstrated that the hydroalcoholic extract of T. argentea bark has anti-inflammatory activity without inducing toxicity in cells or living animals. This activity seems to be chiefly influenced by a downregulation in NF-κB, inflammatory cytokines and production of nitrite along with augmented concentration of IL-10.
Collapse
Affiliation(s)
| | - Helioswilton Sales-Campos
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Caroline Fontanari
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Alyne Fávero Galvão Meireles
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Morgana Kelly Borges Prado
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Karina Furlani Zoccal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil.
| | - Carlos Artério Sorgi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Lúcia Helena Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
|
12
|
Rapčan R, Kočan L, Mláka J, Burianek M, Kočanová H, Rapčanová S, Hess M, Hammond A, Griger M, Venglarčík M, Gajdoš M, Vašková J. A Randomized, Multicenter, Double-Blind, Parallel Pilot Study Assessing the Effect of Mechanical Adhesiolysis vs Adhesiolysis with Corticosteroid and Hyaluronidase Administration into the Epidural Space During Epiduroscopy. PAIN MEDICINE 2020; 19:1436-1444. [PMID: 29584916 DOI: 10.1093/pm/pnx328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Epiduroscopy is a proven method of diagnosis and treatment for chronic radicular pain after spinal surgery, which is known as failed back surgery syndrome (FBSS). The aim of the study was to compare the efficacy of drugs (the enzyme hyaluronidase and corticosteroid DEPO-Medrol) administrated into the epidural space during epiduroscopy, performed within the ventral and ventro-lateral epidural space with a focus on releasing foraminal adhesions. METHODS Forty-eight patients with diagnosed FBBS were randomized into two groups before epiduroscopy. Group A received the standard treatment-mechanical lysis of fibrotic tissue in the epidural space. Group B received hyaluronidase and corticosteroid methylprednisolone acetate during the procedure. Subjects were followed for six and 12 months via scheduled double-blinded examinations by pain physicians. Leg and back pain intensity was assessed by an 11-point numerical rating scale, and patients' functional disability was assessed by the Oswestry Disability Index (ODI). RESULTS Study subjects showed a significant decrease in ODI score in both groups (P < 0.05). Significantly lower pain scores for leg pain (P < 0.05) and back pain (P < 0.05) were also recorded after the six-month follow-up. However, the one-year follow-up showed a return to the baseline ODI values of most monitored pain scores in both groups (P > 0.05). Improvement was only noted on the NRS for back pain at one-year follow-up (P < 0.05). CONCLUSIONS A significant improvement of leg and back pain was found in both groups after six months. ODI was significantly improved only in group B in both the six- and 12-month intervals. Back pain at one-year follow-up was only improved in group B.
Collapse
Affiliation(s)
- Róbert Rapčan
- Europainclinics, Prague, Czech Republic.,Europainclinics, Nové Mesto, Slovak Republic.,Europainclinics, Bardejov, Slovak Republic
| | - Ladislav Kočan
- Clinic of Anaesthesiology and Intensive Care Medicine, East Slovak Institute of Cardiovascular Disease, Košice, Slovak Republic
| | - Juraj Mláka
- Europainclinics, Poliklinika Terasa, Košice, Slovak Republic
| | | | - Hana Kočanová
- Clinic of Anaesthesiology and Intensive Care Medicine, Railway Hospital and Clinic Košice, Košice, Slovak Republic
| | | | | | | | | | | | - Miroslav Gajdoš
- Department of Neurosurgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, and Louis Pasteur University Hospital, Košice, Slovak Republic
| | - Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
13
|
Li T, Liu B, Guan H, Mao W, Wang L, Zhang C, Hai L, Liu K, Cao J. PGE2 increases inflammatory damage in Escherichia coli-infected bovine endometrial tissue in vitro via the EP4-PKA signaling pathway. Biol Reprod 2020; 100:175-186. [PMID: 30010723 DOI: 10.1093/biolre/ioy162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/13/2018] [Indexed: 11/15/2022] Open
Abstract
Endometritis is the most common bovine uterine disease following parturition. The role of prostaglandin E2 (PGE2) in the regulation of endometrial inflammation and repair is well understood. Excess PGE2 is also generated in multiple inflammatory diseases, including endometritis. However, it remains unclear whether PGE2 is associated with pathogen-induced inflammatory damage to the endometrium. To clarify the role of PGE2 in pathogen-induced inflammatory damage, this study evaluated the production of PGE2, inflammatory factors, and damage-associated molecular patterns (DAMPs) in cultured Escherichia coli-infected bovine endometrial tissue. PGE2 production was significantly higher in E. coli-infected tissue, and in E. coli-infected tissue treated with 15-prostaglandin dehydrogenase (15-PGDH) inhibitors, as compared to uninfected tissue. Phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1) were also upregulated in E. coli-infected tissue, while concentrations of arachidonic acid (AA), leukotrienes, DAMPs, and other proinflammatory factors increased. The accumulation of PGE2 clearly damaged the cultured tissue. Treatment with the COX-2, mPGES-1, EP4, and protein kinase A (PKA) inhibitors decreased the production of PGE2, inflammatory factors, and DAMPs, simultaneously alleviating the E. coli-induced endometrial tissue damage. Therefore, the PGE2 that was generated by COX-2 and mPGES-1 accumulated, and this pathogenic PGE2 increased inflammatory damage by upregulating inflammatory factors and DAMPs in E. coli-infected bovine endometrial tissue. This upregulation of inflammatory factors and DAMPs might be regulated by the EP4-PKA signaling pathway.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Hong Guan
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lingrui Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Chao Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Lili Hai
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| |
Collapse
|
14
|
Huang H, Liang Q, Wang Y, Chen J, Kang Z. High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris. Appl Microbiol Biotechnol 2020; 104:1621-1632. [DOI: 10.1007/s00253-019-10282-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
|
15
|
Immunomodulatory activity of hyaluronidase is associated with metabolic adaptations during acute inflammation. Inflamm Res 2019; 69:105-113. [DOI: 10.1007/s00011-019-01297-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
|
16
|
Nascimento BAC, Gardinassi LG, Silveira IMG, Gallucci MG, Tomé MA, Oliveira JFD, Moreira MRA, Meirelles AFG, Faccioli LH, Tefé-Silva C, Zoccal KF. Arctium lappa Extract Suppresses Inflammation and Inhibits Melanoma Progression. MEDICINES 2019; 6:medicines6030081. [PMID: 31362372 PMCID: PMC6789568 DOI: 10.3390/medicines6030081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Background: Arctium lappa has been used as popular medicinal herb and health supplement in Chinese societies. Bioactive components from A. lappa have attracted the attention of researchers due to their promising therapeutic effects. In this study, we investigated the effects of A. lappa hydroalcoholic extract (Alhe) during different models of inflammation, in vivo. Methods: The anti-inflammatory activity was evaluated through the air pouch model. For this, mice received an inflammatory stimulus with lipopolysaccharide (LPS) and were later injected with Alhe. To assess anti-tumoral activity, the animals were inoculated with B16F10 cells and injected with Alhe every 5 days, along the course of 30 days. Controls were submitted to the same conditions and injected with the vehicle. Peritoneal or air pouch fluids were collected to evaluate leukocyte counting or cellular activation via quantification of cytokines and nitric oxide. Results: Alhe injection reduced the neutrophil influx and production of inflammatory mediators in inflammatory foci after LPS or tumor challenges. Furthermore, Alhe injection reduced tumor growth and enhanced mice survival. Conclusions: Collectively, these data suggest that Alhe regulates immune cell migration and activation, which correlates with favorable outcome in mouse models of acute inflammation and melanoma progression.
Collapse
Affiliation(s)
- Bruno A C Nascimento
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, 14090-180 Ribeirão Preto, SP, Brazil
| | - Luiz G Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Inaê M G Silveira
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, 14090-180 Ribeirão Preto, SP, Brazil
| | - Marília G Gallucci
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, 14090-180 Ribeirão Preto, SP, Brazil
| | - Mariana A Tomé
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, 14090-180 Ribeirão Preto, SP, Brazil
| | - Júlia Fernanda D Oliveira
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, 14090-180 Ribeirão Preto, SP, Brazil
| | - Mirella R A Moreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Alyne F G Meirelles
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Cristiane Tefé-Silva
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, 14090-180 Ribeirão Preto, SP, Brazil
| | - Karina F Zoccal
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, 14090-180 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Guidoni M, Figueira MM, Ribeiro GP, Lenz D, Grizotto PA, de Melo Costa Pereira T, Scherer R, Bogusz S, Fronza M. Development and evaluation of a vegetable oil blend formulation for cutaneous wound healing. Arch Dermatol Res 2019; 311:443-452. [PMID: 31011875 DOI: 10.1007/s00403-019-01919-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/01/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
This work aimed to evaluate the in vivo capacity of a vegetable oil blend formulation (VOB) developed to accelerate cutaneous wound closure. Total thickness wounds were punctured on the skin on the back side of each animal and topically treated with the VOB formulation, Dersani® ointment or the vehicle control. After 2, 7, 14, 21 days post-wounding, five animals from each group were euthanized, and the rates of wound closure and re-epithelialization were evaluated. The wounds were harvested for histological and biochemical analysis. VOB resulted in faster and greater re-epithelialization in the in vivo excisional wounds, exhibiting significant wound area reduction of 8.9, 8.0, 35.1, 45.2 and 47.0% after 2, 5, 10, 14 and 21 days post-wounding, respectively, when compared with the vehicle control. Histological and biochemical analyses showed that the VOB-treated wounds exhibited a significant increase of granular tissue and controlled inflammatory response by modulation of the release of pro-inflammatory cytokines TNF-α, IL-6 and IL-1. Moreover, VOB-treated wounds showed a significant and concrete increase in the deposition and organisation of collagen fibres in the wound site and improved the quality of the scar tissue. Altogether, these data revealed that VOB accelerates wound healing processes and might be beneficial for treating wound disorders.
Collapse
Affiliation(s)
- Marcio Guidoni
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Mariana Moreira Figueira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Gabrielly Pereira Ribeiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Dominik Lenz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Pamela Aparecida Grizotto
- Instituto de Química de São Carlos-IQSC, Universidade de São Paulo-USP, São Carlos, São Paulo, Brazil
| | - Thiago de Melo Costa Pereira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Rodrigo Scherer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil
| | - Stanislau Bogusz
- Instituto de Química de São Carlos-IQSC, Universidade de São Paulo-USP, São Carlos, São Paulo, Brazil
| | - Marcio Fronza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha-UVV, Av. Comissário José Dantas de Melo, no. 21, Boa Vista, Vila Velha, Espírito Santo, 29102-920, Brazil.
| |
Collapse
|
18
|
Abstract
Degeneration, whether from age or postsurgical, in the ventral and lateral epidural space can lead to irritation of both the nerve roots and of the nerves present in the epidural space, the peridural membrane and the posterior longitudinal ligament. This irritation is often accompanied by mild scarring. Neuroplasty is a specific procedure designed to relieve this irritation. The effectiveness of neuroplasty is not affected by the extent of spinal stenosis. Neuroplasty can be performed in the lumbar, thoracic and cervical spine, and using caudal, transforaminal and interlaminar approaches. Postprocedural home exercises are an integral part of the procedure. There are multiple high-grade studies positive for the effectiveness and safety of neuroplasty. Neuroplasty should be offered prior to surgery in patients with persistent back and/or extremity pain.
Collapse
Affiliation(s)
- Standiford Helm
- The Helm Center for Pain Management, Laguna Woods, CA 92637, USA
| | - Nebojsa Nick Knezevic
- Vice Chair for Research & Education, Department of Anesthesiology & Pain Management, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA.,Clinical Associate Professor, Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Koç O, Er N. Can Hyaluronidase Be an Alternative Postoperative Anti-edema Agent to Dexamethasone? Preliminary Results of an Animal Study. J Oral Maxillofac Surg 2018; 76:1653-1659. [PMID: 29654778 DOI: 10.1016/j.joms.2018.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/20/2018] [Accepted: 03/11/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE Recombinant human hyaluronidase (rHuPH20) is widely used as a spreading factor, which enhances the absorption of subcutaneously injected medicines. The anti-inflammatory and anti-edema effects of the enzyme were demonstrated in previous studies. In the present study, the anti-edema effect of rHuPH20 was compared with that of dexamethasone in a traumatic rat paw edema model. MATERIALS AND METHODS Twenty-four Sprague-Dawley rats (weight 200 to 450 g) were divided into 3 groups: control (group 1), rHuPH20 (group 2), and dexamethasone (group 3). Traumatic edema was induced in the right hind paws of the rats using Feeney's weight-drop model. After edema induction, 0.4 mL of rHuPH20 (100 U/kg = 0.88 μg/kg dose) and 0.4 mL of dexamethasone (0.5 mg/kg dose) were injected into the right hind paws of the rats in groups 2 and 3. The paw volumes were measured before edema induction and at 3, 6, 12, 24, 48, and 72 hours after induction using a plethysmometer. The Mann-Whitney U test was used for the statistical analyses. Probabilities < .05 were accepted as statistically significant. RESULTS The between percentage change in the edema mean values of groups 1 and 3 showed no significant difference at all time points; however, group 2 showed significantly less change in the edema mean values at 3, 6, 12, 24, and 48 hours after edema induction (P < .05) compared with group 1. The change in the edema mean value for group 2 was significantly less than that for group 3 at 3, 6, 12, 24, and 48 hours after edema induction (P < .05). CONCLUSIONS Local rHuPH20 injection more effectively reduced the edema that was induced traumatically in rat paws than did dexamethasone. However, further clinical studies are needed regarding the use of rHuPH20 as a postoperative anti-edema agent in place of dexamethasone.
Collapse
Affiliation(s)
- Onur Koç
- Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hacettepe, Ankara, Turkey.
| | - Nuray Er
- Doctor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hacettepe, Ankara, Turkey
| |
Collapse
|