1
|
Mu Z, Shen T, Deng H, Zeng B, Huang C, Mao Z, Xie Y, Pei Y, Guo L, Hu R, Chen L, Zhou Y. Enantiomer-Dependent Supramolecular Immunosuppressive Modulation for Tissue Reconstruction. ACS NANO 2024; 18:5051-5067. [PMID: 38306400 DOI: 10.1021/acsnano.3c11601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Modulating the properties of biomaterials in terms of the host immune response is critical for tissue repair and regeneration. However, it is unclear how the preference for the cellular microenvironment manipulates the chiral immune responses under physiological or pathological conditions. Here, we reported that in vivo and in vitro oligopeptide immunosuppressive modulation was achieved by manipulation of macrophage polarization using chiral tetrapeptide (Ac-FFFK-OH, marked as FFFK) supramolecular polymers. The results suggested that chiral FFFK nanofibers can serve as a defense mechanism in the restoration of tissue homeostasis by upregulating macrophage M2 polarization via the Src-STAT6 axis. More importantly, transiently acting STAT6, insufficient to induce a sustained polarization program, then passes the baton to EGR2, thereby continuously maintaining the M2 polarization program. It is worth noting that the L-chirality exhibits a more potent effect in inducing macrophage M2 polarization than does the D-chirality, leading to enhanced tissue reconstruction. These findings elucidate the crucial molecular signals that mediate chirality-dependent supramolecular immunosuppression in damaged tissues while also providing an effective chiral supramolecular strategy for regulating macrophage M2 polarization and promoting tissue injury repair based on the self-assembling chiral peptide design.
Collapse
Affiliation(s)
- Zhixiang Mu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Tianxi Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Bairui Zeng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chen Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Zhengjin Mao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Yuyu Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Yu Pei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Liting Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Limin Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| |
Collapse
|
2
|
Klaas M, Mäemets-Allas K, Heinmäe E, Lagus H, Arak T, Eller M, Kingo K, Kankuri E, Jaks V. Olfactomedin-4 improves cutaneous wound healing by promoting skin cell proliferation and migration through POU5F1/OCT4 and ESR1 signalling cascades. Cell Mol Life Sci 2022; 79:157. [PMID: 35218417 PMCID: PMC8882121 DOI: 10.1007/s00018-022-04202-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Olfactomedin-4 (OLFM4) is an olfactomedin-domain-containing glycoprotein, which regulates cell adhesion, proliferation, gastrointestinal inflammation, innate immunity and cancer metastasis. In the present study we investigated its role in skin regeneration. We found that OLFM4 expression is transiently upregulated in the proliferative phase of cutaneous wound healing in humans as well as in mice. Moreover, a significant increase in OLFM4 expression was detected in the skin of lesional psoriasis, a chronic inflammatory disease characterized by keratinocyte hyperproliferation. In vitro experiments demonstrated that OLFM4 selectively stimulated keratinocyte proliferation and increased both keratinocyte and fibroblast migration. Using proteotranscriptomic pathway analysis we revealed that transcription factors POU5F1/OCT4 and ESR1 acted as hubs for OLFM4-induced signalling in keratinocytes. In vivo experiments utilizing mouse splinted full-thickness cutaneous wound healing model showed that application of recombinant OLFM4 protein can significantly improve wound healing efficacy. Taken together, our results suggest that OLFM4 acts as a transiently upregulated inflammatory signal that promotes wound healing by regulating both dermal and epidermal cell compartments of the skin.
Collapse
Affiliation(s)
- Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Elizabeth Heinmäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Terje Arak
- Surgery Clinic, Tartu University Hospital, Puusepa 8, 50406, Tartu, Estonia
| | - Mart Eller
- Surgery Clinic, Tartu University Hospital, Puusepa 8, 50406, Tartu, Estonia
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Raja 31, 50417, Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia. .,Dermatology Clinic, Tartu University Hospital, Raja 31, 50417, Tartu, Estonia.
| |
Collapse
|
3
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Kao TI, Chen PJ, Wang YH, Tseng HH, Chang SH, Wu TS, Yang SH, Lee YT, Hwang TL. Bletinib ameliorates neutrophilic inflammation and lung injury by inhibiting Src family kinase phosphorylation and activity. Br J Pharmacol 2021; 178:4069-4084. [PMID: 34131920 PMCID: PMC8518616 DOI: 10.1111/bph.15597] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil overactivation is crucial in the pathogenesis of acute lung injury (ALI). Bletinib (3,3'-dihydroxy-2',6'-bis(p-hydroxybenzyl)-5-methoxybibenzyl), a natural bibenzyl, extracted from the Bletilla plant, exhibits anti-inflammatory, antibacterial, and antimitotic effects. In this study, we evaluated the therapeutic effects of bletinib in human neutrophilic inflammation and LPS-mediated ALI in mice. EXPERIMENTAL APPROACH In human neutrophils activated with the formyl peptide (fMLP), we assessed integrin expression, superoxide anion production, degranulation, neutrophil extracellular trap (NET) formation, and adhesion through flow cytometry, spectrophotometry, and immunofluorescence microscopy. Immunoblotting was used to measure phosphorylation of Src family kinases (SFKs) and downstream proteins. Finally, a LPS-induced ALI model in male BALB/c mice was used to investigate the potential therapeutic effects of bletinib treatment. KEY RESULTS In activated human neutrophils, bletinib reduced degranulation, respiratory burst, NET formation, adhesion, migration, and integrin expression; suppressed the enzymic activity of SFKs, including Src, Lyn, Fgr, and Hck; and inhibited the phosphorylation of SFKs as well as Vav and Bruton's tyrosine kinase (Btk). In mice with ALI, the pulmonary sections demonstrated considerable amelioration of prominent inflammatory changes, such as haemorrhage, pulmonary oedema, and neutrophil infiltration, after bletinib treatment. CONCLUSION AND IMPLICATIONS Bletinib regulates neutrophilic inflammation by inhibiting the SFK-Btk-Vav pathway. Bletinib ameliorates LPS-induced ALI in mice. Further biochemical optimisation of bletinib may be a promising strategy for the development of novel therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Ting-I Kao
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hui Tseng
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yen-Tung Lee
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
5
|
Canino J, Guidetti GF, Galgano L, Vismara M, Minetti G, Torti M, Canobbio I. The proline-rich tyrosine kinase Pyk2 modulates integrin-mediated neutrophil adhesion and reactive oxygen species generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118799. [PMID: 32693110 DOI: 10.1016/j.bbamcr.2020.118799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
Abstract
Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMβ2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.
Collapse
Affiliation(s)
- Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, Italy; Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | | | - Luca Galgano
- Department of Biology and Biotechnology, University of Pavia, Italy; Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Italy.
| |
Collapse
|
6
|
Park HJ, Chi GY, Choi YH, Park SH. The root bark of Morus alba L. regulates tumor-associated macrophages by blocking recruitment and M2 polarization of macrophages. Phytother Res 2020; 34:3333-3344. [PMID: 32677743 DOI: 10.1002/ptr.6783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Tumor-associated macrophages (TAMs) promote tumor growth and metastasis, and are closely related with poor prognosis of cancers. Therefore, TAMs have been an attractive target in cancer therapy. This study investigated whether the root bark of Morus alba L. (MA) regulates TAMs. Methylene chloride extract of MA (MEMA) decreased the migration of RAW264.7 cells and THP-1 macrophages toward cancer cells via inhibition of focal adhesion kinase and Src activity. In addition, MEMA inhibited the phorbol myristate acetate-stimulated secretion of plasminogen activator inhibitor-1 from cancer cells, leading to the decreased chemotaxis of macrophages. Finally, MEMA-suppressed M2 macrophage polarization induced by interleukin (IL)-4/IL-13 or IL-6. MEMA downregulated the mRNA expression of M2 macrophage markers and decreased the phosphorylation of signal transducer and activator of transcription (STAT) 6 and STAT3 in RAW264.7 cells. Suppression of M2 polarization of macrophages by MEMA resulted in the reduced migration of Lewis lung carcinoma cells when the conditioned media from RAW264.7 cells was used as a chemoattractant. Taken together, our results demonstrate that MEMA regulates TAMs by blocking the recruitment of macrophages into tumor microenvironments and by inhibiting M2 polarization of macrophages.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
7
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
8
|
Tsai YF, Chen CY, Chang WY, Syu YT, Hwang TL. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic Biol Med 2019; 145:67-77. [PMID: 31550527 DOI: 10.1016/j.freeradbiomed.2019.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023]
Abstract
The natural stilbenoid, Resveratrol (RSV; 3,5,4'-trihydroxystilbene) has been shown to have beneficial effects on inflammatory diseases as well as cancer, neurodegenerative diseases, and cardiovascular disorders. The underlying mechanism by which RSV affects neutrophil activation has yet to be fully elucidated. In this study, we tested the hypothesis that RSV modulates the inflammatory activities of formyl-Met-Leu-Phe-stimulated human neutrophils. We employed a well-established isolated-neutrophil model to investigate the effects of RSV on neutrophil functions and the underlying mechanism of signaling transduction. The lipopolysaccharide-induced ALI murine model was employed to evaluate the therapeutic effects of RSV. Experiment results demonstrate that RSV reduces respiratory burst, degranulation, integrin expression, and cell adhesion in activated neutrophils in dose-dependent manners. RSV inhibited phosphorylation of Src family kinases (SFKs) and reduced their enzymatic activities. Moreover, RSV and a selective inhibitor of SFKs (PP2) reduced the phosphorylation of Bruton's tyrosine kinase and Vav. There results indicated that the inhibitory effects of RSV are mediated through the inhibition of the SFKs-Btk-Vav pathway. This study also revealed that RSV attenuates endotoxin-induced lung injury. We surmise that the therapeutic effects of RSV on ALI may derive from its anti-neutrophilic inflammation function and free radical-scavenging effects.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
9
|
Xiao X, Yang Y, Mao B, Cheng CY, Ni Y. Emerging role for SRC family kinases in junction dynamics during spermatogenesis. Reproduction 2019; 157:R85-R94. [PMID: 30608903 PMCID: PMC6602873 DOI: 10.1530/rep-18-0440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
SRC family kinases (SFKs) are known regulators of multiple cellular events, including cell movement, differentiation, proliferation, survival and apoptosis. SFKs are expressed virtually by all mammalian cells. They are non-receptor protein kinases that phosphorylate a variety of cellular proteins on tyrosine, leading to the activation of protein targets in response to environmental stimuli. Among SFKs, SRC, YES and FYN are the ubiquitously expressed and best studied members. In fact, SRC, the prototypical SFK, was the first tyrosine kinase identified in mammalian cells. Studies have shown that SFKs are regulators of cell junctions, and function in endocytosis and membrane trafficking to regulate junction restructuring events. Herein, we briefly summarize the recent findings in the field regarding the role of SFKs in the testis in regulating spermatogenesis, particularly in Sertoli-Sertoli and Sertoli-germ cell adhesion. While it is almost 50 years since the identification of the oncogene v-Src encoded by Rous sarcoma transforming virus, the understanding of SFK involvement during spermatogenesis in the testis remains far behind that in other epithelia and tissues. The goal of this review is to bridge this gap.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | - Yue Yang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | - Baiping Mao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C. Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| |
Collapse
|
10
|
Agarwal P, Cole LK, Chandrakumar A, Hauff KD, Ravandi A, Dolinsky VW, Hatch GM. Phosphokinome Analysis of Barth Syndrome Lymphoblasts Identify Novel Targets in the Pathophysiology of the Disease. Int J Mol Sci 2018; 19:ijms19072026. [PMID: 30002286 PMCID: PMC6073761 DOI: 10.3390/ijms19072026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Barth Syndrome (BTHS) is a rare X-linked genetic disease in which the specific biochemical deficit is a reduction in the mitochondrial phospholipid cardiolipin (CL) as a result of a mutation in the CL transacylase tafazzin. We compared the phosphokinome profile in Epstein-Barr-virus-transformed lymphoblasts prepared from a BTHS patient with that of an age-matched control individual. As expected, mass spectrometry analysis revealed a significant (>90%) reduction in CL in BTHS lymphoblasts compared to controls. In addition, increased oxidized phosphatidylcholine (oxPC) and phosphatidylethanolamine (PE) levels were observed in BTHS lymphoblasts compared to control. Given the broad shifts in metabolism associated with BTHS, we hypothesized that marked differences in posttranslational modifications such as phosphorylation would be present in the lymphoblast cells of a BTHS patient. Phosphokinome analysis revealed striking differences in the phosphorylation levels of phosphoproteins in BTHS lymphoblasts compared to control cells. Some phosphorylated proteins, for example, adenosine monophosphate kinase, have been previously validated as bonafide modified phosphorylation targets observed in tafazzin deficiency or under conditions of reduced cellular CL. Thus, we report multiple novel phosphokinome targets in BTHS lymphoblasts and hypothesize that alteration in the phosphokinome profile may provide insight into the pathophysiology of BTHS and potential therapeutic targets.
Collapse
Affiliation(s)
- Prasoon Agarwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Abin Chandrakumar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Clinical Research Unit, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Kristin D Hauff
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Amir Ravandi
- Physiology and Pathophysiology, University of Manitoba, St. Boniface Hospital Research Center, Winnipeg, MB R2H 2A6, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
11
|
Xiong C, Zang X, Zhou X, Liu L, Masucci MV, Tang J, Li X, Liu N, Bayliss G, Zhao TC, Zhuang S. Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion. Oncotarget 2018; 8:31238-31253. [PMID: 28415724 PMCID: PMC5458204 DOI: 10.18632/oncotarget.16114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lirong Liu
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Monica V Masucci
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jinhua Tang
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuezhu Li
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Na Liu
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Boston University, Providence, RI, 02908, USA
| | - Shougang Zhuang
- Departments of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
12
|
Zhang C, Hou L, Yang J, Che Y, Sun F, Li H, Wang Q. 2,5-Hexanedione induces dopaminergic neurodegeneration through integrin α Mβ2/NADPH oxidase axis-mediated microglial activation. Cell Death Dis 2018; 9:60. [PMID: 29352205 PMCID: PMC5833449 DOI: 10.1038/s41419-017-0091-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Recent study demonstrated that chronic exposure to solvents increases the risk of Parkinson's disease (PD), the second most common neurodegenerative disorder characterized by progressive dopaminergic neurodegeneration in the substantia nigra (SN). n-Hexane, a widely used organic solvent, displays central-peripheral neurotoxicity, which is mainly mediated by its active metabolite, 2,5-hexanedione (HD). However, whether HD exposure contributes to PD remains unclear. In this study, we found that rats exposed to HD displayed progressive dopaminergic neurodegeneration in the nigrostriatal system. Microglial activation was also detected in HD-treated rats, which occurred prior to degeneration of dopaminergic neurons. Moreover, depletion of microglia markedly reduced HD-induced dopaminergic neurotoxicity. Mechanistic study revealed an essential role of microglial integrin αMβ2-NADPH oxidase (NOX2) axis in HD-elicited neurotoxicity. HD activated NOX2 by inducing membrane translocation of NOX2 cytosolic subunit, p47phox. Integrin αMβ2 was critical for HD-induced NOX2 activation since inhibition or genetic deletion of αMβ2 attenuated NOX2-generated superoxide and p47phox membrane translocation in response to HD. Src and Erk, two downstream signals of αMβ2, were recognized to bridge HD/αMβ2-mediated NOX2 activation. Finally, pharmacological inhibition of αMβ2-NOX2 axis attenuated HD-induced microglial activation and dopaminergic neurodegeneration. Our findings revealed that HD exposure damaged nigrostriatal dopaminergic system through αMβ2-NOX2 axis-mediated microglial activation, providing, for the first time, experimental evidence for n-hexane exposure contributing to the etiology of PD.
Collapse
Affiliation(s)
- Cong Zhang
- 0000 0000 9558 1426grid.411971.bSchool of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, 116044 China
| | - Liyan Hou
- 0000 0000 9558 1426grid.411971.bSchool of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, 116044 China
| | - Jie Yang
- 0000 0000 9558 1426grid.411971.bSchool of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, 116044 China
| | - Yuning Che
- 0000 0000 9558 1426grid.411971.bSchool of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, 116044 China
| | - Fuqiang Sun
- 0000 0000 9558 1426grid.411971.bSchool of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, 116044 China
| | - Huihua Li
- 0000 0000 9558 1426grid.411971.bSchool of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, 116044 China ,grid.452435.1Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingshan Wang
- 0000 0000 9558 1426grid.411971.bSchool of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian, 116044 China
| |
Collapse
|
13
|
Swaim CD, Scott AF, Canadeo LA, Huibregtse JM. Extracellular ISG15 Signals Cytokine Secretion through the LFA-1 Integrin Receptor. Mol Cell 2017; 68:581-590.e5. [PMID: 29100055 DOI: 10.1016/j.molcel.2017.10.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
ISG15 is a ubiquitin-like protein that functions in innate immunity both as an intracellular protein modifier and as an extracellular signaling molecule that stimulates IFN-γ secretion. The extracellular function, important for resistance to mycobacterial disease, has remained biochemically uncharacterized. We have established an NK-92 cell-based assay for IFN-γ release, identified residues critical for ISG15 signaling, and identified the cell surface receptor as LFA-1 (CD11a/CD18; αLβ2 integrin). LFA-1 inhibition blocked IFN-γ secretion, splenocytes from CD11a-/- mice did not respond to ISG15, and ISG15 bound directly to the αI domain of CD11a in vitro. ISG15 also enhanced secretion of IL-10, indicating a broader role for ISG15 in cytokine signaling. ISG15 engagement of LFA-1 led to the activation of SRC family kinases (SFKs) and SFK inhibition blocked cytokine secretion. These findings establish the molecular basis of the extracellular function of ISG15 and the initial outside-in signaling events that drive ISG15-dependent cytokine secretion.
Collapse
Affiliation(s)
- Caleb D Swaim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ariella F Scott
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A Canadeo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Chen CL, Chien SC, Leu TH, Harn HIC, Tang MJ, Hor LI. Vibrio vulnificus MARTX cytotoxin causes inactivation of phagocytosis-related signaling molecules in macrophages. J Biomed Sci 2017; 24:58. [PMID: 28822352 PMCID: PMC5563386 DOI: 10.1186/s12929-017-0368-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio vulnificus is a marine bacterial species that causes opportunistic infections manifested by serious skin lesions and fulminant septicemia in humans. We have previously shown that the multifunctional autoprocessing repeats in toxin (MARTXVv1) of a biotype 1 V. vulnificus strain promotes survival of this organism in the host by preventing it from engulfment by the phagocytes. The purpose of this study was to further explore how MARTXVv1 inhibits phagocytosis of this microorganism by the macrophage. Methods We compared between a wild-type V. vulnificus strain and its MARTXVv1-deficient mutant for a variety of phagocytosis-related responses, including morphological change and activation of signaling molecules, they induced in the macrophage. We also characterized a set of MARTXVv1 domain-deletion mutants to define the regions associated with antiphagocytosis activity. Results The RAW 264.7 cells and mouse peritoneal exudate macrophages underwent cell rounding accompanied by F-actin disorganization in the presence of MARTXVv1. In addition, phosphorylation of some F-actin rearrangement-associated signaling molecules, including Lyn, Fgr and Hck of the Src family kinases (SFKs), focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), phosphoinositide 3-kinase (PI3K) and Akt, but not p38, was decreased. By using specific inhibitors, we found that these kinases were all involved in the phagocytosis of MARTXVv1-deficient mutant in an order of SFKs-FAK/Pyk2-PI3K-Akt. Deletion of the effector domains in the central region of MARTXVv1 could lead to reduced cytotoxicity, depending on the region and size of deletion, but did not affect the antiphagocytosis activity and ability to cause rounding of macrophage. Reduced phosphorylation of Akt was closely associated with inhibition of phagocytosis by the wild-type strain and MARTXVv1 domain-deletion mutants, and expression of the constitutively active Akt, myr-Akt, enhanced the engulfment of these strains by macrophage. Conclusions MARTXVv1 could inactivate the SFKs-FAK/Pyk2-PI3K-Akt signaling pathway in the macrophages. This might lead to impaired phagocytosis of the V. vulnificus-infected macrophage. The majority of the central region of MARTXVv1 is not associated with the antiphagocytosis activity. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0368-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Chun Chien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzeng-Horng Leu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Pharmacology College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
15
|
Baruzzi A, Remelli S, Lorenzetto E, Sega M, Chignola R, Berton G. Sos1 Regulates Macrophage Podosome Assembly and Macrophage Invasive Capacity. THE JOURNAL OF IMMUNOLOGY 2015; 195:4900-12. [PMID: 26447228 DOI: 10.4049/jimmunol.1500579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/03/2015] [Indexed: 12/29/2022]
Abstract
Podosomes are protrusive structures implicated in macrophage extracellular matrix degradation and three-dimensional migration through cell barriers and the interstitium. Podosome formation and assembly are regulated by cytoskeleton remodeling requiring cytoplasmic tyrosine kinases of the Src and the Abl families. Considering that Abl has been reported to phosphorylate the guanine nucleotide exchange factor Sos1, eliciting its Rac-guanine nucleotide exchange factor activity, and Rac regulates podosome formation in myeloid cells and invadopodia formation in cancer cells, we addressed whether Sos1 is implicated in podosome formation and function in macrophages. We found that ectopically expressed Abl or the Src kinase Fgr phosphorylate Sos1, and the Src kinases Hck and Fgr are required for Abl and Sos1 phosphorylation and Abl/Sos1 interaction in macrophages. Sos1 localizes to podosomes in both murine and human macrophages, and its silencing by small interfering RNA results in disassembly of murine macrophage podosomes and a marked reduction of GTP loading on Rac. Matrix degradative capacity, three-dimensional migration through Matrigel, and transmigration through an endothelial cell monolayer of Sos1-silenced macrophages were inhibited. In addition, Sos1- or Abl-silenced macrophages, or macrophages treated with the selective Abl inhibitor imatinib mesylate had a reduced capability to migrate into breast tumor spheroids, the majority of cells remaining at the margin and the outer layers of the spheroid itself. Because of the established role of Src and Abl kinases to regulate also invadopodia formation in cancer cells, our findings suggest that targeting the Src/Abl/Sos1/Rac pathway may represent a double-edged sword to control both cancer-invasive capacities and cancer-related inflammation.
Collapse
Affiliation(s)
- Anna Baruzzi
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy
| | - Sabrina Remelli
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy
| | - Erika Lorenzetto
- Department of Neurological and Movement Sciences, University of Verona, 37134 Verona, Italy; and
| | - Michela Sega
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Giorgio Berton
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
16
|
Medina I, Cougoule C, Drechsler M, Bermudez B, Koenen RR, Sluimer J, Wolfs I, Döring Y, Herias V, Gijbels M, Bot I, de Jager S, Weber C, Cleutjens J, van Berkel TJ, Sikkink KJ, Mócsai A, Maridonneau-Parini I, Soehnlein O, Biessen EA. Hck/Fgr Kinase Deficiency Reduces Plaque Growth and Stability by Blunting Monocyte Recruitment and Intraplaque Motility. Circulation 2015; 132:490-501. [PMID: 26068045 PMCID: PMC4535360 DOI: 10.1161/circulationaha.114.012316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 06/04/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Leukocyte migration is critical for the infiltration of monocytes and accumulation of monocyte-derived macrophages in inflammation. Considering that Hck and Fgr are instrumental in this process, their impact on atherosclerosis and on lesion inflammation and stability was evaluated. METHODS AND RESULTS Hematopoietic Hck/Fgr-deficient, LDLr(-/-) chimeras, obtained by bone marrow transplantation, had smaller but, paradoxically, less stable lesions with reduced macrophage content, overt cap thinning, and necrotic core expansion as the most prominent features. Despite a Ly6C(high)-skewed proinflammatory monocyte phenotype, Hck/Fgr deficiency led to disrupted adhesion of myeloid cells to and transmigration across endothelial monolayers in vitro and atherosclerotic plaques in vivo, as assessed by intravital microscopy, flow cytometry, and histological examination of atherosclerotic arteries. Moreover, Hck/Fgr-deficient macrophages showed blunted podosome formation and mesenchymal migration capacity. In consequence, transmigrated double-knockout macrophages were seen to accumulate in the fibrous cap, potentially promoting its focal erosion, as observed for double-knockout chimeras. CONCLUSIONS The hematopoietic deficiency of Hck and Fgr led to attenuated atherosclerotic plaque formation by abrogating endothelial adhesion and transmigration; paradoxically, it also promoted plaque instability by causing monocyte subset imbalance and subendothelial accumulation, raising a note of caution regarding src kinase-targeted intervention in plaque inflammation.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Adhesion
- Cell Surface Extensions/ultrastructure
- Cells, Cultured
- Chemotaxis, Leukocyte/physiology
- Endothelial Cells
- Extracellular Matrix Proteins/metabolism
- Female
- Gene Expression Profiling
- Humans
- Leukocyte Rolling
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/pathology
- Phagocytosis
- Plaque, Atherosclerotic/enzymology
- Plaque, Atherosclerotic/pathology
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-hck/deficiency
- Proto-Oncogene Proteins c-hck/genetics
- Proto-Oncogene Proteins c-hck/physiology
- Radiation Chimera
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/physiology
- Transendothelial and Transepithelial Migration
- src-Family Kinases/deficiency
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Indira Medina
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Céline Cougoule
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Maik Drechsler
- Institute for Prevention of Cardiovascular Prevention (IPEK), LMU Munich, Germany
| | - Beatriz Bermudez
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Pharmacology, School of Pharmacy, University of Seville, Sevilla, Spain
| | - Rory R. Koenen
- Institute for Prevention of Cardiovascular Prevention (IPEK), LMU Munich, Germany
| | - Judith Sluimer
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ine Wolfs
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yvonne Döring
- Institute for Prevention of Cardiovascular Prevention (IPEK), LMU Munich, Germany
| | - Veronica Herias
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marjon Gijbels
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Saskia de Jager
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Christian Weber
- Institute for Prevention of Cardiovascular Prevention (IPEK), LMU Munich, Germany
| | - Jack Cleutjens
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Theo J.C. van Berkel
- Division of Biopharmaceutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Kees-Jan Sikkink
- Department of Vascular Surgery, Orbis Hospital Sittard, The Netherlands
| | - Atilla Mócsai
- Department of Physiology; Semmelweis University, Budapest, Hungary
| | - Isabelle Maridonneau-Parini
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Oliver Soehnlein
- Institute for Prevention of Cardiovascular Prevention (IPEK), LMU Munich, Germany
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, the Netherlands
- German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Erik A.L. Biessen
- Experimental Vascular Pathology group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
17
|
Mazzi P, Caveggion E, Lapinet-Vera JA, Lowell CA, Berton G. The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines. THE JOURNAL OF IMMUNOLOGY 2015; 195:2383-95. [PMID: 26232427 DOI: 10.4049/jimmunol.1402011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Myeloid leukocyte recruitment into the lung in response to environmental cues represents a key factor for the induction of lung damage. We report that Hck- and Fgr-deficient mice show a profound impairment in early recruitment of neutrophils and monocytes in response to bacterial LPS. The reduction in interstitial and airway neutrophil recruitment was not due to a cell-intrinsic migratory defect, because Hck- and Fgr-deficient neutrophils were attracted to the airways by the chemokine CXCL2 as wild type cells. However, early accumulation of chemokines and TNF-α in the airways was reduced in hck(-/-)fgr(-/-) mice. Considering that chemokine and TNF-α release into the airways was neutrophil independent, as suggested by a comparison between control and neutrophil-depleted mice, we examined LPS-induced chemokine secretion by neutrophils and macrophages in wild type and mutant cells. Notably, mutant neutrophils displayed a marked deficit in their capability to release the chemokines CXCL1, CXCL2, CCL3, and CCL4 and TNF-α in response to LPS. However, intracellular accumulation of these chemokines and TNF-α, as well as secretion of a wide array of cytokines, including IL-1α, IL-1β, IL-6, and IL-10, by hck(-/-)fgr(-/-) neutrophils was normal. Intriguingly, secretion of CXCL1, CXCL2, CCL2, CCL3, CCL4, RANTES, and TNF-α, but not IL-1α, IL-1β, IL-6, IL-10, and GM-CSF, was also markedly reduced in bone marrow-derived macrophages. Consistently, the Src kinase inhibitors PP2 and dasatinib reduced chemokine secretion by neutrophils and bone marrow-derived macrophages. These findings identify Src kinases as a critical regulator of chemokine secretion in myeloid leukocytes during lung inflammation.
Collapse
Affiliation(s)
- Paola Mazzi
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Elena Caveggion
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Josè A Lapinet-Vera
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Giorgio Berton
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| |
Collapse
|
18
|
Tauzin S, Starnes TW, Becker FB, Lam PY, Huttenlocher A. Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. ACTA ACUST UNITED AC 2015; 207:589-98. [PMID: 25488917 PMCID: PMC4259815 DOI: 10.1083/jcb.201408090] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox and Src family kinase signaling in tissue adjacent to a wound coordinates initial attraction of leukocytes and the subsequent repulsion of neutrophils following contact with macrophages to resolve inflammation. Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage in zebrafish and found that macrophages contact neutrophils and induce resolution via neutrophil reverse migration. We found that redox-SFK signaling through p22phox and Yes-related kinase is necessary for macrophage wound attraction and the subsequent reverse migration of neutrophils. Importantly, macrophage-specific reconstitution of p22phox revealed that macrophage redox signaling is necessary for neutrophil reverse migration. Thus, redox-SFK signaling in adjacent tissues is essential for coordinated leukocyte wound attraction and repulsion through pathways that involve contact-mediated guidance.
Collapse
Affiliation(s)
- Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Taylor W Starnes
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Barros Becker
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pui-ying Lam
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
19
|
Cytoskeletal rearrangement and Src and PI-3K-dependent Akt activation control GABA(B)R-mediated chemotaxis. Cell Signal 2015; 27:1178-1185. [PMID: 25725285 DOI: 10.1016/j.cellsig.2015.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/01/2015] [Accepted: 02/15/2015] [Indexed: 01/13/2023]
Abstract
The γ-amino butyric acid (GABA) type B receptors (GABA(B)R) function as chemoattractant receptors in response to GABA(B)R agonists in human neutrophils. The goal of this study was to define signaling mechanisms regulating GABA(B)R-mediated chemotaxis and cytoskeletal rearrangement. In a proteomic study we identified serine/threonine kinase Akt, tyrosine kinases Src and Pyk2, microtubule regulator kinesin and microtubule affinity-regulating kinase (MARK) co-immunoprecipitating with GABA(B)R. To define the contributions of these candidate signaling events in GABA(B)R-mediated chemotaxis, we used rat basophilic leukemic cells (RBL-2H3 cells) stably transfected with human GABA(B1b) and GABA(B2) receptors. The GABA(B)R agonist baclofen induced Akt phosphorylation and chemotaxis by binding to its specific GABA(B)R since pretreatment of cells with CGP52432, a GABA(B)R antagonist, blocked such effects. Moreover, baclofen induced Akt phosphorylation was shown to be dependent upon PI-3K and Src kinases. Baclofen failed to stimulate actin polymerization in suspended RBL cells unless exposed to a baclofen gradient. However, baclofen stimulated both actin and tubulin polymerization in adherent RBL-GABA(B)R cells. Blockade of actin and tubulin polymerization by treatment of cells with cytochalasin D or nocodazole respectively, abolished baclofen-mediated chemotaxis. Furthermore, baclofen stimulated Pyk2 and STAT3 phosphorylation, both known regulators of cell migration. In conclusion, GABA(B)R stimulation promotes chemotaxis in RBL cells which is dependent on signaling via PI3-K/Akt, Src kinases and on rearrangement of both microtubules and actin cytoskeleton. These data define mechanisms of GABA(B)R-mediated chemotaxis which may potentially be used to therapeutically regulate cellular response to injury and disease.
Collapse
|
20
|
Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2014; 256:222-39. [PMID: 24117824 DOI: 10.1111/imr.12118] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are best known for their protective search and destroy functions against invading microorganisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin-rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation-promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures.
Collapse
Affiliation(s)
- Pablo Rougerie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
21
|
Park H, Dovas A, Hanna S, Lastrucci C, Cougoule C, Guiet R, Maridonneau-Parini I, Cox D. Tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) by Hck regulates macrophage function. J Biol Chem 2014; 289:7897-906. [PMID: 24482227 DOI: 10.1074/jbc.m113.509497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have shown previously that tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) is important for diverse macrophage functions including phagocytosis, chemotaxis, podosome dynamics, and matrix degradation. However, the specific tyrosine kinase mediating WASP phosphorylation is still unclear. Here, we provide evidence that Hck, which is predominantly expressed in leukocytes, can tyrosine phosphorylate WASP and regulates WASP-mediated macrophage functions. We demonstrate that tyrosine phosphorylation of WASP in response to stimulation with CX3CL1 or via Fcγ receptor ligation were severely reduced in Hck(-/-) bone marrow-derived macrophages (BMMs) or in RAW/LR5 macrophages in which Hck expression was silenced using RNA-mediated interference (Hck shRNA). Consistent with reduced WASP tyrosine phosphorylation, phagocytosis, chemotaxis, and matrix degradation are reduced in Hck(-/-) BMMs or Hck shRNA cells. In particular, WASP phosphorylation was primarily mediated by the p61 isoform of Hck. Our studies also show that Hck and WASP are required for passage through a dense three-dimensional matrix and transendothelial migration, suggesting that tyrosine phosphorylation of WASP by Hck may play a role in tissue infiltration of macrophages. Consistent with a role for this pathway in invasion, WASP(-/-) BMMs do not invade into tumor spheroids with the same efficiency as WT BMMs and cells expressing phospho-deficient WASP have reduced ability to promote carcinoma cell invasion. Altogether, our results indicate that tyrosine phosphorylation of WASP by Hck is required for proper macrophage functions.
Collapse
Affiliation(s)
- Haein Park
- From the Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 and
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Go A, Ryu YK, Lee JW, Moon EY. Cell motility is decreased in macrophages activated by cancer cell-conditioned medium. Biomol Ther (Seoul) 2014; 21:481-6. [PMID: 24404340 PMCID: PMC3879921 DOI: 10.4062/biomolther.2013.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents.
Collapse
Affiliation(s)
- Ahreum Go
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Yun-Kyoung Ryu
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| |
Collapse
|
23
|
Shelef MA, Tauzin S, Huttenlocher A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 2013; 256:269-81. [PMID: 24117827 PMCID: PMC4117680 DOI: 10.1111/imr.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a resurgence of interest in the neutrophil's role in autoimmune disease. Classically considered an early responder that dies at the site of inflammation, new findings using live imaging of embryonic zebrafish and other modalities suggest that neutrophils can reverse migrate away from sites of inflammation. These 'inflammation-sensitized' neutrophils, as well as the neutrophil extracellular traps and other products made by neutrophils in general, may have many implications for autoimmunity. Here, we review what is known about the role of neutrophils in three different autoimmune diseases: rheumatoid arthritis, systemic lupus erythematosus, and small vessel vasculitis. We then highlight recent findings related to several cytoskeletal regulators that guide neutrophil recruitment including Lyn, Rac2, and SHIP. Finally, we discuss how our improved understanding of the molecules that control neutrophil chemotaxis may impact our knowledge of autoimmunity.
Collapse
Affiliation(s)
- Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin – Madison, Madison, WI
| | - Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| |
Collapse
|
24
|
Ben-Zimra M, Bachelet I, Seaf M, Gleich GJ, Levi-Schaffer F. Eosinophil major basic protein activates human cord blood mast cells primed with fibroblast membranes by integrin-β1. Allergy 2013; 68:1259-68. [PMID: 24112102 DOI: 10.1111/all.12232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Mast cell (MC) - eosinophil (Eos) activating cross-talk might be critical for the severity and chronicity of allergy. Among soluble mediators, eosinophil major basic protein (MBP), a hallmark of allergy, is particularly important because it was shown to activate specific MC subtypes. We previously demonstrated that MBP activates IgE-desensitized rat MC and human lung and cord blood-derived MC (CBMC) after priming with fibroblast membranal stem cell factor. However, a distinct mechanism for this activation was missing. Therefore, we aimed to investigate it. METHODS Major basic protein-1 activation of CBMC primed with fibroblast-derived membranes (FBM) was measured by β-hexosaminidase and tryptase release. Chemical cross-linking followed by micrometric flow cytometry probed direct interactions. Antibodies neutralized integrin-β1 and recognized its active form. Pertussis toxin (Ptx) was used to decrease integrin-β1 active form expression. Hematopoietic cell kinase (Hck) was identified by immunoprecipitation (IP) and silenced by siRNA. RESULTS Major basic protein-1-induced CBMC activation is mediated partly by MBP1-integrin-β1 interaction on the MC surface. FBM prime CBMC via a G protein, as confirmed by Ptx, to shift integrin-β1 to its active form. Following MBP1 binding, integrin-β1 binds Hck that further transduces the activation signal. MC priming with FBM leads to up-regulation in Hck protein level. MC integrin-β1 neutralization inhibits MBP1-induced activation and uptake. Hck silencing results with reduced MBP1-induced activation. CONCLUSIONS Fibroblast-derived membranes, integrin-β1, and Hck are involved in MBP1-induced activation of CBMC and therefore represent a distinct mechanism for this activation. This finding might implicate integrin-β1 and Hck as targets for decreasing MC - Eos activating cross-talk in allergy.
Collapse
Affiliation(s)
- M. Ben-Zimra
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| | - I. Bachelet
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| | - M. Seaf
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| | - G. J. Gleich
- Department of Dermatology; School of Medicine; The University of Utah; Salt Lake City; UT; USA
| | - F. Levi-Schaffer
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| |
Collapse
|
25
|
Zhang J. Transcriptome Analysis Reveals Novel Entry Mechanisms and a Central Role of SRC in Host Defense during High Multiplicity Mycobacterial Infection. PLoS One 2013; 8:e65128. [PMID: 23824656 PMCID: PMC3688827 DOI: 10.1371/journal.pone.0065128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/22/2013] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) infects an estimated one-third of the global population and is one of the main causes of mortality from an infectious agent. The characteristics of macrophages challenged by MTB with a high multiplicity of infection (MOI), which mimics both clinical disseminated infection and granuloma formation, are distinct from macrophages challenged with a low MOI. To better understand the cross talk between macrophage host cells and mycobacteria, we compared the transcription patterns of mouse macrophages infected with bacille Calmette-Guérin, H37Ra and M. smegmatis. Attention was focused on the changes in the abundance of transcripts related to immune system function. From the results of a transcriptome profiling study with a high mycobacterial MOI, we defined a pathogen-specific host gene expression pattern. The present study suggests that two integrins, ITGA5 and ITGAV, are novel cell surface receptors mediating mycobacterium entry into macrophages challenged with high MOI. Our results indicate that SRC likely plays a central role in regulating multiple unique signaling pathways activated by MTB infection. The integrated results increase our understanding of the molecular networks behind the host innate immune response and identify important targets that might be useful for the development of tuberculosis therapy.
Collapse
Affiliation(s)
- Jay Zhang
- Genomics Research Centre, Griffith Health Institute, Gold Coast Campus, Griffith University, Southport, Queensland, Australia
- * E-mail:
| |
Collapse
|
26
|
Schinwald A, Chernova T, Donaldson K. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 2012; 9:47. [PMID: 23199075 PMCID: PMC3546062 DOI: 10.1186/1743-8977-9-47] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/26/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo. METHODS Nine week old female C57BL/6 strain mice were exposed to AgNW and controls via pharyngeal aspiration. The dose used in this study was equalised to fibre number and based on 50 μg/ mouse for AgNW(14). To examine macrophage migration in vitro a wound healing assay was used. An artificial wound was created in a confluent layer of bone marrow derived macrophages by scraping with a pipette tip and the number of cells migrating into the wound was monitored microscopically. The dose was equalised for fibre number and based on 2.5 μg/cm(2) for AgNW(14). RESULTS Aspiration of AgNW resulted in a length dependent inflammatory response in the lungs with threshold at a fibre length of 14 μm. Shorter fibres including 3, 5 and 10 μm elicited no significant inflammation. Macrophage locomotion was also restricted in a length dependent manner whereby AgNW in the length of ≥5 μm resulted in impaired motility in the wound closure assay. CONCLUSION We demonstrated a 14 μm cut-off length for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm. We previously reported a threshold length of 5 μm for fibre-induced pleural inflammation. This difference in pulmonary and pleural fibre- induced inflammation may be explained by differences in clearance mechanism of deposited fibres from the airspaces compared to the pleural space. Inhibition of macrophage migration at long fibre lengths could account for their well-documented long term retention in the lungs compared to short fibres. Knowledge of the threshold length for acute pulmonary inflammation contributes to hazard identification of nanofibres.
Collapse
Affiliation(s)
- Anja Schinwald
- MRC/University of Edinburgh, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ken Donaldson
- MRC/University of Edinburgh, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
27
|
Schinwald A, Chernova T, Donaldson K. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 2012. [DOI: 10.4710.1186/1743-8977-9-47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo.
Methods
Nine week old female C57BL/6 strain mice were exposed to AgNW and controls via pharyngeal aspiration. The dose used in this study was equalised to fibre number and based on 50 μg/ mouse for AgNW14. To examine macrophage migration in vitro a wound healing assay was used. An artificial wound was created in a confluent layer of bone marrow derived macrophages by scraping with a pipette tip and the number of cells migrating into the wound was monitored microscopically. The dose was equalised for fibre number and based on 2.5 μg/cm2 for AgNW14.
Results
Aspiration of AgNW resulted in a length dependent inflammatory response in the lungs with threshold at a fibre length of 14 μm. Shorter fibres including 3, 5 and 10 μm elicited no significant inflammation. Macrophage locomotion was also restricted in a length dependent manner whereby AgNW in the length of ≥5 μm resulted in impaired motility in the wound closure assay.
Conclusion
We demonstrated a 14 μm cut-off length for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm. We previously reported a threshold length of 5 μm for fibre-induced pleural inflammation. This difference in pulmonary and pleural fibre- induced inflammation may be explained by differences in clearance mechanism of deposited fibres from the airspaces compared to the pleural space. Inhibition of macrophage migration at long fibre lengths could account for their well-documented long term retention in the lungs compared to short fibres. Knowledge of the threshold length for acute pulmonary inflammation contributes to hazard identification of nanofibres.
Collapse
|
28
|
Mouchemore KA, Pixley FJ. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci 2012; 49:49-61. [DOI: 10.3109/10408363.2012.666845] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Duan Y, Learoyd J, Meliton AY, Leff AR, Zhu X. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury. Respir Res 2012; 13:4. [PMID: 22257498 PMCID: PMC3275485 DOI: 10.1186/1465-9921-13-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background Proline-rich tyrosine kinase 2 (Pyk2) is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI) remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1) myeloperoxidase content in lung tissues, 2) vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3) the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and that pharmacological inhibition of Pyk2 might provide a potential therapeutic strategy in the pretreatment for patients at imminent risk of developing acute lung injury.
Collapse
Affiliation(s)
- Yingli Duan
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
30
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
31
|
He Y, Kapoor A, Cook S, Liu S, Xiang Y, Rao CV, Kenis PJA, Wang F. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL-C3G complex and activating Rap1 at the leading edge. J Cell Sci 2011; 124:2153-64. [PMID: 21628423 DOI: 10.1242/jcs.078535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell-extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon G(i)-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL-C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells.
Collapse
Affiliation(s)
- Yuan He
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee SH, Schneider C, Higdon AN, Darley-Usmar VM, Chung CY. Role of iPLA(2) in the regulation of Src trafficking and microglia chemotaxis. Traffic 2011; 12:878-89. [PMID: 21438970 DOI: 10.1111/j.1600-0854.2011.01195.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microglia are immune effector cells in the central nervous system (CNS) and their activation, migration and proliferation play crucial roles in brain injuries and diseases. We examined the role of intracellular Ca(2+) -independent phospholipase A(2) (iPLA(2)) in the regulation of microglia chemotaxis toward ADP. Inhibition of iPLA(2) by 4-bromoenol lactone (BEL) or iPLA(2) knockdown exerted a significant inhibition on phosphatidylinositol-3-kinase (PI3K) activation and chemotaxis. Further examination revealed that iPLA(2) knockdown abrogated Src activation, which is required for PI3K activation and chemotaxis. Colocalization studies showed that cSrc-GFP was retained in the endosomal recycling compartment (ERC) in iPLA(2) knockdown cells, but the addition of arachidonic acid (AA) could restore cSrc trafficking to the plasma membrane by allowing the formation/release of recycling endosomes associated with cSrc-GFP. Using BODIPY-AA, we showed that AA is selectively enriched in recycling endosomes. These results suggest that AA is required for the cSrc trafficking to the plasma membrane by controlling the formation/release of recycling endosomes from the ERC.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | |
Collapse
|
33
|
Kim HS, Han HD, Armaiz-Pena GN, Stone RL, Nam EJ, Lee JW, Shahzad MMK, Nick AM, Lee SJ, Roh JW, Nishimura M, Mangala LS, Bottsford-Miller J, Gallick GE, Lopez-Berestein G, Sood AK. Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 2011; 17:1713-21. [PMID: 21300758 PMCID: PMC3077122 DOI: 10.1158/1078-0432.ccr-10-2081] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Src is an attractive target because it is overexpressed in a number of malignancies, including ovarian cancer. However, the effect of Src silencing on other Src family kinases (SFKs) is not known. We hypothesized that other SFK members could compensate for the lack of Src activity. EXPERIMENTAL DESIGN Cell viability after either Src or Fgr silencing was examined in ovarian cancer cell lines by MTT assay. Expression of SFKs after Src silencing in ovarian cancer cells was examined by real-time reverse transcriptase (RT)-PCR. Therapeutic effect of in vivo Src and/or Fgr silencing was examined using siRNA incorporated into chitosan nanoparticles (siRNA/CH-NP). Microvessel density, cell proliferation, and apoptosis markers were determined by immunohistochemical staining in ovarian tumor tissues. RESULTS Src silencing enhanced cytotoxicity of docetaxel in both SKOV3ip1 and HeyA8 cells. In addition, Src silencing using siRNA/CH-NP in combination with docetaxel resulted in significant inhibition of tumor growth compared with control siRNA/CH-NP (81.8% reduction in SKOV3ip1, P = 0.017; 84.3% reduction in HeyA8, P < 0.005). These effects were mediated by decreased tumor cell proliferation and angiogenesis, and increased tumor cell apoptosis. Next, we assessed the effects of Src silencing on other SFK members in ovarian cancer cell lines. Src silencing resulted in significantly increased Fgr levels. Dual Src and Fgr silencing in vitro resulted in increased apoptosis that was mediated by increased caspase and AKT activity. In addition, dual silencing of Src and Fgr in vivo using siRNA/CH-NP resulted in the greatest reduction in tumor growth compared with silencing of either Src or Fgr alone in the HeyA8 model (68.8%, P < 0.05). CONCLUSIONS This study demonstrates that, in addition to Src, Fgr plays a biologically significant role in ovarian cancer growth and might represent an important target.
Collapse
Affiliation(s)
- Hye-Sun Kim
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Pathology, Cheil General Hospital and Women’s Healthcare Center, Kwandong University College of Medicine, Seoul, Korea 100-380
| | - Hee Dong Han
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center
| | - Guillermo N. Armaiz-Pena
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Rebecca L. Stone
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Eun Ji Nam
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Women’s Cancer Clinic, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Jeong-Won Lee
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea 135-710
| | - Mian M. K. Shahzad
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology and UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792
| | - Alpa M. Nick
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Sun Joo Lee
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics and Gynecology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul, Korea
| | - Ju-Won Roh
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Obstetrics & Gynecology, Dongguk University IIsan Hospital, Goyang, South Korea
| | - Masato Nishimura
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Lingegowda S. Mangala
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- University of Space Research Association, NASA Johnson Space Center, Department of Radiation Biophysics, Houston, TX 77058
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
| | - Gary E. Gallick
- Genitourinary Medical Oncology, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0018-4, Houston, TX 77030
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Cancer Biology, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030
- Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Cancer Biology, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030
- Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center
| |
Collapse
|
34
|
Identification and validation of SRC and phospho-SRC family proteins in circulating mononuclear cells as novel biomarkers for pancreatic cancer. Transl Oncol 2011; 4:83-91. [PMID: 21461171 DOI: 10.1593/tlo.10202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/16/2010] [Accepted: 12/30/2010] [Indexed: 01/21/2023] Open
Abstract
There is an urgent need to develop novel markers of pancreatic cancer to facilitate early diagnosis. Pancreatic carcinoma is characterized by marked stroma formation with a high number of infiltrating tumor-associated macrophages (TAMs) that originate from circulating mononuclear cells (MNCs). We hypothesized that differential analysis of protein expression and phosphorylation in circulating MNCs from healthy nude mice and nude mice bearing orthotopic human pancreatic cancer would identify a surrogate marker of pancreatic cancer. These differences were analyzed by two-dimensional gel electrophoresis followed by Western blot analysis using antibody against phosphorylated tyrosine proteins (pY). Protein and phosphorylated protein spots of interest were identified by mass spectrometry and validated by Western blot analysis as candidate markers for pancreatic cancer. We found that the expression and phosphorylation of Src family proteins were significantly higher in circulating MNCs from mice bearing pancreatic cancer than in circulating MNCs from healthy mice. TAMs in mice with pancreatic tumors also had higher Src family protein expression and phosphorylation than resident macrophages in the pancreas of healthy mice. The expression and phosphorylation of Src family proteins were correlated with tumor weight; however, increased Src expression and phosphorylation also occurred in MNCs from mice with chronic pancreatitis. This is the first report to explore novel pancreatic tumor markers in circulating MNCs. Although the specificity of the marker for pancreatic cancer was low, it could be used to monitor the disease or to select high-risk patients with chronic pancreatitis.
Collapse
|
35
|
Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, Laudenklos S, Konecki K, Klussmann S, Corsini NS, Kleber S, Drost N, Neumann A, Lévi-Strauss M, Brors B, Gretz N, Edler L, Fischer C, Hill O, Thiemann M, Biglari B, Karray S, Martin-Villalba A. CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 2010; 32:240-52. [PMID: 20153221 DOI: 10.1016/j.immuni.2010.01.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/09/2009] [Accepted: 12/10/2009] [Indexed: 10/19/2022]
Abstract
Injury to the central nervous system initiates an uncontrolled inflammatory response that results in both tissue repair and destruction. Here, we showed that, in rodents and humans, injury to the spinal cord triggered surface expression of CD95 ligand (CD95L, FasL) on peripheral blood myeloid cells. CD95L stimulation of CD95 on these cells activated phosphoinositide 3-kinase (PI3K) and metalloproteinase-9 (MMP-9) via recruitment and activation of Syk kinase, ultimately leading to increased migration. Exclusive CD95L deletion in myeloid cells greatly decreased the number of neutrophils and macrophages infiltrating the injured spinal cord or the inflamed peritoneum after thioglycollate injection. Importantly, deletion of myeloid CD95L, but not of CD95 on neural cells, led to functional recovery of spinal injured animals. Our results indicate that CD95L acts on peripheral myeloid cells to induce tissue damage. Thus, neutralization of CD95L should be considered as a means to create a controlled beneficial inflammatory response.
Collapse
Affiliation(s)
- Elisabeth Letellier
- Molecular Neurobiology Unit, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liang W, Kujawski M, Wu J, Lu J, Herrmann A, Loera S, Yen Y, Lee F, Yu H, Wen W, Jove R. Antitumor activity of targeting SRC kinases in endothelial and myeloid cell compartments of the tumor microenvironment. Clin Cancer Res 2010; 16:924-35. [PMID: 20103658 DOI: 10.1158/1078-0432.ccr-09-1486] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Several Src family kinase (SFK) inhibitors have entered clinical trials based on their direct effects against tumor cells. Here, we characterize the effects of targeting Src kinases on the tumor microenvironment and how these effects influence tumor growth. EXPERIMENTAL DESIGN Human cancer cells grown in cell culture or in mice were treated with dasatinib, a small-molecule inhibitor of SFKs. Tumor cell, endothelial cell, and myeloid cell compartments within the tumor microenvironment were analyzed. Primary human endothelial cells and freshly isolated CD11b+/CD11c- myeloid cells from mice were treated with dasatinib in cell culture. Cellular functions and signaling pathways affected by dasatinib were evaluated. RESULTS Dasatinib was not cytotoxic in cell culture against the human cancer cell lines investigated here. However, dasatinib administration in human tumor-bearing mice suppressed tumor growth associated with increased tumor cell apoptosis, decreased microvessel density, and reduced intratumoral CD11b+ myeloid cells. Dasatinib directly inhibited motility and other functions of endothelial and myeloid cells, accompanied by the inhibition of phosphorylation of SFKs and downstream signaling. Tumor-infiltrating myeloid cells were identified as the major source of matrix metalloproteinase (MMP)-9 in the tumor microenvironment. Dasatinib treatment reduced MMP-9 levels in the tumor microenvironment through the simultaneous inhibition of recruitment of MMP9+ myeloid cells and MMP-9 gene expression in tumor-infiltrating myeloid cells. CONCLUSIONS These findings suggest that Src kinase inhibitors such as dasatinib possess a previously unrecognized anticancer mechanism of action by targeting both host-derived endothelial and myeloid cell compartments within the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baruzzi A, Iacobucci I, Soverini S, Lowell CA, Martinelli G, Berton G. c-Abl and Src-family kinases cross-talk in regulation of myeloid cell migration. FEBS Lett 2010; 584:15-21. [PMID: 19903482 DOI: 10.1016/j.febslet.2009.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/28/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Cytoskeleton dynamics are regulated by Src-family tyrosine kinases (SFKs) and c-Abl. We found that the SFK members Hck and c-Fgr regulate tyrosine phosphorylation of c-Abl and c-Abl associates with beta1 integrin-bound Hck or c-Fgr in murine macrophages. Studies with selective inhibitors and cells from SFK-deficient mice showed that c-Abl and SFK regulate migration and activation of the small GTPases Cdc42 and Rac in macrophages. Additionally, human neutrophil chemotactic activity was reduced by c-Abl inhibitors, and neutrophils from chronic myeloid leukaemia patients displayed an increased chemotactic ability. Hence, Src-family kinase and c-Abl cross-talk in the regulation of myeloid cell migration.
Collapse
Affiliation(s)
- Anna Baruzzi
- Department of Pathology, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Cross talk between Smad, MAPK, and actin in the etiology of pulmonary arterial hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:265-78. [PMID: 20204736 DOI: 10.1007/978-1-60761-500-2_17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The gene for the type 2 receptor for the bone morphogenic pathway, BMPR2, is mutated in a large majority of familial pulmonary arterial hypertension (PAH),. However, the mechanisms linking BMPR2 mutation to disease remain obscure. BMPR2 potentially signals through multiple immediate downstream pathways, including Smad, MAPK, LIM domain kinase 1 (LIMK) and dynein, light chain, Tctex-type 1 (TCTEX), v-src sarcoma viral oncogene homolog (SRC), and nuclear factor kappa-B (NFkB). Functional consequences of BMPR2 mutation, largely ascertained from animal models, include a shift from contractile to synthetic phenotype in smooth muscle, probably downstream of Smad signal; alterations in expression of actin organization related genes, possibly related to focal adhesions; alterations in cytokines and inflammatory cell recruitment; increased proliferation and apoptosis; and increased collagen and matrix. A synthesis of the available data suggests that the normal role of BMPR2 in adult animals is to assist in injury repair. BMPR2 is suppressed in injured tissue, which facilitates inflammatory response, shift to a synthetic cellular phenotype, and alterations in migration or permeability of cells in the vascular wall. We thus hypothesize that BMPR2 mutation thus leads to an impaired ability to terminate the injury repair process, leading to strong predisposition to PAH.
Collapse
|
39
|
Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood 2009; 115:1444-52. [PMID: 19897576 DOI: 10.1182/blood-2009-04-218735] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue infiltration of phagocytes exacerbates several human pathologies including chronic inflammations or cancers. However, the mechanisms involved in macrophage migration through interstitial tissues are poorly understood. We investigated the role of Hck, a Src-family kinase involved in the organization of matrix adhesion and degradation structures called podosomes. In Hck(-/-) mice submitted to peritonitis, we found that macrophages accumulated in interstitial tissues and barely reached the peritoneal cavity. In vitro, 3-dimensional (3D) migration and matrix degradation abilities, 2 protease-dependent properties of bone marrow-derived macrophages (BMDMs), were affected in Hck(-/-) BMDMs. These macrophages formed few and undersized podosome rosettes and, consequently, had reduced matrix proteolysis operating underneath despite normal expression and activity of matrix metalloproteases. Finally, in fibroblasts unable to infiltrate matrix, ectopic expression of Hck provided the gain-of-3D migration function, which correlated positively with formation of podosome rosettes. In conclusion, spatial organization of podosomes as large rosettes, proteolytic degradation of extracellular matrix, and 3D migration appeared to be functionally linked and regulated by Hck in macrophages. Hck, as the first protein combining a phagocyte-limited expression with a role in 3D migration, could be a target for new anti-inflammatory and antitumor molecules.
Collapse
|
40
|
Havasi A, Wang Z, Gall JM, Spaderna M, Suri V, Canlas E, Martin JL, Schwartz JH, Borkan SC. Hsp27 inhibits sublethal, Src-mediated renal epithelial cell injury. Am J Physiol Renal Physiol 2009; 297:F760-8. [PMID: 19553351 DOI: 10.1152/ajprenal.00052.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Disruption of cell contact sites in renal epithelial cells contributes to organ dysfunction after ischemia. We hypothesized that heat shock protein 27 (Hsp27), a known cytoprotectant protein, preserves cell architecture and cell contact site function during ischemic stress. To test this hypothesis, renal epithelial cells were subjected to transient ATP depletion, an in vitro model of ischemia-reperfusion injury. Compared with control, selective Hsp27 overexpression significantly preserved cell-cell junction function during metabolic stress as evidenced by reduced stress-mediated redistribution of the adherens junction protein E-cadherin, higher transepithelial electrical resistance, and lower unidirectional flux of lucifer yellow. Hsp27 overexpression also preserved paxillin staining within focal adhesion complexes and significantly decreased cell detachment during stress. Surprisingly, Hsp27, an F-actin-capping protein, only minimally reduced stress induced actin cytoskeleton collapse. In contrast to Hsp27 overexpression, siRNA-mediated knockdown had the opposite effect on these parameters. Since ischemia activates c-Src, a tyrosine kinase that disrupts both cell-cell and cell-substrate interactions, the relationship between Hsp27 and c-Src was examined. Although Hsp27 and c-Src did not coimmunoprecipitate and Hsp27 overexpression failed to inhibit whole cell c-Src activation during injury, manipulation of Hsp27 altered active c-Src accumulation at cell contact sites. Specifically, Hsp27 overexpression reduced, whereas Hsp27 knockdown increased active p-(416)Src detected at contact sites in intact cells as well as in a purified cell membrane fraction. Together, this evidence shows that Hsp27 overexpression prevents sublethal REC injury at cell contact sites possibly by a c-Src-dependent mechanism. Further exploration of the biochemical link between Hsp27 and c-Src could yield therapeutic interventions for ameliorating ischemic renal cell injury and organ dysfunction.
Collapse
Affiliation(s)
- Andrea Havasi
- Renal Section, Boston University, Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Development of a platelet-activating factor antagonist for HIV-1 associated neurocognitive disorders. J Neuroimmunol 2009; 213:47-59. [PMID: 19541372 DOI: 10.1016/j.jneuroim.2009.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 02/07/2023]
Abstract
The neuroregulatory activities of PMS-601, a platelet activating factor antagonist, were investigated in laboratory and animal models of HIV-1 encephalitis (HIVE). For the former, PMS-601 reduced monocyte-derived macrophage pro-inflammatory secretions, multinucleated giant cell (MGC) formation, and neuronal loss independent of antiretroviral responses. PMS-601 treatment of HIVE severe combined immunodeficient mice showed reduced microgliosis, MGCs and neurodegeneration. These observations support the further development of PMS-601 as an adjunctive therapy for HIV-1 associated neurocognitive disorders.
Collapse
|
42
|
Abstract
Integrins are the principal cell adhesion receptors that mediate leukocyte migration and activation in the immune system. These receptors signal bidirectionally through the plasma membrane in pathways referred to as inside-out and outside-in signaling. Each of these pathways is mediated by conformational changes in the integrin structure. Such changes allow high-affinity binding of the receptor with counter-adhesion molecules on the vascular endothelium or extracellular matrix and lead to association of the cytoplasmic tails of the integrins with intracellular signaling molecules. Leukocyte functional responses resulting from outside-in signaling include migration, proliferation, cytokine secretion, and degranulation. Here, we review the key signaling events that occur in the inside-out versus outside-in pathways, highlighting recent advances in our understanding of how integrins are activated by a variety of stimuli and how they mediate a diverse array of cellular responses.
Collapse
Affiliation(s)
- Clare L Abram
- Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California 94143-0451, USA
| | | |
Collapse
|
43
|
Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev 2009; 228:23-40. [PMID: 19290919 DOI: 10.1111/j.1600-065x.2008.00758.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Neutrophil recruitment into inflamed tissue in response to injury or infection is tightly regulated. Reduced neutrophil recruitment can result in a reduced ability to fight invading microorganisms. During inflammation, neutrophils roll along the endothelial wall of postcapillary venules and integrate inflammatory signals. Neutrophil activation by selectins and chemokines regulates integrin adhesiveness. Binding of activated integrins to their counter-receptors on endothelial cells induces neutrophil arrest and firm adhesion. Adherent neutrophils can be further activated to undergo cytoskeletal rearrangement, crawling, transmigration, superoxide production, and respiratory burst. Signaling through G-protein-coupled receptors, selectin ligands, Fc receptors and outside-in signaling through integrins are all involved in neutrophil activation, but their interplay in the multistep process of recruitment is only beginning to emerge. This review provides an overview of signaling in rolling and adherent neutrophils.
Collapse
Affiliation(s)
- Alexander Zarbock
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
45
|
Harb D, Bujold K, Febbraio M, Sirois MG, Ong H, Marleau S. The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation. Cardiovasc Res 2009; 83:42-51. [PMID: 19264766 DOI: 10.1093/cvr/cvp081] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS CD36 has been shown to associate with non-receptor Src kinases to activate mitogen-activated protein kinases and trigger cytoskeletal remodelling, important events in foam cell formation and macrophage migration. Yet, its role in regulating circulating mononuclear phagocyte trafficking to atherosclerotic lesions has not been investigated. The aim of the present study was to investigate the role of CD36 in modulating the recruitment of mononuclear phagocytes to the arterial wall and the associated vascular inflammation, using both pharmacological and genetic approaches. METHODS AND RESULTS Apolipoprotein E-deficient (apoE(-/-)) mice fed a high-fat, high-cholesterol diet were treated daily with a CD36 ligand, EP 80317 (300 microg/kg), or 0.9% NaCl for 6 or 12 weeks. Forty-eight hours before sacrifice, mice were injected iv with (111)Indium-labelled macrophages. A 65% (P < 0.001) reduction of labelled macrophage accumulation at aortic lesions was observed in EP 80317-treated mice, mainly at the level of the aortic arch and iliac arteries, correlating with a 43% reduction of atherosclerotic lesion areas. This was associated with reduced phosphorylation of the focal adhesion kinase Pyk2 following stimulation with oxidized phospholipid in a Src kinase- and CD36-dependent manner. At the vascular level, EP 80317 treatment reduced the expression of pro-inflammatory proteins, including NADPH oxidase, inducible nitric oxide synthase, vascular endothelial cell adhesion molecule-1, and CCL2 chemokine. Plasma IL-6 levels were also reduced by 40% (P < 0.05). In contrast, none of these proteins was modulated in EP 80317-treated apoE/CD36 double knockout (apoE(-/-)/CD36(-/-)) mice. CONCLUSION Our results support a role for CD36 signalling in the regulation of mononuclear phagocyte trafficking to atherosclerotic-prone sites and in the associated vascular wall inflammation.
Collapse
Affiliation(s)
- Diala Harb
- Faculty of Pharmacy, Université de Montréal, Station Centre-Ville, Montréal, QC, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Cell Tissue Res 2008; 335:249-59. [PMID: 18815812 DOI: 10.1007/s00441-008-0682-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 08/19/2008] [Indexed: 01/09/2023]
Abstract
Src family kinases (SFKs) are signaling enzymes that have long been recognized to regulate critical cellular processes such as proliferation, survival, migration, and metastasis. Recently, considerable work has elucidated mechanisms by which SFKs regulate normal and pathologic processes in vascular biology, including endothelial cell proliferation and permeability. Further, when inappropriately activated, SFKs promote pathologic inflammatory processes and tumor metastasis, in part through their effects on the regulation of endothelial monolayer permeability. In this review, we discuss the roles of aberrantly activated SFKs in mediating endothelial permeability in the context of inflammatory states and tumor cell metastasis. We further summarize recent efforts to translate Src-specific inhibitors into therapy for systemic inflammatory conditions and numerous solid organ cancers.
Collapse
|