1
|
Yoon JH, Kim YH, Jeong EY, Lee YH, Byun Y, Shin SS, Park JT. Senescence Rejuvenation through Reduction in Mitochondrial Reactive Oxygen Species Generation by Polygonum cuspidatum Extract: In Vitro Evidence. Antioxidants (Basel) 2024; 13:1110. [PMID: 39334769 PMCID: PMC11429016 DOI: 10.3390/antiox13091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress caused by reactive oxygen species (ROS) is one of the major causes of senescence. Strategies to reduce ROS are known to be important factors in reversing senescence, but effective strategies have not been found. In this study, we screened substances commonly used as cosmetic additives to find substances with antioxidant effects. Polygonum cuspidatum (P. cuspidatum) extract significantly reduced ROS levels in senescent cells. A novel mechanism was discovered in which P. cuspidatum extract reduced ROS, a byproduct of inefficient oxidative phosphorylation (OXPHOS), by increasing OXPHOS efficiency. The reduction in ROS by P. cuspidatum extract restored senescence-associated phenotypes and enhanced skin protection. Then, we identified polydatin as the active ingredient of P. cuspidatum extract that exhibited antioxidant effects. Polydatin, which contains stilbenoid polyphenols that act as singlet oxygen scavengers through redox reactions, increased OXPHOS efficiency and subsequently restored senescence-associated phenotypes. In summary, our data confirmed the effects of P. cuspidatum extract on senescence rejuvenation and skin protection through ROS reduction. This novel finding may be used as a treatment in senescence rejuvenation in clinical and cosmetic fields.
Collapse
Affiliation(s)
- Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Ye Hyang Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Eun Young Jeong
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Song Seok Shin
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
O'Sullivan EA, Wallis R, Mossa F, Bishop CL. The paradox of senescent-marker positive cancer cells: challenges and opportunities. NPJ AGING 2024; 10:41. [PMID: 39277623 PMCID: PMC11401916 DOI: 10.1038/s41514-024-00168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Senescence is an anti-tumour mechanism and hallmark of cancer. Loss or mutation of key senescence effectors, such as p16INK4A, are frequently observed in cancer. Intriguingly, some human tumours are both proliferative and senescent-marker positive (Sen-Mark+). Here, we explore this paradox, focusing on the prognostic consequences and the current challenges in classifying these cells. We discuss future strategies for Sen-Mark+ cell detection together with emerging opportunities to exploit senescence for cancer.
Collapse
Affiliation(s)
- Emily A O'Sullivan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan Wallis
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Federica Mossa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Welter EM, Benavides S, Archer TK, Kosyk O, Zannas AS. Machine learning-based morphological quantification of replicative senescence in human fibroblasts. GeroScience 2024; 46:2425-2439. [PMID: 37985642 PMCID: PMC10828145 DOI: 10.1007/s11357-023-01007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Although aging has been investigated extensively at the organismal and cellular level, the morphological changes that individual cells undergo along their replicative lifespan have not been precisely quantified. Here, we present the results of a readily accessible machine learning-based pipeline that uses standard fluorescence microscope and open access software to quantify the minute morphological changes that human fibroblasts undergo during their replicative lifespan in culture. Applying this pipeline in a widely used fibroblast cell line (IMR-90), we find that advanced replicative age robustly increases (+28-79%) cell surface area, perimeter, number and total length of pseudopodia, and nuclear surface area, while decreasing cell circularity, with phenotypic changes largely occurring as replicative senescence is reached. These senescence-related morphological changes are recapitulated, albeit to a variable extent, in primary dermal fibroblasts derived from human donors of different ancestry, age, and sex groups. By performing integrative analysis of single-cell morphology, our pipeline further classifies senescent-like cells and quantifies how their numbers increase with replicative senescence in IMR-90 cells and in dermal fibroblasts across all tested donors. These findings provide quantitative insights into replicative senescence, while demonstrating applicability of a readily accessible computational pipeline for high-throughput cell phenotyping in aging research.
Collapse
Affiliation(s)
- Emma M Welter
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Sofia Benavides
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Gong GS, Muyayalo KP, Zhang YJ, Lin XX, Liao AH. Flip a coin: cell senescence at the maternal-fetal interface†. Biol Reprod 2023; 109:244-255. [PMID: 37402700 DOI: 10.1093/biolre/ioad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
During pregnancy, cell senescence at the maternal-fetal interface is required for maternal well-being, placental development, and fetal growth. However, recent reports have shown that aberrant cell senescence is associated with multiple pregnancy-associated abnormalities, such as preeclampsia, fetal growth restrictions, recurrent pregnancy loss, and preterm birth. Therefore, the role and impact of cell senescence during pregnancy requires further comprehension. In this review, we discuss the principal role of cell senescence at the maternal-fetal interface, emphasizing its "bright side" during decidualization, placentation, and parturition. In addition, we highlight the impact of its deregulation and how this "dark side" promotes pregnancy-associated abnormalities. Furthermore, we discuss novel and less invasive therapeutic practices associated with the modulation of cell senescence during pregnancy.
Collapse
Affiliation(s)
- Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Kahindo P Muyayalo
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D.R. Congo
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
5
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
6
|
Lee YH, Kuk MU, So MK, Song ES, Lee H, Ahn SK, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040934. [PMID: 37107309 PMCID: PMC10136354 DOI: 10.3390/antiox12040934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective therapeutic strategies for the treatment of aging and age-related diseases through the regulation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Kuk MU, Lee H, Song ES, Lee YH, Park JY, Jeong S, Kwon HW, Byun Y, Park SC, Park JT. Functional restoration of lysosomes and mitochondria through modulation of AKT activity ameliorates senescence. Exp Gerontol 2023; 173:112091. [PMID: 36657533 DOI: 10.1016/j.exger.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
Senescence is a phenomenon defined by alterations in cellular organelles and is the primary cause of aging and aging-related diseases. Recent studies have shown that oncogene-induced senescence is driven by activation of serine/threonine protein kinases (AKT1, AKT2 and AKT3). In this study, we evaluated twelve AKT inhibitors and revealed GDC0068 as a potential agent to ameliorate senescence. Senescence-ameliorating effect was evident from the finding that GDC0068 yielded lysosomal functional recovery as observed by reduction in lysosomal mass and induction in autophagic flux. Furthermore, GDC0068-mediated restoration of lysosomal function activated the removal of dysfunctional mitochondria, resulting in restoration of mitochondrial function. Together, our findings revealed a unique mechanism by which senescence is recovered by functional restoration of lysosomes and mitochondria through modulation of AKT activity.
Collapse
Affiliation(s)
- Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Subin Jeong
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju, Republic of Korea.
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
8
|
Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:115-158. [PMID: 36707199 DOI: 10.1016/bs.apcsb.2022.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular senescence was first described as a state characterized by telomere shortening, resulting in limiting cell proliferation in aging. Apart from this type of senescence, which is called replicative senescence, other senescence types occur after exposure to different stress factors. One of these types of senescence induced after adjuvant therapy (chemotherapy and radiotherapy) is called therapy-induced senescence. The treatment with chemotherapeutics induces cellular senescence in normal and cancer cells in the tumor microenvironment. Thus therapy-induced senescence in the cancer microenvironment is accepted one of the drivers of tumor progression. Recent studies have revealed that senescence-associated secretory phenotype induction has roles in pathological processes such as inducing epithelial-mesenchymal transition and promoting tumor vascularization. Thus senolytic drugs that specifically kill senescent cells and senomorphic drugs that inhibit the secretory activity of senescent cells are seen as a new approach in cancer treatment. Developing and discovering new senotherapeutic agents targeting senescent cells is also gaining importance. In this review, we attempt to summarize the signaling pathways regarding the metabolism, cell morphology, and organelles of the senescent cell. Furthermore, we also reviewed the effects of SASP in the cancer microenvironment and the senotherapeutics that have the potential to be used as adjuvant therapy in cancer treatment.
Collapse
|
9
|
Li J, Bi Z, Wang L, Xia Y, Xie Y, Liu Y. Recent Advances in Strategies for Imaging Detection and Intervention of Cellular Senescence. Chembiochem 2023; 24:e202200364. [PMID: 36163425 DOI: 10.1002/cbic.202200364] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stable cell cycle arrest state that can be triggered by a wide range of intrinsic or extrinsic stresses. Increased burden of senescent cells in various tissues is thought to contribute to aging and age-related diseases. Thus, the detection and interventions of senescent cells are critical for longevity and treatment of disease. However, the highly heterogeneous feature of senescence makes it challenging for precise detection and selective clearance of senescent cells in different age-related diseases. To address this issue, considerable efforts have been devoted to developing senescence-targeting molecular theranostic strategies, based on the potential biomarkers of cellular senescence. Herein, we review recent advances in the field of anti-senescence research and highlight the specific visualization and elimination of senescent cells. Additionally, the challenges in this emerging field are outlined.
Collapse
Affiliation(s)
- Jili Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
10
|
Park JY, Lee H, Song ES, Lee YH, Kuk MU, Ko G, Kwon HW, Byun Y, Park JT. Restoration of Lysosomal and Mitochondrial Function Through p38 Mitogen-Activated Protein Kinase Inhibition Ameliorates Senescence. Rejuvenation Res 2022; 25:291-299. [PMID: 36205578 DOI: 10.1089/rej.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncogene-induced senescence (OIS), characterized by irreversible cell cycle arrest by oncogene activation, plays an important role in the pathogenesis of aging and age-related diseases. Recent research indicates that OIS is driven by activation of mitogen-activated protein kinase (MAPK). However, it is not apparent whether MAPK inhibition helps to recover senescence. In our previous study, we uncovered p38 MAPK inhibitor, SB203580, as an effective agent to reduce reactive oxygen species and increase proliferation in premature senescent cells. In this study, we evaluated whether SB203580 could ameliorate senescence in normal senescent cells. The senescence-improving effect was observed in the results that SB203580 treatment restored lysosomal function, as evidenced by a decrease in lysosomal mass and an increase in autophagic vacuoles. Then, SB203580-mediated lysosomal function restoration triggered the clearance of damaged mitochondria, leading to metabolic reprogramming necessary for amelioration of senescence. Indeed, p38 MAPK inhibition by SB203580 improved key senescent phenotypes. Our findings suggest a novel mechanism by which modulation of p38 MAPK activity leads to senescence improvement through functional restoration of lysosome and mitochondria.
Collapse
Affiliation(s)
- Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Gahyun Ko
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea.,Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea.,Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
11
|
Lee HG, Roh S, Kim HJ, Kim S, Hong Y, Lee G, Jeon OH. Nanoscale biophysical properties of small extracellular vesicles from senescent cells using atomic force microscopy, surface potential microscopy, and Raman spectroscopy. NANOSCALE HORIZONS 2022; 7:1488-1500. [PMID: 36111604 DOI: 10.1039/d2nh00220e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cells secrete extracellular vesicles (EVs) carrying cell-of-origin markers to communicate with surrounding cells. EVs regulate physiological processes ranging from intercellular signaling to waste management. However, when senescent cells (SnCs) secrete EVs, the EVs, which are newly regarded as senescence-associated secretory phenotype (SASP) factors, can evoke inflammation, senescence induction, and metabolic disorders in neighboring cells. Unlike other soluble SASP factors, the biophysical properties of EVs, including small EVs (sEVs), derived from SnCs have not yet been investigated. In this study, sEVs were extracted from a human IMR90 lung fibroblast in vitro senescence model. Their biomechanical properties were mapped using atomic force microscopy-based quantitative nanomechanical techniques, surface potential microscopy, and Raman spectroscopy. The surfaces of sEVs derived from SnCs are slightly stiffer but their cores are softer than those of sEVs secreted from non-senescent cells (non-SnCs). This inversely proportional relationship between deformation and stiffness, attributed to a decrease in the concentration of genetic and protein materials inside the vesicles and the adsorption of positively charged SASP factors onto the vesicle surfaces, respectively, was found to be a peculiar characteristic of SnC-derived sEVs. Our results demonstrate that the biomechanical properties of SnC-derived sEVs differ from those of non-SnC-derived sEVs and provide insight into the mechanisms underlying their formation and composition.
Collapse
Affiliation(s)
- Hyo Gyeong Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Jung Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, Republic of Korea.
| | - Seokho Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yoochan Hong
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, Republic of Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Narasimhan A, Flores RR, Camell CD, Bernlohr DA, Robbins PD, Niedernhofer LJ. Cellular Senescence in Obesity and Associated Complications: a New Therapeutic Target. Curr Diab Rep 2022; 22:537-548. [PMID: 36239841 PMCID: PMC10123542 DOI: 10.1007/s11892-022-01493-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Obesity has increased worldwide recently and represents a major global health challenge. This review focuses on the obesity-associated cellular senescence in various organs and the role of these senescent cells (SnCs) in driving complications associated with obesity. Also, the ability to target SnCs pharmacologically with drugs termed senotherapeutics as a therapy for these complications is discussed. RECENT FINDINGS Several studies have shown a positive correlation between obesity and SnC burden in organs such as adipose tissue, liver, and pancreatic-β-cells. These SnCs produce several secretory factors which affect other cells and tissues in a paracrine manner resulting in organ dysfunction. The accumulation of SnCs in adipocytes affects their lipid storage and impairs adipogenesis. The inflammatory senescence-associated secretory phenotype (SASP) of SnCs downregulates the antioxidant capacity and mitochondrial function in tissues. Senescent hepatocytes cannot oxidize fatty acids, which leads to lipid deposition and senescence in β-cells decrease function. These and other adverse effects of SnCs contribute to insulin resistance and type-2 diabetes. The reduction in the SnC burden genetically or pharmacologically improves the complications associated with obesity. The accumulation of SnCs with age and disease accelerates aging. Obesity is a key driver of SnC accumulation, and the complications associated with obesity can be controlled by reducing the SnC burden. Thus, senotherapeutic drugs have the potential to be an effective therapeutic option.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Rafael R Flores
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Christina D Camell
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - David A Bernlohr
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA.
| | - Laura J Niedernhofer
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Karatkevich D, Deng H, Gao Y, Flint E, Peng RW, Schmid RA, Dorn P, Marti TM. Schedule-Dependent Treatment Increases Chemotherapy Efficacy in Malignant Pleural Mesothelioma. Int J Mol Sci 2022; 23:ijms231911949. [PMID: 36233258 PMCID: PMC9569655 DOI: 10.3390/ijms231911949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but aggressive thoracic malignancy with limited treatment options. One of the standard treatments for MPM is chemotherapy, which consists of concurrent treatment with pemetrexed and cisplatin. Pemetrexed limits tumor growth by inhibiting critical metabolic enzymes involved in nucleotide synthesis. Cisplatin causes direct DNA damage, such as intra-strand and inter-strand cross-links, which are repaired by the nucleotide excision repair pathway, which depends on relatively high nucleotide levels. We hypothesized that prolonged pretreatment with pemetrexed might deplete nucleotide pools, thereby sensitizing cancer cells to subsequent cisplatin treatment. The MPM cell lines ACC-MESO-1 and NCI-H28 were treated for 72 h with pemetrexed. Three treatment schedules were evaluated by initiating 24 h of cisplatin treatment at 0 h (concomitant), 24 h, and 48 h relative to pemetrexed treatment, resulting in either concomitant administration or pemetrexed pretreatment for 24 h or 48 h, respectively. Multicolor flow cytometry was performed to detect γH2AX (phosphorylation of histone H2AX), a surrogate marker for the activation of the DNA damage response pathway. DAPI staining of DNA was used to analyze cell cycle distribution. Forward and side scatter intensity was used to distinguish subpopulations based on cellular size and granularity, respectively. Our study revealed that prolonged pemetrexed pretreatment for 48 h prior to cisplatin significantly reduced long-term cell growth. Specifically, pretreatment for 48 h with pemetrexed induced a cell cycle arrest, mainly in the G2/M phase, accumulation of persistent DNA damage, and induction of a senescence phenotype. The present study demonstrates that optimizing the treatment schedule by pretreatment with pemetrexed increases the efficacy of the pemetrexed-cisplatin combination therapy in MPM. We show that the observed benefits are associated with the persistence of treatment-induced DNA damage. Our study suggests that an adjustment of the treatment schedule could improve the efficacy of the standard chemotherapy regimen for MPM and might improve patient outcomes.
Collapse
Affiliation(s)
- Darya Karatkevich
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Emilio Flint
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Ralph Alexander Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (P.D.); (T.M.M.); Tel.: +41-3-1632-3489 (P.D.); +41-3-1684-0461 (T.M.M.)
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 28, 3008 Bern, Switzerland
- Oncology-Thoracic Malignancies, Department of BioMedical Research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (P.D.); (T.M.M.); Tel.: +41-3-1632-3489 (P.D.); +41-3-1684-0461 (T.M.M.)
| |
Collapse
|
14
|
Zhang B, Ma X, Huang B, Jiang Q, Loor JJ, Lv X, Zhang W, Li M, Wen J, Yin Y, Wang J, Yang W, Xu C. Transcriptomics of circulating neutrophils in dairy cows with subclinical hypocalcemia. Front Vet Sci 2022; 9:959831. [PMID: 36176696 PMCID: PMC9514324 DOI: 10.3389/fvets.2022.959831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hypocalcemia is closely associated with inflammatory diseases in dairy cows. Recent research has underscored the key role of calcium in the adaptations of the innate immune system during this period. The main objective in the present study was to compare the transcriptome profiles and analyze differences in the expression of neutrophil (PMNL) immune function-related genes and calcium binding-related genes in hypocalcemic cows. At 2 days postpartum, a concentration >2.10 mmol Ca2+/L was used to classify cows as controls (CON), and a concentration <2.00 mmol Ca2+/L used to classify cows as low-calcium (LCAL) (n = 8 in each group). A routine medical examination was conducted by the attending veterinarian to ensure there were no other complications and that the blood β-hydroxybutyrate was <1.2 mmol/L. Blood was collected from the tail vein (20 mL) to isolate PMNL, and 5 cows in each group were used for RNA sequencing and statistical analysis of gene expression differences. Transcriptome RNA-seq sequencing analysis was via omicsstudio using the R package edgeR. GO and KEGG enrichment analysis were used for bioinformatics. The remaining 3 cows in each group were used for validation of RNA sequencing data via quantitative PCR, which confirmed the observed responses. Compared with CON, 158 genes in LCAL were significantly up-regulated and 296 genes were down-regulated. The downregulation of Interleukin-12 (CXCL12), Tubulin beta chain (TUBB1), L1 cell adhesion molecule (L1CAM), and Myeloperoxidase (MPO) indicated a decrease in immune function of PMNL in LCAL cows. The decreased expression of calcium-binding pathway-related genes in PMNL of LCAL cows indicated a decrease in immune function of PMNL likely related to calcium ions. For example, cartilage acid protein 1 (CRTAC1) and calcium/calmodulin-dependent kinase 4 (CAMK4) were significantly reduced in LCAL cows. The upregulation of Cyclin dependent kinase inhibitor 1A (CDKN1A), Perforin 1 (PRF1), and Homeodomain interacting protein kinase 3 (HIPK3) indicated that LCAL led to greater cell apoptosis and senescence. Overall, the analyses indicated that the reduction in PMNL immune function during hypocalcemia is associated with downregulation of intracellular Ca2+ related genes and upregulation of genes controlling apoptosis and senescence. Together, these alterations contribute to an immunosuppressive state during the transition period.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baoyin Huang
- Animal Husbandry and Veterinary Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihaer, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yufeng Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
15
|
Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022; 11:cells11162541. [PMID: 36010618 PMCID: PMC9406699 DOI: 10.3390/cells11162541] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is induced and sustained by chronological aging and photoaging. Aging skin pigmentation such as mottled pigmentation (senile lentigo) and melasma are typical signs of photoaging. The skin, like other human organs, undergoes cellular senescence, and senescent cells in the skin increase with age. The crosstalk between melanocytes as pigmentary cells and other adjacent types of aged skin cells such as senescent fibroblasts play a role in skin-aging pigmentation. In this review, we provide an overview of cellular senescence during the skin-aging process. The discussion also includes cellular senescence related to skin-aging pigmentation and the therapeutic potential of regulating the senescence process.
Collapse
|
16
|
Ozhathil LC, Chen Y, Nissen SD, Banner J, Tfelt-Hansen J, Jespersen T. Time matters: characterization of fibroblast-like cells harvested from pig profundus tendon stored at room temperature at different postmortem time intervals. In Vitro Cell Dev Biol Anim 2022; 58:633-637. [PMID: 35925449 DOI: 10.1007/s11626-022-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Lijo Cherian Ozhathil
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | - Yingying Chen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Sarah Dalgas Nissen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jytte Banner
- Department of Forensic Medicine, Section of Forensic Pathology, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Forensic Medicine, Section of Forensic Genetics, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
17
|
Wallis R, Milligan D, Hughes B, Mizen H, López-Domínguez JA, Eduputa U, Tyler EJ, Serrano M, Bishop CL. Senescence-associated morphological profiles (SAMPs): an image-based phenotypic profiling method for evaluating the inter and intra model heterogeneity of senescence. Aging (Albany NY) 2022; 14:4220-4246. [PMID: 35580013 PMCID: PMC9186762 DOI: 10.18632/aging.204072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/22/2022] [Indexed: 01/10/2023]
Abstract
Senescence occurs in response to a number of damaging stimuli to limit oncogenic transformation and cancer development. As no single, universal senescence marker has been discovered, the confident classification of senescence induction requires the parallel assessment of a series of hallmarks. Therefore, there is a growing need for “first-pass” tools of senescence identification to streamline experimental workflows and complement conventional markers. Here, we utilise a high content, multidimensional phenotypic profiling-based approach, to assess the morphological profiles of senescent cells induced via a range of stimuli. In the context of senescence, we refer to these as senescence-associated morphological profiles (SAMPs), as they facilitate distinction between senescent and proliferating cells. The complexity of the profiles generated also allows exploration of the heterogeneity both between models of senescence and within an individual senescence model, providing a level of insight at the single cell level. Furthermore, we also demonstrate that these models are applicable to the assessment of senescence in vivo, which remains a key challenge for the field. Therefore, we believe SAMPs has the potential to serve as a useful addition in the repertoire of senescence researchers, either as a first-pass tool or as part of the established senescence hallmarks.
Collapse
Affiliation(s)
- Ryan Wallis
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Deborah Milligan
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bethany Hughes
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hannah Mizen
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - José Alberto López-Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ugochim Eduputa
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eleanor J Tyler
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Cleo L Bishop
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Gao X, Yu X, Zhang C, Wang Y, Sun Y, Sun H, Zhang H, Shi Y, He X. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases. Stem Cell Rev Rep 2022; 18:2315-2327. [PMID: 35460064 PMCID: PMC9033418 DOI: 10.1007/s12015-022-10370-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Cellular senescence is an irreversible cell arrest process, which is determined by a variety of complicated mechanisms, including telomere attrition, mitochondrial dysfunction, metabolic disorders, loss of protein homeostasis, epigenetic changes, etc. Cellular senescence is causally related to the occurrence and development of age-related disease. The elderly is liable to suffer from disorders such as neurodegenerative diseases, cancer, and diabetes. Therefore, it is increasingly imperative to explore specific countermeasures for the treatment of age-related diseases. Numerous studies on humans and mice emphasize the significance of metabolic imbalance caused by short telomeres and mitochondrial damages in the onset of age-related diseases. Although the experimental data are relatively independent, more and more evidences have shown that there is mutual crosstalk between telomeres and mitochondrial metabolism in the process of cellular senescence. This review systematically discusses the relationship between telomere length, mitochondrial metabolic disorder, as well as their underlying mechanisms for cellular senescence and age-related diseases. Future studies on telomere and mitochondrial metabolism may shed light on potential therapeutic strategies for age-related diseases. Graphical Abstract The characteristics of cellular senescence mainly include mitochondrial dysfunction and telomere attrition. Mitochondrial dysfunction will cause mitochondrial metabolic disorders, including decreased ATP production, increased ROS production, as well as enhanced cellular apoptosis. While oxidative stress reaction to produce ROS, leads to DNA damage, and eventually influences telomere length. Under the stimulation of oxidative stress, telomerase catalytic subunit TERT mainly plays an inhibitory role on oxidative stress, reduces the production of ROS and protects telomere function. Concurrently, mitochondrial dysfunction and telomere attrition eventually induce a range of age-related diseases, such as T2DM, osteoporosis, AD, etc. :increase; :reduce;⟝:inhibition.
Collapse
Affiliation(s)
- Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Yiming Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
19
|
Ain Q, Schmeer CW, Wengerodt D, Hofmann Y, Witte OW, Kretz A. Optimized Protocol for Proportionate CNS Cell Retrieval as a Versatile Platform for Cellular and Molecular Phenomapping in Aging and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23063000. [PMID: 35328432 PMCID: PMC8950438 DOI: 10.3390/ijms23063000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Efficient purification of viable neural cells from the mature CNS has been historically challenging due to the heterogeneity of the inherent cell populations. Moreover, changes in cellular interconnections, membrane lipid and cholesterol compositions, compartment-specific biophysical properties, and intercellular space constituents demand technical adjustments for cell isolation at different stages of maturation and aging. Though such obstacles are addressed and partially overcome for embryonic premature and mature CNS tissues, procedural adaptations to an aged, progeroid, and degenerative CNS environment are underrepresented. Here, we describe a practical workflow for the acquisition and phenomapping of CNS neural cells at states of health, physiological and precocious aging, and genetically provoked neurodegeneration. Following recent, unprecedented evidence of post-mitotic cellular senescence (PoMiCS), the protocol appears suitable for such de novo characterization and phenotypic opposition to classical senescence. Technically, the protocol is rapid, efficient as for cellular yield and well preserves physiological cell proportions. It is suitable for a variety of downstream applications aiming at cell type-specific interrogations, including cell culture systems, Flow-FISH, flow cytometry/FACS, senescence studies, and retrieval of omic-scale DNA, RNA, and protein profiles. We expect suitability for transfer to other CNS targets and to a broad spectrum of engineered systems addressing aging, neurodegeneration, progeria, and senescence.
Collapse
Affiliation(s)
- Quratul Ain
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
- Correspondence: (Q.A.); (A.K.); Tel.: +49-3641-9396630 (Q.A.); +49-3641-9323499 (A.K.)
| | - Christian W. Schmeer
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
| | - Diane Wengerodt
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
| | - Yvonne Hofmann
- Department of Internal Medicine V, Jena University Hospital, 07747 Jena, Germany;
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
| | - Alexandra Kretz
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (C.W.S.); (D.W.); (O.W.W.)
- Correspondence: (Q.A.); (A.K.); Tel.: +49-3641-9396630 (Q.A.); +49-3641-9323499 (A.K.)
| |
Collapse
|
20
|
Pawar JS, Mustafa S, Ghosh I. Chrysin and Capsaicin Induces Premature Senescence and Apoptosis via Mitochondrial dysfunction and p53 elevation in Cervical Cancer cells. Saudi J Biol Sci 2022; 29:3838-3847. [PMID: 35844432 PMCID: PMC9280242 DOI: 10.1016/j.sjbs.2022.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Current studies are focusing on the anti-cancerous properties of natural bioactive compounds, primarily those included in the human diet. These compounds have the potential to alter the redox balance that can hinder cancer cell's growth. In cancer cells, an abnormal rate of ROS production is balanced with higher antioxidant activities, which if not maintained, results in cancer cells being prone to cell death due to oxidative stress. Here, we have analyzed the effects of Chrysin and Capsaicin on the HeLa cells viability and cellular redox signaling. Both these compounds stimulate cellular and mitochondrial ROS overproduction that perturbs the cellular redox state and results in mitochondrial membrane potential loss. Apart from this, these compounds induce cell cycle arrest and induce premature senescence, along with the overexpression of p21, p53, and p16 protein at lower concentration treatment of Chrysin or Capsaicin. Moreover, at higher concentration treatment with these compounds, pro-apoptotic activity was observed with the high level of Bax and cleaved caspase-3 along with suppression of the Bcl-2 protein levels. In-Silico analysis with STITCH v5 also confirms the direct interaction of Chrysin and Capsaicin with target protein p53. This suggests that Chrysin and Capsaicin trigger an increase in mitochondrial ROS, and p53 interaction leading to premature senescence and apoptosis in concentration dependent manner and have therapeutic potential for cancer treatment.
Collapse
|
21
|
Lee YH, Choi D, Jang G, Park JY, Song ES, Lee H, Kuk MU, Joo J, Ahn SK, Byun Y, Park JT. Targeting regulation of ATP synthase 5 alpha/beta dimerization alleviates senescence. Aging (Albany NY) 2022; 14:678-707. [PMID: 35093936 PMCID: PMC8833107 DOI: 10.18632/aging.203858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Senescence is a distinct set of changes in the senescence-associated secretory phenotype (SASP) and leads to aging and age-related diseases. Here, we screened compounds that could ameliorate senescence and identified an oxazoloquinoline analog (KB1541) designed to inhibit IL-33 signaling pathway. To elucidate the mechanism of action of KB1541, the proteins binding to KB1541 were investigated, and an interaction between KB1541 and 14-3-3ζ protein was found. Specifically, KB1541 interacted with 14-3-3ζ protein and phosphorylated of 14-3-3ζ protein at serine 58 residue. This phosphorylation increased ATP synthase 5 alpha/beta dimerization, which in turn promoted ATP production through increased oxidative phosphorylation (OXPHOS) efficiency. Then, the increased OXPHOS efficiency induced the recovery of mitochondrial function, coupled with senescence alleviation. Taken together, our results demonstrate a mechanism by which senescence is regulated by ATP synthase 5 alpha/beta dimerization upon fine-tuning of KB1541-mediated 14-3-3ζ protein activity.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Doyoung Choi
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Geonhee Jang
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Junghyun Joo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
22
|
Heller ZA, MS ECA, DMD JEP. Implications of Electronic Cigarettes on the Safe Administration of Sedation and General Anesthesia in the Outpatient Dental Setting. Anesth Prog 2022; 69:41-52. [PMID: 35849811 PMCID: PMC9301538 DOI: 10.2344/anpr-69-02-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022] Open
Abstract
Today the number of electronic cigarette users continues to rise as electronic cigarettes slowly, yet steadily overtake conventional cigarettes in popularity. This shift is often attributed to the misconception that electronic cigarettes are "safer" or "less dangerous" than conventional cigarettes. Recent studies have shown that electronic cigarettes are far from safe and that the inhaled agents and byproducts within vaping aerosols can have adverse effects on systemic and oral health like combustible tobacco products. The first electronic cigarettes were originally introduced as a tool for smoking cessation. However, newer iterations of electronic cigarette devices have been modified to allow the user to consume tetrahydrocannabinol (THC), the psychoactive component of cannabis, in addition to nicotine. As the popularity of these devices continues to rise, the number of patients seeking dental treatment who also consume electronic cigarettes will too. This article aims to shed light on the deleterious effects electronic cigarettes can have on systemic and oral health, as well as the special considerations for sedation and anesthesia providers treating patients who use electronic cigarettes.
Collapse
Affiliation(s)
- Zachary A. Heller
- Resident, Department of Oral and Maxillofacial Surgery, Broward Health Medical Center, Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida
| | - Edward C. Adlesic MS
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania
| | - Jason E. Portnof DMD
- Adjunct Associate Professor, Department of Oral and Maxillofacial Surgery, Nova Southeastern University College of Dental Medicine, Davie, Florida; Private Practice Oral & Maxillofacial Surgery, Surgical Arts of Boca Raton, Boca Raton, Florida
| |
Collapse
|
23
|
Sahabi S, Jafari-Gharabaghlou D, Zarghami N. A new insight into cell biological and biochemical changes through aging. Acta Histochem 2022; 124:151841. [PMID: 34995929 DOI: 10.1016/j.acthis.2021.151841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
After several years of extensive research, the main cause of aging is yet elusive. There are some theories about aging, such as stem cell aging, senescent cells accumulation, and neuro-endocrine theories. None of them is able to explain all changes that happen in cells and body through aging. By finding out the main cause of aging, it will be much easier to control, prevent and even reverse the aging process. Our cells, regardless of their replicative capacity, get old through aging and they have almost the same epigenetic age. Different cell signaling pathways contribute to aging. The most important one is mTORC1 that becomes hyperactive in cells that undergo aging. Other significant changes with age are lysosome accumulation, impaired autophagy, and mitophagy. Immune system undergoes gradual changes through aging including a shift from lymphoid to myeloid lineage production as well as increased IL-6 and TNF-α which lead to age-related weight loss and meta-inflammation. Additionally, our endocrine system also experiences some changes that should be taken into consideration when looking for the main cause of aging in the human body. In this review, we planned to summarize some of the changes that happen in cells and the body through aging.
Collapse
|
24
|
Kumar A, Welch N, Mishra S, Bellar A, Silva RN, Li L, Singh SS, Sharkoff M, Kerr A, Chelluboyina AK, Sekar J, Attaway AH, Hoppel C, Willard B, Davuluri G, Dasarathy S. Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence. JCI Insight 2021; 6:154089. [PMID: 34935641 PMCID: PMC8783680 DOI: 10.1172/jci.insight.154089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype–increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gangarao Davuluri
- Department of Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity and.,Department of Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Yuan M, Wang Y, Wang S, Huang Z, Jin F, Zou Q, Li J, Pu Y, Cai Z. Bioenergetic Impairment in the Neuro-Glia-Vascular Unit: An Emerging Physiopathology during Aging. Aging Dis 2021; 12:2080-2095. [PMID: 34881087 PMCID: PMC8612602 DOI: 10.14336/ad.2021.04017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
An emerging concept termed the "neuro-glia-vascular unit" (NGVU) has been established in recent years to understand the complicated mechanism of multicellular interactions among vascular cells, glial cells, and neurons. It has been proverbially reported that the NGVU is significantly associated with neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Physiological aging is an inevitable progression associated with oxidative damage, bioenergetic alterations, mitochondrial dysfunction, and neuroinflammation, which is partially similar to the pathology of AD. Thus, senescence is regarded as the background for the development of neurodegenerative diseases. With the exacerbation of global aging, senescence is an increasingly serious problem in the medical field. In this review, the coupling of each component, including neurons, glial cells, and vascular cells, in the NGVU is described in detail. Then, various mechanisms of age-dependent impairment in each part of the NGVU are discussed. Moreover, the potential bioenergetic alterations between different cell types in the NGVU are highlighted, which seems to be an emerging physiopathology associated with the aged brain. Bioenergetic intervention in the NGVU may be a new direction for studies on delaying or diminishing aging in the future.
Collapse
Affiliation(s)
- Minghao Yuan
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| | - Yangyang Wang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Shengyuan Wang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| | - Zhenting Huang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Feng Jin
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Qian Zou
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Jing Li
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Yinshuang Pu
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Zhiyou Cai
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
27
|
Lee YH, Park JY, Lee H, Song ES, Kuk MU, Joo J, Oh S, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Metabolism as a Strategy to Treat Senescence. Cells 2021; 10:cells10113003. [PMID: 34831224 PMCID: PMC8616445 DOI: 10.3390/cells10113003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are one of organelles that undergo significant changes associated with senescence. An increase in mitochondrial size is observed in senescent cells, and this increase is ascribed to the accumulation of dysfunctional mitochondria that generate excessive reactive oxygen species (ROS). Such dysfunctional mitochondria are prime targets for ROS-induced damage, which leads to the deterioration of oxidative phosphorylation and increased dependence on glycolysis as an energy source. Based on findings indicating that senescent cells exhibit mitochondrial metabolic alterations, a strategy to induce mitochondrial metabolic reprogramming has been proposed to treat aging and age-related diseases. In this review, we discuss senescence-related mitochondrial changes and consequent mitochondrial metabolic alterations. We assess the significance of mitochondrial metabolic reprogramming for senescence regulation and propose the appropriate control of mitochondrial metabolism to ameliorate senescence. Learning how to regulate mitochondrial metabolism will provide knowledge for the control of aging and age-related pathologies. Further research focusing on mitochondrial metabolic reprogramming will be an important guide for the development of anti-aging therapies, and will provide novel strategies for anti-aging interventions.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Junghyun Joo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
| | - Sekyung Oh
- Department of Medical Sciences, Catholic Kwandong University College of Medicine, Incheon 22711, Korea;
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
- Correspondence: (H.W.K.); (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8090 (H.W.K.); +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.H.L.); (J.Y.P.); (H.L.); (E.S.S.); (M.U.K.); (J.J.)
- Correspondence: (H.W.K.); (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8090 (H.W.K.); +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.W.K.); (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8090 (H.W.K.); +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| |
Collapse
|
28
|
Liu S, Matsui TS, Kang N, Deguchi S. Analysis of senescence-responsive stress fiber proteome reveals reorganization of stress fibers mediated by elongation factor eEF2 in HFF-1 cells. Mol Biol Cell 2021; 33:ar10. [PMID: 34705524 PMCID: PMC8886821 DOI: 10.1091/mbc.e21-05-0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in the ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are up-regulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited on RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.
Collapse
Affiliation(s)
- Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Na Kang
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| |
Collapse
|
29
|
Jiao D, Cheng W, Zhang X, Zhang Y, Guo J, Li Z, Shi D, Xiong Z, Qing Y, Jamal MA, Xu K, Zhao HY, Wei HJ. Improving porcine SCNT efficiency by selecting donor cells size. Cell Cycle 2021; 20:2264-2277. [PMID: 34583621 DOI: 10.1080/15384101.2021.1980983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Considerable advancements have recently been achieved in porcine somatic cell nuclear transfer (SCNT), but the efficiency remains low. Donor cell size might play an important role in SCNT, but its effects in pigs remain unclear. This study aimed to evaluate the efficiency of porcine SCNT by selecting donor cells of suitable size. Porcine fetal fibroblasts (PFFs) were divided into three groups, group S (small, d ≤ 13 μm), group M (medium, 13 μm<d ≤ 18 μm), and group L (large, d > 18 μm), and their biological characteristics were analyzed. Next, SCNT was performed using PFFs of different sizes to evaluate the developmental potential of reconstructed embryos. The data showed that PFFs in groups S, M and L accounted for 17.5%, 47.7% and 34.8% of cells, respectively. Morphologically, cells in group S exhibited clear and regular cell membranes and nuclei, whereas cells in groups M and L displayed varying degrees of cell membrane protuberance, karyo-pyknosis, autophagy and mitochondrial abnormalities. In addition, the growth status and proliferation capabilities of cells in group S were significantly better than those of group M and group L. The percentage of cells at G0/G1 in group S and M were significantly greater than group L. The senescence rate of group S was lower than group M and group L. The apoptosis rate of group S was significantly lower than that of group L but comparable to that of group M . The cleavage rate of group S was also significantly greater than that of group M but comparable to that of group L . The blastocyst rate of group S was significantly greater than that of group M and group L. The blastocyst cell numbers of group S were also significantly greater than those of group M and group L. These findings suggested that small PFFs with a diameter of less than 13 μm are more suitable donor cells for SCNT in pigs.Abbreviations: DMEM: Dulbecco's modified Eagle's medium; FBS: Fetal bovine serum; PBS: Phosphate buffer saline; PFFs: Porcine fetal fibroblast cells; SCNT: Somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Deling Jiao
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenmin Cheng
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaolin Zhang
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yifan Zhang
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhuo Li
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dejia Shi
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhe Xiong
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Muhammad Ameen Jamal
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Hong-Jiang Wei
- Key laboratory for porcine gene editing and xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, China.,Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
30
|
Schweich-Adami LDC, Bernardi L, Baranoski A, Rodrigues TDAF, Antoniolli-Silva ACMB, Oliveira RJ. The enzymatic disaggregation by trypsin does not alter cell quality and genomic stability of adipose-derived stem cells cultivated for human cell therapy. Cell Tissue Bank 2021; 23:641-652. [PMID: 34545505 DOI: 10.1007/s10561-021-09958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
There is no consensus between the protocols used for the isolation, maintenance and cultivation of Adipose-derived stem cells (ADSCs) for therapeutic purposes. Thus, was evaluated the maintenance method of ADSCs submitted to enzymatic disaggregation by trypsin. Was made (1st until 10th passage) immunophenotyping, cell differentiation assays, comet assay, differential cell death, apoptosis, cell viability and membrane integrity by flow cytometry.The results showded that trypsinization,did not induce genomic instability, also did not alter the tail moment. The cell death assay, showed that only on the 10th passage there was a significant reduction and was cofirmed by flow cytometry that is apoptosis. The viability showded significant reduction only in 10th passage, this was related to the loss of integrity of membrane, proven by flow cytometry. The quantities varied along the passages (11 × 105 to 2 × 105). Qualitatively, it can be observed that as the number of cells decreases, there is also a reduction in the juxtaposition of ADSCs and increased of the cell size, it is started in 6th passage. In view of the results, it is suggested for more safety, that ADSCs cultured until the 5th passage being used in human transplantation procedures.
Collapse
Affiliation(s)
- Laynna de Carvalho Schweich-Adami
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Luana Bernardi
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Adrivanio Baranoski
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Thais de Andrade Farias Rodrigues
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
| | - Andréia Conceição Milan Brochado Antoniolli-Silva
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil.
- Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, MS, Brazil.
- Graduate Programme in Genetics and Molecular Biology, Department of General Biology, State University of Londrina (UEL), Londrina, Paraná, Brazil.
| |
Collapse
|
31
|
Chakrabarty A, Chakraborty S, Bhattacharya R, Chowdhury G. Senescence-Induced Chemoresistance in Triple Negative Breast Cancer and Evolution-Based Treatment Strategies. Front Oncol 2021; 11:674354. [PMID: 34249714 PMCID: PMC8264500 DOI: 10.3389/fonc.2021.674354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Triple negative breast cancer (TNBC) is classically treated with combination chemotherapies. Although, initially responsive to chemotherapies, TNBC patients frequently develop drug-resistant, metastatic disease. Chemotherapy resistance can develop through many mechanisms, including induction of a transient growth-arrested state, known as the therapy-induced senescence (TIS). In this paper, we will focus on chemoresistance in TNBC due to TIS. One of the key characteristics of senescent cells is a complex secretory phenotype, known as the senescence-associated secretory proteome (SASP), which by prompting immune-mediated clearance of senescent cells maintains tissue homeostasis and suppresses tumorigenesis. However, in cancer, particularly with TIS, senescent cells themselves as well as SASP promote cellular reprograming into a stem-like state responsible for the emergence of drug-resistant, aggressive clones. In addition to chemotherapies, outcomes of recently approved immune and DNA damage-response (DDR)-directed therapies are also affected by TIS, implying that this a common strategy used by cancer cells for evading treatment. Although there has been an explosion of scientific research for manipulating TIS for prevention of drug resistance, much of it is still at the pre-clinical stage. From an evolutionary perspective, cancer is driven by natural selection, wherein the fittest tumor cells survive and proliferate while the tumor microenvironment influences tumor cell fitness. As TIS seems to be preferred for increasing the fitness of drug-challenged cancer cells, we will propose a few tactics to control it by using the principles of evolutionary biology. We hope that with appropriate therapeutic intervention, this detrimental cellular fate could be diverted in favor of TNBC patients.
Collapse
|
32
|
Teti G, Chiarini F, Mazzotti E, Ruggeri A, Carano F, Falconi M. Cellular senescence in vascular wall mesenchymal stromal cells, a possible contribution to the development of aortic aneurysm. Mech Ageing Dev 2021; 197:111515. [PMID: 34062172 DOI: 10.1016/j.mad.2021.111515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a hallmark of ageing and it plays a key role in the development of age-related diseases. Abdominal aortic aneurysm (AAA) is an age related degenerative vascular disorder, characterized by a progressive dilatation of the vascular wall and high risk of rupture over time. Nowadays, no pharmacological therapies are available and the understanding of the molecular mechanisms that lead to AAA onset and development are poorly defined. In this study we investigated the cellular features of senescence in vascular mesenchymal stromal cells, isolated from pathological (AAA - MSCs) and healthy (h - MSCs) segments of human abdominal aorta and their implication in impairing the vascular repair ability of MSCs. Cell proliferation, ROS production, cell surface area, the expression of cyclin dependent kinase inhibitors p21CIP1 and p16INK4a, the activation of the DNA damage response and a dysregulated autophagy showed a senescent state in AAA - MSCs compared to h-MSCs. Moreover, a reduced ability to differentiate toward endothelial cells was observed in AAA - MSCs. All these data suggest that the accumulation of senescent vascular MSCs over time impairs their remodeling ability during ageing. This condition could support the onset and development of AAA.
Collapse
Affiliation(s)
- Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy.
| | - Francesca Chiarini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, 40136, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Eleonora Mazzotti
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, 64100, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| | - Francesco Carano
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| |
Collapse
|
33
|
Gao Y, Zens P, Su M, Gemperli CA, Yang H, Deng H, Yang Z, Xu D, Hall SRR, Berezowska S, Dorn P, Peng RW, Schmid RA, Wang W, Marti TM. Chemotherapy-induced CDA expression renders resistant non-small cell lung cancer cells sensitive to 5'-deoxy-5-fluorocytidine (5'-DFCR). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:138. [PMID: 33874986 PMCID: PMC8056724 DOI: 10.1186/s13046-021-01938-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pemetrexed (MTA) plus cisplatin combination therapy is considered the standard of care for patients with advanced non-small-cell lung cancer (NSCLC). However, in advanced NSCLC, the 5-year survival rate is below 10%, mainly due to resistance to therapy. We have previously shown that the fraction of mesenchymal-like, chemotherapy-resistant paraclone cells increased after MTA and cisplatin combination therapy in the NSCLC cell line A549. Cytidine deaminase (CDA) and thymidine phosphorylase (TYMP) are key enzymes of the pyrimidine salvage pathway. 5'-deoxy-5-fluorocytidine (5'-DFCR) is a cytidine analogue (metabolite of capecitabine), which is converted by CDA and subsequently by TYMP into 5-fluorouracil, a chemotherapeutic agent frequently used to treat solid tumors. The aim of this study was to identify and exploit chemotherapy-induced metabolic adaptations to target resistant cancer cells. METHODS Cell viability and colony formation assays were used to quantify the efficacy of MTA and cisplatin treatment in combination with schedule-dependent addition of 5'-DFCR on growth and survival of A549 paraclone cells and NSCLC cell lines. CDA and TYMP protein expression were monitored by Western blot. Finally, flow cytometry was used to analyze the EMT phenotype, DNA damage response activation and cell cycle distribution over time after treatment. CDA expression was measured by immunohistochemistry in tumor tissues of patients before and after neoadjuvant chemotherapy. RESULTS We performed a small-scale screen of mitochondrial metabolism inhibitors, which revealed that 5'-DFCR selectively targets chemotherapy-resistant A549 paraclone cells characterized by high CDA and TYMP expression. In the cell line A549, CDA and TYMP expression was further increased by chemotherapy in a time-dependent manner, which was also observed in the KRAS-addicted NSCLC cell lines H358 and H411. The addition of 5'-DFCR on the second day after MTA and cisplatin combination therapy was the most efficient treatment to eradicate chemotherapy-resistant NSCLC cells. Moreover, recovery from treatment-induced DNA damage was delayed and accompanied by senescence induction and acquisition of a hybrid-EMT phenotype. In a subset of patient tumors, CDA expression was also increased after treatment with neoadjuvant chemotherapy. CONCLUSIONS Chemotherapy increases CDA and TYMP expression thereby rendering resistant lung cancer cells susceptible to subsequent 5'-DFCR treatment.
Collapse
Affiliation(s)
- Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Philipp Zens
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | | | - Haitang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Zhang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Duo Xu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sean R R Hall
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, Bern, Switzerland.,Deparment of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph Alexander Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland. .,Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland. .,Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Lee SY, Park KH, Lee G, Kim SJ, Song WH, Kwon SH, Koh JT, Huh YH, Ryu JH. Hypoxia-inducible factor-2α mediates senescence-associated intrinsic mechanisms of age-related bone loss. Exp Mol Med 2021; 53:591-604. [PMID: 33811248 PMCID: PMC8102580 DOI: 10.1038/s12276-021-00594-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023] Open
Abstract
Aging is associated with cellular senescence followed by bone loss leading to bone fragility in humans. However, the regulators associated with cellular senescence in aged bones need to be identified. Hypoxia-inducible factor (HIF)-2α regulates bone remodeling via the differentiation of osteoblasts and osteoclasts. Here, we report that HIF-2α expression was highly upregulated in aged bones. HIF-2α depletion in male mice reversed age-induced bone loss, as evidenced by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of doxorubicin-mediated senescence, the expression of Hif-2α and p21, a senescence marker gene, was enhanced, and osteoblastic differentiation of primary mouse calvarial preosteoblast cells was inhibited. Inhibition of senescence-induced upregulation of HIF-2α expression during matrix maturation, but not during the proliferation stage of osteoblast differentiation, reversed the age-related decrease in Runx2 and Ocn expression. However, HIF-2α knockdown did not affect p21 expression or senescence progression, indicating that HIF-2α expression upregulation in senescent osteoblasts may be a result of aging rather than a cause of cellular senescence. Osteoclasts are known to induce a senescent phenotype during in vitro osteoclastogenesis. Consistent with increased HIF-2α expression, the expression of p16 and p21 was upregulated during osteoclastogenesis of bone marrow macrophages. ChIP following overexpression or knockdown of HIF-2α using adenovirus revealed that p16 and p21 are direct targets of HIF-2α in osteoclasts. Osteoblast-specific (Hif-2αfl/fl;Col1a1-Cre) or osteoclast-specific (Hif-2αfl/fl;Ctsk-Cre) conditional knockout of HIF-2α in male mice reversed age-related bone loss. Collectively, our results suggest that HIF-2α acts as a senescence-related intrinsic factor in age-related dysfunction of bone homeostasis.
Collapse
Affiliation(s)
- Sun Young Lee
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ka Hyon Park
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Gyuseok Lee
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Su-Jin Kim
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Won-Hyun Song
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Seung-Hee Kwon
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong-Tae Koh
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Yun Hyun Huh
- grid.61221.360000 0001 1033 9831School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Republic of Korea
| | - Je-Hwang Ryu
- grid.14005.300000 0001 0356 9399Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea ,grid.14005.300000 0001 0356 9399Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
35
|
Pluquet O, Abbadie C. Cellular senescence and tumor promotion: Role of the Unfolded Protein Response. Adv Cancer Res 2021; 150:285-334. [PMID: 33858599 DOI: 10.1016/bs.acr.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.
Collapse
Affiliation(s)
- Olivier Pluquet
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.
| | - Corinne Abbadie
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
36
|
Signatures of Dermal Fibroblasts from RDEB Pediatric Patients. Int J Mol Sci 2021; 22:ijms22041792. [PMID: 33670258 PMCID: PMC7918539 DOI: 10.3390/ijms22041792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The recessive form of dystrophic epidermolysis bullosa (RDEB) is a debilitating disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Mutations in the COL7A1 gene induce multiple abnormalities, including chronic inflammation and profibrotic changes in the skin. However, the correlations between the specific mutations in COL7A1 and their phenotypic output remain largely unexplored. The mutations in the COL7A1 gene, described here, were found in the DEB register. Among them, two homozygous mutations and two cases of compound heterozygous mutations were identified. We created the panel of primary patient-specific RDEB fibroblast lines (FEB) and compared it with control fibroblasts from healthy donors (FHC). The set of morphological features and the contraction capacity of the cells distinguished FEB from FHC. We also report the relationships between the mutations and several phenotypic traits of the FEB. Based on the analysis of the available RNA-seq data of RDEB fibroblasts, we performed an RT-qPCR gene expression analysis of our cell lines, confirming the differential status of multiple genes while uncovering the new ones. We anticipate that our panels of cell lines will be useful not only for studying RDEB signatures but also for investigating the overall mechanisms involved in disease progression.
Collapse
|
37
|
Wallis R, Josipovic N, Mizen H, Robles‐Tenorio A, Tyler EJ, Papantonis A, Bishop CL. Isolation methodology is essential to the evaluation of the extracellular vesicle component of the senescence-associated secretory phenotype. J Extracell Vesicles 2021; 10:e12041. [PMID: 33659050 PMCID: PMC7892802 DOI: 10.1002/jev2.12041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
A hallmark of senescence is the acquisition of an enhanced secretome comprising inflammatory mediators and tissue remodelling agents - the senescence-associated secretory phenotype (SASP). Through the SASP, senescent cells are hypothesised to contribute to both ageing and pathologies associated with age. Whilst soluble factors have been the most widely investigated components of the SASP, there is growing evidence that small extracellular vesicles (EVs) comprise functionally important constituents. Thus, dissecting the contribution of the soluble SASP from the vesicular component is crucial to elucidating the functional significance of senescent cell derived EVs. Here, we take advantage of a systematic proteomics based approach to determine that soluble SASP factors co-isolate with EVs following differential ultracentrifugation (dUC). We present size-exclusion chromatography (SEC) as a method for separation of the soluble and vesicular components of the senescent secretome and thus EV purification. Furthermore, we demonstrate that SEC EVs isolated from senescent cells contribute to non-cell autonomous paracrine senescence. Therefore, this work emphasises the requirement for methodological rigor due to the propensity of SASP components to co-isolate during dUC and provides a framework for future investigations of the vesicular component of the SASP.
Collapse
Affiliation(s)
- Ryan Wallis
- Blizard Institute of Cell and Molecular ScienceBarts and The London School of Medicine and DentistryLondonUK
| | - Natasa Josipovic
- Institute of PathologyUniversity Medical Centre GöttingenGöttingenGermany
| | - Hannah Mizen
- Blizard Institute of Cell and Molecular ScienceBarts and The London School of Medicine and DentistryLondonUK
| | - Arturo Robles‐Tenorio
- Blizard Institute of Cell and Molecular ScienceBarts and The London School of Medicine and DentistryLondonUK
| | - Eleanor J. Tyler
- Blizard Institute of Cell and Molecular ScienceBarts and The London School of Medicine and DentistryLondonUK
| | - Argyris Papantonis
- Institute of PathologyUniversity Medical Centre GöttingenGöttingenGermany
| | - Cleo L. Bishop
- Blizard Institute of Cell and Molecular ScienceBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
38
|
Yu Z, Smith MJ, Siow RCM, Liu KK. Ageing modulates human dermal fibroblast contractility: Quantification using nano-biomechanical testing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118972. [PMID: 33515646 DOI: 10.1016/j.bbamcr.2021.118972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Dermal fibroblasts play a key role in maintaining homoeostasis and functionality of the skin. Their contractility plays a role in changes observed during ageing, especially in processes such as wound healing, inflammation, wrinkling and scar tissue formation as well as structural changes on extracellular matrix. Although alternations in skin physiology and morphology have been previously described, there remains a paucity of information about the influence of chronological ageing on dermal fibroblast contractility. In this study, we applied a novel nano-biomechanical technique on cell-embedded collagen hydrogels in combination with mathematical modelling and numerical simulation to measure contraction forces of normal human dermal fibroblasts (NHDF). We achieved quantitative differentiation of the contractility of cells derived from 'young' (< 30 years old) and 'aged' (> 60 years old) donors. Transforming growth factor β1 (TGF-β1) was used to stimulate the fibroblasts to assess their contractile potential. NHDF from aged donors exhibited a greater basal contractile force, while in contrast, NHDF from young donors have shown a significantly larger contractile force in response to TGF-β1 treatment. These findings validate our nano-biomechanical measurement technique and provide new insights for considering NHDF contractility in regenerative medicine and as a biomarker of dermal ageing processes.
Collapse
Affiliation(s)
- Zhuonan Yu
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Matthew J Smith
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Richard C M Siow
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
39
|
Fan Y, Cheng J, Zeng H, Shao L. Senescent Cell Depletion Through Targeting BCL-Family Proteins and Mitochondria. Front Physiol 2020; 11:593630. [PMID: 33335487 PMCID: PMC7736607 DOI: 10.3389/fphys.2020.593630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023] Open
Abstract
Senescent cells with replicative arrest can be generated during genotoxic, oxidative, and oncogenic stress. Long-term retention of senescent cells in the body, which is attributed to highly expressed BCL-family proteins, chronically damages tissues mainly through a senescence-associated secretory phenotype (SASP). It has been documented that accumulation of senescent cells contributes to chronic diseases and aging-related diseases. Despite the fact that no unique marker is available to identify senescent cells, increased p16INK4a expression has long been used as an in vitro and in vivo marker of senescent cells. We reviewed five existing p16INK4a reporter mouse models to detect, isolate, and deplete senescent cells. Senescent cells express high levels of anti-apoptotic and pro-apoptotic genes compared to normal cells. Thus, disrupting the balance between anti-apoptotic and pro-apoptotic gene expression, such as ABT-263 and ABT-737, can activate the apoptotic signaling pathway and remove senescent cells. Mitochondrial abnormalities in senescent cells were also discussed, for example mitochondrial DNA mutation accumulation, dysfunctional mitophagy, and mitochondrial unfolded protein response (mtUPR). The mitochondrial-targeted tamoxifen, MitoTam, can efficiently remove senescent cells due to its inhibition of respiratory complex I and low expression of adenine nucleotide translocase-2 (ANT2) in senescent cells. Therefore, senescent cells can be removed by various strategies, which delays chronic and aging-related diseases and enhances lifespan and healthy conditions in the body.
Collapse
Affiliation(s)
- Ying Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Jiaoqi Cheng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Hollenberg AM, Smith CO, Shum LC, Awad H, Eliseev RA. Lactate Dehydrogenase Inhibition With Oxamate Exerts Bone Anabolic Effect. J Bone Miner Res 2020; 35:2432-2443. [PMID: 32729639 PMCID: PMC7736558 DOI: 10.1002/jbmr.4142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022]
Abstract
Cellular bioenergetics is a promising new therapeutic target in aging, cancer, and diabetes because these pathologies are characterized by a shift from oxidative to glycolytic metabolism. We have previously reported such glycolytic shift in aged bone as a major contributor to bone loss in mice. We and others also showed the importance of oxidative phosphorylation (OxPhos) for osteoblast differentiation. It is therefore reasonable to propose that stimulation of OxPhos will have bone anabolic effect. One strategy widely used in cancer research to stimulate OxPhos is inhibition of glycolysis. In this work, we aimed to evaluate the safety and efficacy of pharmacological inhibition of glycolysis to stimulate OxPhos and promote osteoblast bone-forming function and bone anabolism. We tested a range of glycolytic inhibitors including 2-deoxyglucose, dichloroacetate, 3-bromopyruvate, and oxamate. Of all the studied inhibitors, only a lactate dehydrogenase (LDH) inhibitor, oxamate, did not show any toxicity in either undifferentiated osteoprogenitors or osteoinduced cells in vitro. Oxamate stimulated both OxPhos and osteoblast differentiation in osteoprogenitors. In vivo, oxamate improved bone mineral density, cortical bone architecture, and bone biomechanical strength in both young and aged C57BL/6J male mice. Oxamate also increased bone formation by osteoblasts without affecting bone resorption. In sum, our work provided a proof of concept for the use of anti-glycolytic strategies in bone and identified a small molecule LDH inhibitor, oxamate, as a safe and efficient bone anabolic agent. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alex M. Hollenberg
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Charles O. Smith
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Laura C. Shum
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Hani Awad
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY
| |
Collapse
|
41
|
ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion 2020; 55:54-63. [DOI: 10.1016/j.mito.2020.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
|
42
|
Machado-Oliveira G, Ramos C, Marques ARA, Vieira OV. Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis. Cells 2020; 9:E2146. [PMID: 32977446 PMCID: PMC7598292 DOI: 10.3390/cells9102146] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.
Collapse
Affiliation(s)
- Gisela Machado-Oliveira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| | | | | | - Otília V. Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| |
Collapse
|
43
|
Lin C, Li H, Liu J, Hu Q, Zhang S, Zhang N, Liu L, Dai Y, Cao D, Li X, Huang B, Lu J, Zhang Y. Arginine hypomethylation-mediated proteasomal degradation of histone H4-an early biomarker of cellular senescence. Cell Death Differ 2020; 27:2697-2709. [PMID: 32447347 DOI: 10.1038/s41418-020-0562-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence is accompanied with histones level alteration; however, the roles and the mechanisms of histone reduction in cellular senescence are largely unknown. Protein arginine methyltransferase 1 (PRMT1) is the major enzyme that generates monomethyl and asymmetrical dimethyl arginine. Here we showed that abrogation of PRMT1-mediated senescence was accompanied with decreasing histone H4 level. Consistently, under multiple classic senescence models, H4 decreasing was also been found prior to the other 3 core histones. Noticeably, asymmetric demethylation of histone H4 at arginine 3 (H4R3me2as), catalyzed by PRMT1, was decreased prior to histone H4. In addition, we showed that the PRMT1-mediated H4R3me2as maintained H4 stability. Reduction of H4R3me2as level increased the interaction between proteasome activator PA200 and histone H4, which catalyzes the poly-ubiquitin-independent degradation of H4. Moreover, H4 degradation promoted nucleosome decomposition, resulting in increased senescence-associated genes transcription. Significantly, H4 was restored by 3 well-informed anti-aging drugs (metformin, rapamycin, and resveratrol) much earlier than other senescence markers detected under H2O2-induced senescence. Thus, we uncovered a novel function of H4R3me2as in modulation of cellular senescence via regulating H4 stability. This finding also points to the value of histone H4 as a senescence indicator and a potential anti-aging drug screening marker.
Collapse
Affiliation(s)
- Cong Lin
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Hongxin Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jiwei Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Qianying Hu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Shuai Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Na Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lingxia Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yingjie Dai
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Donghui Cao
- Pathological Diagnostic Center, First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
44
|
Cho HJ, Yang EJ, Park JT, Kim JR, Kim EC, Jung KJ, Park SC, Lee YS. Identification of SYK inhibitor, R406 as a novel senolytic agent. Aging (Albany NY) 2020; 12:8221-8240. [PMID: 32379705 PMCID: PMC7244031 DOI: 10.18632/aging.103135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
The selective removal of senescent cells by senolytics is suggested as a potential approach to reverse aging and extend lifespan. Using high-throughput screening with replicative senescence of human diploid fibroblasts (HDFs), we identified a novel senolytic drug R406 that showed selective toxicity in senescent cells. Using flow cytometry and caspase expression analysis, we confirmed that R406 caused apoptotic cell death along with morphological changes in senescent cells. Interestingly, R406 altered the cell survival-related molecular processes including the inhibition of phosphorylation of the focal adhesion kinase (FAK) and p38 mitogen-activated protein kinase (MAPK) in senescent cells. This pattern was not observed in other known senolytic agent ABT263. Correspondingly, apoptotic cell death in senescent cells was induced by simultaneously blocking the FAK and p38 pathways. Taken together, we suggest that R406 acts as a senolytic drug by inducing apoptosis and reducing cell attachment capacity.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Well Aging Research Center, DGIST, Daegu 42988, Korea.,Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
| | - Eun Jae Yang
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Eok-Cheon Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Kyong-Jin Jung
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Sang Chul Park
- Well Aging Research Center, DGIST, Daegu 42988, Korea.,Department of Molecular Medicine, Chonnam National University Medical School, Gwangju 58128, Korea.,The Future Life and Society Research Center, Chonnam National University, Gwangju 58128, Korea
| | - Young-Sam Lee
- Well Aging Research Center, DGIST, Daegu 42988, Korea.,Department of New Biology, DGIST, Daegu 42988, Korea
| |
Collapse
|
45
|
López-González I, Tebé Cordomí C, Ferrer I. Regional Gene Expression of Inflammation and Oxidative Stress Responses Does Not Predict Neurodegeneration in Aging. J Neuropathol Exp Neurol 2020; 76:135-150. [PMID: 28158670 DOI: 10.1093/jnen/nlw117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brain aging is accompanied by increased oxidative stress and what has been termed "neuroinflammation," which might contribute to age-related neurodegenerative diseases. We analyzed expression in the transcription of innate inflammatory response genes in eleven representative regions including frontal, parietal, inferior temporal, cingulate, occipital, entorhinal cortex, caudate, putamen, thalamus, substantia nigra, and cerebellar vermis in aging human brains. We probed members of the complement system, colony stimulating factor receptors, toll-like receptors, and pro- and anti-inflammatory cytokines in the brains of subjects with no neurological disease and neurofibrillary tangles (mean age: 47.1 ± 5.7 years) and those with no neurological disease and neurofibrillary pathology stages I-II (mean age: 70.6 ± 6.3 years). Although the entorhinal and frontal cortex were most altered, gene regulation patterns did not match regions with increased vulnerability. Analysis of false discovery rate thresholds revealed no differences for any gene in any region between the 2 groups, including cases in which individual comparisons analyzed using Student t or nonparametric tests showed apparent differences between groups. Moreover, gene expression of major anti-oxidative stress responses did not match neuroinflammation in aging or increased regional susceptibility to major neurodegenerative diseases.
Collapse
Affiliation(s)
- Irene López-González
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital (IL-G, IF); Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (IL-G, CTC, IF); Faculty of Medicine and Health Sciences, University Rovira i Virgili University, Reus (CTC); Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat (IF); Institute of Neurosciences, University of Barcelona (IF); and CIBERNED (Biomedical Research Center Network for the Study of Neurodegenerative Diseases, Institute Carlos III, Spanish Ministry of Science and Innovation, Madrid, Spain (IF)
| | - Cristian Tebé Cordomí
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital (IL-G, IF); Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (IL-G, CTC, IF); Faculty of Medicine and Health Sciences, University Rovira i Virgili University, Reus (CTC); Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat (IF); Institute of Neurosciences, University of Barcelona (IF); and CIBERNED (Biomedical Research Center Network for the Study of Neurodegenerative Diseases, Institute Carlos III, Spanish Ministry of Science and Innovation, Madrid, Spain (IF)
| | - Isidro Ferrer
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital (IL-G, IF); Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (IL-G, CTC, IF); Faculty of Medicine and Health Sciences, University Rovira i Virgili University, Reus (CTC); Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat (IF); Institute of Neurosciences, University of Barcelona (IF); and CIBERNED (Biomedical Research Center Network for the Study of Neurodegenerative Diseases, Institute Carlos III, Spanish Ministry of Science and Innovation, Madrid, Spain (IF)
| |
Collapse
|
46
|
Kim JW, Kuk MU, Choy HE, Park SC, Park JT. Mitochondrial metabolic reprograming via BRAF inhibition ameliorates senescence. Exp Gerontol 2019; 126:110691. [DOI: 10.1016/j.exger.2019.110691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
|
47
|
Mazzotti E, Teti G, Falconi M, Chiarini F, Barboni B, Mazzotti A, Muttini A. Age-Related Alterations Affecting the Chondrogenic Differentiation of Synovial Fluid Mesenchymal Stromal Cells in an Equine Model. Cells 2019; 8:cells8101116. [PMID: 31547126 PMCID: PMC6829538 DOI: 10.3390/cells8101116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis is a degenerative disease that strongly correlates with age and promotes the breakdown of joint cartilage and subchondral bone. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stromal cells (MSCs) isolated from adult tissues. It seems that MSCs derived from synovial joint tissues exhibit superior chondrogenic ability, but their unclear distribution and low frequency actually limit their clinical application. To date, the influence of aging on synovial joint derived MSCs’ biological characteristics and differentiation abilities remains unknown, and a full understanding of the mechanisms involved in cellular aging is lacking. The aim of this study was therefore to investigate the presence of age-related alterations in synovial fluid MSCs and their influence on the potential ability of MSCs to differentiate toward chondrogenic phenotypes. Synovial fluid MSCs, isolated from healthy equine donors from 3 to 40 years old, were cultured in vitro and stimulated towards chondrogenic differentiation for up to 21 days. An equine model was chosen due to the high degree of similarity of the anatomy of the knee joint to the human knee joint and as spontaneous disorders develop that are clinically relevant to similar human disorders. The results showed a reduction in cell proliferation correlated with age and the presence of age-related tetraploid cells. Ultrastructural analysis demonstrated the presence of morphological features correlated with aging such as endoplasmic reticulum stress, autophagy, and mitophagy. Alcian blue assay and real-time PCR data showed a reduction of efficiency in the chondrogenic differentiation of aged synovial fluid MSCs compared to young MSCs. All these data highlighted the influence of aging on MSCs’ characteristics and ability to differentiate towards chondrogenic differentiation and emphasize the importance of considering age-related alterations of MSCs in clinical applications.
Collapse
Affiliation(s)
- Eleonora Mazzotti
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
| | - Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University di Bologna, 40126 Bologna, Italy.
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University di Bologna, 40126 Bologna, Italy.
| | - Francesca Chiarini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136 Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Barbara Barboni
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
| | - Antonio Mazzotti
- st Orthopedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy.
| | - Aurelio Muttini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
- Stem TeCh Group, 66100 Chieti, Italy.
| |
Collapse
|
48
|
Ghanem NZ, Malla SRL, Araki N, Lewis LK. Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae. Exp Cell Res 2019; 381:18-28. [PMID: 31075257 DOI: 10.1016/j.yexcr.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Telomerase-deficient cells of the budding yeast S. cerevisiae experience progressive telomere shortening and undergo senescence in a manner similar to that seen in cultured human fibroblasts. The cells exhibit a DNA damage checkpoint-like stress response, undergo changes in size and morphology, and eventually stop dividing. In this study, a new assay is described that allowed quantitation of senescence in telomerase-deficient est2 cells with applied statistics. Use of the new technique revealed that senescence was strongly accelerated in est2 mutants that had homologous recombination genes RAD51, RAD52 or RAD54 co-inactivated, but was only modestly affected when RAD55, RAD57 or RAD59 were knocked out. Additionally, a new approach for calculating population doublings indicated that loss of growth capacity occurred after approximately 64 generations in est2 cells but only 42 generations in est2 rad52 cells. Phase contrast microscopy experiments demonstrated that senescing est2 cells became enlarged in a time-dependent manner, ultimately exhibiting a 60% increase in cell size. Progressive alterations in physical properties were also observed, including striking changes in light scattering characteristics and cellular sedimentation rates. The results described herein will facilitate future studies of genetic and environmental factors that affect telomere shortening-associated cell senescence rates using the yeast model system.
Collapse
Affiliation(s)
- Neda Z Ghanem
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Shubha R L Malla
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Naoko Araki
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| |
Collapse
|
49
|
Abstract
Organismal aging is accompanied by a host of progressive metabolic alterations and an accumulation of senescent cells, along with functional decline and the appearance of multiple diseases. This implies that the metabolic features of cell senescence may contribute to the organism’s metabolic changes and be closely linked to age-associated diseases, especially metabolic syndromes. However, there is no clear understanding of senescent metabolic characteristics. Here, we review key metabolic features and regulators of cellular senescence, focusing on mitochondrial dysfunction and anabolic deregulation, and their link to other senescence phenotypes and aging. We further discuss the mechanistic involvement of the metabolic regulators mTOR, AMPK, and GSK3, proposing them as key metabolic switches for modulating senescence.
Collapse
Affiliation(s)
- So Mee Kwon
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sun Mi Hong
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | - Young-Kyoung Lee
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seongki Min
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | - Gyesoon Yoon
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
50
|
Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology 2019; 20:381-395. [PMID: 30838484 DOI: 10.1007/s10522-019-09805-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) has been described as central coenzyme of redox reactions and is a key regulator of stress resistance and longevity. Aging is a multifactorial and irreversible process that is characterized by a gradual diminution in physiological functions in an organism over time, leading to development of age-associated pathologies and eventually increasing the probability of death. Ischemia is the lack of nutritive blood flow that causes damage and mortality that mostly occurs in various organs during aging. During the process of aging and related ischemic conditions, NAD+ levels decline and lead to nuclear and mitochondrial dysfunctions, resulting in age-related pathologies. The majority of studies have shown that restoring of NAD+ using supplementation with intermediates such as nicotinamide mononucleotide and nicotinamide riboside can be a valuable strategy for recovery of ischemic injury and age-associated defects. This review summarizes the molecular mechanisms responsible for the reduction in NAD+ levels during ischemic disorders and aging, as well as a particular focus is given to the recent progress in the understanding of NAD+ precursor's effects on aging and ischemia.
Collapse
Affiliation(s)
- Leila Hosseini
- Drug Applied Research Center, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr S Vafaee
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.,Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|