1
|
Li R, Huang Y. Reveal the autophagic degradation of glutaredoxin Grx4 in Schizosaccharomyces pombe. Arch Biochem Biophys 2024:110227. [PMID: 39603377 DOI: 10.1016/j.abb.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostasis. To further elucidate their functions, we employed a combination of bioinformatics and experimental analyses. In S. pombe, five Grxs have been identified. Our study utilized multiple sequence alignment and conserved domain prediction, revealing that Grx4 and its homologs possess a glutaredoxin domain (GRX domain) at the C-terminal and a thioredoxin-like domain (TRX domain) exclusively at the N-terminal. The functional roles of the GRX domain and TRX domain were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two Atg8 interacting motifs (AIM), FLKI and FQEI, located within the TRX domain of Grx4, are sufficient to induce autophagic degradation under nitrogen- or iron-starvation conditions, respectively. This represents a significant advancement in understanding TRX domain function within Grxs for the first time. Moreover, the altered expression level of Pcl1 in Δatg5 or Δatg8 strains under iron starvation suggests that autophagy is essential for maintaining iron homeostasis. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum autophagy (ER-phagy) during DTT treatment, implying a potential correlation between Grxs and the endoplasmic reticulum (ER). Additionally, the loss of Grx4 disrupted nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4.
Collapse
Affiliation(s)
- Rong Li
- Jiangsu Key Laboratory for Pathogens and Ecosystems, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Li YR, Cai W, Zhang YX, Zhang NX, Huang QL, Lu YT, Yuan TT. A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis. Int J Mol Sci 2024; 25:11455. [PMID: 39519008 PMCID: PMC11546484 DOI: 10.3390/ijms252111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis.
Collapse
Affiliation(s)
- Ying-Rui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China
| | - Ya-Xuan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning-Xin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiao-Ling Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Kairis A, Neves BD, Couturier J, Remacle C, Rouhier N. Iron‑sulfur cluster synthesis in plastids by the SUF system: A mechanistic and structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119797. [PMID: 39033932 DOI: 10.1016/j.bbamcr.2024.119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.
Collapse
Affiliation(s)
- Antoine Kairis
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Institut Universitaire de France, F-75000 Paris, France
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
4
|
Schlößer M, Moseler A, Bodnar Y, Homagk M, Wagner S, Pedroletti L, Gellert M, Ugalde JM, Lillig CH, Meyer AJ. Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1455-1474. [PMID: 38394181 DOI: 10.1111/tpj.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that in Arabidopsis thaliana, GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Unexpectedly, neither single nor double mutants lacking both GRXs isoforms in the cytosol or the ER show phenotypes that differ from wild-type controls. Analysis of electrostatic surface potentials and clustering of GRXs based on their electrostatic interaction with roGFP2 mirrors the phylogenetic classification of class I GRXs, which clearly separates the cytosolic GRXC1 and GRXC2 from the luminal GRXC3 and GRXC4. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC3 and GRXC4 being better catalysts than GRXC1 and GRXC2 for the reduction of bis(2-hydroxyethyl) disulfide. With oxidized roGFP2 as an alternative substrate, GRXC1 and GRXC2 catalyze the reduction faster than GRXC3 and GRXC4, which suggests that catalytic efficiency of GRXs in reductive reactions depends on the respective substrate. Vice versa, GRXC3 and GRXC4 are faster than GRXC1 and GRXC2 in catalyzing the oxidation of pre-reduced roGFP2 in the reverse reaction.
Collapse
Affiliation(s)
- Michelle Schlößer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Yana Bodnar
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Maria Homagk
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - José M Ugalde
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Christopher H Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
5
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
6
|
Kumar RMS, Ramesh SV, Sun Z, Thankappan S, Nulu NPC, Binodh AK, Kalaipandian S, Srinivasan R. Capsicum chinense Jacq.-derived glutaredoxin (CcGRXS12) alters redox status of the cells to confer resistance against pepper mild mottle virus (PMMoV-I). PLANT CELL REPORTS 2024; 43:108. [PMID: 38557872 DOI: 10.1007/s00299-024-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
KEY MESSAGE The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.
Collapse
Affiliation(s)
- R M Saravana Kumar
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - S V Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671 124, India
| | - Z Sun
- Sericultural Research Institute, Chengde Medical University, Chengde, 067000, China
| | - Sugitha Thankappan
- Department of Agriculture, School of Agriculture Sciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, India
| | | | - Asish Kanakaraj Binodh
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sundaravelpandian Kalaipandian
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Ramachandran Srinivasan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| |
Collapse
|
7
|
Geissel F, Lang L, Husemann B, Morgan B, Deponte M. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Nat Commun 2024; 15:1733. [PMID: 38409212 PMCID: PMC10897161 DOI: 10.1038/s41467-024-45808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.
Collapse
Affiliation(s)
- Fabian Geissel
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
8
|
Van Tran T, Nguyen H, Vu L, Lee C. Structural conservation in the glutathione binding in Sphingomonas sp. glutaredoxin Grx3 and variations for cold adaptation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140971. [PMID: 37935252 DOI: 10.1016/j.bbapap.2023.140971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Glutaredoxin 3 (Grx3), a redox protein with a thioredoxin-fold structure, maintains structural integrity and glutathione (GSH) binding capabilities across varying habitat temperatures. The cis-Pro loop, essential for GSH binding, relies on the Arg-Asp salt bridge (α2-α3) and Gln-His hydrogen bond (β3-β4) for its conformation. In some psychrophilic Grx3 variants, Arg in α2 is replaced with Tyr, and His in β4 is replaced with Phe. This study examines the roles of these bonds in Grx3's structure, function, and cold adaptation, using SpGrx3 from the Arctic bacterium Sphingomonas sp. Despite its cold habitat, SpGrx3 maintains the Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond. The R51Y substitution disrupts the α2-α3 salt bridge, while the H63F and H63Y substitutions hinder the salt bridge through cation-π interactions with Arg51, involving Phe63/Tyr63, thereby enhancing flexibility. Conversely, mutations that disrupt the hydrogen bond (Q56A, H63A, and H63F) reduce thermal stability. In the psychrophilic Grx3 configuration A48T/R51Y/H63F, a Thr48-Gln56 hydrogen bond stabilizes the cis-Pro loop, enhancing flexibility by disrupting both bonds. Furthermore, all mutants exhibit reduced α-helical content and catalytic efficiency. In summary, the highly conserved Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond are crucial for stabilizing the cis-Pro loop and catalytic activity in SpGrx3. His63 is favored as it avoids cation-π interactions with Arg51, unlike Phe63/Tyr63. Psychrophilic Grx3 variants have adapted to cold environments by reducing GSH binding and increasing structural flexibility. These findings deepen our understanding of the structural conservation in Grx3 for GSH binding and the critical alterations required for cold adaptation.
Collapse
Affiliation(s)
- Trang Van Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Hoa Nguyen
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Luyen Vu
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea.
| |
Collapse
|
9
|
Wang S, Dong Y, Gu L, Chen X, Zhang C, Long L, Wang J, Yang M. Identification and adaptive evolution analysis of glutaredoxin genes in Populus spp. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1154-1170. [PMID: 37703550 DOI: 10.1111/plb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Glutaredoxin (GRX) is a class of small redox proteins widely involved in cellular redox homeostasis and the regulation of various cellular processes. The role of GRX gene in the differentiation of Populus spp. is rarely reported. We compared the similarities and differences of GRX genes among four sections of poplar using bioinformatics, corrected the annotations of some GRX genes, and focused on analysing their transcript profiling and adaptive evolution in Populus spp. A total of 219 GRX genes were identified in four sections of poplar, among which annotations for 13 genes were corrected. Differences in GRX genes were found between sect. Turanga, represented by P. euphratica, and other poplar sections. Most notably, P. euphratica had the smallest number of duplication events for GRX genes (n = 9) and no tandem duplications, whereas there were >25 duplication events for all other poplars. Furthermore, we detected 18 pairs of GRX genes under positive selection pressure in various sections of poplar, and identified two groups of GRX genes in the Salicaceae that potentially underwent positive selection. Expression profiling results showed that the PtrGRX34 and its orthologous genes were upregulated under stress treatments. In summary, the GRX gene family underwent expansion during poplar differentiation, and some genes underwent rapid evolution during this process, which may be beneficial for Populus spp. to adapt to environmental changes. This study may provide more insights into the molecular mechanisms of Populus spp. adaptation to environmental changes and the adaptive evolution of GRX genes.
Collapse
Affiliation(s)
- S Wang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Y Dong
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - L Gu
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - X Chen
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - C Zhang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - L Long
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - J Wang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - M Yang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| |
Collapse
|
10
|
Sevilla F, Martí MC, De Brasi-Velasco S, Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5955-5969. [PMID: 37453076 PMCID: PMC10575703 DOI: 10.1093/jxb/erad270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response. We review the emerging roles of TRXs and GRXs in redox-regulated processes interacting with other cell signalling systems such as organellar retrograde communication and gene expression, especially in plants during their development and under stressful environments. This approach will cast light on the specific role of these proteins as redox signalling components, and their importance in different developmental processes during abiotic stress.
Collapse
Affiliation(s)
- Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Maria Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sabrina De Brasi-Velasco
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
11
|
Dong Q, Yan Q, Zhang B, Zhang LQ, Wu X. Regulation of 2,4-diacetylphloroglucinol biosynthesis and biocontrol capacity by the BolA family protein IbaG in Pseudomonas fluorescens 2P24. Microbiol Spectr 2023; 11:e0098523. [PMID: 37724877 PMCID: PMC10580914 DOI: 10.1128/spectrum.00985-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/23/2023] [Indexed: 09/21/2023] Open
Abstract
The monothiol glutaredoxin GrxD plays an essential role in the biosynthesis of the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and the biocontrol capacity of the soil bacterium Pseudomonas fluorescens 2P24. However, the detailed mechanism underlying GrxD-mediated activation of the production of 2,4-DAPG remains unclear. Here, we found that GrxD directly interacted with IbaG, a BolA protein family member. The mutation of ibaG significantly decreased 2,4-DAPG production. Furthermore, expressing ibaG restored the production of 2,4-DAPG in the grxD ibaG double mutant to wild-type levels in the presence of dithiothreitol, suggesting that IbaG was required for GrxD-mediated regulation of 2,4-DAPG production. Transcriptome sequencing analyses revealed that IbaG plays a global role in gene regulation by affecting the expression of numerous genes throughout the genome. We also demonstrated that IbaG is an important regulator of several cellular processes, including swarming motility, biofilm formation, siderophore production, and acid resistance. Altogether, our data suggest that IbaG has an essential role in 2,4-DAPG production, motility, and biofilm formation. We also propose a regulatory mechanism linking GrxD to 2,4-DAPG production via IbaG. IMPORTANCE The production of 2,4-diacetylphloroglucinol (2,4-DAPG) is positively influenced by the monothiol glutaredoxin GrxD in Pseudomonas fluorescens 2P24. However, the regulatory mechanism underlying GrxD-mediated regulation of 2,4-DAPG biosynthesis is mostly uncharacterized. Here, we show the function of the BolA-like protein IbaG in 2,4-DAPG biosynthesis. We also demonstrate that GrxD directly interacts with IbaG and influences the redox state of IbaG. Altogether, this work provides new insights into the role of the highly conserved IbaG protein in regulating 2,4-DAPG synthesis, biofilm formation, and other biocontrol traits of P. fluorescens.
Collapse
Affiliation(s)
- Qiuling Dong
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety/College of Agriculture, Guangxi University, Nanning, China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Bo Zhang
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety/College of Agriculture, Guangxi University, Nanning, China
| | - Li-qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaogang Wu
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety/College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Tran TV, Hoang T, Jang SH, Lee C. Unraveling the roles of aromatic cluster side-chain interactions on the structural stability and functional significance of psychrophilic Sphingomonas sp. glutaredoxin 3. PLoS One 2023; 18:e0290686. [PMID: 37651358 PMCID: PMC10470887 DOI: 10.1371/journal.pone.0290686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigates the impact of aromatic cluster side-chain interactions in Grx3 (SpGrx3) from the psychrophilic Arctic bacterium Sphingomonas sp. Grx3 is a class I oxidoreductase with a unique parallel arrangement of aromatic residues in its aromatic cluster, unlike the tetrahedral geometry observed in Trxs. Hydrophilic-to-hydrophobic substitutions were made in the aromatic cluster, in β1 (E5V and Y7F), adjacent β2 (Y32F and Y32L), both β1 and β2 (E5V/Y32L), and short α2 (R47F). The hydrophobic substitutions, particularly those at or near Tyr7 (E5V, Y7F, Y32F, and R47F), increased melting temperatures and conformational stability, whereas disrupting β1-β2 interactions (Y32L and E5V/Y32L) led to structural instability of SpGrx3. However, excessive hydrophobic interactions (Y7F and E5V/Y32L) caused protein aggregation at elevated temperatures. All mutations resulted in a reduction in α-helical content and an increase in β-strand content. The R47F mutant, which formed dimers and exhibited the highest β-strand content, showed increased conformational flexibility and a significant decrease in catalytic rate due to the disturbance of β1-α2 interactions. In summary, the configuration of the aromatic cluster, especially Tyr7 in the buried β1 and Arg47 in the short α2, played crucial roles in maintaining the active conformation of SpGrx3 and preventing its protein aggregation. These modifications, reducing hydrophobicity in the central β-sheet, distinguish Grx3 from other Trx-fold proteins, highlighting evolutionary divergence within the Trx-fold superfamily and its functional versatility.
Collapse
Affiliation(s)
- Trang Van Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Trang Hoang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
13
|
Chai YC, Mieyal JJ. Glutathione and Glutaredoxin-Key Players in Cellular Redox Homeostasis and Signaling. Antioxidants (Basel) 2023; 12:1553. [PMID: 37627548 PMCID: PMC10451691 DOI: 10.3390/antiox12081553] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
This Special Issue of Antioxidants on Glutathione (GSH) and Glutaredoxin (Grx) was designed to collect review articles and original research studies focused on advancing the current understanding of the roles of the GSH/Grx system in cellular homeostasis and disease processes. The tripeptide glutathione (GSH) is the most abundant non-enzymatic antioxidant/nucleophilic molecule in cells. In addition to various metabolic reactions involving GSH and its oxidized counterpart GSSG, oxidative post-translational modification (PTM) of proteins has been a focal point of keen interest in the redox field over the last few decades. In particular, the S-glutathionylation of proteins (protein-SSG formation), i.e., mixed disulfides between GSH and protein thiols, has been studied extensively. This reversible PTM can act as a regulatory switch to interconvert inactive and active forms of proteins, thereby mediating cell signaling and redox homeostasis. The unique architecture of the GSH molecule enhances its relative abundance in cells and contributes to the glutathionyl specificity of the primary catalytic activity of the glutaredoxin enzymes, which play central roles in redox homeostasis and signaling, and in iron metabolism in eukaryotes and prokaryotes under physiological and pathophysiological conditions. The class-1 glutaredoxins are characterized as cytosolic GSH-dependent oxidoreductases that catalyze reversible protein S-glutathionylation specifically, thereby contributing to the regulation of redox signal transduction and/or the protection of protein thiols from irreversible oxidation. This Special Issue includes nine other articles: three original studies and six review papers. Together, these ten articles support the central theme that GSH/Grx is a unique system for regulating thiol-redox hemostasis and redox-signal transduction, and the dysregulation of the GSH/Grx system is implicated in the onset and progression of various diseases involving oxidative stress. Within this context, it is important to appreciate the complementary functions of the GSH/Grx and thioredoxin systems not only in thiol-disulfide regulation but also in reversible S-nitrosylation. Several potential clinical applications have emerged from a thorough understanding of the GSH/Grx redox regulatory system at the molecular level, and in various cell types in vitro and in vivo, including, among others, the concept that elevating Grx content/activity could serve as an anti-fibrotic intervention; and discovering small molecules that mimic the inhibitory effects of S-glutathionylation on dimer association could identify novel anti-viral agents that impact the key protease activities of the HIV and SARS-CoV-2 viruses. Thus, this Special Issue on Glutathione and Glutaredoxin has focused attention and advanced understanding of an important aspect of redox biology, as well as spawning questions worthy of future study.
Collapse
Affiliation(s)
- Yuh-Cherng Chai
- Department of Chemistry, John Carroll University, University Heights, OH 44118, USA;
| | - John J. Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
da Silva AA, Galego L, Arraiano CM. New Perspectives on BolA: A Still Mysterious Protein Connecting Morphogenesis, Biofilm Production, Virulence, Iron Metabolism, and Stress Survival. Microorganisms 2023; 11:microorganisms11030632. [PMID: 36985206 PMCID: PMC10051749 DOI: 10.3390/microorganisms11030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The BolA-like protein family is widespread among prokaryotes and eukaryotes. BolA was originally described in E. coli as a gene induced in the stationary phase and in stress conditions. The BolA overexpression makes cells spherical. It was characterized as a transcription factor modulating cellular processes such as cell permeability, biofilm production, motility, and flagella assembly. BolA is important in the switch between motile and sedentary lifestyles having connections with the signaling molecule c-di-GMP. BolA was considered a virulence factor in pathogens such as Salmonella Typhimurium and Klebsiella pneumoniae and it promotes bacterial survival when facing stresses due to host defenses. In E. coli, the BolA homologue IbaG is associated with resistance to acidic stress, and in Vibrio cholerae, IbaG is important for animal cell colonization. Recently, it was demonstrated that BolA is phosphorylated and this modification is important for the stability/turnover of BolA and its activity as a transcription factor. The results indicate that there is a physical interaction between BolA-like proteins and the CGFS-type Grx proteins during the biogenesis of Fe-S clusters, iron trafficking and storage. We also review recent progress regarding the cellular and molecular mechanisms by which BolA/Grx protein complexes are involved in the regulation of iron homeostasis in eukaryotes and prokaryotes.
Collapse
|
15
|
Möller M, Orrico F, Villar S, López AC, Silva N, Donzé M, Thomson L, Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS OMEGA 2023; 8:147-168. [PMID: 36643550 PMCID: PMC9835686 DOI: 10.1021/acsomega.2c06768] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are exposed to both external and internal sources of oxidants that challenge their integrity and compromise their physiological function and supply of oxygen to tissues. Autoxidation of oxyhemoglobin is the main source of endogenous RBC oxidant production, yielding superoxide radical and then hydrogen peroxide. In addition, potent oxidants from other blood cells and the surrounding endothelium can reach the RBCs. Abundant and efficient enzymatic systems and low molecular weight antioxidants prevent most of the damage to the RBCs and also position the RBCs as a sink of vascular oxidants that allow the body to maintain a healthy circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and robust network of antioxidant systems.
Collapse
Affiliation(s)
- Matias
N. Möller
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Florencia Orrico
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Sebastián
F. Villar
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C. López
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Nicolás Silva
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
- Departamento
de Medicina Transfusional, Hospital de Clínicas, Facultad de
Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Marcel Donzé
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Ana Denicola
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
16
|
Relationships between the Reversible Oxidation of the Single Cysteine Residue and the Physiological Function of the Mitochondrial Glutaredoxin S15 from Arabidopsis thaliana. Antioxidants (Basel) 2022; 12:antiox12010102. [PMID: 36670964 PMCID: PMC9854632 DOI: 10.3390/antiox12010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Glutaredoxins (GRXs) are widespread proteins catalyzing deglutathionylation or glutathionylation reactions or serving for iron-sulfur (Fe-S) protein maturation. Previous studies highlighted a role of the Arabidopsis thaliana mitochondrial class II GRXS15 in Fe-S cluster assembly, whereas only a weak glutathione-dependent oxidation activity was detected with the non-physiological roGFP2 substrate in vitro. Still, the protein must exist in a reduced form for both redox and Fe-S cluster binding functions. Therefore, this study aimed at examining the redox properties of AtGRXS15. The acidic pKa of the sole cysteine present in AtGRXS15 indicates that it should be almost totally under a thiolate form at mitochondrial pH and thus possibly subject to oxidation. Oxidizing treatments revealed that this cysteine reacts with H2O2 or with oxidized glutathione forms. This leads to the formation of disulfide-bridge dimers and glutathionylated monomers which have redox midpoint potentials of -304 mV and -280 mV, respectively. Both oxidized forms are reduced by glutathione and mitochondrial thioredoxins. In conclusion, it appears that AtGRXS15 is prone to oxidation, forming reversible oxidation forms that may be seen either as a catalytic intermediate of the oxidoreductase activity and/or as a protective mechanism preventing irreversible oxidation and allowing Fe-S cluster binding upon reduction.
Collapse
|
17
|
Mondal S, Singh SP. New insights on thioredoxins (Trxs) and glutaredoxins (Grxs) by in silico amino acid sequence, phylogenetic and comparative structural analyses in organisms of three domains of life. Heliyon 2022; 8:e10776. [PMID: 36203893 PMCID: PMC9529593 DOI: 10.1016/j.heliyon.2022.e10776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Thioredoxins (Trxs) and Glutaredoxins (Grxs) regulate several cellular processes by controlling the redox state of their target proteins. Trxs and Grxs belong to thioredoxin superfamily and possess characteristic Trx/Grx fold. Several phylogenetic, biochemical and structural studies have contributed to our overall understanding of Trxs and Grxs. However, comparative study of closely related Trxs and Grxs in organisms of all domains of life was missing. Here, we conducted in silico comparative structural analysis combined with amino acid sequence and phylogenetic analyses of 65 Trxs and 88 Grxs from 12 organisms of three domains of life to get insights into evolutionary and structural relationship of two proteins. Outcomes suggested that despite diversity in their amino acids composition in distantly related organisms, both Trxs and Grxs strictly conserved functionally and structurally important residues. Also, position of these residues was highly conserved in all studied Trxs and Grxs. Notably, if any substitution occurred during evolution, preference was given to amino acids having similar chemical properties. Trxs and Grxs were found more different in eukaryotes than prokaryotes due to altered helical conformation. The surface of Trxs was negatively charged, while Grxs surface was positively charged, however, the active site was constituted by uncharged amino acids in both proteins. Also, phylogenetic analysis of Trxs and Grxs in three domains of life supported endosymbiotic origins of chloroplast and mitochondria, and suggested their usefulness in molecular systematics. We also report previously unknown catalytic motifs of two proteins, and discuss in detail about effect of abovementioned parameters on overall structural and functional diversity of Trxs and Grxs.
Collapse
|
18
|
Xu H, Li Z, Jiang PF, Zhao L, Qu C, Van de Peer Y, Liu YJ, Zeng QY. Divergence of active site motifs among different classes of Populus glutaredoxins results in substrate switches. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:129-146. [PMID: 34981873 DOI: 10.1111/tpj.15660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Enzymes are essential components of all biological systems. The key characteristics of proteins functioning as enzymes are their substrate specificities and catalytic efficiencies. In plants, most genes encoding enzymes are members of large gene families. Within such families, the contributions of active site motifs to the functional divergence of duplicate genes have not been well elucidated. In this study, we identified 41 glutaredoxin (GRX) genes in the Populus trichocarpa genome. GRXs are ubiquitous enzymes in plants that play important roles in developmental and stress tolerance processes. In poplar, GRX genes were divided into four classes based on clear differences in gene structure and expression pattern, subcellular localization, enzymatic activity, and substrate specificity of the encoded proteins. Using site-directed mutagenesis, this study revealed that the divergence of the active site motif among different classes of GRX proteins resulted in substrate switches and thus provided new insights into the molecular evolution of these important plant enzymes.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Peng-Fei Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Zhao
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE-90187, Sweden
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
19
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
20
|
Sasoni N, Hartman MD, García-Effron G, Guerrero SA, Iglesias AA, Arias DG. Functional characterization of monothiol and dithiol glutaredoxins from Leptospira interrogans. Biochimie 2022; 197:144-159. [PMID: 35217125 DOI: 10.1016/j.biochi.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022]
Abstract
Thiol redox proteins and low molecular mass thiols have essential functions in maintaining cellular redox balance in almost all living organisms. In the pathogenic bacterium Leptospira interrogans, several redox components have been described, namely, typical 2-Cys peroxiredoxin, a functional thioredoxin system, glutathione synthesis pathway, and methionine sulfoxide reductases. However, until now, information about proteins linked to GSH metabolism has not been reported in this pathogen. Glutaredoxins (Grxs) are GSH-dependent oxidoreductases that regulate and maintain the cellular redox state together with thioredoxins. This work deals with recombinant production at a high purity level, biochemical characterization, and detailed kinetic and structural study of the two Grxs (Lin1CGrx and Lin2CGrx) identified in L. interrogans serovar Copenhageni strain Fiocruz L1-130. Both recombinant LinGrxs exhibited the classical in vitro GSH-dependent 2-hydroxyethyl disulfide and dehydroascorbate reductase activity. Strikingly, we found that Lin2CGrx could serve as a substrate of methionine sulfoxide reductases A1 and B from L. interrogans. Distinctively, only recombinant Lin1CGrx contained a [2Fe2S] cluster confirming a homodimeric structure. The functionality of both LinGrxs was assessed by yeast complementation in null grx mutants, and both isoforms were able to rescue the mutant phenotype. Finally, our data suggest that protein glutathionylation as a post-translational modification process is present in L. interrogans. As a whole, our results support the occurrence of two new redox actors linked to GSH metabolism and iron homeostasis in L. interrogans.
Collapse
Affiliation(s)
- Natalia Sasoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Laboratorio de Micología y Diagnóstico Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina; Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías D Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermo García-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina; Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
21
|
Mojiri A, Zhou JL, Ratnaweera H, Rezania S, Nazari V M. Pharmaceuticals and personal care products in aquatic environments and their removal by algae-based systems. CHEMOSPHERE 2022; 288:132580. [PMID: 34687686 DOI: 10.1016/j.chemosphere.2021.132580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The consumption of pharmaceuticals and personal care products (PPCPs) has been widely increasing, yet up to 90-95% of PPCPs consumed by human are excreted unmetabolized. Moreover, the most of PPCPs cannot be fully removed by wastewater treatment plants (WWTPs), which release PPCPs to natural water bodies, affecting aquatic ecosystems and potentially humans. This study sought to review the occurrence of PPCPs in natural water bodies globally, and assess the effects of important factors on the fluxes of pollutants into receiving waterways. The highest ibuprofen concentration (3738 ng/L) in tap water was reported in Nigeria, and the highest naproxen concentration (37,700 ng/L) was reported in groundwater wells in Penn State, USA. Moreover, the PPCPs have affected aquatic organisms such as fish. For instance, up to 24.4 × 103 ng/g of atenolol was detected in P. lineatus. Amongst different technologies to eliminate PPCPs, algae-based systems are environmentally friendly and effective because of the photosynthetic ability of algae to absorb CO2 and their flexibility to grow in different wastewater. Up to 99% of triclosan and less than 10% of trimethoprim were removed by Nannochloris sp., green algae. Moreover, variable concentrations of PPCPs might adversely affect the growth and production of algae. The exposure of algae to high concentrations of PPCPs can reduce the content of chlorophyll and protein due to producing reactive oxygen species (ROS), and affecting expression of some genes in chlorophyll (rbcL, psbA, psaB and psbc).
Collapse
Affiliation(s)
- Amin Mojiri
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway; Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mansoureh Nazari V
- School of Pharmacy, University of 17 August 1945, Jakarta, 14350, Indonesia
| |
Collapse
|
22
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
23
|
Fu N, Sugiura K, Kondo K, Nakamura S, Wakabayashi KI, Hisabori T. Monitoring cellular redox dynamics using newly developed BRET-based redox sensor proteins. J Biol Chem 2021; 297:101186. [PMID: 34517006 PMCID: PMC8487062 DOI: 10.1016/j.jbc.2021.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species are key factors that strongly affect the cellular redox state and regulate various physiological and cellular phenomena. To monitor changes in the redox state, we previously developed fluorescent redox sensors named Re-Q, the emissions of which are quenched under reduced conditions. However, such fluorescent probes are unsuitable for use in the cells of photosynthetic organisms because they require photoexcitation that may change intracellular conditions and induce autofluorescence, primarily in chlorophylls. In addition, the presence of various chromophore pigments may interfere with fluorescence-based measurements because of their strong absorbance. To overcome these problems, we adopted the bioluminescence resonance energy transfer (BRET) mechanism for the sensor and developed two BRET-based redox sensors by fusing cyan fluorescent protein–based or yellow fluorescent protein–based Re-Q with the luminescent protein Nluc. We named the resulting redox-sensitive BRET-based indicator probes “ROBINc” and “ROBINy.” ROBINc is pH insensitive, which is especially vital for observation in photosynthetic organisms. By using these sensors, we successfully observed dynamic redox changes caused by an anticancer agent in HeLa cells and light/dark-dependent redox changes in the cells of photosynthetic cyanobacterium Synechocystis sp. PCC 6803. Since the newly developed sensors do not require excitation light, they should be especially useful for visualizing intracellular phenomena caused by redox changes in cells containing colored pigments.
Collapse
Affiliation(s)
- Nae Fu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazunori Sugiura
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Kumiko Kondo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Shungo Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken-Ichi Wakabayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Toru Hisabori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
24
|
Kharwar S, Bhattacharjee S, Chakraborty S, Mishra AK. Regulation of sulfur metabolism, homeostasis and adaptive responses to sulfur limitation in cyanobacteria. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00819-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Ogata FT, Branco V, Vale FF, Coppo L. Glutaredoxin: Discovery, redox defense and much more. Redox Biol 2021; 43:101975. [PMID: 33932870 PMCID: PMC8102999 DOI: 10.1016/j.redox.2021.101975] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/15/2023] Open
Abstract
Glutaredoxin, Grx, is a small protein containing an active site cysteine pair and was discovered in 1976 by Arne Holmgren. The Grx system, comprised of Grx, glutathione, glutathione reductase, and NADPH, was first described as an electron donor for Ribonucleotide Reductase but, from the first discovery in E.coli, the Grx family has impressively grown, particularly in the last two decades. Several isoforms have been described in different organisms (from bacteria to humans) and with different functions. The unique characteristic of Grxs is their ability to catalyse glutathione-dependent redox regulation via glutathionylation, the conjugation of glutathione to a substrate, and its reverse reaction, deglutathionylation. Grxs have also recently been enrolled in iron sulphur cluster formation. These functions have been implied in various physiological and pathological conditions, from immune defense to neurodegeneration and cancer development thus making Grx a possible drug target. This review aims to give an overview on Grxs, starting by a phylogenetic analysis of vertebrate Grxs, followed by an analysis of the mechanisms of action, the specific characteristics of the different human isoforms and a discussion on aspects related to human physiology and diseases.
Collapse
Affiliation(s)
- Fernando T Ogata
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Rua Mirassol, 207. 04044-010, São Paulo - SP, Brazil
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, SE-17165, Stockholm, Sweden.
| |
Collapse
|
26
|
Roret T, Zhang B, Moseler A, Dhalleine T, Gao XH, Couturier J, Lemaire SD, Didierjean C, Johnson MK, Rouhier N. Atypical Iron-Sulfur Cluster Binding, Redox Activity and Structural Properties of Chlamydomonas reinhardtii Glutaredoxin 2. Antioxidants (Basel) 2021; 10:antiox10050803. [PMID: 34069657 PMCID: PMC8161271 DOI: 10.3390/antiox10050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022] Open
Abstract
Glutaredoxins (GRXs) are thioredoxin superfamily members exhibiting thiol-disulfide oxidoreductase activity and/or iron-sulfur (Fe-S) cluster binding capacities. These properties are determined by specific structural factors. In this study, we examined the capacity of the class I Chlamydomonas reinhardtii GRX2 recombinant protein to catalyze both protein glutathionylation and deglutathionylation reactions using a redox sensitive fluorescent protein as a model protein substrate. We observed that the catalytic cysteine of the CPYC active site motif of GRX2 was sufficient for catalyzing both reactions in the presence of glutathione. Unexpectedly, spectroscopic characterization of the protein purified under anaerobiosis showed the presence of a [2Fe-2S] cluster despite having a presumably inadequate active site signature, based on past mutational analyses. The spectroscopic characterization of cysteine mutated variants together with modeling of the Fe–S cluster-bound GRX homodimer from the structure of an apo-GRX2 indicate the existence of an atypical Fe–S cluster environment and ligation mode. Overall, the results further delineate the biochemical and structural properties of conventional GRXs, pointing to the existence of multiple factors more complex than anticipated, sustaining the capacity of these proteins to bind Fe–S clusters.
Collapse
Affiliation(s)
- Thomas Roret
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Bo Zhang
- Department of Chemistry and Centre for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA; (B.Z.); (M.K.J.)
| | - Anna Moseler
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Tiphaine Dhalleine
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Xing-Huang Gao
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Stéphane D. Lemaire
- Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne Université, CNRS, UMR7238, 75006 Paris, France;
- Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, 75006 Paris, France
| | | | - Michael K. Johnson
- Department of Chemistry and Centre for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA; (B.Z.); (M.K.J.)
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
- Correspondence: ; Tel.: +33-372-745-157
| |
Collapse
|
27
|
Kumar A, Kumar V, Dubey AK, Ansari MA, Narayan S, Kumar S, Pandey V, Pande V, Sanyal I. Chickpea glutaredoxin ( CaGrx) gene mitigates drought and salinity stress by modulating the physiological performance and antioxidant defense mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:923-944. [PMID: 34092945 PMCID: PMC8140008 DOI: 10.1007/s12298-021-00999-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Glutaredoxins (Grxs) are short, cysteine-rich glutathione (GSH)-mediated oxidoreductases. In this study, a chickpea (Cicer arietinum L.) glutaredoxin [LOC101493651 (CaGrx)] gene has been selected based on screening experiments with two contrasting varieties of chickpea, PUSA-362 (drought-tolerant) and ICC-1882 (drought-sensitive) under drought and salinity. The tolerant variety showed higher CaGrx gene expression, as compared to less in the sensitive variety, under both the stresses. The CaGrx gene was then over-expressed in Arabidopsis thaliana and were exposed to drought and salinity. The over-expression of CaGrx elevated the activity of glutaredoxin, which induced antioxidant enzymes (glutathione reductase; GR, glutathione peroxidase; GPX, catalase; CAT, ascorbate peroxidase; APX, glutathione-S-transferase; GST, superoxide dismutase; SOD, monodehydroascorbate reductase; MDHAR, and dehydroascorbate reductase; DHAR), antioxidants (GSH and ascorbate) and stress-responsive amino acids (cysteine and proline). Enhancement in the antioxidant defense system possibly administered tolerance in transgenics against both stresses. CaGrx reduced stress markers (H2O2, TBARS, and electrolyte leakage) and enhanced root growth, seed germination, and survival against both stresses. The physiological parameters (net photosynthesis; P N, water use efficiency; WUE, stomatal conductance; g s, transpiration; E, electron transport rate; ETR, and photochemical quenching; qP), chlorophylls and carotenoids, were improved in the transgenics during both stresses, that maintained the photosynthetic apparatus and protected the plants from damage. The enhanced activity of the cysteine biosynthesis enzyme, o-acetylserine (thiol) lyase (OAS-TL), increased the cysteine level in the transgenics, which elevated glutathione biosynthesis to maintain the ascorbate-glutathione cycle under both stresses. This investigation verified that the CaGrx gene provides tolerance against salinity and drought, maintaining physiological and morphological performances, and could be exploited for genetic engineering approaches to overcome both the stresses in various crops. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00999-z.
Collapse
Affiliation(s)
- Anil Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Varun Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Arvind Kumar Dubey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Mohd Akram Ansari
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Shiv Narayan
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sanoj Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Vivek Pandey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
28
|
Wang Y, Hou Y, Wang Q. Cloning, Expression, Characterization, and Antioxidant Protection of Glutaredoxin3 From Psychrophilic Bacterium Psychrobacter sp. ANT206. Front Microbiol 2021; 12:633362. [PMID: 33897638 PMCID: PMC8060642 DOI: 10.3389/fmicb.2021.633362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Glutaredoxins (Grxs) are proteins that catalyze the glutathione (GSH)-dependent reduction of protein disulfides. In this study, a Grx-related gene (264 bp), encoding a Ps-Grx3, was cloned from Psychrobacter sp. ANT206. Sequence analysis indicated the presence of the active site motif CPYC in this protein. Homology modeling showed that Ps-Grx3 had fewer hydrogen bonds and salt bridges, as well as a lower Arg/(Arg + Lys) ratio than its mesophilic homologs, indicative of an improved catalytic ability at low temperatures. Site-directed mutagenesis demonstrated that the Cys13, Pro14, and Cys16 sites were essential for the catalytic activity of Ps-Grx3, while circular dichroism (CD) spectroscopy confirmed that point mutations in these amino acid residues led to the loss or reduction of enzyme activity. Furthermore, analysis of the biochemical properties of Ps-Grx3 showed that the optimum temperature of this enzyme was 25 °C. Importantly, Ps-Grx3 was more sensitive to tBHP and CHP than to H2O2, and retained approximately 40% activity even when the H2O2 concentration was increased to 1 mm Regarding substrate specificity, Ps-Grx3 had a higher affinity for HED, L-cystine, and DHA than for S-sulfocysteine and BSA. We also investigated the DNA-protective ability of Ps-Grx3 using the pUC19 plasmid, and found that Ps-Grx3 could protect supercoiled DNA from oxidation-induced damage at 15°C for 1.5 h. This study provides new insights into the structure and catalytic activity of a cold-adapted Grx3.
Collapse
Affiliation(s)
- Yatong Wang
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin, China.,School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
29
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
30
|
Arabidopsis thaliana 3-mercaptopyruvate sulfurtransferases interact with and are protected by reducing systems. J Biol Chem 2021; 296:100429. [PMID: 33609525 PMCID: PMC7995614 DOI: 10.1016/j.jbc.2021.100429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
The formation of a persulfide group (-SSH) on cysteine residues has gained attention as a reversible posttranslational modification contributing to protein regulation or protection. The widely distributed 3-mercaptopyruvate sulfurtransferases (MSTs) are implicated in the generation of persulfidated molecules and H2S biogenesis through transfer of a sulfane sulfur atom from a suitable donor to an acceptor. Arabidopsis has two MSTs, named STR1 and STR2, but they are poorly characterized. To learn more about these enzymes, we conducted a series of biochemical experiments including a variety of possible reducing systems. Our kinetic studies, which used a combination of sulfur donors and acceptors revealed that both MSTs use 3-mercaptopyruvate efficiently as a sulfur donor while thioredoxins, glutathione, and glutaredoxins all served as high-affinity sulfane sulfur acceptors. Using the redox-sensitive GFP (roGFP2) as a model acceptor protein, we showed that the persulfide-forming MSTs catalyze roGFP2 oxidation and more generally trans-persulfidation reactions. However, a preferential interaction with the thioredoxin system and glutathione was observed in case of competition between these sulfur acceptors. Moreover, we observed that MSTs are sensitive to overoxidation but are protected from an irreversible inactivation by their persulfide intermediate and subsequent reactivation by thioredoxins or glutathione. This work provides significant insights into Arabidopsis STR1 and STR2 catalytic properties and more specifically emphasizes the interaction with cellular reducing systems for the generation of H2S and glutathione persulfide and reactivation of an oxidatively modified form.
Collapse
|
31
|
Antioxidant ability of glutaredoxins and their role in symbiotic nitrogen fixation in Rhizobium leguminosarum bv. viciae 3841. Appl Environ Microbiol 2021; 87:AEM.01956-20. [PMID: 33277272 PMCID: PMC7851698 DOI: 10.1128/aem.01956-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glutaredoxins (Grx) are redoxin family proteins that reduce disulfides and mixed disulfides between glutathione and proteins. Rhizobium leguminosarum bv. Viciae 3841 contains three genes coding for glutaredoxins: RL4289 (grxA) codes for a dithiolic glutaredoxin, RL2615 (grxB) codes for a monothiol glutaredoxin, while RL4261 (grxC) codes for a glutaredoxin-like NrdH protein. We generated mutants interrupted in one, two, or three glutaredoxin genes. These mutants had no obvious differences in growth phenotypes from the wild type RL3841. However, while a mutant of grxC did not affect the antioxidant or symbiotic capacities of R. leguminosarum, grxA-derived or grxB mutants decreased antioxidant and nitrogen fixation capacities. Furthermore, grxA mutants were severely impaired in rhizosphere colonization, and formed smaller nodules with defects of bacteroid differentiation, whereas nodules induced by grxB mutants contained abnormally thick cortices and prematurely senescent bacteroids. The grx triple mutant had the greatest defect in antioxidant and symbiotic capacities of R. leguminosarum and quantitative proteomics revealed it had 56 up-regulated and 81 down-regulated proteins relative to wildtype. Of these proteins, twenty-eight are involved in transporter activity, twenty are related to stress response and virulence, and sixteen are involved in amino acid metabolism. Overall, R. leguminosarum glutaredoxins behave as antioxidant proteins mediating root nodule symbiosis.IMPORTANCE Glutaredoxin catalyzes glutathionylation/deglutathionylation reactions, protects SH-groups from oxidation and restores functionally active thiols. Three glutaredoxins exist in R. leguminosarum and their properties were investigated in free-living bacteria and during nitrogen-fixing symbiosis. All the glutaredoxins were necessary for oxidative stress defense. Dithiol GrxA affects nodulation and nitrogen fixation of bacteroids by altering deglutathionylation reactions, monothiol GrxB is involved in symbiotic nitrogen fixation by regulating Fe-S cluster biogenesis, and GrxC may participate in symbiosis by an unknown mechanism. Proteome analysis provides clues to explain the differences between the grx triple mutant and wild-type nodules.
Collapse
|
32
|
Cao Y, Jiang G, Li M, Fang X, Zhu D, Qiu W, Zhu J, Yu D, Xu Y, Zhong Z, Zhu J. Glutaredoxins Play an Important Role in the Redox Homeostasis and Symbiotic Capacity of Azorhizobium caulinodans ORS571. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1381-1393. [PMID: 32970520 DOI: 10.1094/mpmi-04-20-0098-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glutaredoxin (GRX) plays an essential role in the control of the cellular redox state and related pathways in many organisms. There is limited information on GRXs from the model nitrogen (N2)-fixing bacterium Azorhizobium caulinodans. In the present work, we identified and performed functional analyses of monothiol and dithiol GRXs in A. caulinodans in the free-living state and during symbiosis with Sesbania rostrata. Our data show that monothiol GRXs may be very important for bacterial growth under normal conditions and in response to oxidative stress due to imbalance of the redox state in grx mutants of A. caulinodans. Functional redundancies were also observed within monothiol and dithiol GRXs in terms of different physiological functions. The changes in catalase activity and iron content in grx mutants were assumed to favor the maintenance of bacterial resistance against oxidants, nodulation, and N2 fixation efficiency in this bacterium. Furthermore, the monothiol GRX12 and dithiol GRX34 play a collective role in symbiotic associations between A. caulinodans and Sesbania rostrata. Our study provided systematic evidence that further investigations are required to understand the importance of glutaredoxins in A. caulinodans and other rhizobia.
Collapse
Affiliation(s)
- Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Mingxu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xingxing Fang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Dan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Wei Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Juanjuan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Daogeng Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, 571737 Danzhou, Hainan, PR China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| |
Collapse
|
33
|
Sinorhizobium meliloti YrbA binds divalent metal cations using two conserved histidines. Biosci Rep 2020; 40:226508. [PMID: 32970113 PMCID: PMC7538681 DOI: 10.1042/bsr20202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Sinorhizobium meliloti is a nitrogen-fixing bacterium forming symbiotic nodules with the legume Medicago truncatula. S. meliloti possesses two BolA-like proteins (BolA and YrbA), the function of which is unknown. In organisms where BolA proteins and monothiol glutaredoxins (Grxs) are present, they contribute to the regulation of iron homeostasis by bridging a [2Fe–2S] cluster into heterodimers. A role in the maturation of iron–sulfur (Fe–S) proteins is also attributed to both proteins. In the present study, we have performed a structure–function analysis of SmYrbA showing that it coordinates diverse divalent metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) using His32 and His67 residues, that are also used for Fe–S cluster binding in BolA–Grx heterodimers. It also possesses the capacity to form heterodimers with the sole monothiol glutaredoxin (SmGrx2) present in this species. Using cellular approaches analyzing the metal tolerance of S. meliloti mutant strains inactivated in the yrbA and/or bolA genes, we provide evidence for a connection of YrbA with the regulation of iron homeostasis. The mild defects in M. truncatula nodulation reported for the yrbA bolA mutant as compared with the stronger defects in nodule development previously observed for a grx2 mutant suggest functions independent of SmGrx2. These results help in clarifying the physiological role of BolA-type proteins in bacteria.
Collapse
|
34
|
Berndt C, Christ L, Rouhier N, Mühlenhoff U. Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148317. [PMID: 32980338 DOI: 10.1016/j.bbabio.2020.148317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Among the thioredoxin superfamily of proteins, the observation that numerous glutaredoxins bind iron-sulphur (Fe/S) clusters is one of the more recent and major developments concerning their functional properties. Glutaredoxins are present in most organisms. All members of the class II subfamily (including most monothiol glutaredoxins), but also some members of the class I (mostly dithiol glutaredoxins) and class III (land plant-specific monothiol or dithiol glutaredoxins) are Fe/S proteins. In glutaredoxins characterised so far, the [2Fe2S] cluster is coordinated by two active-site cysteine residues and two molecules of non-covalently bound glutathione in homo-dimeric complexes bridged by the cluster. In contrast to dithiol glutaredoxins, monothiol glutaredoxins possess no or very little oxidoreductase activity, but have emerged as important players in cellular iron metabolism. In this review we summarise the recent developments of the most prominent Fe/S glutaredoxins in eukaryotes, the mitochondrial single domain monothiol glutaredoxin 5, the chloroplastic single domain monothiol glutaredoxin S14 and S16, the nuclear/cytosolic multi-domain monothiol glutaredoxin 3, and the mitochondrial/cytosolic dithiol glutaredoxin 2.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Merowingerplatz1a, 40225 Düsseldorf, Germany
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35032 Marburg, Germany.
| |
Collapse
|
35
|
Talib EA, Outten CE. Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118847. [PMID: 32910989 DOI: 10.1016/j.bbamcr.2020.118847] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
The synthesis and trafficking of iron-sulfur (Fe-S) clusters in both prokaryotes and eukaryotes requires coordination within an expanding network of proteins that function in the cytosol, nucleus, mitochondria, and chloroplasts in order to assemble and deliver these ancient and essential cofactors to a wide variety of Fe-S-dependent enzymes and proteins. This review focuses on the evolving roles of two ubiquitous classes of proteins that operate in this network: CGFS glutaredoxins and BolA proteins. Monothiol or CGFS glutaredoxins possess a Cys-Gly-Phe-Ser active site that coordinates an Fe-S cluster in a homodimeric complex. CGFS glutaredoxins also form [2Fe-2S]-bridged heterocomplexes with BolA proteins, which possess an invariant His and an additional His or Cys residue that serve as cluster ligands. Here we focus on recent discoveries in bacteria, fungi, humans, and plants that highlight the shared and distinct roles of CGFS glutaredoxins and BolA proteins in Fe-S cluster biogenesis, Fe-S cluster storage and trafficking, and Fe-S cluster signaling to transcriptional factors that control iron metabolism--.
Collapse
Affiliation(s)
- Evan A Talib
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
36
|
Pontelli MC, Castro IA, Martins RB, Veras FP, Serra LL, Nascimento DC, Cardoso RS, Rosales R, Lima TM, Souza JP, Caetité DB, de Lima MHF, Kawahisa JT, Giannini MC, Bonjorno LP, Lopes MIF, Batah SS, Siyuan L, Assad RL, Almeida SCL, Oliveira FR, Benatti MN, Pontes LLF, Santana RC, Vilar FC, Martins MA, Cunha TM, Calado RT, Alves-Filho JC, Zamboni DS, Fabro A, Louzada-Junior P, Oliveira RDR, Cunha FQ, Arruda E. Infection of human lymphomononuclear cells by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 34013264 DOI: 10.1101/2020.01.07.896506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although SARS-CoV-2 severe infection is associated with a hyperinflammatory state, lymphopenia is an immunological hallmark, and correlates with poor prognosis in COVID-19. However, it remains unknown if circulating human lymphocytes and monocytes are susceptible to SARS-CoV-2 infection. In this study, SARS-CoV-2 infection of human peripheral blood mononuclear cells (PBMCs) was investigated both in vitro and in vivo . We found that in vitro infection of whole PBMCs from healthy donors was productive of virus progeny. Results revealed that monocytes, as well as B and T lymphocytes, are susceptible to SARS-CoV-2 active infection and viral replication was indicated by detection of double-stranded RNA. Moreover, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from COVID-19 patients, and less frequently in CD4 + T lymphocytes. The rates of SARS-CoV-2-infected monocytes in PBMCs from COVID-19 patients increased over time from symptom onset. Additionally, SARS-CoV-2-positive monocytes and B and CD4+T lymphocytes were detected by immunohistochemistry in post mortem lung tissue. SARS-CoV-2 infection of blood circulating leukocytes in COVID-19 patients may have important implications for disease pathogenesis, immune dysfunction, and virus spread within the host.
Collapse
|
37
|
Zimmermann J, Oestreicher J, Hess S, Herrmann JM, Deponte M, Morgan B. One cysteine is enough: A monothiol Grx can functionally replace all cytosolic Trx and dithiol Grx. Redox Biol 2020; 36:101598. [PMID: 32521506 PMCID: PMC7286987 DOI: 10.1016/j.redox.2020.101598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Glutaredoxins are small proteins of the thioredoxin superfamily that are present throughout life. Most glutaredoxins fall into two major subfamilies. Class I glutaredoxins are glutathione-dependent thiol-disulfide oxidoreductases whilst class II glutaredoxins coordinate Fe–S clusters. Class I glutaredoxins are typically dithiol enzymes with two active-site cysteine residues, however, some enzymatically active monothiol glutaredoxins are also known. Whilst both monothiol and dithiol class I glutaredoxins mediate protein deglutathionylation, it is widely claimed that only dithiol glutaredoxins are competent to reduce protein disulfide bonds. In this study, using a combination of yeast ‘viability rescue’, growth, and redox-sensitive GFP-based assays, we show that two different monothiol class I glutaredoxins can each facilitate the reduction of protein disulfide bonds in ribonucleotide reductase, methionine sulfoxide reductase and roGFP2. Our observations thus challenge the generalization of the dithiol mechanism for glutaredoxin catalysis and raise the question of why most class I glutaredoxins have two active-site cysteine residues.
Collapse
Affiliation(s)
- Jannik Zimmermann
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany
| | - Julian Oestreicher
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany
| | - Steffen Hess
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Marcel Deponte
- Faculty of Chemistry, Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
38
|
Nakai Y, Maruyama-Nakashita A. Biosynthesis of Sulfur-Containing Small Biomolecules in Plants. Int J Mol Sci 2020; 21:ijms21103470. [PMID: 32423011 PMCID: PMC7278922 DOI: 10.3390/ijms21103470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/25/2023] Open
Abstract
Sulfur is an essential element required for plant growth. It can be found as a thiol group of proteins or non-protein molecules, and as various sulfur-containing small biomolecules, including iron-sulfur (Fe/S) clusters, molybdenum cofactor (Moco), and sulfur-modified nucleotides. Thiol-mediated redox regulation has been well investigated, whereas biosynthesis pathways of the sulfur-containing small biomolecules have not yet been clearly described. In order to understand overall sulfur transfer processes in plant cells, it is important to elucidate the relationships among various sulfur delivery pathways as well as to investigate their interactions. In this review, we summarize the information from recent studies on the biosynthesis pathways of several sulfur-containing small biomolecules and the proteins participating in these processes. In addition, we show characteristic features of gene expression in Arabidopsis at the early stage of sulfate depletion from the medium, and we provide insights into sulfur transfer processes in plant cells.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki 569-8686, Japan
- Correspondence: ; Fax: +81-72-684-6516
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
39
|
Kumar A, Dubey AK, Kumar V, Ansari MA, Narayan S, Kumar S, Pandey V, Shirke PA, Pande V, Sanyal I. Over-expression of chickpea glutaredoxin (CaGrx) provides tolerance to heavy metals by reducing metal accumulation and improved physiological and antioxidant defence system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110252. [PMID: 32014725 DOI: 10.1016/j.ecoenv.2020.110252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Glutaredoxins (Grxs) are small multifunctional redox proteins. Grxs have glutathione-dependent oxidoreductase activity in the presence of glutathione reductase and NADPH. The role of Grxs is well studied in heavy metal tolerance in prokaryotic and mammalian systems but not in plant genera. In the present study, a chickpea glutaredoxin (CaGrx) gene (LOC101493651) has been investigated against metal stress based on its primary screening in chickpea which revealed higher up-regulation of CaGrx gene under various heavy metals (AsIII-25 μM, AsV-250 μM, Cr(VI)-300 μM, and Cd-500 μM) stress. This CaGrx gene was overexpressed in Arabidopsis thaliana and investigated various biochemical and physiological performances under each metal stress. Transgenic plants showed significant up-regulation of the CaGrx gene during qRT-PCR analysis as well as longer roots, higher seed germination, and survival efficiency during each metal stress. The levels of stress markers, TBARS, H2O2, and electrolyte leakage were found to be less in transgenic lines as compared to WT revealed less toxicity in transgenics. The total accumulation of AsIII, AsV, and Cr(VI) were significantly reduced in all transgenic lines except Cd, which was slightly reduced. The physiological parameters such as net photosynthetic rate (PN), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), photochemical quenching (qP), and electron transport rate (ETR), were maintained in transgenic lines during metal stress. Various antioxidant enzymes such as glutaredoxin (GRX), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione-S-transferase (GST), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), antioxidant molecules (ascorbate, GSH) and stress-responsive amino acids (proline and cysteine) levels were significantly increased in transgenic lines which provide metal tolerance. The outcome of this study strongly indicates that the CaGrx gene participates in the moderation of metal stress in Arabidopsis, which can be utilized in biotechnological interventions to overcome heavy metal stress conditions in different crops.
Collapse
Affiliation(s)
- Anil Kumar
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Arvind Kumar Dubey
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Varun Kumar
- CSIR-National Botanical Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Akram Ansari
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Shiv Narayan
- CSIR-National Botanical Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanoj Kumar
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Vivek Pandey
- CSIR-National Botanical Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pramod Arvind Shirke
- CSIR-National Botanical Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Mondal S, Kumar V, Singh SP. Phylogenetic distribution and structural analyses of cyanobacterial glutaredoxins (Grxs). Comput Biol Chem 2019; 84:107141. [PMID: 31839562 DOI: 10.1016/j.compbiolchem.2019.107141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
Glutaredoxins (Grxs), the oxidoreductase proteins, are involved in several cellular processes, including maintenance of cellular redox potential and iron-sulfur homeostasis. The analysis of 503 amino acid sequences from 167 cyanobacterial species led to the identification of four classes of cyanobacterial Grxs, i.e., class I, II, V, and VI Grxs. Class III and IV Grxs were absent in cyanobacteria. Class I and II Grxs are single module oxidoreductase while class V and VI Grxs are multimodular proteins having additional modules at their C-terminal and N-terminal end, respectively. Furthermore, class VI Grxs were exclusively present in marine cyanobacteria. We also report the identification of class VI Grxs with two novel active site motif compositions. Detailed phylogenetic analysis of all four classes of Grxs revealed the presence of several subgroups within each class of Grx having variable dithiol and/or monothiol catalytic active site motif and putative glutathione binding sites. However, class II Grxs possess CGFS-type highly conserved monothiol catalytic active site motif. Sequence analysis confirmed the highly diverse nature of Grx proteins in terms of their amino acid composition; though, sequence diversity does not affect the overall 3D structure of cyanobacterial Grxs. The active site residues and putative GSH binding residues are uncharged amino acids which are present on the surface of the protein. Additionally, the presence of hydrophilic residues at the surface of Grxs confirms their solubility. Protein-ligand interaction analysis identified novel glutathione binding sites on Grxs. Regulation of Grxs encoding genes expression by light quality and quantity as well as salinity suggests their role in determining the fitness of organisms under abiotic factors.
Collapse
Affiliation(s)
- Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Vinod Kumar
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shailendra P Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
41
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Valassakis C, Dervisi I, Agalou A, Papandreou N, Kapetsis G, Podia V, Haralampidis K, Iconomidou VA, Spaink HP, Roussis A. Novel interactions of Selenium Binding Protein family with the PICOT containing proteins AtGRXS14 and AtGRXS16 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:102-112. [PMID: 30824043 DOI: 10.1016/j.plantsci.2019.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
During abiotic stress the primary symptom of phytotoxicity can be ROS production which is strictly regulated by ROS scavenging pathways involving enzymatic and non-enzymatic antioxidants. Furthermore, ROS are well-described secondary messengers of cellular processes, while during the course of evolution, plants have accomplished high degree of control over ROS and used them as signalling molecules. Glutaredoxins (GRXs) are small and ubiquitous glutathione (GSH) -or thioredoxin reductase (TR)-dependent oxidoreductases belonging to the thioredoxin (TRX) superfamily which are conserved in most eukaryotes and prokaryotes. In Arabidopsis thaliana GRXs are subdivided into four classes playing a central role in oxidative stress responses and physiological functions. In this work, we describe a novel interaction of AtGRXS14 with the Selenium Binding Protein 1 (AtSBP1), a protein proposed to be integrated in a regulatory network that senses alterations in cellular redox state and acts towards its restoration. We further show that SBP protein family interacts with AtGRXS16 that also contains a PICOT domain, like AtGRXS14.
Collapse
Affiliation(s)
- Chrysanthi Valassakis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Adamantia Agalou
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Nikolaos Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Georgios Kapetsis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Varvara Podia
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
43
|
Li N, Muthreich M, Huang LJ, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1906-1918. [PMID: 30252136 DOI: 10.1111/nph.15496] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
TGACG-BINDING FACTORs (TGAs) control the developmental or defense-related processes. In Arabidopsis thaliana, the functions of at least TGA2 and PERIANTHIA (PAN) can be repressed by interacting with CC-type glutaredoxins, which have the potential to control the redox state of target proteins. As TGA1 can be redox modulated in planta, we analyzed whether some of the 21 CC-type glutaredoxins (ROXYs) encoded in the Arabidopsis genome can influence TGA1 activity in planta and whether the redox active cysteines of TGA1 are functionally important. We show that the tga1 tga4 mutant and plants ectopically expressing ROXY8 or ROXY9 are impaired in hyponastic growth. As expression of ROXY8 and ROXY9 is activated upon transfer of plants from hyponasty-inducing low light to normal light, they might interfere with the growth-promoting function of TGA1/TGA4 to facilitate reversal of hyponastic growth. The redox-sensitive cysteines of TGA1 are not required for induction or reversal of hyponastic growth. TGA1 and TGA4 interact with ROXYs 8, 9, 18, and 19/GRX480, but ectopically expressed ROXY18 and ROXY19/GRX480 do not interfere with hyponastic growth. Our results therefore demonstrate functional specificities of individual ROXYs for distinct TGAs despite promiscuous protein-protein interactions and point to different repression mechanisms, depending on the TGA/ROXY combination.
Collapse
Affiliation(s)
- Ning Li
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Martin Muthreich
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Li-Jun Huang
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christiane Gatz
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| |
Collapse
|
44
|
Meyer AJ, Riemer J, Rouhier N. Oxidative protein folding: state-of-the-art and current avenues of research in plants. THE NEW PHYTOLOGIST 2019; 221:1230-1246. [PMID: 30230547 DOI: 10.1111/nph.15436] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1230 I. Introduction 1230 II. Formation and isomerization of disulfides in the ER and the Golgi apparatus 1231 III. The disulfide relay in the mitochondrial intermembrane space: why are plants different? 1236 IV. Disulfide bond formation on luminal proteins in thylakoids 1240 V. Conclusion 1242 Acknowledgements 1242 References 1242 SUMMARY: Disulfide bonds are post-translational modifications crucial for the structure and function of thousands of proteins. Their formation and isomerization, referred to as oxidative folding, require specific protein machineries found in oxidizing subcellular compartments, namely the endoplasmic reticulum and the associated endomembrane system, the intermembrane space of mitochondria and the thylakoid lumen of chloroplasts. At least one protein component is required for transferring electrons from substrate proteins to an acceptor that is usually molecular oxygen. For oxidation reactions, incoming reduced substrates are oxidized by thiol-oxidoreductase proteins (or domains in case of chimeric proteins), which are usually themselves oxidized by a single thiol oxidase, the enzyme generating disulfide bonds de novo. By contrast, the description of the molecular actors and pathways involved in proofreading and isomerization of misfolded proteins, which require a tightly controlled redox balance, lags behind. Herein we provide a general overview of the knowledge acquired on the systems responsible for oxidative protein folding in photosynthetic organisms, highlighting their particularities compared to other eukaryotes. Current research challenges are discussed including the importance and specificity of these oxidation systems in the context of the existence of reducing systems in the same compartments.
Collapse
Affiliation(s)
- Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, 53113, Bonn, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany
| | | |
Collapse
|
45
|
Rey P, Taupin-Broggini M, Couturier J, Vignols F, Rouhier N. Is There a Role for Glutaredoxins and BOLAs in the Perception of the Cellular Iron Status in Plants? FRONTIERS IN PLANT SCIENCE 2019; 10:712. [PMID: 31231405 PMCID: PMC6558291 DOI: 10.3389/fpls.2019.00712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/14/2019] [Indexed: 05/12/2023]
Abstract
Glutaredoxins (GRXs) have at least three major identified functions. In apoforms, they exhibit oxidoreductase activity controlling notably protein glutathionylation/deglutathionylation. In holoforms, i.e., iron-sulfur (Fe-S) cluster-bridging forms, they act as maturation factors for the biogenesis of Fe-S proteins or as regulators of iron homeostasis contributing directly or indirectly to the sensing of cellular iron status and/or distribution. The latter functions seem intimately connected with the capacity of specific GRXs to form [2Fe-2S] cluster-bridging homodimeric or heterodimeric complexes with BOLA proteins. In yeast species, both proteins modulate the localization and/or activity of transcription factors regulating genes coding for proteins involved in iron uptake and intracellular sequestration in response notably to iron deficiency. Whereas vertebrate GRX and BOLA isoforms may display similar functions, the involved partner proteins are different. We perform here a critical evaluation of the results supporting the implication of both protein families in similar signaling pathways in plants and provide ideas and experimental strategies to delineate further their functions.
Collapse
Affiliation(s)
- Pascal Rey
- Plant Protective Proteins Team, CEA, CNRS, BIAM, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Maël Taupin-Broggini
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | | | - Florence Vignols
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | - Nicolas Rouhier
- Université de Lorraine, INRA, IAM, Nancy, France
- *Correspondence: Nicolas Rouhier,
| |
Collapse
|
46
|
The thioredoxin-mediated recycling of Arabidopsis thaliana GRXS16 relies on a conserved C-terminal cysteine. Biochim Biophys Acta Gen Subj 2018; 1863:426-436. [PMID: 30502392 DOI: 10.1016/j.bbagen.2018.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Glutaredoxins (GRXs) are oxidoreductases involved in diverse cellular processes through their capacity to reduce glutathionylated proteins and/or to coordinate iron‑sulfur (Fe-S) clusters. Among class II GRXs, the plant-specific GRXS16 is a bimodular protein formed by an N-terminal endonuclease domain fused to a GRX domain containing a 158CGFS signature. METHODS The biochemical properties (redox activity, sensitivity to oxidation, pKa of cysteine residues, midpoint redox potential) of Arabidopsis thaliana GRXS16 were investigated by coupling oxidative treatments to alkylation shift assays, activity measurements and mass spectrometry analyses. RESULTS Activity measurements using redox-sensitive GFP2 (roGFP2) as target protein did not reveal any significant glutathione-dependent reductase activity of A. thaliana GRXS16 whereas it was able to catalyze the oxidation of roGFP2 in the presence of glutathione disulfide. Accordingly, Arabidopsis GRXS16 reacted efficiently with oxidized forms of glutathione, leading to the formation of an intramolecular disulfide between Cys158 and the semi-conserved Cys215, which has a midpoint redox potential of - 298 mV at pH 7.0 and is reduced by plastidial thioredoxins (TRXs) but not GSH. By promoting the formation of this disulfide, Cys215 modulates GRXS16 oxidoreductase activity. CONCLUSION The reduction of AtGRXS16, which is mandatory for its oxidoreductase activity and the binding of Fe-S clusters, depends on light through the plastidial FTR/TRX system. Hence, disulfide formation may constitute a redox switch mechanism controlling GRXS16 function in response to day/night transition or oxidizing conditions. GENERAL SIGNIFICANCE From the in vitro data obtained with roGFP2, one can postulate that GRXS16 would mediate protein glutathionylation/oxidation in plastids but not their deglutathionylation.
Collapse
|
47
|
Sun X, Chen M, Jia F, Hou Y, Hu SQ. Crystal Structure of Wheat Glutaredoxin and Its Application in Improving the Processing Quality of Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12079-12087. [PMID: 30346751 DOI: 10.1021/acs.jafc.8b03590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glutaredoxin (Grx) is a ubiquitous oxidoreductase that plays a vital role in maintaining cellular redox homeostasis. In comparison to Grx from other organisms, plant Grx is unique in that it has many isoforms, which, thus, suggests probably diverse functions and mechanisms. Therefore, structure-function characterization of plant Grx is necessary to have in-depth knowledge and explore its application in industry. In this study, wheat Grx (wGrx) was overexpressed and purified and the crystal structure of wGrx was determined at 2.94 Å resolution. Interestingly, the structure for the first time captured both the oxidized form and the transient state of reduced-oxidized wGrx in a crystal. The mutagenesis of wGrx suggests that it adopts a monothiol catalytic mechanism. wGrx has the ability to reduce wheat thioredoxin (wTrx), and this is the first example of the reduction of thioredoxin subgroup h class II by Grx. Flour farinograph and dynamic rheological analysis showed that wGrx together with wTrx has a positive effect on dough formation, which is probably attributed to the increased sodium dodecyl sulfate (SDS)-insoluble gluten macropolymer (GMP) through increasing the intermolecular disulfide bond induced by the wGrx-wTrx system. The results indicate great potential of wGrx-wTrx as a novel synergetic enzymatic additive and may be employed to fine-tune the processing performance of food related to the redox reaction.
Collapse
Affiliation(s)
- Xiaomei Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Meirong Chen
- Graduate School of Life Science , Hokkaido University , Sapporo , Hokkaido 060-0810 , Japan
| | - Feng Jia
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Song-Qing Hu
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
48
|
Characterization of TrxC, an Atypical Thioredoxin Exclusively Present in Cyanobacteria. Antioxidants (Basel) 2018; 7:antiox7110164. [PMID: 30428557 PMCID: PMC6262485 DOI: 10.3390/antiox7110164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria form a diverse group of oxygenic photosynthetic prokaryotes considered to be the antecessor of plant chloroplast. They contain four different thioredoxins isoforms, three of them corresponding to m, x and y type present in plant chloroplast, while the fourth one (named TrxC) is exclusively found in cyanobacteria. TrxC has a modified active site (WCGLC) instead of the canonical (WCGPC) present in most thioredoxins. We have purified it and assayed its activity but surprisingly TrxC lacked all the classical activities, such as insulin precipitation or activation of the fructose-1,6-bisphosphatase. Mutants lacking trxC or over-expressing it were generated in the model cyanobacterium Synechocystis sp. PCC 6803 and their phenotypes have been analyzed. The ΔtrxC mutant grew at similar rates to WT in all conditions tested although it showed an increased carotenoid content especially under low carbon conditions. Overexpression strains showed reduced growth under the same conditions and accumulated lower amounts of carotenoids. They also showed lower oxygen evolution rates at high light but higher Fv’/Fm’ and Non-photochemical-quenching (NPQ) in dark adapted cells, suggesting a more oxidized plastoquinone pool. All these data suggest that TrxC might have a role in regulating photosynthetic adaptation to low carbon and/or high light conditions.
Collapse
|
49
|
Zannini F, Roret T, Przybyla-Toscano J, Dhalleine T, Rouhier N, Couturier J. Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron⁻Sulfur Cluster and Reduce NFU Proteins In Vitro. Antioxidants (Basel) 2018; 7:E142. [PMID: 30322144 PMCID: PMC6210436 DOI: 10.3390/antiox7100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.
Collapse
Affiliation(s)
| | - Thomas Roret
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- CNRS, LBI2M, Sorbonne Universités, F-29680 Roscoff, France.
| | - Jonathan Przybyla-Toscano
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
| | | | | | | |
Collapse
|
50
|
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants (Basel) 2018; 7:antiox7090114. [PMID: 30158486 PMCID: PMC6162775 DOI: 10.3390/antiox7090114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidation of methionine (Met) leads to the formation of two S- and R-diastereoisomers of Met sulfoxide (MetO) that are reduced back to Met by methionine sulfoxide reductases (MSRs), A and B, respectively. Here, we review the current knowledge about the physiological functions of plant MSRs in relation with subcellular and tissue distribution, expression patterns, mutant phenotypes, and possible targets. The data gained from modified lines of plant models and crop species indicate that MSRs play protective roles upon abiotic and biotic environmental constraints. They also participate in the control of the ageing process, as shown in seeds subjected to adverse conditions. Significant advances were achieved towards understanding how MSRs could fulfil these functions via the identification of partners among Met-rich or MetO-containing proteins, notably by using redox proteomic approaches. In addition to a global protective role against oxidative damage in proteins, plant MSRs could specifically preserve the activity of stress responsive effectors such as glutathione-S-transferases and chaperones. Moreover, several lines of evidence indicate that MSRs fulfil key signaling roles via interplays with Ca2+- and phosphorylation-dependent cascades, thus transmitting ROS-related information in transduction pathways.
Collapse
|