1
|
Romero‐Casañas A, García‐Lizarribar A, Castro J, Vilanova M, Benito A, Ribó M. Ligation of multiple protein domains using orthogonal inteins with non-native splice junctions. Protein Sci 2024; 33:e5070. [PMID: 38864750 PMCID: PMC11168065 DOI: 10.1002/pro.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Protein splicing is a self-catalyzed process in which an internal protein domain (the intein) is excised from its flanking sequences, linking them together with a canonical peptide bond. Trans-inteins are separated in two different precursor polypeptide chains that must assemble to catalytically self-excise and ligate the corresponding flanking exteins to join even when expressed separately either in vitro or in vivo. They are very interesting to construct full proteins from separate domains because their common small size favors chemical synthesis approaches. Therefore, trans-inteins have multiple applications such as protein modification and purification, structural characterization of protein domains or production of intein-based biosensors, among others. For many of these applications, when using more than one trans-intein, orthogonality between them is a critical issue to ensure the proper ligation of the exteins. Here, we confirm the orthogonality (lack of cross-reactivity) of four different trans- or split inteins, gp41-1, gp41-8, IMPDH-1 and NrdJ-1 both in vivo and in vitro, and built different constructs that allow for the sequential fusion of up to four protein fragments into one final spliced product. We have characterized the splicing efficiency of these constructs. All harbor non-native extein residues at the splice junction between the trans-intein and the neighboring exteins, except for the essential Ser + 1. Our results show that it is possible to ligate four different protein domains using inteins gp41-1, IMPDH-1 and NrdJ-1 with non-native extein residues to obtain a final four-domain spliced product with a not negligible yield that keeps its native sequence.
Collapse
Affiliation(s)
| | | | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de BiologiaUniversitat de GironaGironaSpain
- Institut d'Investigació Biomèdica de Girona Josep Trueta (IdIBGi)SaltSpain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de BiologiaUniversitat de GironaGironaSpain
- Institut d'Investigació Biomèdica de Girona Josep Trueta (IdIBGi)SaltSpain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de BiologiaUniversitat de GironaGironaSpain
- Institut d'Investigació Biomèdica de Girona Josep Trueta (IdIBGi)SaltSpain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de BiologiaUniversitat de GironaGironaSpain
- Institut d'Investigació Biomèdica de Girona Josep Trueta (IdIBGi)SaltSpain
| |
Collapse
|
2
|
Schloßhauer JL, Zemella A, Dondapati SK, Thoring L, Meyer M, Kubick S. Enhancing the performance of a mutant pyrrolysyl-tRNA synthetase to create a highly versatile eukaryotic cell-free protein synthesis tool. Sci Rep 2023; 13:15236. [PMID: 37709815 PMCID: PMC10502014 DOI: 10.1038/s41598-023-42198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Modification of proteins with a broad range of chemical functionalities enables the investigation of protein structure and activity by manipulating polypeptides at single amino acid resolution. Indeed, various functional groups including bulky non-canonical amino acids like strained cyclooctenes could be introduced by the unique features of the binding pocket of the double mutant pyrrolysyl-tRNA synthetase (Y306A, Y384F), but the instable nature of the enzyme limits its application in vivo. Here, we constructed a cell-free protein production system, which increased the overall enzyme stability by combining different reaction compartments. Moreover, a co-expression approach in a one-pot reaction allowed straightforward site-specific fluorescent labeling of the functional complex membrane protein cystic fibrosis transmembrane conductance regulator. Our work provides a versatile platform for introducing various non-canonical amino acids into difficult-to-express proteins for structural and fluorescence based investigation of proteins activity.
Collapse
Affiliation(s)
- Jeffrey L Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Institute of Biotechnology,, Brandenburg University of Technology Cottbus-Senftenberg, Am Mühlenberg, Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany.
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Manpreet Meyer
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| |
Collapse
|
3
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
4
|
In vitro production of N-degron fused proteins and its application. Methods Enzymol 2023. [PMID: 37532410 DOI: 10.1016/bs.mie.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The N-degron pathway, first discovered several decades ago by Varshavsky's laboratory, controls the half-life of target proteins depending on their N-terminal residues. In vivo cell biology studies have established the physiological role of the N-degron pathway. However, in vitro studies such as biochemical assays and structural biology studies are relatively limited. The N-degron substrates cannot be obtained via simple protein expression. The N-degron residues are exposed via the proteolytic process from the translated nascent polypeptide chains. Thus, methods for the fusion expression with several cleavable tags and subsequent treatment with specific proteases to design the exposed N-degron signals have been introduced. Recently, we developed a unique fusion technique using microtubule-associated protein 1A/1B light chain 3B (LC3B), a key marker protein of autophagy, to obtain a high yield of the purified target proteins with variable N-terminal residues for various biochemical studies including enzymatic and binding assays, and crystallization of N-degron complex. This chapter describes the protocols that include the vector map designed for producing LC3B fused target proteins, methods for expression and purification of an example protein, p62/SQSMT1, using different N-terminal residues, and methods to obtain the purified ATG4B protease, which is used for processing LC3B tag and exposing the required N-terminal residues of the target protein.
Collapse
|
5
|
Maas MN, Hintzen JCJ, Mecinović J. Probing lysine posttranslational modifications by unnatural amino acids. Chem Commun (Camb) 2022; 58:7216-7231. [PMID: 35678513 DOI: 10.1039/d2cc00708h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Posttranslational modifications, typically small chemical tags attached on amino acids following protein biosynthesis, have a profound effect on protein structure and function. Numerous chemically and structurally diverse posttranslational modifications, including methylation, acetylation, hydroxylation, and ubiquitination, have been identified and characterised on lysine residues in proteins. In this feature article, we focus on chemical tools that rely on the site-specific incorporation of unnatural amino acids into peptides and proteins to probe posttranslational modifications of lysine. We highlight that simple amino acid mimics enable detailed mechanistic and functional assignment of enzymes that install and remove such modifications, and proteins that specifically recognise lysine posttranslational modifications.
Collapse
Affiliation(s)
- Marijn N Maas
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
6
|
Denda M, Otaka A. Advances in Preparation of Peptide and Protein Thioesters Aiming to Use in Medicinal Sciences. Chem Pharm Bull (Tokyo) 2022; 70:316-323. [DOI: 10.1248/cpb.c21-01019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
7
|
Wang S, Zhou Q, Li Y, Wei B, Liu X, Zhao J, Ye F, Zhou Z, Ding B, Wang P. Quinoline-Based Photolabile Protection Strategy Facilitates Efficient Protein Assembly. J Am Chem Soc 2022; 144:1232-1242. [PMID: 35034454 DOI: 10.1021/jacs.1c10324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Native chemical ligation (NCL) provides a powerful solution to assemble proteins with precise chemical features, which enables a detailed investigation of the protein structure-function relationship. As an extension to NCL, the discovery of desulfurization and expressed protein ligation (EPL) techniques has greatly expanded the efficient access to large or challenging protein sequences via chemical ligations. Despite its superior reliability, the NCL-desulfurization protocol requires orthogonal protection strategies to allow selective desulfurization in the presence of native Cys, which is crucial to its synthetic application. In contrast to traditional thiol protecting groups, photolabile protecting groups (PPGs), which are removed upon irradiation, simplify protein assembly and therefore provide minimal perturbation to the peptide scaffold. However, current PPG strategies are mainly limited to nitro-benzyl derivatives, which are incompatible with NCL-desulfurization. Herein, we present for the first time that quinoline-based PPG for cysteine can facilitate various ligation strategies, including iterative NCL and EPL-desulfurization methods. 7-(Piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ) caging of multiple cysteine residues within the protein sequence can be readily introduced via late-stage modification, while the traceless removal of PPZQ is highly efficient via photolysis in an aqueous buffer. In addition, the PPZQ group is compatible with radical desulfurization. The efficiency of this strategy has been highlighted by the synthesis of γ-synuclein and phosphorylated cystatin-S via one-pot iterative ligation and EPL-desulfurization methods. Besides, successful sextuple protection and deprotection of the expressed Interleukin-34 fragment demonstrate the great potential of this strategy in protein caging/uncaging investigations.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunxue Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bingcheng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongneng Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
Fungicidal Activity of Recombinant Javanicin against Cryptococcus neoformans Is Associated with Intracellular Target(s) Involved in Carbohydrate and Energy Metabolic Processes. Molecules 2021; 26:molecules26227011. [PMID: 34834105 PMCID: PMC8618071 DOI: 10.3390/molecules26227011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/06/2023] Open
Abstract
The occurrence of Cryptococcus neoformans, the human fungal pathogen that primarily infects immunocompromised individuals, has been progressing at an alarming rate. The increased incidence of infection of C. neoformans with antifungal drugs resistance has become a global concern. Potential antifungal agents with extremely low toxicity are urgently needed. Herein, the biological activities of recombinant javanicin (r-javanicin) against C. neoformans were evaluated. A time-killing assay was performed and both concentration- and time-dependent antifungal activity of r-javanicin were indicated. The inhibitory effect of the peptide was initially observed at 4 h post-treatment and ultimately eradicated within 36 to 48 h. Fungal outer surface alteration was characterized by the scanning electron microscope (SEM) whereas a negligible change with slight shrinkage of external morphology was observed in r-javanicin treated cells. Confocal laser scanning microscopic analysis implied that the target(s) of r-javanicin is conceivably resided in the cell thereby allowing the peptide to penetrate across the membrane and accumulate throughout the fungal body. Finally, cryptococcal cells coped with r-javanicin were preliminarily investigated using label-free mass spectrometry-based proteomics. Combined with microscopic and proteomics analysis, it was clearly elucidated the peptide localized in the intracellular compartment where carbohydrate metabolism and energy production associated with glycolysis pathway and mitochondrial respiration, respectively, were principally interfered. Overall, r-javanicin would be an alternative candidate for further development of antifungal agents.
Collapse
|
9
|
Cavaco M, Frutos S, Oliete P, Valle J, Andreu D, Castanho MARB, Vila-Perelló M, Neves V. Conjugation of a Blood Brain Barrier Peptide Shuttle to an Fc Domain for Brain Delivery of Therapeutic Biomolecules. ACS Med Chem Lett 2021; 12:1663-1668. [PMID: 36060671 PMCID: PMC9437899 DOI: 10.1021/acsmedchemlett.1c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The frequency of brain disease has increased significantly in the past years. After diagnosis, therapeutic options are usually limited, which demands the development of innovative therapeutic strategies. The use of antibody-drug conjugates (ADCs) is promising but highly limited by the existence of the blood-brain barrier (BBB). To overcome the impermeability of this barrier, antibody fragments can be engineered and conjugated to BBB peptide shuttles (BBBpS), which are capable of brain penetration. Herein, we linked the highly efficient BBBpS, PepH3, to the IgG fragment crystallizable (Fc) domain using the streamlined expressed protein ligation (SEPL) method. With this strategy, we obtained an Fc-PepH3 scaffold that can carry different payloads. Fc-PepH3 was shown to be nontoxic, capable of crossing an in vitro cellular BBB model, and able to bind to the neonatal Fc receptor (FcRn), which is responsible for antibody long half-life (t 1/2). Overall, we demonstrated the potential of Fc-PepH3 as a versatile platform readily adaptable to diverse drugs of therapeutic value to treat different brain conditions.
Collapse
Affiliation(s)
- Marco Cavaco
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisboa, Portugal
- Proteomics
and Protein Chemistry Unit, Department of Experimental and Health
Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical
Research Park, 08003 Barcelona, Spain
| | - Silvia Frutos
- SpliceBio
S.L., Baldiri Reixac
10-12, 08028 Barcelona, Spain
| | - Paula Oliete
- SpliceBio
S.L., Baldiri Reixac
10-12, 08028 Barcelona, Spain
| | - Javier Valle
- Proteomics
and Protein Chemistry Unit, Department of Experimental and Health
Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical
Research Park, 08003 Barcelona, Spain
| | - David Andreu
- Proteomics
and Protein Chemistry Unit, Department of Experimental and Health
Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical
Research Park, 08003 Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Vera Neves
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
10
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
11
|
Braun GA, Pogostin BH, Pucetaite M, Londergan CH, Åkerfeldt KS. Deuterium-Enhanced Raman Spectroscopy for Histidine pK a Determination in a pH-Responsive Hydrogel. Biophys J 2020; 119:1701-1705. [PMID: 33080220 DOI: 10.1016/j.bpj.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
We report here a method for the determination of the pKa of histidine in complex or heterogeneous systems amenable to neither solid-state nor solution NMR spectroscopy. Careful synthesis of a fluorenylmethyloxycarbonyl- and trityl-protected, C2-deuterated histidine produces a vibrational-probe-equipped amino acid that can readily be incorporated into any peptide accessible by standard solid-phase methods. The frequency of the unique, Raman-active stretching vibration of this C2-D probe is a clear reporter of the protonation state of histidine. We investigate here a pH-sensitive peptide that self-assembles to form a hydrogel at neutral pH. The pKa of the lone histidine residue in the peptide, which is likely responsible for this pH-dependent behavior, cannot be investigated by NMR spectroscopy because of the supramolecular, soft nature of the gel. However, after synthesizing a C2-deuterated-histidine-containing peptide, we were able to follow the protonation state of histidine throughout a pH titration using Raman difference spectroscopy, thereby precisely determining the pKa of interest.
Collapse
Affiliation(s)
- Gabriel A Braun
- Department of Chemistry, Haverford College, Haverford, Pennsylvania; Centre for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden, Lund University, Lund, Sweden.
| | - Brett H Pogostin
- Department of Chemistry, Haverford College, Haverford, Pennsylvania
| | - Milda Pucetaite
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | | | | |
Collapse
|
12
|
Jin S, Brea RJ, Rudd AK, Moon SP, Pratt MR, Devaraj NK. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nat Commun 2020; 11:2793. [PMID: 32493905 PMCID: PMC7270136 DOI: 10.1038/s41467-020-16595-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Biology utilizes multiple strategies, including sequestration in lipid vesicles, to raise the rate and specificity of chemical reactions through increases in effective molarity of reactants. We show that micelle-assisted reaction can facilitate native chemical ligations (NCLs) between a peptide-thioester – in which the thioester leaving group contains a lipid-like alkyl chain – and a Cys-peptide modified by a lipid-like moiety. Hydrophobic lipid modification of each peptide segment promotes the formation of mixed micelles, bringing the reacting peptides into close proximity and increasing the reaction rate. The approach enables the rapid synthesis of polypeptides using low concentrations of reactants without the need for thiol catalysts. After NCL, the lipid moiety is removed to yield an unmodified ligation product. This micelle-based methodology facilitates the generation of natural peptides, like Magainin 2, and the derivatization of the protein Ubiquitin. Formation of mixed micelles from lipid-modified reactants shows promise for accelerating chemical reactions in a traceless manner. Sequestration of reactants in lipid vesicles is a strategy prevalent in biological systems to raise the rate and specificity of chemical reactions. Here, the authors show that micelle-assisted reactions facilitate native chemical ligation between a peptide-thioester and a Cys-peptide modified by a lipid-like moiety.
Collapse
Affiliation(s)
- Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew K Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Abstract
Cyclotides are naturally occurring microproteins (≈30 residues long) present in several families of plants. All cyclotides share a unique head-to-tail circular knotted topology containing three disulfide bridges forming a cystine knot topology. Cyclotides possess high stability to chemical, physical, and biological degradation and have been reported to cross cellular membranes. In addition, naturally occurring and engineered cyclotides have shown to possess various pharmacologically relevant activities. These unique features make the cyclotide scaffold an excellent tool for the design of novel peptide-based therapeutics by using molecular evolution and/or peptide epitope grafting techniques. In this chapter, we provide protocols to recombinantly produce a natively folded cyclotide making use of a standard bacterial expression system in combination with an intein-mediated backbone cyclization with concomitant oxidative folding.
Collapse
Affiliation(s)
- Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jingtan Su
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Zhao J, Du Z, Wang C, Mills KV. Methods to Study the Structure and Catalytic Activity of cis-Splicing Inteins. Methods Mol Biol 2020; 2133:55-73. [PMID: 32144663 PMCID: PMC7325523 DOI: 10.1007/978-1-0716-0434-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The autocatalytic process of protein splicing is facilitated by an intein, which interrupts flanking polypeptides called exteins. The mechanism of protein splicing has been studied by overexpression in E. coli of intein fusion proteins with nonnative exteins. Inteins can be used to generate reactive α-thioesters, as well as proteins with N-terminal Cys residues, to facilitate expressed protein ligation. As such, a more detailed understanding of the function of inteins can have significant impact for biotechnology applications. Here, we provide biochemical methods to study splicing activity and NMR methods to study intein structure and the catalytic mechanism.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Zhenming Du
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA.
| |
Collapse
|
15
|
Yokoo H, Kagechika H, Ohsaki A, Hirano T. A Polarity‐Sensitive Fluorescent Amino Acid and its Incorporation into Peptides for the Ratiometric Detection of Biomolecular Interactions. Chempluschem 2019; 84:1716-1719. [DOI: 10.1002/cplu.201900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hidetomo Yokoo
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Ayumi Ohsaki
- College of Humanities and SciencesNihon University 3-25-40 Sakurajosui, Setagaya-ku Tokyo 156-8550 Japan
| | - Tomoya Hirano
- Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| |
Collapse
|
16
|
Wang S, Thopate YA, Zhou Q, Wang P. Chemical Protein Synthesis by Native Chemical Ligation and Variations Thereof. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Yogesh Abaso Thopate
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| |
Collapse
|
17
|
Musselman CA, Kutateladze TG. Strategies for Generating Modified Nucleosomes: Applications within Structural Biology Studies. ACS Chem Biol 2019; 14:579-586. [PMID: 30817115 DOI: 10.1021/acschembio.8b01049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Post-translational modifications on histone proteins play critical roles in the regulation of chromatin structure and all DNA-templated processes. Accumulating evidence suggests that these covalent modifications can directly alter chromatin structure, or they can modulate activities of chromatin-modifying and -remodeling factors. Studying these modifications in the context of the nucleosome, the basic subunit of chromatin, is thus of great interest; however, the generation of specifically modified nucleosomes remains challenging. This is especially problematic for most structural biology approaches in which a large amount of material is often needed. Here we discuss the strategies currently available for generation of these substrates. We in particular focus on novel ideas and discuss challenges in the application to structural biology studies.
Collapse
Affiliation(s)
- Catherine A. Musselman
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52246, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
18
|
Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J Org Chem 2019; 84:4615-4628. [PMID: 30900880 DOI: 10.1021/acs.joc.8b03001] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a growing interest in therapeutic peptides within the pharmaceutical industry with more than 50 peptide drugs on the market, approximately 170 in clinical trials, and >200 in preclinical development. However, the current state of the art in peptide synthesis involves primarily legacy technologies with use of large amounts of highly hazardous reagents and solvents and little focus on green chemistry and engineering. In 2016, the ACS Green Chemistry Institute Pharmaceutical Roundtable identified development of greener processes for peptide API as a critical unmet need, and as a result, a new Roundtable team formed to address this important area. The initial focus of this new team is to highlight best practices in peptide synthesis and encourage much needed innovations. In this Perspective, we aim to summarize the current challenges of peptide synthesis and purification in terms of sustainability, highlight possible solutions, and encourage synergies between academia, the pharmaceutical industry, and contract research organizations/contract manufacturing organizations.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Medicines Research Centre , GlaxoSmithKline , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Martin N Kenworthy
- Pharmaceutical Technology and Development , AstraZeneca , Silk Road Business Park, Charter Way , Macclesfield SK10 2NA , U.K
| | - Subha Mukherjee
- Chemical and Synthetic Development , Bristol-Myers Squibb Company , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Michael E Kopach
- Small Molecule Design and Development , Eli Lilly and Company , 1400 West Raymond Street , Indianapolis , Indiana , United States
| | - Katarzyna Wegner
- Active Pharmaceutical Ingredient Development , IPSEN Manufacturing Ireland, Ltd. , Blanchardstown Industrial Park , Dublin 15 , Ireland
| | - Fabrice Gallou
- Chemical & Analytical Development , Novartis , 4056 Basel , Switzerland
| | - Austin G Smith
- Drug Substance Process Development , Amgen, Inc. , 1 Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Frank Roschangar
- Chemical Development , Boehringer Ingelheim Pharmaceuticals , Ridgefield , Connecticut 06877 , United States
| |
Collapse
|
19
|
Sarmiento C, Camarero JA. Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci 2019; 20:408-424. [PMID: 30734675 PMCID: PMC7135711 DOI: 10.2174/1389203720666190208110416] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033 USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-9121, USA
| |
Collapse
|
20
|
Grassi L, Roschger C, Stanojlović V, Cabrele C. An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain. J Pept Sci 2018; 24:e3126. [PMID: 30346065 PMCID: PMC6646916 DOI: 10.1002/psc.3126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) CH2‐CH3 domains, and engineered antibodies are prominent representatives of an important class of drugs and drug candidates, which are referred to as biotherapeutics or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to their glycosylation pattern. In addition, enzyme‐independent reactions, like deamidation, dehydration, and oxidation of sensitive side chains, may contribute to their heterogeneity in a minor amount. To investigate the biological impact of a spontaneous chemical modification, especially if found to be recurrent in a biotherapeutic, it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which has been shown to undergo spontaneous changes like succinimide formation and methionine oxidation. We used Fmoc‐solid‐phase peptide synthesis (SPPS) and native chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3 domain. In general, the incorporation of pseudoproline dipeptides improved the quality of the crude peptide precursors; however, sequences larger than 44 residues could not be achieved by standard stepwise elongation with Fmoc‐SPPS. In contrast, the application of NCL with cysteine residues, which were either native or introduced ad hoc, allowed the assembly of the C‐terminal IgG1 Fc CH3 sequence 371 to 450. The syntheses reported here show advantages and limitations of the chemical approaches chosen for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans towards the synthesis of both the native and selectively modified full‐length domain.
Collapse
Affiliation(s)
- Luigi Grassi
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Cornelia Roschger
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlović
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| |
Collapse
|
21
|
Cavaco M, Castanho MARB, Neves V. Peptibodies: An elegant solution for a long-standing problem. Biopolymers 2017; 110. [PMID: 29266205 DOI: 10.1002/bip.23095] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Chimeric proteins composed of a biologically active peptide and a fragment crystallizable (Fc) domain of immunoglobulin G (IgG) are known as peptibodies. They present an extended half-life due to neonatal Fc receptor (FcRn) salvage pathway, a decreased renal clearance rate owing to its increased size (≈70 kDa) and, depending on the peptide used in the design of the peptibody, an active-targeting moiety. Also, the peptides therapeutic activity is boosted by the number of peptides in the fusion protein (at least two peptides) and to some peptides' alterations. Peptibodies are mainly obtained through recombinant DNA technology. However, to improve peptide properties, "unnatural" changes have been introduced to the original peptides' sequence, for instance, the incorporation of D- or non-natural amino acid residues or even cyclization thus, limiting the application of genetic engineering in the production of peptibodies, since these peptides must be obtained via chemical synthesis. This constrains prompted the development of new methods for conjugation of peptides to Fc domains. Another challenge, subject of intense research, relates to the large-scale production of such peptibodies using these new techniques, which can be minimized by their proved value. To date, two peptibodies, romiplostim and dulaglutide, have been approved and stay as the standard of care in their areas of action. Furthermore, a considerable number of peptibodies are currently in preclinical and clinical development.
Collapse
Affiliation(s)
- Marco Cavaco
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| | - Miguel A R B Castanho
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| | - Vera Neves
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| |
Collapse
|
22
|
In-cell production of a genetically-encoded library based on the θ-defensin RTD-1 using a bacterial expression system. Bioorg Med Chem 2017; 26:1212-1219. [PMID: 28927803 DOI: 10.1016/j.bmc.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 02/08/2023]
Abstract
We report the high-yield heterologous expression of bioactive θ-defensin RTD-1 inside Escherichia coli cells by making use of intracellular protein trans-splicing in combination with a high efficient split-intein. RTD-1 is a small backbone-cyclized polypeptide with three disulfide bridges and a natural inhibitor of anthrax lethal factor protease. Recombinant RTD-1 was natively folded and able to inhibit anthrax lethal factor protease. In-cell expression of RTD-1 was very efficient and yielded ≈0.7mg of folded RTD-1 per gram of wet E. coli cells. This approach was used to generate of a genetically-encoded RTD-1-based peptide library in live E. coli cells. These results clearly demonstrate the possibility of using genetically-encoded RTD-1-based peptide libraries in live E. coli cells, which is a critical first step for developing in-cell screening and directed evolution technologies using the cyclic peptide RTD-1asa molecular scaffold.
Collapse
|
23
|
Zhu S, Guo Z. Chemical Synthesis of GPI Glycan-Peptide Conjugates by Traceless Staudinger Ligation. Org Lett 2017; 19:3063-3066. [PMID: 28541706 DOI: 10.1021/acs.orglett.7b01132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new strategy has been developed for GPI glycan-peptide conjugate synthesis based upon a traceless Staudinger reaction between a peptide phosphinothioester and a GPI glycan azide. The strategy was first studied and optimized with simple peptides and GPI glycans, which offered excellent yields of the desired conjugates in both organic and aqueous solvents. It was then used to successfully synthesize an analogue of the human CD52 antigen containing the whole CD52 peptide sequence and the conserved trimannose motif of all GPI anchors.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Burke HM, McSweeney L, Scanlan EM. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat Commun 2017; 8:15655. [PMID: 28537277 PMCID: PMC5458133 DOI: 10.1038/ncomms15655] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
S -to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S -to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology. The conversion of thioesters to amides via acyl transfer has become one of the most important synthetic techniques for the chemical synthesis and modification of proteins. This review discusses this S-to-N acyl transfer process, and highlights some of the key applications across chemistry and biology.
Collapse
Affiliation(s)
- Helen M. Burke
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| | | | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| |
Collapse
|
25
|
Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Protein Expr Purif 2017; 133:25-34. [DOI: 10.1016/j.pep.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 01/27/2023]
|
26
|
Li L, Chao T, Brant J, O'Malley B, Tsourkas A, Li D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev 2017; 108:2-12. [PMID: 26796230 DOI: 10.1016/j.addr.2016.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/31/2023]
Abstract
Sensorineural hearing loss (SNHL) is one of the most common diseases, accounting for about 90% of all hearing loss. Leading causes of SNHL include advanced age, ototoxic medications, noise exposure, inherited and autoimmune disorders. Most of SNHL is irreversible and managed with hearing aids or cochlear implants. Although there is increased understanding of the molecular pathophysiology of SNHL, biologic treatment options are limited due to lack of noninvasive targeted delivery systems. Obstacles of targeted inner ear delivery include anatomic inaccessibility, biotherapeutic instability, and nonspecific delivery. Advances in nanotechnology may provide a solution to these barriers. Nanoparticles can stabilize and carry biomaterials across the round window membrane into the inner ear, and ligand bioconjugation onto nanoparticle surfaces allows for specific targeting. A newer technology, nanohydrogel, may offer noninvasive and sustained biotherapeutic delivery into specific inner ear cells. Nanohydrogel may be used for inner ear dialysis, a potential treatment for ototoxicity-induced SNHL.
Collapse
Affiliation(s)
- Lilun Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; New York University School of Medicine, New York, NY 10016, USA
| | - Tiffany Chao
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jason Brant
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bert O'Malley
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Patil M. A revised mechanism for the α-ketoacid hydroxylamine amide forming ligations. Org Biomol Chem 2017; 15:416-425. [DOI: 10.1039/c6ob02057g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The α-ketoacid-hydroxylamine amide-forming (KAHA) ligation reactions were investigated using computational methods to provide improved insights on the mechanism of these reactions.
Collapse
Affiliation(s)
- Mahendra Patil
- UM-DAE Centre for Excellence in Basic Sciences
- Health Centre
- University of Mumbai
- Mumbai 400098
- India
| |
Collapse
|
28
|
Abstract
Most interfacial enzymes undergo activation upon membrane binding. Interfacial activation is determined not only by the binding strength but also by the specific mode of protein-membrane interactions, including the angular orientation and membrane insertion of the enzymes. This chapter describes biophysical techniques to quantitatively evaluate membrane binding, orientation, membrane insertion, and activity of secreted phospholipase A2 (PLA2) and lipoxygenase (LO) enzymes. Procedures for recombinant production and purification of human pancreatic PLA2 and human 5-lipoxygenase (5-LO) are also presented. Several methods for measurements of membrane binding of peripheral proteins are described, i.e., fluorescence resonance energy transfer (FRET) from tryptophan or tyrosine residues of the protein to a fluorescent lipid in vesicles, changes in fluorescence of an environment-sensitive fluorescent lipid upon binding of proteins to membranes, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. These methods produce the apparent binding constant, the protein-to-lipid binding stoichiometry, and the Hill cooperativity coefficient. Experimental procedures for segmental isotope labeling of proteins and determination of the orientation of membrane-bound proteins by polarized ATR-FTIR spectroscopy are described. Furthermore, evaluation of membrane insertion of peripheral proteins by a fluorescence quenching technique is outlined. Combination of the orientation and membrane insertion provides a unique configuration of the protein-membrane complex and hence elucidates certain details of the enzyme function, such as the modes of acquisition of a membrane-residing substrate and product release. Finally, assays for determination of the activities of secreted PLA2, soybean LO, and human 5-LO are described.
Collapse
Affiliation(s)
- S A Tatulian
- College of Sciences, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
29
|
Ta DT, Guedens W, Vranken T, Vanschoenbeek K, Steen Redeker E, Michiels L, Adriaensens P. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies. BIOSENSORS-BASEL 2016; 6:bios6030034. [PMID: 27399790 PMCID: PMC5039653 DOI: 10.3390/bios6030034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023]
Abstract
Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms.
Collapse
Affiliation(s)
- Duy Tien Ta
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek BE-3590, Belgium.
- Faculty of Food Technology and Biotechnology, Can Tho University of Technology, Can Tho 900000, Vietnam.
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek BE-3590, Belgium.
| | - Tom Vranken
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek BE-3590, Belgium.
| | - Katrijn Vanschoenbeek
- Immunology and Biochemistry, Biomedical Research Institute (Biomed) and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt University, Diepenbeek BE-3590, Belgium.
| | - Erik Steen Redeker
- Maastricht Science Programme, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Luc Michiels
- Immunology and Biochemistry, Biomedical Research Institute (Biomed) and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt University, Diepenbeek BE-3590, Belgium.
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek BE-3590, Belgium.
- Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Diepenbeek BE-3590, Belgium.
| |
Collapse
|
30
|
Oyala PH, Ravichandran KR, Funk MA, Stucky PA, Stich TA, Drennan CL, Britt RD, Stubbe J. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. J Am Chem Soc 2016; 138:7951-64. [PMID: 27276098 PMCID: PMC4929525 DOI: 10.1021/jacs.6b03605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Fluorinated tyrosines
(FnY’s, n = 2
and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the
recently evolved M. jannaschii Y-tRNA synthetase/tRNA
pair. Class Ia RNRs require four redox active Y’s, a stable
Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356
in β and 731 and 730 in α) to initiate the radical-dependent
nucleotide reduction process. FnY (3,5;
2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β
and the X-ray structures of each resulting β with a diferric
cluster are reported and compared with wt-β2 crystallized under
the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1
Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide
reduction with activities that vary from 5% to 85% that of wt-β2.
Each FnY·-β2 has been characterized
by 9 and 130 GHz electron paramagnetic resonance and high-field electron
nuclear double resonance spectroscopies. The hyperfine interactions
associated with the 19F nucleus provide unique signatures
of each FnY· that are readily distinguishable
from unlabeled Y·’s. The variability of the abiotic FnY pKa’s
(6.4 to 7.8) and reduction potentials (−30 to +130 mV relative
to Y at pH 7.5) provide probes of enzymatic reactions proposed to
involve Y·’s in catalysis and to investigate the importance
and identity of hopping Y·’s within redox active proteins
proposed to protect them from uncoupled radical chemistry.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | - Paul A Stucky
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Troy A Stich
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
31
|
Zhang H, van Ingen H. Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr Opin Struct Biol 2016; 38:75-82. [PMID: 27295425 DOI: 10.1016/j.sbi.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Proteins come together in macromolecular assemblies, recognizing and binding to each other through their structures, and operating on their substrates through their motions. Detailed characterization of these processes is particularly suited to NMR, a high-resolution technique sensitive to structure, dynamics, and interactions. Advances in isotope-labeling have enabled such studies to an ever-increasing range of systems. Here we highlight recent applications and bring to the fore the range of options to produce labeled proteins and to control the specific placement of isotopes. The increased labeling control and affordability, together with the possibility to combine strategies will further deepen and extend the range of protein assembly investigations.
Collapse
Affiliation(s)
- Heyi Zhang
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - Hugo van Ingen
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, The Netherlands.
| |
Collapse
|
32
|
Borra R, Camarero JA. Recombinant expression of backbone-cyclized polypeptides. Biopolymers 2016; 100:502-9. [PMID: 23893781 DOI: 10.1002/bip.22306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 01/08/2023]
Abstract
Here we review the different biochemical approaches available for the expression of backbone-cyclized polypeptides, including peptides and proteins. These methods allow for the production of circular polypeptides either in vitro or in vivo using standard recombinant DNA expression techniques. Polypeptide circularization provides a valuable tool to study the effects of topology on protein stability and folding kinetics. Furthermore, having biosynthetic access to backbone-cyclized polypeptides makes the production of genetically encoded libraries of cyclic polypeptides possible. The production of such libraries, which was previously restricted to the domain of synthetic chemistry, now offers biologists access to highly diverse and stable molecular libraries that can be screened using high-throughput methods for the rapid selection of novel cyclic polypeptide sequences with new biological activities.
Collapse
Affiliation(s)
- Radhika Borra
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90033
| | | |
Collapse
|
33
|
Nguyen GKT, Kam A, Loo S, Jansson AE, Pan LX, Tam JP. Butelase 1: A Versatile Ligase for Peptide and Protein Macrocyclization. J Am Chem Soc 2015; 137:15398-401. [PMID: 26633100 DOI: 10.1021/jacs.5b11014] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macrocyclization is a valuable tool for drug design and protein engineering. Although various methods have been developed to prepare macrocycles, a general and efficient strategy is needed. Here we report a highly efficient method using butelase 1 to macrocyclize peptides and proteins ranging in sizes from 26 to >200 residues. We achieved cyclizations that are 20,000 times faster than sortase A, the most widely used ligase for protein cyclization. The reactions completed within minutes with up to 95% yields.
Collapse
Affiliation(s)
- Giang K T Nguyen
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Anna E Jansson
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - Lucy X Pan
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore
| |
Collapse
|
34
|
Kim H, Siu KH, Raeeszadeh-Sarmazdeh M, Sun Q, Chen Q, Chen W. Bioengineering strategies to generate artificial protein complexes. Biotechnol Bioeng 2015; 112:1495-505. [DOI: 10.1002/bit.25637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Heejae Kim
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | | | - Qing Sun
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| |
Collapse
|
35
|
Li Y, Bi T, Camarero JA. Chemical and biological production of cyclotides. ADVANCES IN BOTANICAL RESEARCH 2015; 76:271-303. [PMID: 27064329 PMCID: PMC4822716 DOI: 10.1016/bs.abr.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cyclotides are fascinating naturally occurring micro-proteins (≈30 residues long) present in several plant families, and display various biological properties such as protease inhibitory, anti-microbial, insecticidal, cytotoxic, anti-HIV and hormone-like activities. Cyclotides share a unique head-to-tail circular knotted topology of three disulfide bridges, with one disulfide penetrating through a macrocycle formed by the two other disulfides and interconnecting peptide backbones, forming what is called a cystine knot topology. This cyclic cystine knot (CCK) framework gives the cyclotides exceptional rigidity, resistance to thermal and chemical denaturation, and enzymatic stability against degradation. Interestingly, cyclotides have been shown to be orally bioavailable, and other cyclotides have been shown to cross the cell membranes. Moreover, recent reports have also shown that engineered cyclotides can be efficiently used to target extracellular and intracellular protein-protein interactions, therefore making cyclotides ideal tools for drug development to selectively target protein-protein interactions. In this work we will review all the available methods for production of these interesting proteins using chemical or biological methods.
Collapse
Affiliation(s)
- Yilong Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Tao Bi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
36
|
Abstract
Expressed protein ligation (EPL) combines two methods to ligate a synthetic peptide to a recombinant protein. Native chemical ligation (NCL) is a process in which two synthesized peptides are ligated by reaction of a C-terminal thioester on one peptide with an N-terminal cysteine residue of another protein. The chemistry of inteins, self-excising protein fragments that ligate the surrounding protein back together, creates isolatable intermediates with the two chemical groups necessary for NCL, a C-terminal thioester and an N-terminal cysteine residue. This technique allows for the incorporation of synthetic amino acids, radiolabeled amino acids, and fluorescent moieties at specific locations in a protein. It has the advantage of allowing attachment of such synthetic peptides to the termini of a recombinant protein, allowing for the synthesis of large proteins with modified amino acids. This technique utilizes the IMPACT(TM)-System created by New England Biolabs, who provide a variety of vectors in which the multicloning site is directly upstream of an intein sequence fused to a chitin-binding domain (CBD). The CBD binds tightly and specifically to chitin beads, allowing for an efficient one-step purification. This step can be used to obtain highly purified proteins (see Protein Affinity Purification using Intein/Chitin Binding Protein Tags). After purification of the recombinant protein, cleavage from the intein is achieved through the addition of a reactive thiol compound, usually sodium 2-mercaptoethanesulfonate (MESNA) (see also Proteolytic affinity tag cleavage). This reaction creates a protein with a C-terminal thioester that can then react with a peptide containing an N-terminal cysteine residue, ligating the two proteins via a peptide bond.
Collapse
|
37
|
Wood DW, Camarero JA. Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 2014; 289:14512-9. [PMID: 24700459 DOI: 10.1074/jbc.r114.552653] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of inteins in the early 1990s opened the door to a wide variety of new technologies. Early engineered inteins from various sources allowed the development of self-cleaving affinity tags and new methods for joining protein segments through expressed protein ligation. Some applications were developed around native and engineered split inteins, which allow protein segments expressed separately to be spliced together in vitro. More recently, these early applications have been expanded and optimized through the discovery of highly efficient trans-splicing and trans-cleaving inteins. These new inteins have enabled a wide variety of applications in metabolic engineering, protein labeling, biomaterials construction, protein cyclization, and protein purification.
Collapse
Affiliation(s)
- David W Wood
- From the Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210 and
| | - Julio A Camarero
- the Departments of Pharmacology and Pharmaceutical Sciences and Department of Chemistry, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
38
|
Topilina NI, Mills KV. Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 2014; 5:5. [PMID: 24490831 PMCID: PMC3922620 DOI: 10.1186/1759-8753-5-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 01/27/2023] Open
Abstract
Intein-mediated protein splicing has become an essential tool in modern biotechnology. Fundamental progress in the structure and catalytic strategies of cis- and trans-splicing inteins has led to the development of modified inteins that promote efficient protein purification, ligation, modification and cyclization. Recent work has extended these in vitro applications to the cell or to whole organisms. We review recent advances in intein-mediated protein expression and modification, post-translational processing and labeling, protein regulation by conditional protein splicing, biosensors, and expression of trans-genes.
Collapse
Affiliation(s)
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA.
| |
Collapse
|
39
|
Nam HY, Cho YS, Jung W, Kang HJ, Hah SS. RNA Aptamer-Functionalized Quantum Dots for Detection of His-Tagged Proteins in Escherichia coli. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.3.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2012; 32:815-67. [PMID: 22777714 DOI: 10.1002/mrr.20228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and offer information otherwise difficult to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation, chemical ligation, mass spectrometry, biochemical methylation and demethylation assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes, or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
41
|
Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA. Characterization of semisynthetic and naturally Nα-acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem 2012; 287:28243-62. [PMID: 22718772 DOI: 10.1074/jbc.m112.383711] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-terminal acetylation is a very common post-translational modification, although its role in regulating protein physical properties and function remains poorly understood. α-Synuclein (α-syn), a protein that has been linked to the pathogenesis of Parkinson disease, is constitutively N(α)-acetylated in vivo. Nevertheless, most of the biochemical and biophysical studies on the structure, aggregation, and function of α-syn in vitro utilize recombinant α-syn from Escherichia coli, which is not N-terminally acetylated. To elucidate the effect of N(α)-acetylation on the biophysical and biological properties of α-syn, we produced N(α)-acetylated α-syn first using a semisynthetic methodology based on expressed protein ligation (Berrade, L., and Camarero, J. A. (2009) Cell. Mol. Life Sci. 66, 3909-3922) and then a recombinant expression strategy, to compare its properties to unacetylated α-syn. We demonstrate that both WT and N(α)-acetylated α-syn share a similar secondary structure and oligomeric state using both purified protein preparations and in-cell NMR on E. coli overexpressing N(α)-acetylated α-syn. The two proteins have very close aggregation propensities as shown by thioflavin T binding and sedimentation assays. Furthermore, both N(α)-acetylated and WT α-syn exhibited similar ability to bind synaptosomal membranes in vitro and in HeLa cells, where both internalized proteins exhibited prominent cytosolic subcellular distribution. We then determined the effect of attenuating N(α)-acetylation in living cells, first by using a nonacetylable mutant and then by silencing the enzyme responsible for α-syn N(α)-acetylation. Both approaches revealed similar subcellular distribution and membrane binding for both the nonacetylable mutant and WT α-syn, suggesting that N-terminal acetylation does not significantly affect its structure in vitro and in intact cells.
Collapse
Affiliation(s)
- Bruno Fauvet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Station 19, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Here, we review the use of different biochemical approaches for biological synthesis of circular or backbone-cyclized proteins and peptides. These methods allow the production of circular polypeptides either in vitro or in vivo using standard recombinant DNA expression techniques. Protein circularization can significantly impact protein engineering and research in protein folding. Basic polymer theory predicts that circularization should lead to a net thermodynamic stabilization of a folded protein by reducing the entropy associated with the unfolded state. Protein cyclization also provides a valuable tool for exploring the effects of topology on protein folding kinetics. Furthermore, the biological production of cyclic polypeptides makes possible the production of cyclic polypeptide libraries. The generation of such libraries, which was previously restricted to the domain of synthetic chemists, now offers biologists access to highly diverse and stable molecular libraries for probing protein structure and function.
Collapse
Affiliation(s)
- Teshome L Aboye
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
43
|
Hejjaoui M, Butterfield S, Fauvet B, Vercruysse F, Cui J, Dikiy I, Prudent M, Olschewski D, Zhang Y, Eliezer D, Lashuel HA. Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125. J Am Chem Soc 2012; 134:5196-210. [PMID: 22339654 PMCID: PMC3592575 DOI: 10.1021/ja210866j] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodologies for the site-specific introduction of PTMs in α-syn. More specifically, the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which in some cases can be mimicked by serine/threonine → glutamate or aspartate substitutions, there are no natural amino acids that can mimic phospho-tyrosine. To address these challenges, we developed a general and efficient semisynthetic strategy that enables the site-specific introduction of single or multiple PTMs and the preparation of homogeneously C-terminal modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, membrane binding, and subcellular localization of α-syn. The development of semisynthetic methods for the site-specific introduction of single or PTMs represents an important advance toward determining the roles of such modifications in α-syn structure, aggregation, and functions in heath and disease.
Collapse
Affiliation(s)
- Mirva Hejjaoui
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sara Butterfield
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bruno Fauvet
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Filip Vercruysse
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jia Cui
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| | - Igor Dikiy
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10021, USA
| | - Michel Prudent
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Diana Olschewski
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yan Zhang
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10021, USA
| | - Hilal A. Lashuel
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Mahto SK, Howard CJ, Shimko JC, Ottesen JJ. A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-Acylurea approach. Chembiochem 2011; 12:2488-94. [PMID: 21910203 PMCID: PMC3558277 DOI: 10.1002/cbic.201100472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Indexed: 11/08/2022]
Abstract
C-terminal peptide thioesters are an essential component of the native chemical ligation approach for the preparation of fully or semisynthetic proteins. However, the efficient generation of C-terminal thioesters by Fmoc solid-phase peptide synthesis remains a challenge. The recent N-acylurea approach to thioester synthesis relies on the deactivation of one amine of 3,4-diaminobenzoic acid (Dbz) during Fmoc SPPS. Here, we demonstrate that this approach results in the formation of side products through the over-acylation of Dbz, particularly when applied to Gly-rich sequences. We find that orthogonal allyloxycarbonyl (Alloc) protection of a single Dbz amine eliminates these side products. We introduce a protected Fmoc-Dbz(Alloc) base resin that may be directly used for synthesis with most C-terminal amino acids. Following synthesis, quantitative removal of the Alloc group allows conversion to the active N-acyl-benzimidazolinone (Nbz) species, which can be purified and converted in situ to thioester under ligation conditions. This method is compatible with the automated preparation of peptide-Nbz conjugates. We demonstrate that Dbz protection improves the synthetic purity of Gly-rich peptide sequences derived from histone H4, as well as a 44-residue peptide from histone H3.
Collapse
Affiliation(s)
- Santosh K. Mahto
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210 (USA), Fax: 614-292-6773
| | - Cecil J. Howard
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210 (USA), Fax: 614-292-6773
| | - John C. Shimko
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210 (USA), Fax: 614-292-6773
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210 (USA)
| | - Jennifer J. Ottesen
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210 (USA), Fax: 614-292-6773
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210 (USA)
| |
Collapse
|
45
|
Volkmann G, Liu XQ. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity. FEBS J 2011; 278:3431-46. [PMID: 21787376 DOI: 10.1111/j.1742-4658.2011.08266.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A split-intein consists of two complementary fragments (N-intein and C-intein) that can associate to carry out protein trans-splicing. The Ssp GyrB S11 split-intein is an engineered unconventional split-intein consisting of a 150-amino-acid N-intein and an extremely small six-amino-acid C-intein, which comprises the conserved intein motif G. Here, we show that fusion proteins containing the 150-amino-acid N-intein could be triggered to undergo controllable N-cleavage in vitro when the six-amino-acid C-intein or a derivative thereof was added as a synthetic peptide in trans. More importantly, we discovered, unexpectedly, that the 150-amino-acid N-intein could be induced by strong nucleophiles to undergo N-cleavage in vitro, and in Escherichia coli cells, in the absence of the motif G-containing six-amino-acid C-intein. This finding indicated that the first step of the protein splicing mechanism (acyl shift) could occur in the absence of the entire motif G. Extensive kinetic analyses revealed that both the motif G residues and the Ser+1 residue positively influenced N-cleavage rate constants and yields. The 150-amino-acid N-intein could also tolerate various unrelated sequences appended to its C-terminus without disruption of the N-cleavage function, suggesting that the catalytic pocket of the intein has considerable structural flexibility. Our findings reveal interesting insights into intein structure-function relationships, and demonstrate a new and potentially more useful method of controllable, intein-mediated N-cleavage for protein engineering applications.
Collapse
Affiliation(s)
- Gerrit Volkmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
46
|
Aranko AS, Volkmann G. Protein trans-splicing as a protein ligation tool to study protein structure and function. Biomol Concepts 2011; 2:183-98. [DOI: 10.1515/bmc.2011.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/10/2011] [Indexed: 01/21/2023] Open
Abstract
AbstractProtein trans-splicing (PTS) exerted by split inteins is a protein ligation reaction which enables overcoming the barriers of conventional heterologous protein production. We provide an overview of the current state-of-the-art in split intein engineering, as well as the achievements of PTS technology in the realm of protein structure-function analyses, including incorporation of natural and artificial protein modifications, controllable protein reconstitution, segmental isotope labeling and protein cyclization. We further discuss factors crucial for the successful implementation of PTS in these protein engineering approaches, and speculate on necessary future endeavours to make PTS a universally applicable protein ligation tool.
Collapse
Affiliation(s)
- A. Sesilja Aranko
- 1Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
47
|
Venter PA, Dirksen A, Thomas D, Manchester M, Dawson PE, Schneemann A. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies. Biomacromolecules 2011; 12:2293-301. [PMID: 21545187 DOI: 10.1021/bm200369e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery, and tissue-specific bioimaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to display covalently a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development.
Collapse
Affiliation(s)
- P Arno Venter
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
48
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2010. [DOI: 10.1002/med.20228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Elias DR, Cheng Z, Tsourkas A. An intein-mediated site-specific click conjugation strategy for improved tumor targeting of nanoparticle systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2460-8. [PMID: 20925038 PMCID: PMC3019098 DOI: 10.1002/smll.201001095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability to modify and directly target nanoparticulate carriers has greatly increased their applicability in diagnostic and therapeutic studies. Generally essential to the targeting of nanoparticles is the bioconjugation of targeting ligands to the agent's surface. While bioconjugation techniques have steadily improved in recent years, the field is still plagued with inefficient conjugations reactions and/or the lack of site-specific coupling. To overcome these limitations, click chemistry and expressed protein ligation (EPL) are combined to produce a highly efficient, site-specific reaction. This new EPL-click conjugation strategy is applied to create superparamagnetic iron oxide nanoparticles (SPIO) labeled with HER2/neu affibodies. These HER2-SPIO nanoparticles prove to be highly potent and receptor-specific in both in vitro cell studies and murine tumor models. Moreover, when EPL-click-derived HER2-SPIO are compared with SPIO that had been labeled with HER2 affibodies using other popular bioconjugation methods, they produce a statistically significant improvement in contrast enhancement upon cell binding. The EPL-click system is also successfully extended to other nanoparticle platforms (i.e., liposomes and dendrimers) highlighting the versatility of the approach.
Collapse
Affiliation(s)
- Drew R. Elias
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104 (USA)
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104 (USA)
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104 (USA)
| |
Collapse
|
50
|
Focke PJ, Valiyaveetil FI. Studies of ion channels using expressed protein ligation. Curr Opin Chem Biol 2010; 14:797-802. [PMID: 20965773 DOI: 10.1016/j.cbpa.2010.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
Expressed protein ligation (EPL) is a semisynthetic technique for the chemoselective ligation of a synthetic peptide to a recombinant peptide that results in a native peptide bond at the ligation site. EPL therefore allows us to engineer proteins with chemically defined, site-specific modifications. While EPL has been used mainly in investigations of soluble proteins, in recent years it has been increasingly used in investigations of integral membrane proteins. These include studies on the KcsA K(+) channel, the non-selective cation channel NaK, and the porin OmpF. These studies are discussed in this review.
Collapse
Affiliation(s)
- Paul J Focke
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | | |
Collapse
|