1
|
Vuong HG, Dunn IF. Clinical and prognostic significance of granulation patterns in somatotroph adenomas/tumors of the pituitary: a meta-analysis. Pituitary 2023; 26:653-659. [PMID: 37735314 DOI: 10.1007/s11102-023-01353-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Sparsely granulated somatotroph adenoma/tumor (SGST) is thought to be more clinically aggressive than densely granulated somatotroph adenoma/tumor (DGST). However, the literature is not entirely consistent as to the disparate demographic and behavioral features of these subtypes. In this study, we conducted a meta-analysis to further clarify the demographic, clinicopathological, prognostic, and molecular characteristics of SGST versus DGST. METHODS We accessed two electronic databases to search for potential data. Pooled estimates of odds ratio (OR), mean difference (MD), and corresponding 95% confidence interval (CI) were calculated using the random-effect model. RESULTS SGST was associated with younger patient age and lower male-to-female ratio (p < 0.001) compared to DGST. Clinically, SGST had larger tumor size and high rate of cavernous sinus and suprasellar extension (p < 0.001) than DGST. During postoperative follow-up, SGST was associated with a lower endocrinological remission rate (OR 0.60; 95% CI 0.40 to 0.90; p = 0.01) and a poorer response rate to SRL (OR 0.16; 95% CI 0.08-0.35; p < 0.001) in comparison to DGST. The prevalence of GSP mutations was significantly lower in SGST (OR 0.36; 95% CI 0.17 to 0.79; p = 0.01). CONCLUSION SGST and DGST were demographically, clinicopathologically, and molecularly different from each other with the former associated with adverse treatment outcomes and poor response to medical therapy. There are still gaps in translational studies that could help us better understand the behavior of these tumors and identify potential targets in the treatment of sparsely granulated tumors.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52241, USA
| | - Ian F Dunn
- Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
Castillo-González J, Ruiz JL, Serrano-Martínez I, Forte-Lago I, Ubago-Rodriguez A, Caro M, Pérez-Gómez JM, Benítez-Troncoso A, Andrés-León E, Sánchez-Navarro M, Luque RM, González-Rey E. Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity. J Neuroinflammation 2023; 20:226. [PMID: 37794493 PMCID: PMC10548650 DOI: 10.1186/s12974-023-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood-brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. METHODS Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. RESULTS The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. CONCLUSIONS The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - José Luis Ruiz
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ana Ubago-Rodriguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Jesús Miguel Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | | | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Macarena Sánchez-Navarro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain.
| |
Collapse
|
3
|
Tamura YO, Sugama J, Abe SI, Shimizu Y, Hirose H, Watanabe M. Selective somatostatin receptor 5 inhibition improves hepatic insulin sensitivity. Pharmacol Res Perspect 2023; 11:e01043. [PMID: 36585794 PMCID: PMC9803904 DOI: 10.1002/prp2.1043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetes is a metabolic disorder with an increasing global prevalence. Somatostatin (SST), a peptide hormone, regulates hormone secretion via five SST receptor (SSTR) subtypes (SSTR1-5) in a tissue-specific manner. As SSTR5 is expressed in pancreatic β-cells and intestinal L-cells, studies have suggested that SSTR5 regulates glucose tolerance through insulin and incretin secretion, thereby having a prominent role in diabetes. Moreover, SSTR5 knockout (KO) mice display enhanced insulin sensitivity; however, the underlying mechanism has not been clarified. Therefore, in this study, we investigate the effect of SSTR5 blockade on insulin resistance and the target organ using SSTR5 KO mice and a selective SSTR5 antagonist (compound-1). High-fat diet (HFD)-fed SSTR5 KO mice exhibited significantly lower homeostasis model assessment of insulin resistance (HOMA-IR) than HFD-fed wild-type mice. Two-week oral administration of compound-1 dose-dependently and significantly reduced changes in the levels of glycosylated hemoglobin (GHb), plasma glucose, plasma insulin, and HOMA-IR in male KK-Ay /Ta Jcl mice (KK-Ay mice), a model of obese type 2 diabetes with severe insulin resistance. Additionally, compound-1 significantly increased the glucose infusion rate while decreasing hepatic glucose production in male KK-Ay mice, as evidenced by hyperinsulinemic-euglycemic clamp analyses. In addition, compound-1 ameliorated the insulin-induced Akt phosphorylation suppression by octreotide in the liver of male C57BL/6J mice. Collectively, our results demonstrate that selective SSTR5 inhibition can improve insulin sensitivity by enhancing liver insulin action; thus, selective SSTR5 antagonists represent potentially novel therapeutic agents for type 2 diabetes.
Collapse
Affiliation(s)
- Yumiko Okano Tamura
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Jun Sugama
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shin-Ichi Abe
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuji Shimizu
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hideki Hirose
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masanori Watanabe
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
4
|
Qing R, Tao F, Chatterjee P, Yang G, Han Q, Chung H, Ni J, Suter BP, Kubicek J, Maertens B, Schubert T, Blackburn C, Zhang S. Non-full-length Water-Soluble CXCR4 QTY and CCR5 QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors. iScience 2020; 23:101670. [PMID: 33376963 PMCID: PMC7756140 DOI: 10.1016/j.isci.2020.101670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
It was posited that functionalities of GPCRs require full-length sequences that are negated by residue deletions. Here we report that significantly truncated nfCCR5QTY and nfCXCR4QTY still bind native ligands. Receptor-ligand interactions were discovered from yeast 2-hybrid screening and confirmed by mating selection. Two nfCCR5QTY (SZ218a, SZ190b) and two nfCXCR4QTY (SZ158a, SZ146a) were expressed in E. coli. Synthesized receptors exhibited α-helical structures and bound respective ligands with reduced affinities. SZ190b and SZ158a were reconverted into non-QTY forms and expressed in HEK293T cells. Reconverted receptors localized on cell membranes and functioned as negative regulators for ligand-induced signaling when co-expressed with full-length receptors. CCR5-SZ190b individually can perform signaling at a reduced level with higher ligand concentration. Our findings provide insight into essential structural components for CCR5 and CXCR4 functionality, while raising the possibility that non-full-length receptors may be resulted from alternative splicing and that pseudo-genes in genomes may be present and functional in living organisms. Y2H screening reveals ligand interaction from truncated CXCR4 and CCR5 in QTY form Truncated CCR5QTY and CXCR4QTY can be produced in E. coli and bind native ligands Reconverted receptors localize on membranes and regulate cell signaling in HEK293 Our finding indicates potential presence and function for truncated receptors
Collapse
Affiliation(s)
- Rui Qing
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Fei Tao
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Pranam Chatterjee
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,The Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gaojie Yang
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiuyi Han
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Haeyoon Chung
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jun Ni
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Bernhard P Suter
- Next Interactions, Inc., 2600 Hilltop Drive, Building B, C332, Richmond, CA 94806, USA
| | - Jan Kubicek
- Cube Biotech, GmbH, Creative Campus, Alfred-Nobel Strasse 10, 40789 Monheim, Germany
| | - Barbara Maertens
- Cube Biotech, GmbH, Creative Campus, Alfred-Nobel Strasse 10, 40789 Monheim, Germany
| | | | - Camron Blackburn
- The Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Alshafie W, Pan YE, Kreienkamp HJ, Stroh T. Characterization of agonist-dependent somatostatin receptor subtype 2 trafficking in neuroendocrine cells. Endocrine 2020; 69:655-669. [PMID: 32383089 DOI: 10.1007/s12020-020-02329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Somatostatin (SOM) receptor subtype 2 (SSTR2) is the major receptor subtype mediating SOM effects throughout the neuraxis. We previously demonstrated that the non-selective agonist [D-Trp8]-SOM induces intracellular sequestration of SSTR2, whereas this receptor is maintained at the cell surface after treatment with the SSTR2-selective agonist L-779,976 in cells co-expressing SSTR2 and SSTR5. METHODS AND RESULTS In this study, we knocked-out SSTR5 in AtT20 cells endogenously expressing both SSTR2 and SSTR5 and used immuno-labeling and confocal microscopy to investigate the effect of SSTR5 on regulation of SSTR2 trafficking. Our results indicate that unlike [D-Trp8]-SOM-induced intracellular sequestration, L-779,976 stimulation results in the maintenance of SSTR2 at the cell surface regardless of whether SSTR5 is present or not. We then examined the trafficking pathways of SSTR2 upon stimulation by either agonist. We found that both [D-Trp8]-SOM and L-779,976 induce SSTR2 internalization via transferrin-positive vesicles. However, SSTR2 internalized upon L-779,976 treatment undergoes rapid recycling to the plasma membrane, whereas receptors internalized by [D-Trp8]-SOM recycle slowly after washout of the agonist. Furthermore, [D-Trp8]-SOM stimulation induces degradation of a fraction of internalized SSTR2 whereas L-779,976-dependent, rapid SSTR2 recycling appears to protect internalized SSTR2 from degradation. In addition, Octreotide which has preferential SSTR2 affinity, induced differential effects on both SSTR2 trafficking and degradation. CONCLUSION Our results indicate that the biased agonistic property of L-779,976 protects against SSTR2 surface depletion by rapidly initiating SSTR2 recycling while SSTR5 does not regulate L-779-976-dependent SSTR2 trafficking.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, McGill University, and the Montreal Neurological Institute, Montreal, QC, Canada.
| | - Yingzhou Edward Pan
- Department of Neurology and Neurosurgery, McGill University, and the Montreal Neurological Institute, Montreal, QC, Canada
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, McGill University, and the Montreal Neurological Institute, Montreal, QC, Canada.
| |
Collapse
|
6
|
Wang W, Jiang C, Xu Y, Ma Q, Yang J, Shi Y, Zhou N. Functional characterization of neuropeptide 26RFa receptors GPR103A and GPR103B in zebrafish, Danio rerio. Cell Signal 2020; 73:109677. [DOI: 10.1016/j.cellsig.2020.109677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/10/2020] [Accepted: 05/23/2020] [Indexed: 11/25/2022]
|
7
|
Cao Z, Yan L, Shen Z, Chen Y, Shi Y, He X, Zhou N. A novel splice variant of Gαq-coupled Bombyx CAPA-PVK receptor 1 functions as a specific Gαi/o-linked receptor for CAPA-PK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118718. [PMID: 32289337 DOI: 10.1016/j.bbamcr.2020.118718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023]
Abstract
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.
Collapse
Affiliation(s)
- Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Saavedra C, Barriuso J, McNamara MG, Valle JW, Lamarca A. Spotlight on telotristat ethyl for the treatment of carcinoid syndrome diarrhea: patient selection and reported outcomes. Cancer Manag Res 2019; 11:7537-7556. [PMID: 31496810 PMCID: PMC6690650 DOI: 10.2147/cmar.s181439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine tumors (NETs) are rare cancers with an associated prolonged survival in some patients. A proportion of patients diagnosed with NETs will present with carcinoid syndrome symptoms, characterized by diarrhea, flushing and/or wheezing. This review summarizes the current treatment options for carcinoid syndrome, focusing on the latest novel treatment option, telotristat ethyl. In addition, information on patient-reported outcomes and impact of carcinoid syndrome on quality of life (QOL) and improvement of following treatment with telotristat ethyl are reviewed. This article also provides an overview of the current QOL questionnaires for patients with NETs and addresses unmet needs in this field of patient-reported outcomes.
Collapse
Affiliation(s)
- Cristina Saavedra
- Medical Oncology Department, The Christie NHS Foundation Trust, Manchester, UK.,Medical Oncology Department, Ramon Y Cajal University Hospital, Madrid, Spain
| | - Jorge Barriuso
- Medical Oncology Department, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Mairéad G McNamara
- Medical Oncology Department, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Juan W Valle
- Medical Oncology Department, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Angela Lamarca
- Medical Oncology Department, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Stengel A, Taché Y. Central somatostatin signaling and regulation of food intake. Ann N Y Acad Sci 2019; 1455:98-104. [PMID: 31237362 DOI: 10.1111/nyas.14178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022]
Abstract
The discovery of somatostatin (SST) in the hypothalamus implicated the peptide in the inhibition of growth hormone release. However, as observed for numerous neuropeptides, SST was neither restricted to this one brain site nor to this one function. Subsequent studies established a widespread but specific expression of SST in the central nervous system of rodents and humans along with the expression patterns of five receptors (sst1-5 ). Among biological actions, the activation of central SST signaling induced a robust stimulation of food and water intake, which is mediated by the sst2 as assessed using selective sst agonists. The past years have witnessed the identification of brain SST circuitries involved using chemogenetic and optogenetic approaches and further established a physiological orexigenic role of brain SST signaling. The present review will discuss these recent findings.
Collapse
Affiliation(s)
- Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| | - Yvette Taché
- Department of Medicine, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California.,VA Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
10
|
Coelho MCA, Vasquez ML, Wildemberg LE, Vázquez-Borrego MC, Bitana L, Camacho AHDS, Silva D, Ogino LL, Ventura N, Sánchez-Sánchez R, Chimelli L, Kasuki L, Luque RM, Gadelha MR. Clinical significance of filamin A in patients with acromegaly and its association with somatostatin and dopamine receptor profiles. Sci Rep 2019; 9:1122. [PMID: 30718563 PMCID: PMC6361919 DOI: 10.1038/s41598-018-37692-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
Filamin-A (FLNA) plays a crucial role in somatostatin receptor (sst) subtype-2 signaling in somatotropinomas. Our objective was to investigate the in vivo association between FLNA and sst2 expression, sst5 expression, dopamine receptor subtype-2 (D2) expression, somatostatin receptor ligand (SRL) responsiveness and tumor invasiveness in somatotropinomas. Quantitative real-time PCR was used to evaluate the absolute mRNA copy numbers of FLNA/sst2/sst5/D2 in 96 somatotropinomas. FLNA, sst2 and sst5 protein expression levels were also evaluated using immunohistochemistry. The Knosp-Steiner criteria were used to evaluate tumor invasiveness. Median FLNA, sst2, sst5 and D2 copy numbers were 4,244, 731, 156 and 3,989, respectively. Thirty-one of the 35 available tumors (89%) were immune positive for FLNA in the cytoplasm and membrane but not in the nucleus. FLNA and sst5 expression were positively correlated at the mRNA and protein levels (p < 0.001 and p = 0.033, respectively). FLNA was positively correlated with sst2 mRNA in patients who were responsive to SRL (p = 0.014, R = 0.659). No association was found between FLNA and tumor invasiveness. Our findings show that in somatotropinomas FLNA expression positively correlated with in vivo sst5 and D2 expression. Notably, FLNA was only correlated with sst2 in patients who were controlled with SRL. FLNA was not associated with tumor invasiveness.
Collapse
Affiliation(s)
- Maria Caroline Alves Coelho
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, Brazil
| | - Marina Lipkin Vasquez
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Luciana Bitana
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Aline Helen da Silva Camacho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Pathology Division, Instituto Nacional do Câncer, Rio de janeiro, Brazil
| | - Débora Silva
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Liana Lumi Ogino
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Nina Ventura
- Radiology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Raul M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil. .,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
12
|
Dong H, Wei Y, Xie C, Zhu X, Sun C, Fu Q, Pan L, Wu M, Guo Y, Sun J, Shen H, Ye J. Structural and functional analysis of two novel somatostatin receptors identified from topmouth culter (Erythroculter ilishaeformis). Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:18-29. [PMID: 29698686 DOI: 10.1016/j.cbpc.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
In the present study, we cloned and characterized two somatostatin (SS) receptors (SSTRs) from topmouth culter (Erythroculter ilishaeformis) designated as EISSTR6 and EISSTR7. Analysis of EISSTR6 and EISSTR7 signature motifs, 3D structures, and homology with the known members of the SSTR family indicated that the novel receptors had high similarity to the SSTRs of other vertebrates. EISSTR6 and EISSTR7 mRNA expression was detected in 17 topmouth culter tissues, and the highest level was observed in the pituitary. Luciferase reporter assay revealed that SS14 significantly inhibited forskolin-stimulated pCRE-luc promoter activity in HEK293 cells transiently expressing EISSTR6 and EISSTR7, indicating that the receptors can be activated by SS14. We also identified phosphorylation sites important for the functional activity of EISSTR6 and EISSTR7 by mutating Ser23, 43, 107, 196, 311 and Ser7, 29, 61, 222, 225 residues, respectively, to Ala, which significantly reduced the inhibitory effects of SS14 on the CRE promoter mediated by EISSTR6 and EISSTR7. Furthermore, treatment of juvenile topmouth culters with microcystin-LR or 17β-estradiol significantly affected EISSTR6 and EISSTR7 transcription in the brain, liver and spleen, suggesting that these receptors may be involved in the pathogenic mechanisms induced by endocrine disruptors. Our findings should contribute to the understanding of the structure-function relationship and evolution of the SSTR family.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China; National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, the Central Hospital of Huzhou, 198 Hongqi Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Xie
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Xiaoxuan Zhu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Qianwen Fu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Lei Pan
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Mengting Wu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Yinghan Guo
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jianwei Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Hong Shen
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jinyun Ye
- National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
13
|
Posso-Terranova A, Andrés JÁ. Diversification and convergence of aposematic phenotypes: truncated receptors and cellular arrangements mediate rapid evolution of coloration in harlequin poison frogs. Evolution 2017; 71:2677-2692. [DOI: 10.1111/evo.13335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Andrés Posso-Terranova
- Department of Biology; University of Saskatchewan; 112 Science Pl Saskatoon SK Canada
- Facultad de Ciencias Agropecuarias; Universidad Nacional de Colombia; Sede de Palmira A.A. 237 Palmira Colombia
| | - José Á. Andrés
- Department of Biology; University of Saskatchewan; 112 Science Pl Saskatoon SK Canada
| |
Collapse
|
14
|
Carmona-Bayonas A, Jiménez-Fonseca P, Custodio A, Grande E, Capdevila J, López C, Teule A, Garcia-Carbonero R. Optimizing Somatostatin Analog Use in Well or Moderately Differentiated Gastroenteropancreatic Neuroendocrine Tumors. Curr Oncol Rep 2017; 19:72. [PMID: 28920153 DOI: 10.1007/s11912-017-0633-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Somatostatin analogues, aiming to control tumor secretion or growth, constitute the most attractive therapeutic option for patients with well-differentiated gastroenteropancreatic neuroendocrine tumors (GEP-NETs). The objective of this article is to provide a comprehensive review of the current state-of-the-art knowledge gaps and potential opportunities for future development and optimization of this therapeutic modality. METHOD A contextualized systematic review with a narrative component was conducted using PubMed, The Cochrane Library, EMBASE, and Google Scholar. Titles were screened, and non-English, duplicate, or irrelevant entries were excluded. Selection criteria for articles included the following: publication in English between 1995 and 2016, patients with GEP-NETs, analysis of efficacy, safety, practical management considerations, predictive factors, and/or strategies for overcoming resistance, concerning somatostatin analogs. RESULTS Ninety-seven studies out of 2771 screened publications met the inclusion criteria (16 randomized clinical trials, 27 phase II trials, 3 phase I trials, 3 subgroup analyses of clinical trials, 1 open-label extension of a randomized trial, 1 phase IV trial, 32 observational studies, and 14 basic research articles). The nature and scope of literature was diverse with most articles dedicated to drug efficacy or indications of use (n = 49), pharmacological issues (n = 8), assessment or predictors of response (n = 4), practical management (n = 11), combination therapy or other means to overcome resistance (n = 19), receptors and signaling pathways (n = 3), and subgroup analyses (n = 3). CONCLUSION In this appraisal, we have found some practical aspects that can help to the optimization of somatostatin analog (SSA) therapy in patients with well-differentiated GEP-NETs. We have also identified areas of uncertainty in an effort to guide clinical research in the coming years.
Collapse
Affiliation(s)
- Alberto Carmona-Bayonas
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Calle Marqués de los Vélez, s/n, CP 30008, Murcia, Spain.
| | | | - Ana Custodio
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
| | - Enrique Grande
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Jaume Capdevila
- Department of Medical Oncology, Vall D'Hebrón University Hospital, Vall D'Hebrón Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, center affiliated with the Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto Carlos III, Spanish Ministry of Science and Innovation, Barcelona, Spain
| | - Carlos López
- Department of Medical Oncology, Marqués de Valdecilla University Hospital, Santander, Spain
| | - Alex Teule
- Department of Medical Oncology, Institut Català d'Oncologia, L'Hospitalet de Llobregat, center affiliated with the Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto Carlos III, Spanish Ministry of Science and Innovation, Barcelona, Spain
| | - Rocío Garcia-Carbonero
- Department of Medical Oncology, Doce de Octubre University Hospital, center affiliated with the Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto Carlos III, Spanish Ministry of Science and Innovation, Madrid, Spain
| | | |
Collapse
|
15
|
Shen Z, Chen Y, Hong L, Cui Z, Yang H, He X, Shi Y, Shi L, Han F, Zhou N. BNGR-A25L and -A27 are two functional G protein-coupled receptors for CAPA periviscerokinin neuropeptides in the silkworm Bombyx mori. J Biol Chem 2017; 292:16554-16570. [PMID: 28842502 DOI: 10.1074/jbc.m117.803445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
CAPA peptides, such as periviscerokinin (PVK), are insect neuropeptides involved in many signaling pathways controlling, for example, metabolism, behavior, and reproduction. They are present in a large number of insects and, together with their cognate receptors, are important for research into approaches for improving insect control. However, the CAPA receptors in the silkworm (Bombyx mori) insect model are unknown. Here, we cloned cDNAs of two putative CAPA peptide receptor genes, BNGR-A27 and -A25, from the brain of B. mori larvae. We found that the predicted BNGR-A27 ORF encodes 450 amino acids and that one BNGR-A25 splice variant encodes a full-length isoform (BNGR-A25L) of 418 amino acid residues and another a short isoform (BNGR-A25S) of 341 amino acids with a truncated C-terminal tail. Functional assays indicated that both BNGR-A25L and -A27 are activated by the PVK neuropeptides Bom-CAPA-PVK-1 and -PVK-2, leading to a significant increase in cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. In contrast, BNGR-A25S was not significantly activated in response to the PVK peptides. Moreover, Bom-CAPA-PVK-1 directly bound to BNGR-A25L and -A27, but not BNGR-A25S. Of note, CAPA-PVK-mediated ERK1/2 phosphorylation and receptor internalization confirmed that BNGR-A25L and -A27 are two canonical receptors for Bombyx CAPA-PVKs. However, BNGR-A25S alone is a nonfunctional receptor but serves as a dominant-negative protein for BNGR-A25L. These results provide evidence that BNGR-A25L and -A27 are two functional Gq-coupled receptors for Bombyx CAPA-PVKs, enabling the further elucidation of the endocrinological roles of Bom-CAPA-PVKs and their receptors in insect biology.
Collapse
Affiliation(s)
- Zhangfei Shen
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Yu Chen
- From the Institute of Biochemistry, College of Life Sciences
| | - Lingjuan Hong
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenteng Cui
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Huipeng Yang
- From the Institute of Biochemistry, College of Life Sciences
| | - Xiaobai He
- From the Institute of Biochemistry, College of Life Sciences
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences
| | - Liangen Shi
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences,
| |
Collapse
|
16
|
Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017; 11:231. [PMID: 28487631 PMCID: PMC5403923 DOI: 10.3389/fnins.2017.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette F Taché
- Vatche and Tamar Manoukian Digestive Diseases Division, CURE Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA.,VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
17
|
Cambiaghi V, Vitali E, Morone D, Peverelli E, Spada A, Mantovani G, Lania AG. Identification of human somatostatin receptor 2 domains involved in internalization and signaling in QGP-1 pancreatic neuroendocrine tumor cell line. Endocrine 2017; 56:146-157. [PMID: 27406390 DOI: 10.1007/s12020-016-1026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023]
Abstract
Somatostatin exerts inhibitory effects on hormone secretion and cell proliferation via five receptor subtypes (SST1-SST5), whose internalization is regulated by β-arrestins. The receptor domains involved in these effects have been only partially elucidated. The aim of the study is to characterize the molecular mechanism and determinants responsible for somatostatin receptor 2 internalization and signaling in pancreatic neuroendocrine QGP-1 cell line, focusing on the third intracellular loop and carboxyl terminal domains. We demonstrated that in cells transfected with somatostatin receptor 2 third intracellular loop mutant, no differences in β-arrestins recruitment and receptor internalization were observed after somatostatin receptor 2 activation in comparison with cells bearing wild-type somatostatin receptor 2. Conversely, the truncated somatostatin receptor 2 failed to recruit β-arrestins and to internalize after somatostatin receptor 2 agonist (BIM23120) incubation. Moreover, the inhibitory effect of BIM23120 on cell proliferation, cyclin D1 expression, P-ERK1/2 levels, apoptosis and vascular endothelial growth factor secretion was completely lost in cells transfected with either third intracellular loop or carboxyl terminal mutants. In conclusion, we demonstrated that somatostatin receptor 2 internalization requires intact carboxyl terminal while the effects of SS on cell proliferation, angiogenesis and apoptosis mediated by somatostatin receptor 2 need the integrity of both third intracellular loop and carboxyl terminal.
Collapse
Affiliation(s)
- Valeria Cambiaghi
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Diego Morone
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Erika Peverelli
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Andrea Gerardo Lania
- Endocrine Unit, Humanitas Clinical and Research Center, Rozzano, Italy.
- Humanitas University, School of Medicine, Rozzano, Italy.
| |
Collapse
|
18
|
Ibáñez-Costa A, Luque RM, Castaño JP. Cortistatin: A new link between the growth hormone/prolactin axis, stress, and metabolism. Growth Horm IGF Res 2017; 33:23-27. [PMID: 28157571 DOI: 10.1016/j.ghir.2017.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/11/2017] [Accepted: 01/20/2017] [Indexed: 01/15/2023]
Abstract
Cortistatin is a neuropeptide originally identified in cortical brain regions, which displays a high structural and functional homology with somatostatin. However, cortistatin possesses distinct, unique functions, in the immune and central nervous systems, and it also shows specific endocrine effects, particularly on pituitary growth hormone, prolactin and adrenocorticotropin axes. Somatostatin and cortistatin bind similarly to the five native somatostatin receptors, sst1-sst5, whereas both compounds bind differentially to the recently discovered truncated variants of the sst subtype 5 (sst5TMD4, sst5TMD5); moreover, only cortistatin is able to bind other non-sst receptors (GHS-R and MrgX2). The non-overlapping tissue-specific distribution of each neuropeptide, together with the differential receptor binding profile, may be the cause of the singular effects of cortistatin. In this review we have provided and overview of the role of cortistatin on pituitary function by summarizing: 1) Its direct effect on pituitary cells using in vitro primary cultures derived from different species (from chicken to human); 2) Its putative physiological role revealed by in vivo assays, enabling to explore cortistatin effects on growth hormone, prolactin and adrenocorticotropin axes; and 3) The information provided by studying cortistatin knock-out mice. Altogether, these studies provide compelling evidence that cortistatin is a singular regulator of endocrine function, distinct from somatostatin.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
| | - Justo P Castaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
| |
Collapse
|
19
|
Abstract
Somatostatin and dopamine receptors are expressed in normal and tumoral somatotroph cells. Upon receptor stimulation, somatostatin and the somatostatin receptor ligands octreotide, lanreotide, and pasireotide, and to a lesser extent, dopamine and the dopamine analogs bromocriptine and cabergoline, suppress growth hormone (GH) secretion from a GH-secreting pituitary somatotroph adenoma. Somatostatin and dopamine receptors are Gαi-protein coupled that inhibit adenylate cyclase activity and cAMP production and reduce intracellular calcium concentration and calcium flux oscillations. Although their main action on somatotroph cells is acute inhibition of GH secretion, they also may inhibit GH production and possibly somatotroph proliferation. These receptors have been reported to create complexes that exhibit functions distinct from that of receptor monomers. Somatostatin suppression of GH is mediated mainly by somatostatin receptor subtype 2 and to a lesser extent by SST5. Human somatostatin receptor subtype 5 has also been shown to harbor mutations associated with GH levels, somatotroph tumor behavior, and somatostatin receptor ligand (SRL) responsiveness. Reviewing current knowledge of somatostatin and dopamine receptor expression and signaling in normal and tumoral somatotroph cells offers insights into mechanisms underlying SRL and dopamine agonist effectiveness in patients with acromegaly.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Pituitary Center, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Davis Building, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Ning-Ai Liu
- Pituitary Center, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Davis Building, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Shlomo Melmed
- Pituitary Center, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Davis Building, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| |
Collapse
|
20
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
21
|
Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Sci Rep 2016; 6:37992. [PMID: 27901064 PMCID: PMC5128804 DOI: 10.1038/srep37992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Somatostatin (SST) and cortistatin (CORT) regulate numerous endocrine secretions and their absence [knockout (KO)-models] causes important endocrine-metabolic alterations, including pituitary dysregulations. We have demonstrated that the metabolic phenotype of single or combined SST/CORT KO-models is not drastically altered under normal conditions. However, the biological actions of SST/CORT are conditioned by the metabolic-status (e.g. obesity). Therefore, we used male/female SST- and CORT-KO mice fed low-fat (LF) or high-fat (HF) diet to explore the interplay between SST/CORT and obesity in the control of relevant pituitary-axes and whole-body metabolism. Our results showed that the SST/CORT role in the control of GH/prolactin secretions is maintained under LF- and HF-diet conditions as SST-KOs presented higher GH/prolactin-levels, while CORT-KOs displayed higher GH- and lower prolactin-levels than controls under both diets. Moreover, the impact of lack of SST/CORT on the metabolic-function was gender- and diet-dependent. Particularly, SST-KOs were more sensitive to HF-diet, exhibiting altered growth and body-composition (fat/lean percentage) and impaired glucose/insulin-metabolism, especially in males. Conversely, only males CORT-KO under LF-diet conditions exhibited significant alterations, displaying higher glucose-levels and insulin-resistance. Altogether, these data demonstrate a tight interplay between SST/CORT-axis and the metabolic status in the control of endocrine/metabolic functions and unveil a clear dissociation of SST/CORT roles.
Collapse
|
22
|
Villa-Osaba A, Gahete MD, Cordoba-Chacon J, de Lecea L, Castaño JP, Luque RM. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin. Mol Cell Endocrinol 2016; 434:14-24. [PMID: 27291340 DOI: 10.1016/j.mce.2016.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response.
Collapse
Affiliation(s)
- Alicia Villa-Osaba
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - José Cordoba-Chacon
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| |
Collapse
|
23
|
Cordoba-Chacón J, Gahete MD, Pozo-Salas AI, de Lecea L, Castaño JP, Luque RM. Cortistatin Is a Key Factor Regulating the Sex-Dependent Response of the GH and Stress Axes to Fasting in Mice. Endocrinology 2016; 157:2810-23. [PMID: 27175972 DOI: 10.1210/en.2016-1195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cortistatin (CORT) shares high structural and functional similarities with somatostatin (SST) but displays unique sex-dependent pituitary actions. Indeed, although female CORT-knockout (CORT-KO) mice exhibit enhanced GH expression/secretion, Proopiomelanocortin expression, and circulating ACTH/corticosterone/ghrelin levels, male CORT-KO mice only display increased plasma GH/corticosterone levels. Changes in peripheral ghrelin and SST (rather than hypothalamic levels) seem to regulate GH/ACTH axes in CORT-KOs under fed conditions. Because changes in GH/ACTH axes during fasting provide important adaptive mechanisms, we sought to determine whether CORT absence influences GH/ACTH axes during fasting. Accordingly, fed and fasted male/female CORT-KO were compared with littermate controls. Fasting increased circulating GH levels in male/female controls but not in CORT-KO, suggesting that CORT can be a relevant regulator of GH secretion during fasting. However, GH levels were already higher in CORT-KO than in controls in fed state, which might preclude a further elevation in GH levels. Interestingly, although fasting-induced pituitary GH expression was elevated in both male/female controls, GH expression only increased in fasted female CORT-KOs, likely owing to specific changes observed in key factors controlling somatotrope responsiveness (ie, circulating ghrelin and IGF-1, and pituitary GHRH and ghrelin receptor expression). Fasting increased corticosterone levels in control and, most prominently, in CORT-KO mice, which might be associated with a desensitization to SST signaling and to an augmentation in CRH and ghrelin-signaling regulating corticotrope function. Altogether, these results provide compelling evidence that CORT plays a key, sex-dependent role in the regulation of the GH/ACTH axes in response to fasting.
Collapse
Affiliation(s)
- José Cordoba-Chacón
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Ana I Pozo-Salas
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Luis de Lecea
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); Department of Cell Biology, Physiology, and Immunology (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), University of Córdoba; Hospital Universitario Reina Sofía (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.); and Campus de Excelencia Internacional Agroalimentario (J.C.-C., M.D.G., A.I.P.-S., J.P.C., R.M.L.), Córdoba 14004, Spain; Department of Medicine (J.C.-C.), Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University School of Medicine, Palo Alto, California 94305
| |
Collapse
|
24
|
Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Res 2016; 18:29. [PMID: 26956474 PMCID: PMC4782371 DOI: 10.1186/s13058-016-0689-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background Somatostatin (SST) and cortistatin (CORT), two structurally and functionally related peptides, share a family of widespread receptors (sst1-5) to exert apparently similar biological actions, including endocrine/metabolic regulation and suppression of tumor cell proliferation. However, despite their therapeutic potential, attempts to apply SST-analogs to treat breast cancer have yielded unsatisfactory results. Actually, the specific roles of SST and CORT in mammary gland tumorigenesis (MGT), particularly in relation to metabolic dysregulation (i.e. obesity), remain unknown. Methods The role of endogenous SST and CORT in carcinogen-induced MGT was investigated under normal (lean) and obesity conditions. To that end, SST- and CORT-knockout (KO) mice and their respective littermate-controls, fed low-fat (LF) or high-fat (HF) diets, were treated with 7,12-dimethyl-benza-anthracene (DMBA) once a week (wk) for 3 wk, and MGT was monitored for 25 wk. Additionally, we examined the effect of SST or CORT removal in the development of the mammary gland. Results Lack of SST did not alter DMBA-induced MGT incidence under lean conditions; conversely, lack of endogenous CORT severely aggravated DMBA-induced MGT in LF-fed mice. These differences were not attributable to altered mammary gland development. HF-diet modestly increased the sensitivity to DMBA-induced carcinogenesis in control mice, whereas, as observed in LF-fed CORT-KO, HF-fed CORT-KO mice exhibited aggravated tumor incidence, discarding a major influence of obesity on these CORT actions. In marked contrast, HF-fed SST-KO mice exhibited much higher tumor incidence than LF-fed SST-KO mice, which could be associated with higher mammary complexity. Conclusions Endogenous SST and CORT distinctly impact on DMBA-induced MGT, in a manner that is strongly dependent on the metabolic/endocrine milieu (lean vs. obese status). Importantly, CORT, rather than SST, could represent a major inhibitor of MGT under normal/lean-conditions, whereas both neuropeptides would similarly influence MGT under obesity conditions. The mechanisms mediating these different effects likely involve mammary development and hormones, but the precise underlying factors are still to be fully elucidated. However, our findings comprise suggestive evidence that CORT-like molecules, rather than classic SST-analogs, may help to identify novel tools for the medical treatment of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0689-1) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Sampedro-Núñez M, Luque RM, Ramos-Levi AM, Gahete MD, Serrano-Somavilla A, Villa-Osaba A, Adrados M, Ibáñez-Costa A, Martín-Pérez E, Culler MD, Marazuela M, Castaño JP. Presence of sst5TMD4, a truncated splice variant of the somatostatin receptor subtype 5, is associated to features of increased aggressiveness in pancreatic neuroendocrine tumors. Oncotarget 2016; 7:6593-608. [PMID: 26673010 PMCID: PMC4872735 DOI: 10.18632/oncotarget.6565] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/21/2015] [Indexed: 12/13/2022] Open
Abstract
Purpose Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and heterogeneous tumors, and their biological behavior is not well known. We studied the presence and potential functional roles of somatostatin receptors (sst1-5), focusing particularly on the truncated variants (sst5TMD4, sst5TMD5) and on their relationships with the angiogenic system (Ang/Tie-2 and VEGF) in human GEP-NETs. Experimental Design We evaluated 42 tumor tissue samples (26 primary/16 metastatic) from 26 patients with GEP-NETs, and 30 non-tumoral tissues (26 from adjacent non-tumor regions and 4 from normal controls) from a single center. Expression of sst1-5, sst5TMD4, sst5TMD5, Ang1-2, Tie-2 and VEGF was analyzed using real-time qPCR, immunofluorescence and immunohistochemistry. Expression levels were associated with tumor characteristics and clinical outcomes. Functional role of sst5TMD4 was analyzed in GEP-NET cell lines. Results sst1 exhibited the highest expression in GEP-NET, whilst sst2 was the most frequently observed sst-subtype (90.2%). Expression levels of sst1, sst2, sst3, sst5TMD4, and sst5TMD5 were significantly higher in tumor tissues compared to their adjacent non-tumoral tissue. Lymph-node metastases expressed higher levels of sst5TMD4 than in its corresponding primary tumor tissue. sst5TMD4 was also significantly higher in intestinal tumor tissues from patients with residual disease of intestinal origin compared to those with non-residual disease. Functional assays demonstrated that the presence of sst5TMD4 was associated to enhanced malignant features in GEP-NET cells. Angiogenic markers correlated positively with sst5TMD4, which was confirmed by immunohistochemical/fluorescence studies. Conclusions sst5TMD4 is overexpressed in GEP-NETs and is associated to enhanced aggressiveness, suggesting its potential value as biomarker and target in GEP-NETs.
Collapse
Affiliation(s)
- Miguel Sampedro-Núñez
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Ana M Ramos-Levi
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Alicia Villa-Osaba
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Magdalena Adrados
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Elena Martín-Pérez
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | | | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| |
Collapse
|
26
|
Marina D, Burman P, Klose M, Casar-Borota O, Luque RM, Castaño JP, Feldt-Rasmussen U. Truncated somatostatin receptor 5 may modulate therapy response to somatostatin analogues--Observations in two patients with acromegaly and severe headache. Growth Horm IGF Res 2015; 25:262-267. [PMID: 26188991 DOI: 10.1016/j.ghir.2015.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/10/2015] [Accepted: 07/08/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Somatotropinomas have unique "fingerprints" of somatostatin receptor (sst) expression, which are targets in treatment of acromegaly with somatostatin analogues (SSAs). However, a significant expression of sst is not always related to the biochemical response to SSAs. Headache is a common complaint in acromegaly and considered a clinical marker of disease activity. SSAs are reported to have an own analgesic effect, but the sst involved are unknown. PATIENTS AND METHODS We investigated sst expression in two acromegalic patients with severe headache and no biochemical effects of octreotide, but a good response to pasireotide. We searched the literature for determinants of biochemical and analgesic effects of SSAs in somatotropinomas. RESULTS Case 1 had no biochemical or analgesic effects of octreotide, a semi-selective SSA, but a rapid and significant effect of pasireotide, a pan-SSA. Case 2 demonstrated discordance between analgesic and biochemical effects of octreotide, in that headache disappeared, but without biochemical improvement. In contrast, pasireotide normalized insulin-like growth factor 1. Both adenomas were sparsely granulated and had strong membranous expressions of sst2a in 50-75% and sst5 in 75-100% of tumor cells. The truncated sst5 variant TMD4 (sst5TMD4) showed expression in 20-57% of tumor cells. CONCLUSIONS A poor biochemical response to octreotide may be associated with tumor expression of a truncated sst5 variant, despite abundant sst2a expression, suggesting an influence from variant sst5 on common sst signaling pathways. Furthermore, unrelated analgesic and biochemical effects of SSAs supported a complex pathogenesis of acromegaly-associated headache. Finally, assessment of truncated sst5 in addition to full length sst could be important for a choice of postoperative SSA treatment in somatotropinomas.
Collapse
Affiliation(s)
- Djordje Marina
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pia Burman
- Department of Endocrinology, Skånes University Hospital, Malmö, Sweden
| | - Marianne Klose
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, 14014 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14014 Córdoba, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, 14014 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14014 Córdoba, Spain
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
27
|
Zandawala M, Haddad AS, Hamoudi Z, Orchard I. Identification and characterization of the adipokinetic hormone/corazonin-related peptide signaling system inRhodnius prolixus. FEBS J 2015; 282:3603-17. [DOI: 10.1111/febs.13366] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Meet Zandawala
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| | - Amir S. Haddad
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| | - Zina Hamoudi
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| | - Ian Orchard
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| |
Collapse
|
28
|
Stengel A, Karasawa H, Taché Y. The role of brain somatostatin receptor 2 in the regulation of feeding and drinking behavior. Horm Behav 2015; 73:15-22. [PMID: 26026616 PMCID: PMC4546908 DOI: 10.1016/j.yhbeh.2015.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to exert pleiotropic actions via interaction with five somatostatin receptors (sst1-5) that are also widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular injection of stable somatostatin agonists potently stimulates food intake and independently, drinking behavior in rodents. The orexigenic response involves downstream orexin-1, neuropeptide Y1 and μ receptor signaling while the dipsogenic effect is mediated through the activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms underlying the stimulation of feeding and more prominently water intake in the dark phase and is able to counteract the anorexic response to visceral stressors.
Collapse
Affiliation(s)
- Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Hiroshi Karasawa
- CURE: Digestive Diseases Research Center, Center for Neurobiology of Stress and Women's Health, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - Yvette Taché
- CURE: Digestive Diseases Research Center, Center for Neurobiology of Stress and Women's Health, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA.
| |
Collapse
|
29
|
Li D, He HL, Yao MZ, Chen ML, Chen X. Cortistatin is dysregulated in skin tissue of patients with psoriasis vulgaris and suppresses keratinocyte proliferation in vitro. Int J Dermatol 2015; 54:e309-14. [PMID: 26094977 DOI: 10.1111/ijd.12836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Psoriasis is characterized by the unregulated proliferation of epidermal keratinocytes and increased expression of proinflammatory mediators in the skin. Cortistatin, an endogenous cyclic neuropeptide, inhibits the proliferation of inflammatory cells. We investigated the expression of cortistatin in patients with psoriasis vulgaris and examined its effects on keratinocyte growth in vitro. METHODS Serum levels of cortistatin were determined by enzyme-linked immunosorbent assay (ELISA) in 72 patients with psoriasis vulgaris and 76 age-matched healthy volunteers. Cortistatin expression was also examined by immunohistochemistry of skin biopsies from 14 patients and 14 healthy subjects. The effects of cortistatin on the proliferation of primary keratinocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and BrdU incorporation assay. Intracellular levels of cAMP in keratinocytes in the presence or absence of cortistatin were determined by ELISA. RESULTS Serum levels of cortistatin and expression levels in skin were significantly lower in patients with psoriasis than in healthy subjects. Cortistatin inhibited keratinocyte proliferation in vitro in a dose-dependent manner and substantially reduced intracellular cAMP levels in keratinocytes. CONCLUSIONS Cortistatin is downregulated in the skin of patients with psoriasis vulgaris and suppresses keratinocyte growth in vitro.
Collapse
Affiliation(s)
- Dai Li
- Department of Dermatology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Hui-Lan He
- Department of Dermatology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Ming-Zhu Yao
- Department of Dermatology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Ming-Liang Chen
- Department of Dermatology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiang-Ya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Gonzalez-Rey E, Pedreño M, Delgado-Maroto V, Souza-Moreira L, Delgado M. Lulling immunity, pain, and stress to sleep with cortistatin. Ann N Y Acad Sci 2015; 1351:89-98. [PMID: 25951888 DOI: 10.1111/nyas.12789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cortistatin is a neuropeptide isolated from cortical brain regions, showing high structural homology and sharing many functions with somatostatin. However, cortistatin exerts unique functions in the central nervous and immune systems, including decreasing locomotor activity, inducing sleep-promoting effects, and deactivating inflammatory and T helper (TH )1/TH 17-driven responses in preclinical models of sepsis, arthritis, multiple sclerosis, and colitis. Besides its release by cortical and hippocampal interneurons, cortistatin is produced by macrophages, lymphocytes, and peripheral nociceptive neurons in response to inflammatory stimuli, supporting a physiological role of cortistatin in the immune and nociceptive systems. Cortistatin-deficient mice have been shown to have exacerbated nociceptive responses to neuropathic and inflammatory pain sensitization. However, a paradoxical effect has been observed in studies of immune disorders, in which, despite showing competent inflammatory/autoreactive responses, cortistatin-deficient mice were partially resistant to systemic autoimmunity and inflammation. This unexpected phenotype was associated with elevated circulating glucocorticoids and anxiety-like behavior. These findings support cortistatin as a novel multimodal therapeutic approach to treat autoimmunity and clinical pain and identify it as a key endogenous component of the neuroimmune system related to stress responses.
Collapse
Affiliation(s)
- Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Marta Pedreño
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Virginia Delgado-Maroto
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
31
|
Luque RM, Ibáñez-Costa A, Neto LV, Taboada GF, Hormaechea-Agulla D, Kasuki L, Venegas-Moreno E, Moreno-Carazo A, Gálvez MÁ, Soto-Moreno A, Kineman RD, Culler MD, Gahete MD, Gadelha MR, Castaño JP. Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas. Cancer Lett 2015; 359:299-306. [PMID: 25637790 DOI: 10.1016/j.canlet.2015.01.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
Abstract
The GH/IGF1 response of somatotropinomas to somatostatin analogues (SSA) is associated with their pattern of somatostatin receptor (sst1-sst5) expression. Recently, we demonstrated that expression of a truncated sst5-variant (sst5TMD4) can influence the secretory response of somatotropinomas to SSA-therapy; however, its potential relationship with aggressive features (e.g. invasion/proliferation) is still unknown. Here, we show that sst5TMD4 is present in 50% of non-functioning pituitary-adenomas (NFPA) (n = 30) and 89% of somatotropinomas (n = 36), its expression levels being highest in somatotropinomas > > NFPAs > > > normal pituitaries (negligible expression; n = 8). In somatotropinomas, sst5TMD4 mRNA and protein levels correlated positively, and its expression was directly associated with tumor invasiveness (cavernous/sphenoid sinus), and inversely correlated with age and GH/IGF1 reduction after 3-6 months with octreotide-LAR therapy. GNAS+ somatotropinomas expressed lower sst5TMD4 levels. ROC analysis revealed sst5TMD4 expression as the only marker, within all sst-subtypes, capable to predict tumor invasiveness in somatotropinomas. sst5TMD4 overexpression increased cell viability in cultured somatotropinoma (n = 5). Hence, presence of sst5TMD4 associates with increased aggressive features and worse prognosis in somatotropinomas, thereby providing a potentially useful tool to refine somatotropinoma diagnosis, predict outcome of clinical response to SSA-therapy and develop new therapeutic targets.
Collapse
Affiliation(s)
- Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and Hospital Universitario Reina Sofia.; CIBER Fisiopatología de la Obesidad y Nutrición; Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014, Córdoba, Spain.
| | - Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and Hospital Universitario Reina Sofia.; CIBER Fisiopatología de la Obesidad y Nutrición; Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014, Córdoba, Spain
| | - Leonardo Vieira Neto
- Endocrinology Unit, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Section, Federal Hospital of Lagoa, Rio de Janeiro, Brazil
| | - Giselle F Taboada
- Endocrinology Section, Hospital Universitario Antônio Pedro, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Daniel Hormaechea-Agulla
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and Hospital Universitario Reina Sofia.; CIBER Fisiopatología de la Obesidad y Nutrición; Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014, Córdoba, Spain
| | - Leandro Kasuki
- Endocrinology Unit, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Seville 41013, Spain
| | | | - María Ángeles Gálvez
- Service of Endocrinology and Nutrition, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Córdoba 14004, Spain
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Seville 41013, Spain
| | - Rhonda D Kineman
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Research and Development Division, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and Hospital Universitario Reina Sofia.; CIBER Fisiopatología de la Obesidad y Nutrición; Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014, Córdoba, Spain
| | - Mônica R Gadelha
- Endocrinology Unit, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and Hospital Universitario Reina Sofia.; CIBER Fisiopatología de la Obesidad y Nutrición; Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014, Córdoba, Spain.
| |
Collapse
|
32
|
Villa-Osaba A, Gahete MD, Córdoba-Chacón J, de Lecea L, Pozo-Salas AI, Delgado-Lista FJ, Álvarez-Benito M, López-Miranda J, Luque RM, Castaño JP. Obesity alters gene expression for GH/IGF-I axis in mouse mammary fat pads: differential role of cortistatin and somatostatin. PLoS One 2015; 10:e0120955. [PMID: 25806796 PMCID: PMC4373840 DOI: 10.1371/journal.pone.0120955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 02/10/2015] [Indexed: 12/03/2022] Open
Abstract
Locally produced growth hormone (GH) and IGF-I are key factors in the regulation of mammary gland (MG) development and may be important in breast cancer development/progression. Somatostatin (SST) and cortistatin (CORT) regulate GH/IGF-I axis at various levels, but their role in regulating GH/IGF-I in MGs remains unknown. Since obesity alters the expression of these systems in different tissues and is associated to MG (patho) physiology, we sought to investigate the role of SST/CORT in regulating GH/IGF-I system in the MGs of lean and obese mice. Therefore, we analyzed GH/IGF-I as well as SST/CORT and ghrelin systems expression in the mammary fat pads (MFPs) of SST- or CORT-knockout (KO) mice and their respective littermate-controls fed a low-fat (LF) or a high-fat (HF) diet for 16 wks. Our results demonstrate that the majority of the components of GH/IGF-I, SST/CORT and ghrelin systems are locally expressed in mouse MFP. Expression of elements of the GH/IGF-I axis was significantly increased in MFPs of HF-fed control mice while lack of endogenous SST partially suppressed, and lack of CORT completely blunted, the up-regulation observed in obese WT-controls. Since SST/CORT are known to exert an inhibitory role on the GH/IGFI axis, the increase in SST/CORT-receptor sst2 expression in MFPs of HF-fed CORT- and SST-KOs together with an elevation on circulating SST in CORT-KOs could explain the differences observed. These results offer new information on the factors (GH/IGF-I axis) involved in the endocrine/metabolic dysregulation of MFPs in obesity, and suggest that CORT is not a mere SST sibling in regulating MG physiology.
Collapse
Affiliation(s)
- Alicia Villa-Osaba
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Manuel D. Gahete
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - José Córdoba-Chacón
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Department of Medicine, University of Illinois at Chicago and Jesse Brown Veteran Affairs Medical Center, Research and Development Division, Chicago, Illinois, United States of America
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ana I. Pozo-Salas
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Francisco Javier Delgado-Lista
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- Lipids and Atherosclerosis Unit, Department of Medicine, Reina Sofía University Hospital, Córdoba, Spain
| | - Marina Álvarez-Benito
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- Mammary Gland Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - José López-Miranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Lipids and Atherosclerosis Unit, Department of Medicine, Reina Sofía University Hospital, Córdoba, Spain
| | - Raúl M. Luque
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| |
Collapse
|
33
|
Tao R, Cousijn H, Jaffe AE, Burnet PWJ, Edwards F, Eastwood SL, Shin JH, Lane TA, Walker MA, Maher BJ, Weinberger DR, Harrison PJ, Hyde TM, Kleinman JE. Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiatry 2014; 71:1112-20. [PMID: 25162540 PMCID: PMC5894803 DOI: 10.1001/jamapsychiatry.2014.1079] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE The single-nucleotide polymorphism rs1344706 in the zinc finger protein 804A gene (ZNF804A) shows genome-wide association with schizophrenia and bipolar disorder. Little is known regarding the expression of ZNF804A and the functionality of rs1344706. OBJECTIVES To characterize ZNF804A expression in human brain and to investigate how it changes across the life span and how it is affected by rs1344706, schizophrenia, bipolar disorder, and major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS Molecular and immunochemical methods were used to study ZNF804A messenger RNA (mRNA) and ZNF804A protein, respectively. ZNF804A transcripts were investigated using next-generation sequencing and polymerase chain reaction-based methods, and ZNF804A protein was investigated using Western blots and immunohistochemistry. Samples of dorsolateral prefrontal cortex and inferior parietal lobe tissue were interrogated from 697 participants between 14 weeks' gestational age and age 85 years, including patients with schizophrenia, bipolar disorder, or major depressive disorder. MAIN OUTCOMES AND MEASURES Quantitative measurements of ZNF804A mRNA and immunoreactivity, and the effect of diagnosis and rs1344706 genotype. RESULTS ZNF804A was expressed across the life span, with highest expression prenatally. An abundant and developmentally regulated truncated ZNF804A transcript was identified, missing exons 1 and 2 (ZNF804AE3E4) and predicted to encode a protein lacking the zinc finger domain. rs1344706 influenced expression of ZNF804AE3E4 mRNA in fetal brain (P = .02). In contrast, full-length ZNF804A showed no association with genotype (P > .05). ZNF804AE3E4 mRNA expression was decreased in patients with schizophrenia (P = .006) and increased in those with major depressive disorder (P < .001), and there was a genotype-by-diagnosis interaction in bipolar disorder (P = .002). ZNF804A immunoreactivity was detected in fetal and adult human cerebral cortex. It was localized primarily to pyramidal neurons, with cytoplasmic as well as dendritic and nuclear staining. No differences in ZNF804A-immunoreactive neurons were seen in schizophrenia or related to rs1344706 (P > .05). CONCLUSIONS AND RELEVANCE rs1344706 influences the expression of ZNF804AE3E4, a novel splice variant. The effect is limited to fetal brain and to this isoform. It may be part of the mechanism by which allelic variation in ZNF804A affects risk of psychosis. ZNF804A is translated in human brain, where its functions may extend beyond its predicted role as a transcription factor.
Collapse
Affiliation(s)
- Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Helena Cousijn
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Freya Edwards
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Sharon L Eastwood
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Tracy A Lane
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mary A Walker
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
34
|
Gahete MD, Luque RM, Yubero-Serrano EM, Cruz-Teno C, Ibañez-Costa A, Delgado-Lista J, Gracia-Navarro F, Perez-Jimenez F, Castaño JP, Lopez-Miranda J. Dietary fat alters the expression of cortistatin and ghrelin systems in the PBMCs of elderly subjects: putative implications in the postprandial inflammatory response. Mol Nutr Food Res 2014; 58:1897-906. [PMID: 24995559 DOI: 10.1002/mnfr.201400059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
Abstract
SCOPE Dietary fat influences systemic inflammatory status, which determines the progression of age-associated diseases. Since somatostatin (SST), cortistatin (CORT), and ghrelin systems modulate inflammatory response, we aim to comprehensively characterize the presence and regulation of the components of these systems in the peripheral blood mononuclear cells (PMBCs), a subset of white blood cells placed at the crossroad between diet and inflammation, in response to diets with different fat composition, and during the postprandial phase in elderly subjects. METHODS AND RESULTS The applied nutrigenomic, inflammation-related PBMC-based approach revealed that the majority of components of SST/CORT and ghrelin systems are present in the human PBMCs. Particularly, CORT, SST/CORT receptors (sst2, sst3, sst5, and sst5TMD4), ghrelin, its acylating enzyme (GOAT), In1-ghrelin variant, and GHSR1b were detected in PBMCs. Their expression was altered in the long-term by diet composition, and in the short-term, during the postprandial phase. Of particular relevance is the postprandial elevation of CORT, sst2, and sst5 expression in PBMCs of subjects under n-3 PUFAs-enriched diet. CONCLUSION Our results suggest a potential relevant role of CORT/ssts and ghrelin systems in regulating PBMCs response to nutrient intake, which could help to explain the positive effects of n-3 PUFAs-enriched diets in reducing the inflammatory response.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain; Lipid and Atherosclerosis Research Unit, Reina Sofia University Hospital, University of Cordoba, IMIBIC and CIBERObn, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cuevas-Ramos D, Fleseriu M. Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol 2014; 52:R223-40. [PMID: 24647046 DOI: 10.1530/jme-14-0011] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatostatin (SST), an inhibitory polypeptide with two biologically active forms SST14 and SST28, inhibits GH, prolactin (PRL), TSH, and ACTH secretion in the anterior pituitary gland. SST also has an antiproliferative effect inducing cell cycle arrest and apoptosis. Such actions are mediated through five G-protein-coupled somatostatin receptors (SSTR): SSTR1-SSTR5. In GH-secreting adenomas, SSTR2 expression predominates, and somatostatin receptor ligands (SRLs; octreotide and lanreotide) directed to SSTR2 are presently the mainstays of medical therapy. However, about half of patients show incomplete biochemical remission, but the definition of resistance per se remains controversial. We summarize here the determinants of SRL resistance in acromegaly patients, including clinical, imaging features as well as molecular (mutations, SSTR variants, and polymorphisms), and histopathological (granulation pattern, and proteins and receptor expression) predictors. The role of SSTR5 may explain the partial responsiveness to SRLs in patients with adequate SSTR2 density in the cell membrane. In patients with ACTH-secreting pituitary adenomas, i.e. Cushing's disease (CD), SSTR5 is the most abundant receptor expressed and tumors show low SSTR2 density due to hypercortisolism-induced SSTR2 down-regulation. Clinical studies with pasireotide, a multireceptor-targeted SRL with increased SSTR5 activity, lead to approval of pasireotide for treatment of patients with CD. Other SRL delivery modes (oral octreotide), multireceptor-targeted SRL (somatoprim) or chimeric compounds targeting dopamine D2 receptors and SSTR2 (dopastatin), are briefly discussed.
Collapse
Affiliation(s)
- Daniel Cuevas-Ramos
- Department of MedicinePituitary Center, Cedars-Sinai Medical Center, Los Angeles, California, USANorthwest Pituitary Center and Departments of Medicine and Neurological SurgeryOregon Health and Science University, 3181 SW Sam Jackson Park Road (BTE 472), Portland, Oregon 97239, USA
| | - Maria Fleseriu
- Department of MedicinePituitary Center, Cedars-Sinai Medical Center, Los Angeles, California, USANorthwest Pituitary Center and Departments of Medicine and Neurological SurgeryOregon Health and Science University, 3181 SW Sam Jackson Park Road (BTE 472), Portland, Oregon 97239, USA
| |
Collapse
|
36
|
Gahete MD, Durán-Prado M, Delgado-Niebla E, Garrido JJ, Rhodes SJ, García-Navarro S, Gracia-Navarro F, Malagón MM, Luque RM, Castaño JP. Porcine sst1 can physically interact with other somatostatin receptors, and its expression is regulated by metabolic/inflammatory sensors. Am J Physiol Endocrinol Metab 2014; 306:E483-93. [PMID: 24368669 DOI: 10.1152/ajpendo.00587.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of the biological actions attributed to somatostatin (SST) are thought to be mediated by SST receptor 2 (sst2), the most ubiquitous sst, and, to a lesser extent, by sst5. However, a growing body of evidence suggests a relevant role of sst1 in mediating SST actions in (patho)physiological situations (i.e., endometriosis, type 2 diabetes). Moreover, sst1 together with sst2 and sst5 is involved in the well-known actions of SST on pituitary somatotropes in pig and primates. Here, we cloned the porcine sst1 (psst1) and performed a structural and functional characterization using both primary and heterologous models. The psst1 sequence presents the majority of signature motifs shared among G protein-coupled receptors and, specifically, among ssts and exhibits a high homology with other mammalian sst1, with only minor differences in the amino-terminal domain, reinforcing the idea of an early evolutive divergence between mammalian and nonmammalian sst1s. psst1 is functional in terms of decreasing cAMP levels in response to SST when transfected in heterologous models. The psst1 receptor is expressed in several tissues, and analyses of gene cis elements predict regulation by multiple transcription factors and metabolic stimuli. Finally, psst1 is coexpressed with other sst subtypes in various tissues, and in vitro data demonstrate that psst1 can interact with itself forming homodimers and with other ssts forming heterodimers. These data highlight the functional importance of sst1 on the SST-mediated effects and its functional interaction with different ssts, which point out the necessity of exploring the consequences of such interactions.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This paper summarizes the current understanding of the biology of somatostatin receptor (sst), role of immunotherapy in neuroendocrine tumor (NET), new agents for PPRT, and methods to assess response and clinical benefit in NET. One of the most interesting aspects of sst biology is the recent discovery of truncated variants of the sst5 receptor subtype with unique tissue distribution and response to somatostatin (SST). These truncated receptors are associated with bad patient prognosis, decreased response to SST analogs, and may be new targets for diagnoses and treatment. IFN remains a cost-effective agent, particularly in classic mid gut carcinoids, and there is interest to continue examining immunotherapy's in this disease. PRRT remains a key strategy for treatment and imaging. In addition to the classic agents, there are a series of new agents targeting other receptors such as the incretin receptors (GLP-1R; GIPR) and other G-protein coupled receptors with great potential. With regards to therapy monitoring, the most commonly used criteria are Response Criteria Evaluation in Solid Tumors (RECIST). However, for different reasons, these criteria are not very useful in NET. Incorporation of other criteria such as Choi as well as functional imaging assessment with PET would be of great interest in this area.
Collapse
|
38
|
Oberg K, Casanovas O, Castaño JP, Chung D, Delle Fave G, Denèfle P, Harris P, Khan MS, Kulke MH, Scarpa A, Tang LH, Wiedenmann B. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res 2013; 19:2842-9. [PMID: 23459719 DOI: 10.1158/1078-0432.ccr-12-3458] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment landscape and biologic understanding of neuroendocrine tumors (NET) has shifted dramatically in recent years. Recent studies have shown that somatostatin analogues have the potential not only to control symptoms of hormone hypersecretion but also have the ability to slow tumor growth in patients with advanced carcinoid. The results of clinical trials have further shown that the VEGF pathway inhibitor sunitinib and the mTOR inhibitor everolimus have efficacy in patients with advanced pancreatic NETs. The efficacy of these targeted therapies in NET suggests that the molecular characterization of NETs may provide an avenue to predict both which patients may benefit most from the treatment and to overcome potential drug resistance. Recent genomic studies of NETs have further suggested that pathways regulating chromatin remodeling and epigenetic modification may play a key role in regulating NET growth. These observations offer the potential for new therapeutic and diagnostic advances for patients with NET.
Collapse
Affiliation(s)
- Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stengel A, Rivier J, Taché Y. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes. Peptides 2013; 42:70-7. [PMID: 23287111 PMCID: PMC3633742 DOI: 10.1016/j.peptides.2012.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 01/06/2023]
Abstract
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Psychosomatic Medicine & Obesity Center Berlin, Department of Medicine, Charité Medical Center and University, Berlin, Germany
| | - Jean Rivier
- Peptide Biology Laboratories, Salk Institute, La Jolla, California, USA
| | - Yvette Taché
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Address: CURE: Digestive Diseases Research Center, Building 115, Room 117, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, Phone: 310-312-9275, Fax: 1-310-268-4963,
| |
Collapse
|
40
|
Durán-Prado M, Gahete MD, Delgado-Niebla E, Martínez-Fuentes AJ, Vázquez-Martínez R, García-Navarro S, Gracia-Navarro F, Malagon MM, Luque RM, Castaño JP. Truncated variants of pig somatostatin receptor subtype 5 (sst5) act as dominant-negative modulators for sst2-mediated signaling. Am J Physiol Endocrinol Metab 2012; 303:E1325-34. [PMID: 23032684 DOI: 10.1152/ajpendo.00445.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatostatin (SST) and its related peptide cortistatin (CORT) exert their multiple actions through binding to the SST receptor (sst) family, generally considered to comprise five G protein-coupled receptors with seven transmembrane domains (TMD), named sst1-sst5, plus a splice sst2B variant. However, we recently discovered that human and rodent sst5 gene expression also generates, through noncanonical alternative splicing, novel truncated albeit functional sst5 variants with less than seven TMD. Here, we cloned and characterized for the first time the porcine wild-type sst5 (psst5, full-length) and identified two novel truncated psst5 variants with six and three TMD, thus termed psst5TMD6 and psst5TMD3, respectively. In line with that observed in human and rodent truncated sst5 variants, psst5TMD6 and psst5TMD3 are functional (e.g., activate calcium signaling), selectively respond to SST and CORT, respectively, and exhibit specific tissue expression profiles that differ from full-length psst5 and often overlaps with psst2 expression. Moreover, fluorescence resonance energy transfer analysis shows that psst5 truncated variants physically interact with psst2, thereby altering their localization at the plasma membrane and specifically disrupting the cellular response to SST and/or CORT. These results represent the first characterization of a key porcine SST receptor, psst5, and, together with our previous results, provide strong evidence that alternative splicing-derived, truncated sst5 variants with distinct functional capacities exist in the mammalian lineage, where they can act as dominant-negative receptors, by interacting directly with long, seven TMD variants, potentially contributing to modulate normal and pathological SST and CORT signaling.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shpakov AO. Somatostatin receptors and signaling cascades coupled to them. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wise H. The roles played by highly truncated splice variants of G protein-coupled receptors. J Mol Signal 2012; 7:13. [PMID: 22938630 PMCID: PMC3477067 DOI: 10.1186/1750-2187-7-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/29/2012] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism.
Collapse
Affiliation(s)
- Helen Wise
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
43
|
Durán-Prado M, Gahete MD, Hergueta-Redondo M, Martínez-Fuentes AJ, Córdoba-Chacón J, Palacios J, Gracia-Navarro F, Moreno-Bueno G, Malagón MM, Luque RM, Castaño JP. The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells. Oncogene 2012; 31:2049-61. [PMID: 21927030 DOI: 10.1038/onc.2011.389] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatostatin receptors (sst1-5) are present in different types of tumors, where they inhibit key cellular processes such as proliferation and invasion. Although ssts are densely expressed in breast cancer, especially sst2, their role and therapeutic potential remain uncertain. Recently, we identified a new truncated sst5 variant, sst5TMD4, which is related to the abnormal response of certain pituitary tumors to treatment with somatostatin analogs. Here, we investigated the possible role of sst5TMD4 in breast cancer. This study revealed that sst5TMD4 is absent in normal mammary gland, but is abundant in a subset of poorly differentiated human breast tumors, where its expression correlated to that of sst2. Moreover, in the MCF-7 breast cancer model cell, sst5TMD4 expression increased malignancy features such as invasion and proliferation abilities (both in cell cultures and nude mice). This was likely mediated by sst5TMD4-induced increase in phosphorylated extracellular signal-regulated kinases 1 and 2 and p-Akt levels, and cyclin D3 and Arp2/3 complex expression, which also led to mesenchymal-like phenotype. Interestingly, sst5TMD4 interacts physically with sst2 and thereby alters its signaling, enabling disruption of sst2 inhibitory feedback and providing a plausible basis for our findings. These results suggest that sst5TMD4 could be involved in the pathophysiology of certain types of breast tumors.
Collapse
Affiliation(s)
- M Durán-Prado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tringali G, Greco MC, Lisi L, Pozzoli G, Navarra P. Cortistatin modulates the expression and release of corticotrophin releasing hormone in rat brain. Comparison with somatostatin and octreotide. Peptides 2012; 34:353-9. [PMID: 22342595 DOI: 10.1016/j.peptides.2012.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Cortistatin (CST) is an endogenous neuropeptide characterized by remarkable structural and functional resemblance to somatostatin (SST), both peptides sharing the ability to bind and activate all five SST receptor subtypes. Evidence is also available showing that CST exerts biological activities independently from SST, perhaps via the activation of specific receptors that remain to be fully characterized at present. Here we have investigated the effects of CST on the gene expression and release of corticotrophin releasing hormone (CRH) from rat hypothalamic and hippocampal explants; moreover, we compared the effects of CST with those of SST and octreotide (OCT) in these models. We found that: (i) CST inhibits the expression and release of CRH from rat hypothalamic and hippocampal explants under basal conditions as well as after CRH stimulation by well known secretagogues; (ii) SST does not modify basal CRH secretion from the hypothalamus or the hippocampus, while it is able to reduce KCl-stimulated CRH release from both brain areas; (iii) OCT inhibits both basal and KCl-induced CRH secretion from rat hypothalamic explants, while it has no effect on CRH release from the hippocampus, either under basal conditions or after stimulation by high K(+) concentrations; (iv) at variance with CST; SST and OCT have not effect whatsoever on veratridine-induced CRH release from the hypothalamus. In conclusion the present findings provide in vitro evidence in support of the hypothesis that CST plays a role in the regulation of endocrine adaptive responses to stress.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | |
Collapse
|
45
|
Gahete M, Luque R, Castaño J. Measurement of Free Cytosolic Calcium Concentration ([Ca2+]i) in Single CHO-K1 Cells. Bio Protoc 2012. [DOI: 10.21769/bioprotoc.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
46
|
Córdoba-Chacón J, Gahete MD, Pozo-Salas AI, Martínez-Fuentes AJ, de Lecea L, Gracia-Navarro F, Kineman RD, Castaño JP, Luque RM. Cortistatin is not a somatostatin analogue but stimulates prolactin release and inhibits GH and ACTH in a gender-dependent fashion: potential role of ghrelin. Endocrinology 2011; 152:4800-12. [PMID: 21971153 PMCID: PMC3230064 DOI: 10.1210/en.2011-1542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cortistatin (CST) and somatostatin (SST) evolve from a common ancestral gene and share remarkable structural, pharmacological, and functional homologies. Although CST has been considered as a natural SST-analogue acting through their shared receptors (SST receptors 1-5), emerging evidence indicates that these peptides might in fact exert unique roles via selective receptors [e.g. CST, not SST, binds ghrelin receptor growth hormone secretagogue receptor type 1a (GHS-R1a)]. To determine whether the role of endogenous CST is different from SST, we characterized the endocrine-metabolic phenotype of male/female CST null mice (cort-/-) at hypothalamic-pituitary-systemic (pancreas-stomach-adrenal-liver) levels. Also, CST effects on hormone expression/secretion were evaluated in primary pituitary cell cultures from male/female mice and female primates (baboons). Specifically, CST exerted an unexpected stimulatory role on prolactin (PRL) secretion, because both male/female cort-/- mice had reduced PRL levels, and CST treatment (in vivo and in vitro) increased PRL secretion, which could be blocked by a GHS-R1a antagonist in vitro and likely relates to the decreased success of female cort-/- in first-litter pup care at weaning. In contrast, CST inhibited GH and adrenocorticotropin-hormone axes in a gender-dependent fashion. In addition, a rise in acylated ghrelin levels was observed in female cort-/- mice, which were associated with an increase in stomach ghrelin/ghrelin O-acyl transferase expression. Finally, CST deficit uncovered a gender-dependent role of this peptide in the regulation of glucose-insulin homeostasis, because male, but not female, cort-/- mice developed insulin resistance. The fact that these actions are not mimicked by SST and are strongly gender dependent offers new grounds to investigate the hitherto underestimated physiological relevance of CST in the regulation of physiological/metabolic processes.
Collapse
|
47
|
Gahete MD, Córdoba-Chacón J, Hergueta-Redondo M, Martínez-Fuentes AJ, Kineman RD, Moreno-Bueno G, Luque RM, Castaño JP. A novel human ghrelin variant (In1-ghrelin) and ghrelin-O-acyltransferase are overexpressed in breast cancer: potential pathophysiological relevance. PLoS One 2011; 6:e23302. [PMID: 21829727 PMCID: PMC3150424 DOI: 10.1371/journal.pone.0023302] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/14/2011] [Indexed: 12/02/2022] Open
Abstract
The human ghrelin gene, which encodes the ghrelin and obestatin peptides, contains 5 exons (Ex), with Ex1-Ex4 encoding a 117 amino-acid (aa) preproprotein that is known to be processed to yield a 28-aa (ghrelin) and/or a 23-aa (obestatin) mature peptides, which possess biological activities in multiple tissues. However, the ghrelin gene also encodes additional peptides through alternative splicing or post-translational modifications. Indeed, we previously identified a spliced mRNA ghrelin variant in mouse (In2-ghrelin-variant), which is regulated in a tissue-dependent manner by metabolic status and may thus be of biological relevance. Here, we have characterized a new human ghrelin variant that contains Ex0-1, intron (In) 1, and Ex2 and lacks Ex3-4. This human In1-ghrelin variant would encode a new prepropeptide that conserves the first 12aa of native-ghrelin (including the Ser3-potential octanoylation site) but has a different C-terminal tail. Expression of In1-variant was detected in 22 human tissues and its levels were positively correlated with those of ghrelin-O-acyltransferase (GOAT; p = 0.0001) but not with native-ghrelin expression, suggesting that In1-ghrelin could be a primary substrate for GOAT in human tissues. Interestingly, levels of In1-ghrelin variant expression in breast cancer samples were 8-times higher than those of normal mammary tissue, and showed a strong correlation in breast tumors with GOAT (p = 0.0001), ghrelin receptor-type 1b (GHSR1b; p = 0.049) and cyclin-D3 (a cell-cycle inducer/proliferation marker; p = 0.009), but not with native-ghrelin or GHSR1a expression. Interestingly, In1-ghrelin variant overexpression increased basal proliferation of MDA-MB-231 breast cancer cells. Taken together, our results provide evidence that In1-ghrelin is a novel element of the ghrelin family with a potential pathophysiological role in breast cancer.
Collapse
Affiliation(s)
- Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Hospital Universitario Reina Sofía, and CIBERobn Fisiopatología de la Obesidad y la Nutrición, Córdoba, Spain
| | - José Córdoba-Chacón
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Hospital Universitario Reina Sofía, and CIBERobn Fisiopatología de la Obesidad y la Nutrición, Córdoba, Spain
| | - Marta Hergueta-Redondo
- Department of Biochemistry, Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Instituto de Investigación Sanitaria La Paz (IdiPAZ) and Fundación MD Anderson Internacional, Madrid, Spain
| | - Antonio J. Martínez-Fuentes
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Hospital Universitario Reina Sofía, and CIBERobn Fisiopatología de la Obesidad y la Nutrición, Córdoba, Spain
| | - Rhonda D. Kineman
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, and Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Gema Moreno-Bueno
- Department of Biochemistry, Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Instituto de Investigación Sanitaria La Paz (IdiPAZ) and Fundación MD Anderson Internacional, Madrid, Spain
| | - Raúl M. Luque
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Hospital Universitario Reina Sofía, and CIBERobn Fisiopatología de la Obesidad y la Nutrición, Córdoba, Spain
- * E-mail: (JPC); (RML)
| | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Hospital Universitario Reina Sofía, and CIBERobn Fisiopatología de la Obesidad y la Nutrición, Córdoba, Spain
- * E-mail: (JPC); (RML)
| |
Collapse
|
48
|
Moncayo R. Reflections on the theory of "silver bullet" octreotide tracers: implications for ligand-receptor interactions in the age of peptides, heterodimers, receptor mosaics, truncated receptors, and multifractal analysis. EJNMMI Res 2011; 1:9. [PMID: 22214590 PMCID: PMC3251005 DOI: 10.1186/2191-219x-1-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022] Open
Abstract
The classical attitude of Nuclear Medicine practitioners on matters of peptide-receptor interactions has maintained an intrinsic monogamic character since many years. New advances in the field of biochemistry and even in clinical Nuclear Medicine have challenged this type of thinking, which prompted me to work on this review. The central issue of this paper will be the use of somatostatin analogs, i.e., octreotide, in clinical imaging procedures as well as in relation to neuroendocirne tumors. Newly described characteristics of G-protein coupled receptors such as the formation of receptor mosaics will be discussed. A small section will enumerate the regulatory processes found in the cell membrane. Possible new interpretations, other than tumor detection, based on imaging procedures with somatostatin analogs will be presented. The readers will be taken to situations such as inflammation, nociception, mechanosensing, chemosensing, fibrosis, taste, and vascularity where somatostatin is involved. Thyroid-associated orbitopathy will be used as a model for the development of multi-agent therapeutics. The final graphical summary depicts the multifactorial properties of ligand binding.
Collapse
Affiliation(s)
- Roy Moncayo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
49
|
Córdoba-Chacón J, Gahete MD, Durán-Prado M, Luque RM, Castaño JP. Truncated somatostatin receptors as new players in somatostatin-cortistatin pathophysiology. Ann N Y Acad Sci 2011; 1220:6-15. [PMID: 21388399 DOI: 10.1111/j.1749-6632.2011.05985.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) and cortistatin (CORT) act through a family of seven transmembrane domain (TMD) receptors (sst1-5) to govern multiple functions, from growth hormone (GH) secretion to neurotransmission, metabolic homeostasis, gastrointestinal and immune function, and tumor cell growth. Thus, SST analogs are used to treat endocrine/tumoral pathologies. Yet, some SST/CORT actions cannot be explained by their interaction with known ssts. We recently identified novel sst5 variants in human, pig, mouse, and rat that lack one or more TMDs and display unique molecular/functional features: they exhibit distinct tissue distribution, divergent responses to SST/CORT, and intracellular localization as opposed to the typical plasma-membrane distribution of full-length ssts. When coexpressed in the same cell, truncated sst5 variants colocalize and physically interact with full-length ssts, providing a molecular basis to disrupt normal sst2/sst5 functioning. This may explain the inverse correlation between hsst5TMD4 expression in pituitary tumors and octreotide responsiveness in acromegaly. Discovery of these new truncated sst5 variants provides novel insights on SST/CORT/sst pathophysiology and suggests new research avenues for the therapeutic potential of this system.
Collapse
Affiliation(s)
- José Córdoba-Chacón
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | | | | | | |
Collapse
|
50
|
Luque RM, Gahete MD, Cordoba-Chacon J, Childs GV, Kineman RD. Does the pituitary somatotrope play a primary role in regulating GH output in metabolic extremes? Ann N Y Acad Sci 2011; 1220:82-92. [PMID: 21388406 DOI: 10.1111/j.1749-6632.2010.05913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating growth hormone (GH) levels rise in response to nutrient deprivation and fall in states of nutrient excess. Because GH regulates carbohydrate, lipid, and protein metabolism, defining the mechanisms by which changes in metabolism alter GH secretion will aid in our understanding of the cause, progression, and treatment of metabolic diseases. This review will summarize what is currently known regarding the impact of systemic metabolic signals on GH-axis function. In addition, ongoing studies using the Cre/loxP system to generate mouse models with selective somatotrope resistance to metabolic signals will be discussed, where these models will serve to enhance our understanding of the specific role the somatotrope plays in sensing the metabolic environment and adjusting GH output in metabolic extremes.
Collapse
Affiliation(s)
- Raul M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | |
Collapse
|