1
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Zhu W, Pan S, Zhang J, Xu J, Zhang R, Zhang Y, Fu Z, Wang Y, Hu C, Xu Z. The role of hyperthermia in the treatment of tumor. Crit Rev Oncol Hematol 2024; 204:104541. [PMID: 39461607 DOI: 10.1016/j.critrevonc.2024.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Despite recent advancements in the diagnosis and treatment options for cancer, it remains one of the most serious threats to health. Hyperthermia (HT) has emerged as a highly promising area of research due to its safety and cost-effectiveness. Currently, based on temperature, HT can be categorized into thermal ablation and mild hyperthermia. Thermal ablation involves raising the temperature within the tumor to over 60°C, resulting in direct necrosis in the central region of the tumor. In contrast, mild hyperthermia operates at relatively lower temperatures, typically in the range of 41-45°C, to induce damage to tumor cells. Furthermore, HT also serves as an immune adjuvant strategy in radiotherapy, chemotherapy, and immunotherapy, enhancing the effectiveness of radiotherapy, increasing the uptake of chemotherapy drugs, and reprogramming the tumor microenvironment through the induction of immunogenic cell death, thereby promoting the recruitment of endogenous immune cells. This article reviews the current status and development of hyperthermia, outlines potential mechanisms by which hyperthermia inhibits tumors, describes clinical trial attempts combining hyperthermia with radiotherapy, chemotherapy, and immunotherapy, and discusses the relationship between nanoparticles and hyperthermia.
Collapse
Affiliation(s)
- Weiwei Zhu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Siwei Pan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yuqi Wang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Zhiyuan Xu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
3
|
Wang D, Zhang Y, Zhang J, Zhao J. Advances in base editing: A focus on base transversions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108515. [PMID: 39454989 DOI: 10.1016/j.mrrev.2024.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/29/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Single nucleotide variants (SNVs) constitute the most frequent variants that cause human genetic diseases. Base editors (BEs) comprise a new generation of CRISPR-based technologies, which are considered to have a promising future for curing genetic diseases caused by SNVs as they enable the direct and irreversible correction of base mutations. Two of the early types of BEs, cytosine base editor (CBE) and adenine base editor (ABE), mediate C-to-T, T-to-C, A-to-G, and G-to-A base transition mutations. Together, these represent half of all the known disease-associated SNVs. However, the remaining transversion (i.e., purine-pyrimidine) mutations cannot be restored by direct deamination and so these require the replacement of the entire base. Recently, a variety of base transversion editors were developed and so these add to the currently available BEs enabling the correction of all types of point mutation. However, compared to the base transition editors (including CBEs and ABEs), base transversion editors are still in the early development stage. In this review, we describe the basics and advances of the various base transversion editors, highlight their limitations, and discuss their potential for treating human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| | - YiZhan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jinning Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
4
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
6
|
Norris JL, Hedglin M. Direct, ensemble FRET approaches to monitor transient state kinetics of human DNA polymerase δ holoenzyme assembly and initiation of DNA synthesis. Methods Enzymol 2024; 705:271-309. [PMID: 39389667 DOI: 10.1016/bs.mie.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In humans, DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand replication, the initiation of leading strand DNA replication as well as most of the major DNA damage repair pathways. In each of these contexts, pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process that involves the PCNA clamp loader, replication factor C and, depending on the DNA synthesis pathway, the major single strand DNA-binding protein complex, replication protein A (RPA). In a recent report from our laboratory, we designed and utilized direct, ensemble Förster Resonance Energy Transfer approaches to monitor the transient state kinetics of pol δ holoenzyme assembly and initiation of DNA synthesis on P/T junctions engaged by RPA. In this chapter, we detail the original approaches and discuss adaptations that can be utilized to monitor fast kinetic reactions in the millisecond (ms) timescale. All approaches described in this chapter utilize a commercially-available fluorescence spectrophotometer, can be readily evolved for alternative DNA polymerases and P/T DNA substrates, and permit incorporation of protein posttranslational modifications, accessory factors, DNA covalent modifications, accessory factors, enzymes, etc. Hence, these approaches are widely accessible and broadly applicable for characterizing DNA polymerase holoenzyme assembly and initiation of DNA synthesis during any PCNA-dependent DNA synthesis pathway.
Collapse
Affiliation(s)
- Jessica L Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
7
|
Shubhanjali S, Mohapatra T, Khan R, Dixit M. Unveiling FRG1's DNA repair role in breast cancer. Sci Rep 2024; 14:19371. [PMID: 39169067 PMCID: PMC11339311 DOI: 10.1038/s41598-024-70368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The FRG1(FSHD region gene 1) gene has emerged as a pivotal tumor suppressor in both breast and prostate cancer. HPF1 (Histone PARylation Factor 1), a gene crucial in the base excision repair (BER) mechanism for single-stranded DNA (ssDNA) lesions, showcases a robust correlation with FRG1. This implies that FRG1 might have the capacity to influence BER via HPF1, potentially playing a role in tumorigenesis. Using a comprehensive approach that integrates in-silico analyses involving differential gene expression, KEGG (Kyoto Encyclopedia of Genes and Genomes), GO (Gene Ontology), and STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) databases, we unravelled the intricate network of genes and pathways influenced by FRG1, which includes BER. Our linear regression analysis unveiled a positive relationship between FRG1 and key genes crucial for BER. Notably, breast cancer patients with low FRG1 expression exhibited a significantly higher frequency of mutation in TP53. To enhance the accuracy of our analysis, we conducted qRT-PCR assays, which demonstrated that FRG1 affects the transcription of DNA base excision repair genes, showing differential expression in breast cancer cells. Moreover, through the Alkaline Comet Assay, a technique that quantifies DNA damage at the single-cell level, we observed diminished DNA repair capabilities when FRG1 levels are low. Risk scores were calculated using the Cox regression coefficients, and we found notable differences in Overall Survival (OS) and mRNA expression of DEGs in the low and high-risk groups. In summary, our findings shed light on the pivotal role of FRG1 in maintaining DNA repair efficiency within breast cancer cells.
Collapse
Affiliation(s)
- Shubhanjali Shubhanjali
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, PO: Jatani, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Talina Mohapatra
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, PO: Jatani, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Rehan Khan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, PO: Jatani, Khurda, Bhubaneswar, Odisha, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
8
|
Ahluwalia MS, Ozair A, Drappatz J, Ye X, Peng S, Lee M, Rath S, Dhruv H, Hao Y, Berens ME, Walbert T, Holdhoff M, Lesser GJ, Cloughesy TF, Sloan AE, Takebe N, Couce M, Peereboom DM, Nabors B, Wen PY, Grossman SA, Rogers LR. Evaluating the Base Excision Repair Inhibitor TRC102 and Temozolomide for Patients with Recurrent Glioblastoma in the Phase 2 Adult Brain Tumor Consortium Trial BERT. Clin Cancer Res 2024; 30:3167-3178. [PMID: 38836759 PMCID: PMC11293959 DOI: 10.1158/1078-0432.ccr-23-4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Patients with glioblastoma (GBM) have a dismal prognosis. Although the DNA alkylating agent temozolomide (TMZ) is the mainstay of chemotherapy, therapeutic resistance rapidly develops in patients. Base excision repair inhibitor TRC102 (methoxyamine) reverses TMZ resistance in preclinical glioma models. We aimed to investigate the efficacy and safety of oral TRC102+TMZ in recurrent GBM (rGBM). PATIENTS AND METHODS A preregistered (NCT02395692), nonrandomized, multicenter, phase 2 clinical trial (BERT) was planned and conducted through the Adult Brain Tumor Consortium (ABTC-1402). Arm 1 included patients with bevacizumab-naïve GBM at the first recurrence, with the primary endpoint of response rates. If sufficient activity was identified, a second arm was planned for the bevacizumab-refractory patients. The secondary endpoints were overall survival (OS), progression-free survival (PFS), PFS at 6 months (PFS6), and toxicity. RESULTS Arm 1 enrolled 19 patients with a median of two treatment cycles. Objective responses were not observed; hence, arm 2 did not open. The median OS was 11.1 months [95% confidence interval (CI), 8.2-17.9]. The median PFS was 1.9 months (95% CI, 1.8-3.7). The PFS6 was 10.5% (95% CI, 1.3%-33.1%). Most toxicities were grades 1 and 2, with two grade 3 lymphopenias and one grade 4 thrombocytopenia. Two patients with PFS ≥ 17 months and OS > 32 months were deemed "extended survivors." RNA sequencing of tumor tissue, obtained at diagnosis, demonstrated significantly enriched signatures of DNA damage response (DDR), chromosomal instability (CIN70, CIN25), and cellular proliferation (PCNA25) in "extended survivors." CONCLUSIONS These findings confirm the safety and feasibility of TRC102+TMZ in patients with rGBM. They also warrant further evaluation of combination therapy in biomarker-enriched trials enrolling GBM patients with baseline hyperactivated DDR pathways.
Collapse
Affiliation(s)
- Manmeet S. Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sen Peng
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Matthew Lee
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sanhita Rath
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Harshil Dhruv
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yue Hao
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michael E. Berens
- Brain Tumor Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Tobias Walbert
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, USA
| | - Matthias Holdhoff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Glenn J. Lesser
- Department of Hematology and Oncology, Wake Forest Medical Center, Winston, NC, USA
| | | | - Andrew E. Sloan
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurosurgery, Piedmont Healthcare, Atlanta, GA, USA
| | - Naoko Takebe
- Developmental Therapeutics Clinic, National Cancer Institute, Bethesda, MD, USA
| | - Marta Couce
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David M. Peereboom
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Burt Nabors
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stuart A. Grossman
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Lisa R. Rogers
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, USA
| |
Collapse
|
9
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
10
|
Norris J, Rogers L, Pytko K, Dannenberg R, Perreault S, Kaushik V, Kuppa S, Antony E, Hedglin M. Replication protein A dynamically re-organizes on primer/template junctions to permit DNA polymerase δ holoenzyme assembly and initiation of DNA synthesis. Nucleic Acids Res 2024; 52:7650-7664. [PMID: 38842913 PMCID: PMC11260492 DOI: 10.1093/nar/gkae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, PCNA, carry out DNA synthesis during lagging strand replication, initiation of leading strand replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process involving the major single strand DNA (ssDNA)-binding protein complex, RPA, the processivity sliding clamp loader, RFC, PCNA and pol δ. During this process, the interactions of RPA, RFC and pol δ with a P/T junction all significantly overlap. A burning issue that has yet to be resolved is how these overlapping interactions are accommodated during this process. To address this, we design and utilize novel, ensemble FRET assays that continuously monitor the interactions of RPA, RFC, PCNA and pol δ with DNA as pol δ holoenzymes are assembled and initiate DNA synthesis. Results from the present study reveal that RPA remains engaged with P/T junctions throughout this process and the RPA•DNA complexes dynamically re-organize to allow successive binding of RFC and pol δ. These results have broad implications as they highlight and distinguish the functional consequences of dynamic RPA•DNA interactions in RPA-dependent DNA metabolic processes.
Collapse
Affiliation(s)
- Jessica L Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey O Rogers
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Samuel Perreault
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vikas Kaushik
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis, MO 63104, USA
| | - Sahiti Kuppa
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis, MO 63104, USA
| | - Edwin Antony
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis, MO 63104, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Wang H, Ye C, Lu Q, Jiang Z, Jiang C, Zhou C, Li N, Zhang C, Zhao G, Yue M, Li Y. Bacterial exonuclease III expands its enzymatic activities on single-stranded DNA. eLife 2024; 13:RP95648. [PMID: 38959062 PMCID: PMC11221836 DOI: 10.7554/elife.95648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.
Collapse
Affiliation(s)
- Hao Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chen Ye
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Qi Lu
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Chun Zhou
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Na Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Caiqiao Zhang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Guoping Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| |
Collapse
|
12
|
Oswalt LE, Eichman BF. NEIL3: A unique DNA glycosylase involved in interstrand DNA crosslink repair. DNA Repair (Amst) 2024; 139:103680. [PMID: 38663144 PMCID: PMC11162926 DOI: 10.1016/j.dnarep.2024.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.
Collapse
Affiliation(s)
- Leah E Oswalt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Fernández Aceñero MJ, Díaz del Arco C. Hereditary Gastrointestinal Tumor Syndromes: When Risk Comes with Your Genes. Curr Issues Mol Biol 2024; 46:6440-6471. [PMID: 39057027 PMCID: PMC11275188 DOI: 10.3390/cimb46070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Despite recent campaigns for screening and the latest advances in cancer therapy and molecular biology, gastrointestinal (GI) neoplasms remain among the most frequent and lethal human tumors. Most GI neoplasms are sporadic, but there are some well-known familial syndromes associated with a significant risk of developing both benign and malignant GI tumors. Although some of these entities were described more than a century ago based on clinical grounds, the increasing molecular information obtained with high-throughput techniques has shed light on the pathogenesis of several of them. The vast amount of information gained from next-generation sequencing has led to the identification of some high-risk genetic variants, although others remain to be discovered. The opportunity for genetic assessment and counseling in these families has dramatically changed the management of these syndromes, though it has also resulted in significant psychological distress for the affected patients, especially those with indeterminate variants. Herein, we aim to summarize the most relevant hereditary cancer syndromes involving the stomach and colon, with an emphasis on new molecular findings, novel entities, and recent changes in the management of these patients.
Collapse
Affiliation(s)
- María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
14
|
Shpilman Z, Kidane D. Dysregulation of base excision repair factors associated with low tumor immunogenicity in head and neck cancer: implication for immunotherapy. Ther Adv Med Oncol 2024; 16:17588359241248330. [PMID: 38680291 PMCID: PMC11047243 DOI: 10.1177/17588359241248330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Background Head and neck squamous carcinoma (HNSCC) is caused by different exogenous risk factors including smoking cigarettes, alcohol consumption, and HPV infection. Base excision repair (BER) is the frontline to repair oxidative DNA damage, which is initiated by the DNA N-glycosylase proteins (OGG1) and other BER factors including DNA polymerase β (POLB). Objective Explore whether BER genes' (OGG1, POLB) overexpression in HNSCC alters genomic integrity, immunogenicity, and its role in prognostic value. Design RNA sequencing (RNA-Seq) and clinical information (age, gender, histological grade, survival status, and stage) of 530 patients of HNSCC were retrieved from the Cancer Genome Atlas. Patients' data are categorized HPV positive or negative to analyze the tumor data including the tumor stage, POLB, and OGG1 gene expression. Methods RNA-Seq of HNSCC data retrieved and mutation count and aneuploidy score were compared using an unpaired t-test. The TIMER algorithm was used to calculate the tumor abundance of six infiltrating immune cells (CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and dendritic cells) based on RNA-Seq expression profile data. The correlation between the POLB, OGG1, and immune cells was calculated by Spearman correlation analysis using TIMER 2.0. Results Our data analysis reveals that BER genes frequently overexpressed in HNSCC tumors and increase mutation count. In addition, OGG1 and POLB overexpression are associated with low infiltration of immune cells, low immune checkpoint gene expression (PD-1, cytotoxic T-lymphocyte antigen 4, program death ligand 1, and program death ligand 2), and innate immune signaling genes. Furthermore, dysregulated BER factors in Human papillomavirus (HPV) positive tumors had better overall survival. Conclusion Our analysis suggests that dysregulation of the BER genes panel might be a potential prognosis marker and/or an attractive target for an immune checkpoint blockade in HNSCC cancers. However, our observation still requires further experimental-based scientific validation studies.
Collapse
Affiliation(s)
- Zackary Shpilman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, 520 W Street, Northwestern Washington, DC 20059, USA
| |
Collapse
|
15
|
Cao H, Zhang Y, Song T, Xia L, Cai Y, Kapranov P. Common occurrence of hotspots of single strand DNA breaks at transcriptional start sites. BMC Genomics 2024; 25:368. [PMID: 38622509 PMCID: PMC11017599 DOI: 10.1186/s12864-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND We recently developed two high-resolution methods for genome-wide mapping of two prominent types of DNA damage, single-strand DNA breaks (SSBs) and abasic (AP) sites and found highly complex and non-random patterns of these lesions in mammalian genomes. One salient feature of SSB and AP sites was the existence of single-nucleotide hotspots for both lesions. RESULTS In this work, we show that SSB hotspots are enriched in the immediate vicinity of transcriptional start sites (TSSs) in multiple normal mammalian tissues, however the magnitude of enrichment varies significantly with tissue type and appears to be limited to a subset of genes. SSB hotspots around TSSs are enriched on the template strand and associate with higher expression of the corresponding genes. Interestingly, SSB hotspots appear to be at least in part generated by the base-excision repair (BER) pathway from the AP sites. CONCLUSIONS Our results highlight complex relationship between DNA damage and regulation of gene expression and suggest an exciting possibility that SSBs at TSSs might function as sensors of DNA damage to activate genes important for DNA damage response.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Yufei Zhang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Tianrong Song
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, 361000, Xiamen, China
| | - Ye Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
16
|
Berfelde J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. FEN1 Inhibition as a Potential Novel Targeted Therapy against Breast Cancer and the Prognostic Relevance of FEN1. Int J Mol Sci 2024; 25:2110. [PMID: 38396787 PMCID: PMC10889347 DOI: 10.3390/ijms25042110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.
Collapse
Affiliation(s)
- Johanna Berfelde
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
17
|
Zheng Y, Liu C, Chen J, Tang J, Luo J, Zou D, Tang Z, He J, Bai J. Integrated transcriptomic and biochemical characterization of the mechanisms governing stress responses in soil-dwelling invertebrate (Folsomia candida) upon exposure to dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132644. [PMID: 37820532 DOI: 10.1016/j.jhazmat.2023.132644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly utilized plasticizers and a frequently detected phthalic acid ester (PAE) compound in soil samples. However, the toxicological effects of DBP on soil-dwelling organisms remain poorly understood. This study employed a multi-biomarker approach to investigate the impact of DBP exposure on Folsomia candida's survival, reproduction, enzyme activity levels, and transcriptional profiles. Analyses of antioxidant biomarkers, including catalase (CAT) and glutathione S-transferase (GST), as well as detoxifying enzymes such as acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and lipid peroxidation (LPO), revealed significant increases in CAT activity, GST levels, and CYP450 expression following treatment with various doses of DBP for 2, 4, 7, or 14 days. Additionally, LPO induction was observed along with significant AChE inhibition. In total, 3175 differentially expressed genes (DEGs) were identified following DBP treatment that were enriched in six Gene Ontology (GO) terms and 144 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 85 upregulated and 59 downregulated primarily associated with lipid metabolism, signal transduction, DNA repair, and cell growth and death. Overall these results provide foundational insights for further research into the molecular mechanisms underlying responses of soil invertebrates to DBP exposure.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiayi Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali Luo
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Di Zou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zhen Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali He
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
18
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Astrocyte DNA damage and response upon acute exposure to ethanol and corticosterone. FRONTIERS IN TOXICOLOGY 2024; 5:1277047. [PMID: 38259729 PMCID: PMC10800529 DOI: 10.3389/ftox.2023.1277047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Astrocytes are the glial cells responsible for brain homeostasis, but if injured, they could damage neural cells even deadly. Genetic damage, DNA damage response (DDR), and its downstream cascades are dramatic events poorly studied in astrocytes. Hypothesis and methods: We propose that 1 h of 400 mmol/L ethanol and/or 1 μmol/L corticosterone exposure of cultured hippocampal astrocytes damages DNA, activating the DDR and eliciting functional changes. Immunolabeling against γH2AX (chromatin DNA damage sites), cyclin D1 (cell cycle control), nuclear (base excision repair, BER), and cytoplasmic (anti-inflammatory functions) APE1, ribosomal nucleolus proteins together with GFAP and S100β plus scanning electron microscopy studies of the astrocyte surface were carried out. Results: Data obtained indicate significant DNA damage, immediate cell cycle arrest, and BER activation. Changes in the cytoplasmic signals of cyclin D1 and APE1, nucleolus number, and membrane-attached vesicles strongly suggest a reactivity like astrocyte response without significant morphological changes. Discussion: Obtained results uncover astrocyte genome immediate vulnerability and DDR activation, plus a functional response that might in part, be signaled through extracellular vesicles, evidencing the complex influence that astrocytes may have on the CNS even upon short-term aggressions.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | | | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
19
|
Zhang X, Zhao Q, Wang T, Long Q, Sun Y, Jiao L, Gullerova M. DNA damage response, a double-edged sword for vascular aging. Ageing Res Rev 2023; 92:102137. [PMID: 38007046 DOI: 10.1016/j.arr.2023.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Vascular aging is a major risk factor for age-related cardiovascular diseases, which have high rates of morbidity and mortality. It is characterized by changes in the blood vessels, such as macroscopically increased vascular diameter and intima-medial thickness, chronic inflammation, vascular calcification, arterial stiffening, and atherosclerosis. DNA damage and the subsequent various DNA damage response (DDR) pathways are important causative factors of vascular aging. Deficient DDR, which may result in the accumulation of unrepaired damaged DNA or mutations, can lead to vascular aging. On the other hand, over-activation of some DDR proteins, such as poly (ADP ribose) polymerase (PARP) and ataxia telangiectasia mutated (ATM), also can enhance the process of vascular aging, suggesting that DDR can have both positive and negative effects on vascular aging. Despite the evidence reviewed in this paper, the role of DDR in vascular aging and potential therapeutic targets remain poorly understood and require further investigation.
Collapse
Affiliation(s)
- Xiao Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; China International Neuroscience Institute (China-INI), Beijing 100053, China
| | - Qing Zhao
- M.D. Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; China International Neuroscience Institute (China-INI), Beijing 100053, China
| | - Qilin Long
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Yixin Sun
- First Hospital, Peking University, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; China International Neuroscience Institute (China-INI), Beijing 100053, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
20
|
Senavirathne G, London J, Gardner A, Fishel R, Yoder KE. DNA strand breaks and gaps target retroviral intasome binding and integration. Nat Commun 2023; 14:7072. [PMID: 37923737 PMCID: PMC10624929 DOI: 10.1038/s41467-023-42641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Retrovirus integration into a host genome is essential for productive infections. The integration strand transfer reaction is catalyzed by a nucleoprotein complex (Intasome) containing the viral integrase (IN) and the reverse transcribed (RT) copy DNA (cDNA). Previous studies suggested that DNA target-site recognition limits intasome integration. Using single molecule Förster resonance energy transfer (smFRET), we show prototype foamy virus (PFV) intasomes specifically bind to DNA strand breaks and gaps. These break and gap DNA discontinuities mimic oxidative base excision repair (BER) lesion-processing intermediates that have been shown to affect retrovirus integration in vivo. The increased DNA binding events targeted strand transfer to the break/gap site without inducing substantial intasome conformational changes. The major oxidative BER substrate 8-oxo-guanine as well as a G/T mismatch or +T nucleotide insertion that typically introduce a bend or localized flexibility into the DNA, did not increase intasome binding or targeted integration. These results identify DNA breaks or gaps as modulators of dynamic intasome-target DNA interactions that encourage site-directed integration.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - James London
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Anne Gardner
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
| | - Kristine E Yoder
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Gohil D, Sarker AH, Roy R. Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int J Mol Sci 2023; 24:14186. [PMID: 37762489 PMCID: PMC10531636 DOI: 10.3390/ijms241814186] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.
Collapse
Affiliation(s)
- Dhara Gohil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Altaf H. Sarker
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
22
|
Pinto C, Guerra J, Pinheiro M, Escudeiro C, Santos C, Pinto P, Porto M, Bartosch C, Silva J, Peixoto A, Teixeira MR. Combined germline and tumor mutation signature testing identifies new families with NTHL1 tumor syndrome. Front Genet 2023; 14:1254908. [PMID: 37727376 PMCID: PMC10505957 DOI: 10.3389/fgene.2023.1254908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
NTHL1 tumor syndrome is an autosomal recessive rare disease caused by biallelic inactivating variants in the NTHL1 gene and which presents a broad tumor spectrum. To contribute to the characterization of the phenotype of this syndrome, we studied 467 index patients by KASP assay or next-generation sequencing, including 228 patients with colorectal polyposis and 239 patients with familial/personal history of multiple tumors (excluding multiple breast/ovarian/polyposis). Three NTHL1 tumor syndrome families were identified in the group of patients with polyposis and none in patients with familial/personal history of multiple tumors. Altogether, we identified nine affected patients with polyposis (two of them diagnosed after initiating colorectal cancer surveillance) with biallelic pathogenic or likely pathogenic NTHL1 variants, as well as two index patients with one pathogenic or likely pathogenic NTHL1 variant in concomitance with a missense variant of uncertain significance. Here we identified a novel inframe deletion classified as likely pathogenic using the ACMG criteria, supported also by tumor mutational signature analysis. Our findings indicate that the NTHL1 tumor syndrome is a multi-tumor syndrome strongly associated with polyposis and not with multiple tumors without polyposis.
Collapse
Affiliation(s)
- Carla Pinto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Joana Guerra
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Doctoral Programme in Biomedical Sciences, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Escudeiro
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Catarina Santos
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Pedro Pinto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Miguel Porto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - João Silva
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Medical Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Ana Peixoto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Li J, Ding H, Zhao Y, Lin M, Song L, Wang W, Dong H, Ma X, Liu W, Han L, Zheng F. DNA Repair-Responsive Engineered Whole Cell Microbial Sensors for Sensitive and High-Throughput Screening of Genotoxic Impurities. Anal Chem 2023; 95:12893-12902. [PMID: 37589895 DOI: 10.1021/acs.analchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Genotoxic impurities (GTIs) occurred in drugs, and food and environment pose a threat to human health. Accurate and sensitive evaluation of GTIs is of significance. Ames assay is the existing gold standard method. However, the pathogenic bacteria model lacks metabolic enzymes and requires mass GTIs, leading to insufficient safety, accuracy, and sensitivity. Whole-cell microbial sensors (WCMSs) can use normal strains to simulate the metabolic environment, achieving safe, sensitive, and high-throughput detection and evaluation for GTIs. Here, based on whether GTIs causing DNA alkylation required metabolic enzymes or not, two DNA repair-responsive engineered WCMS systems were constructed including Escherichia coli-WCMS and yeast-WCMS. A DNA repair-responsive promoter as a sensing element was coupled with an enhanced green fluorescent protein as a reporter to construct plasmids for introduction into WCMS. The ada promoter was screened out in the E. coli-WCMS, while the MAG1 promoter was selected for the yeast-WCMS. Different E. coli and yeast strains were modified by gene knockout and mutation to eliminate the interference and enhance the GTI retention in cells and further improved the sensitivity. Finally, GTI consumption of WCMS for the evaluation of methyl methanesulfonate (MMS) and nitrosamines was decreased to 0.46-8.53 μg and 0.068 ng-2.65 μg, respectively, decreasing 2-3 orders of magnitude compared to traditional methods. This study provided a novel approach to measure GTIs with different DNA damage pathways at a molecular level and facilitated the high-throughput screening and sensitive evaluation of GTIs.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Haotian Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yuning Zhao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Mingbin Lin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Linqi Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- Chongqing Fuling Institute for Food and Drug Control, Chongqing 408102, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Ma
- Gansu Institute for Drug Control, Lanzhou 730000, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
- Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou 310018, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
24
|
Tong H, Wang X, Liu Y, Liu N, Li Y, Luo J, Ma Q, Wu D, Li J, Xu C, Yang H. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol 2023; 41:1080-1084. [PMID: 36624150 DOI: 10.1038/s41587-022-01595-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/01/2022] [Indexed: 01/11/2023]
Abstract
Here we developed an adenine transversion base editor, AYBE, for A-to-C and A-to-T transversion editing in mammalian cells by fusing an adenine base editor (ABE) with hypoxanthine excision protein N-methylpurine DNA glycosylase (MPG). We also engineered AYBE variants enabling targeted editing at genomic loci with higher transversion editing activity (up to 72% for A-to-C or A-to-T editing).
Collapse
Affiliation(s)
- Huawei Tong
- HuiGene Therapeutics Co., Ltd., Shanghai, China.
| | - Xuchen Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nana Liu
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Yun Li
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Jiamin Luo
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Qian Ma
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Danni Wu
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Jiyong Li
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | | | - Hui Yang
- HuiGene Therapeutics Co., Ltd., Shanghai, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
- HuiEdit Therapeutics Co., Ltd., Shanghai, China.
| |
Collapse
|
25
|
Tong H, Liu N, Wei Y, Zhou Y, Li Y, Wu D, Jin M, Cui S, Li H, Li G, Zhou J, Yuan Y, Zhang H, Shi L, Yao X, Yang H. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl Sci Rev 2023; 10:nwad143. [PMID: 37404457 PMCID: PMC10317176 DOI: 10.1093/nsr/nwad143] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 07/06/2023] Open
Abstract
Current DNA base editors contain nuclease and DNA deaminase that enables deamination of cytosine (C) or adenine (A), but no method for guanine (G) or thymine (T) editing is available at present. Here we developed a deaminase-free glycosylase-based guanine base editor (gGBE) with G editing ability, by fusing Cas9 nickase with engineered N-methylpurine DNA glycosylase protein (MPG). By several rounds of MPG mutagenesis via unbiased and rational screening using an intron-split EGFP reporter, we demonstrated that gGBE with engineered MPG could increase G editing efficiency by more than 1500 fold. Furthermore, this gGBE exhibited high base editing efficiency (up to 81.2%) and high G-to-T or G-to-C (i.e. G-to-Y) conversion ratio (up to 0.95) in both cultured human cells and mouse embryos. Thus, we have provided a proof-of-concept of a new base editing approach by endowing the engineered DNA glycosylase the capability to selectively excise a new type of substrate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Shuna Cui
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Hengbin Li
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Guoling Li
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Jingxing Zhou
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Hainan Zhang
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Linyu Shi
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Xuan Yao
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | | |
Collapse
|
26
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
27
|
Nischwitz E, Schoonenberg VA, Fradera-Sola A, Dejung M, Vydzhak O, Levin M, Luke B, Butter F, Scheibe M. DNA damage repair proteins across the Tree of Life. iScience 2023; 26:106778. [PMID: 37250769 PMCID: PMC10220248 DOI: 10.1016/j.isci.2023.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Genome maintenance is orchestrated by a highly regulated DNA damage response with specific DNA repair pathways. Here, we investigate the phylogenetic diversity in the recognition and repair of three well-established DNA lesions, primarily repaired by base excision repair (BER) and ribonucleotide excision repair (RER): (1) 8-oxoguanine, (2) abasic site, and (3) incorporated ribonucleotide in DNA in 11 species: Escherichia coli, Bacillus subtilis, Halobacterium salinarum, Trypanosoma brucei, Tetrahymena thermophila, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Zea mays. Using quantitative mass spectrometry, we identified 337 binding proteins across these species. Of these proteins, 99 were previously characterized to be involved in DNA repair. Through orthology, network, and domain analysis, we linked 44 previously unconnected proteins to DNA repair. Our study presents a resource for future study of the crosstalk and evolutionary conservation of DNA damage repair across all domains of life.
Collapse
Affiliation(s)
| | | | | | - Mario Dejung
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Olga Vydzhak
- Institute of Developmental Biology and Neurobiology (IDN), Johannes-Gutenberg-University, 55128 Mainz, Germany
| | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes-Gutenberg-University, 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Marion Scheibe
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
28
|
Wuri L, Burghardt RC, Arosh JA, Long CR, Banu SK. Hexavalent Chromium Disrupts Oocyte Development in Rats by Elevating Oxidative Stress, DNA Double-Strand Breaks, Microtubule Disruption, and Aberrant Segregation of Chromosomes. Int J Mol Sci 2023; 24:10003. [PMID: 37373153 DOI: 10.3390/ijms241210003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Environmental and occupational exposure to hexavalent chromium, Cr(VI), causes female reproductive failures and infertility. Cr(VI) is used in more than 50 industries and is a group A carcinogen, mutagenic and teratogenic, and a male and female reproductive toxicant. Our previous findings indicate that Cr(VI) causes follicular atresia, trophoblast cell apoptosis, and mitochondrial dysfunction in metaphase II (MII) oocytes. However, the integrated molecular mechanism of Cr(VI)-induced oocyte defects is not understood. The current study investigates the mechanism of Cr(VI) in causing meiotic disruption of MII oocytes, leading to oocyte incompetence in superovulated rats. Postnatal day (PND) 22 rats were treated with potassium dichromate (1 and 5 ppm) in drinking water from PND 22-29 and superovulated. MII oocytes were analyzed by immunofluorescence, and images were captured by confocal microscopy and quantified by Image-Pro Plus software, Version 10.0.5. Our data showed that Cr(VI) increased microtubule misalignment (~9 fold), led to missegregation of chromosomes and bulged and folded actin caps, increased oxidative DNA (~3 fold) and protein (~9-12 fold) damage, and increased DNA double-strand breaks (~5-10 fold) and DNA repair protein RAD51 (~3-6 fold). Cr(VI) also induced incomplete cytokinesis and delayed polar body extrusion. Our study indicates that exposure to environmentally relevant doses of Cr(VI) caused severe DNA damage, distorted oocyte cytoskeletal proteins, and caused oxidative DNA and protein damage, resulting in developmental arrest in MII oocytes.
Collapse
Affiliation(s)
- Liga Wuri
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Norris JL, Rogers LO, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Kuppa S, Antony E, Hedglin M. Interplay of macromolecular interactions during assembly of human DNA polymerase δ holoenzymes and initiation of DNA synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539896. [PMID: 37215012 PMCID: PMC10197535 DOI: 10.1101/2023.05.09.539896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In humans, DNA polymerase δ (Pol δ) holoenzymes, comprised of Pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand DNA replication, initiation of leading strand DNA replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a coordinated process involving the major single strand DNA-binding protein complex, replication protein A (RPA), the processivity sliding clamp loader, replication factor C (RFC), PCNA, and Pol δ. Each of these factors interact uniquely with a P/T junction and most directly engage one another. Currently, the interplay between these macromolecular interactions is largely unknown. In the present study, novel Förster Resonance Energy Transfer (FRET) assays reveal that dynamic interactions of RPA with a P/T junction during assembly of a Pol δ holoenzyme and initiation of DNA synthesis maintain RPA at a P/T junction and accommodate RFC, PCNA, and Pol δ, maximizing the efficiency of each process. Collectively, these studies significantly advance our understanding of human DNA replication and DNA repair.
Collapse
Affiliation(s)
- Jessica L. Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Lindsey O. Rogers
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Samuel Perreault
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Vikas Kaushik
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Sahiti Kuppa
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Edwin Antony
- The Saint Louis University School of Medicine, Department of Biochemistry and Molecular Biology, St. Louis MO, 63104
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
30
|
Kladova OA, Tyugashev TE, Mikushina ES, Kuznetsov NA, Novopashina DS, Kuznetsova AA. The Activity of Natural Polymorphic Variants of Human DNA Polymerase β Having an Amino Acid Substitution in the Transferase Domain. Cells 2023; 12:cells12091300. [PMID: 37174699 PMCID: PMC10177036 DOI: 10.3390/cells12091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
To maintain the integrity of the genome, there is a set of enzymatic systems, one of which is base excision repair (BER), which includes sequential action of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases. Normally, BER works efficiently, but the enzymes themselves (whose primary function is the recognition and removal of damaged bases) are subject to amino acid substitutions owing to natural single-nucleotide polymorphisms (SNPs). One of the enzymes in BER is DNA polymerase β (Polβ), whose function is to fill gaps in DNA with complementary dNMPs. It is known that many SNPs can cause an amino acid substitution in this enzyme and a significant decrease in the enzymatic activity. In this study, the activity of four natural variants of Polβ, containing substitution E154A, G189D, M236T, or R254I in the transferase domain, was analyzed using molecular dynamics simulations and pre-steady-state kinetic analyses. It was shown that all tested substitutions lead to a significant reduction in the ability to form a complex with DNA and with incoming dNTP. The G189D substitution also diminished Polβ catalytic activity. Thus, a decrease in the activity of studied mutant forms may be associated with an increased risk of damage to the genome.
Collapse
Affiliation(s)
- Olga A Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena S Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Daria S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Tang H, Kulkarni S, Peters C, Eddison J, Al-Ani M, Madhusudan S. The Current Status of DNA-Repair-Directed Precision Oncology Strategies in Epithelial Ovarian Cancers. Int J Mol Sci 2023; 24:7293. [PMID: 37108451 PMCID: PMC10138422 DOI: 10.3390/ijms24087293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Survival outcomes for patients with advanced ovarian cancer remain poor despite advances in chemotherapy and surgery. Platinum-based systemic chemotherapy can result in a response rate of up to 80%, but most patients will have recurrence and die from the disease. Recently, the DNA-repair-directed precision oncology strategy has generated hope for patients. The clinical use of poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA germ-line-deficient and/or platinum-sensitive epithelial ovarian cancers has improved survival. However, the emergence of resistance is an ongoing clinical challenge. Here, we review the current clinical state of PARP inhibitors and other clinically viable targeted approaches in epithelial ovarian cancers.
Collapse
Affiliation(s)
- Hiu Tang
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham Hospitals, Lyndon, West Bromwich B71 4HJ, UK
| | - Christina Peters
- Department of Oncology, Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton BN2 5BD, UK
| | - Jasper Eddison
- College of Medical & Dental Sciences, University of Birmingham Medical School, Birmingham B15 2TT, UK
| | - Maryam Al-Ani
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| |
Collapse
|
32
|
Krishnamoorthy K, Sherman LS, Romagano MP, El Far M, Etchegaray JP, Williams SF, Rameshwar P. Low dose acetyl salicylic acid (LDA) mediates epigenetic changes in preeclampsia placental mesenchymal stem cells similar to cells from healthy pregnancy. Placenta 2023; 137:49-58. [PMID: 37071955 DOI: 10.1016/j.placenta.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Preeclampsia (PE) affects 2-8% of all pregnancies, and is the leading cause of maternal and fetal morbidity and mortality. We reported on pathophysiological changes in placenta mesenchymal stem cells (P-MSCs) in PE. P-MSCs can be isolated from different layers of the placenta at the interface between the fetus and mother. The ability of MSCs from other sources to be immune licensed as immune suppressor cells indicated that P-MSCs could mitigate fetal rejection. Acetylsalicylic acid (aspirin) is indicated for treating PE. Indeed, low-dose aspirin is recommended to prevent PE in high risk patients. METHODS We conducted robust computational analyses to study changes in gene expression in P-MSCs from PE and healthy term pregnancies as compared with PE-MSCs treated with low dose acetyl salicylic acid (LDA). Confocal microscopy studied phospho-H2AX levels in P-MSCs. RESULTS We identified changes in >400 genes with LDA, similar to levels of healthy pregnancy. The top canonical pathways that incorporate these genes were linked to DNA repair damage - Basic excision repair (BER), Nucleotide excision repair (NER) and DNA replication. A role for the sumoylation (SUMO) pathway, which could regulate gene expression and protein stabilization was significant although reduced as compared to BER and NER pathways. Labeling for phopho-H2AX indicated no evidence of double strand break in PE P-MSCs. DISCUSSION The overlapping of key genes within each pathway suggested a major role for LDA in the epigenetic landscape of PE P-MSCs. Overall, this study showed a new insight into how LDA reset the P-MSCs in PE subjects around the DNA.
Collapse
Affiliation(s)
- Kaila Krishnamoorthy
- Dept of Obstetrics, Gynecology and Reproductive Health, D - Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Lauren S Sherman
- Dept of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA; Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Matthew P Romagano
- Dept of Obstetrics, Gynecology and Reproductive Health, D - Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Markos El Far
- Dept of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Shauna F Williams
- Dept of Obstetrics, Gynecology and Reproductive Health, D - Maternal Fetal Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Pranela Rameshwar
- Dept of Medicine - Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
33
|
A Metabolomic and Transcriptomic Study Revealed the Mechanisms of Lumefantrine Inhibition of Toxoplasma gondii. Int J Mol Sci 2023; 24:ijms24054902. [PMID: 36902335 PMCID: PMC10003460 DOI: 10.3390/ijms24054902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Toxoplasma gondii is an obligate protozoon that can infect all warm-blooded animals including humans. T. gondii afflicts one-third of the human population and is a detriment to the health of livestock and wildlife. Thus far, traditional drugs such as pyrimethamine and sulfadiazine used to treat T. gondii infection are inadequate as therapeutics due to relapse, long treatment period, and low efficacy in parasite clearance. Novel, efficacious drugs have not been available. Lumefantrine, as an antimalarial, is effective in killing T. gondii but has no known mechanism of action. We combined metabolomics with transcriptomics to investigate how lumefantrine inhibits T. gondii growth. We identified significant alternations in transcripts and metabolites and their associated functional pathways that are attributed to lumefantrine treatment. RH tachyzoites were used to infect Vero cells for three hours and subsequently treated with 900 ng/mL lumefantrine. Twenty-four hours post-drug treatment, we observed significant changes in transcripts associated with five DNA replication and repair pathways. Metabolomic data acquired through liquid chromatography-tandem mass spectrometry (LC-MS) showed that lumefantrine mainly affected sugar and amino acid metabolism, especially galactose and arginine. To investigate whether lumefantrine damages T. gondii DNA, we conducted a terminal transferase assay (TUNEL). TUNEL results showed that lumefantrine significantly induced apoptosis in a dose-dependent manner. Taken together, lumefantrine effectively inhibited T. gondii growth by damaging DNA, interfering with DNA replication and repair, and altering energy and amino acid metabolisms.
Collapse
|
34
|
Tarpley M, Chen Y, Bhakat KK. Genome-Wide Binding Analysis of DNA Repair Protein APE1 in Tumor Cells by ChIP-Seq. Methods Mol Biol 2023; 2701:243-252. [PMID: 37574487 DOI: 10.1007/978-1-0716-3373-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The base excision repair (BER) is the primary damage repair pathway for repairing most of the endogenous DNA damage including oxidative base lesions, apurinic/apyrimidinic (AP) sites, and single-strand breaks (SSBs) in the genome. Repair of these damages in cells relies on sequential recruitment and coordinated actions of multiple DNA repair enzymes, which include DNA glycosylases (such as OGG1), AP-endonucleases (APE1), DNA polymerases, and DNA ligases. APE1 plays a key role in the BER pathway by repairing the AP sites and SSBs in the genome. Several methods have been developed to generate a map of endogenous AP sites or SSBs in the genome and the binding of DNA repair proteins. In this chapter, we describe detailed approaches to map genome-wide occupancy or enrichment of APE1 in human cells using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq). Further, we discuss standard bioinformatics approaches for analyzing ChIP-seq data to identify APE1 enrichment or binding peaks in the genome.
Collapse
Affiliation(s)
- Mason Tarpley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
| |
Collapse
|
35
|
Roy R. Simultaneous Short- and Long-Patch Base Excision Repair (BER) Assay in Live Mammalian Cells. Methods Mol Biol 2023; 2701:3-19. [PMID: 37574472 DOI: 10.1007/978-1-0716-3373-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The base excision repair (BER) pathway repairs small, non-bulky DNA lesions, including oxidized, alkylated, and deaminated bases, and is responsible for the removal of at least 20,000 DNA lesions per cell per day. BER is initiated by DNA damage-specific DNA glycosylases that excise the damaged base and generates an abasic (AP) site or single-strand breaks, which are subsequently repaired in mammalian cells either by single-nucleotide (SN) or multiple-nucleotide incorporation via the SN-BER or long-patch BER (LP-BER) pathway, respectively. This chapter describes a plaque-based host cell reactivation (PL-HCR) assay system for measuring BER mechanisms in live mammalian cells using a plasmid-based assay. After transfection of a phagemid (M13mp18) containing a single modified base (representative BER DNA substrates) within a restriction site into human cells, restriction digestions detect the presence or absence (complete repair) of the adduct by the transformation of the digestion products into E. coli and counting the transformants as plaques. To monitor the patch size, different plasmids are constructed containing C:A mismatches within different restriction sites (inhibiting digestion) at various distances on both sides (5' or 3') of the modified base-containing restriction sites. Using this assay, the percentage of repair events that occur via 5' and 3' patch formation can be quantified.
Collapse
Affiliation(s)
- Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
36
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
37
|
Evolving DNA repair synthetic lethality targets in cancer. Biosci Rep 2022; 42:232162. [PMID: 36420962 PMCID: PMC9760629 DOI: 10.1042/bsr20221713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022] Open
Abstract
DNA damage signaling response and repair (DDR) is a critical defense mechanism against genomic instability. Impaired DNA repair capacity is an important risk factor for cancer development. On the other hand, up-regulation of DDR mechanisms is a feature of cancer chemotherapy and radiotherapy resistance. Advances in our understanding of DDR and its complex role in cancer has led to several translational DNA repair-targeted investigations culminating in clinically viable precision oncology strategy using poly(ADP-ribose) polymerase (PARP) inhibitors in breast, ovarian, pancreatic, and prostate cancers. While PARP directed synthetic lethality has improved outcomes for many patients, the lack of sustained clinical response and the development of resistance pose significant clinical challenges. Therefore, the search for additional DDR-directed drug targets and novel synthetic lethality approaches is highly desirable and is an area of intense preclinical and clinical investigation. Here, we provide an overview of the mammalian DNA repair pathways and then focus on current state of PARP inhibitors (PARPi) and other emerging DNA repair inhibitors for synthetic lethality in cancer.
Collapse
|
38
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
39
|
Novel Curcumin Monocarbonyl Analogue-Dithiocarbamate hybrid molecules target human DNA ligase I and show improved activity against colon cancer. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
41
|
Ulhusna A, Murata A, Nakatani K. Inhibitory Effects of Mismatch Binding Molecules on the Repair Reaction of Uracil-Containing DNA. Biochemistry 2022; 61:2522-2530. [PMID: 36250600 DOI: 10.1021/acs.biochem.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stable R-loop formed during transcription induces enzyme-mediated deamination of cytosine, and the uracil in the DNA produced activates the base excision repair (BER) pathway. DNA cleavage involved in the BER pathway is thought to be one of the possible causes of trinucleotide repeat instability. Here, we performed an in vitro assay to investigate the effect of a DNA-binding small molecule, naphthyridine carbamate dimer (NCD), on BER enzyme reactions. The gel electrophoretic mobility shift assay (EMSA) and thermal melting analysis revealed the binding of NCD to a 5'-XGG-3'/5'-XGG-3' triad (X = C or U or apurinic/apyrimidinic site), which is a mimic of a BER enzyme substrate. Polyacrylamide gel electrophoresis (PAGE) of the reaction products of these substrates with hSMUG1 and APE1 enzymes in the presence of NCD showed that NCD interfered with the repair reaction in the 5'-XGG-3'/5'-XGG-3' triad. These findings would broaden the potential of small molecules in modulating trinucleotide repeat instability.
Collapse
Affiliation(s)
- Anisa Ulhusna
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
42
|
Diao W, Yan S, Farrell JD, Wang B, Ye F, Wang Z. Preorganized Internal Electric Field Powers Catalysis in the Active Site of Uracil-DNA Glycosylase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - James D. Farrell
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
43
|
Mitochondrial DNA Repair in Neurodegenerative Diseases and Ageing. Int J Mol Sci 2022; 23:ijms231911391. [PMID: 36232693 PMCID: PMC9569545 DOI: 10.3390/ijms231911391] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the only organelles, along with the nucleus, that have their own DNA. Mitochondrial DNA (mtDNA) is a double-stranded circular molecule of ~16.5 kbp that can exist in multiple copies within the organelle. Both strands are translated and encode for 22 tRNAs, 2 rRNAs, and 13 proteins. mtDNA molecules are anchored to the inner mitochondrial membrane and, in association with proteins, form a structure called nucleoid, which exerts a structural and protective function. Indeed, mitochondria have evolved mechanisms necessary to protect their DNA from chemical and physical lesions such as DNA repair pathways similar to those present in the nucleus. However, there are mitochondria-specific mechanisms such as rapid mtDNA turnover, fission, fusion, and mitophagy. Nevertheless, mtDNA mutations may be abundant in somatic tissue due mainly to the proximity of the mtDNA to the oxidative phosphorylation (OXPHOS) system and, consequently, to the reactive oxygen species (ROS) formed during ATP production. In this review, we summarise the most common types of mtDNA lesions and mitochondria repair mechanisms. The second part of the review focuses on the physiological role of mtDNA damage in ageing and the effect of mtDNA mutations in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Considering the central role of mitochondria in maintaining cellular homeostasis, the analysis of mitochondrial function is a central point for developing personalised medicine.
Collapse
|
44
|
Wang J, Xia B. Effects of chromium (VI) on the toxicity of benzo[z]pyrene in 16HBE cells. Toxicol Ind Health 2022; 38:733-744. [DOI: 10.1177/07482337221127095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Contamination of human habitats with complex mixtures of heavy metals and polycyclic aromatic hydrocarbons (PAHs) is an important environmental and industrial health problem. Hexavalent chromium (Cr(VI)) and benzo(a)pyrene (B[a] P) are typical of the two, respectively. In recent decades, a great deal of research has focused on their carcinogenicity and mechanisms of action. However, few studies have been conducted to evaluate their combined effects on humans and cells, which has important implications for overall understanding of their toxicity and interaction. In the current study, the combined toxic effects of B[a] P and Cr(VI) were studied in human bronchial epithelial cells (16 HBE). We measured the genotoxic activity and epigenetic changes of these two toxicants alone and in combination on these cells and analyzed the difference between their single and combined toxicity. The results showed that B[a]P caused DNA damage in 16HBE cells in a concentration-dependent manner, while the presence of Cr(VI) showed a sharp decrease in DNA damage, and it inhibited the expression of genes related to base excision repair induced by B[a]P. In addition, Cr(VI) also reduced B[a]P-triggered epigenetic changes in 16HBE cells. In conclusion, the combined effect of B[a]P and Cr(VI) on 16HBE cells was less toxic than single B[a]P exposure, indicating that the combined toxicity of the two toxicants is partially antagonistic. Further research is required to explore the mechanism of this antagonism.
Collapse
Affiliation(s)
- Jialin Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
45
|
Feng M, Luo J, Wan Y, Zhang J, Lu C, Wang M, Dai L, Cao X, Yang X, Wang Y. Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish ( Danio rerio). ACS OMEGA 2022; 7:32153-32163. [PMID: 36119974 PMCID: PMC9476205 DOI: 10.1021/acsomega.2c03378] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The widespread accumulation of nanoplastics is a growing concern for the environmental and human health. However, studies on the mechanisms of nanoplastic-induced developmental toxicity are still limited. Here, we systematically investigated the potential biological roles of nanoplastic exposure in zebrafish during the early developmental stage. The zebrafish embryos were subjected to exposure to 100 nm polystyrene nanoplastics with different concentrations (0, 100, 200, and 400 mg/L). The results indicated that nanoplastic exposure could decrease the hatching and survival rates of zebrafish embryos. In addition, the developmental toxicity test indicated that nanoplastic exposure exhibits developmental toxicity via the inhibition of the heart rate and body length in zebrafish embryos. Besides, behavioral activity was also significantly suppressed after 96 h of nanoplastic exposure in zebrafish larvae. Further biochemical assays revealed that nanoplastic-induced activation of the oxidative stress responses, including reactive oxygen species accumulation and enhanced superoxide dismutase and catalase activities, might affect developmental toxicity in zebrafish embryos. Furthermore, a quantitative polymerase chain reaction assay demonstrated that the mRNA levels of the base excision repair (BER) pathway-related genes, including lig1, lig3, polb, parp1, pold, fen1, nthl1, apex, xrcc1, and ogg1, were altered in zebrafish embryos for 24 h after nanoplastic exposure, indicating that the activation of the BER pathway would be stimulated after nanoplastic exposure in zebrafish embryos. Therefore, our findings illustrated that nanoplastics could induce developmental toxicity through activation of the oxidative stress response and BER pathways in zebrafish.
Collapse
Affiliation(s)
- Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Juanjuan Luo
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yiping Wan
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Chunjiao Lu
- Guangdong
Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Maya Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Lu Dai
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041,China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| |
Collapse
|
46
|
Small molecule-mediated allosteric activation of the base excision repair enzyme 8-oxoguanine DNA glycosylase and its impact on mitochondrial function. Sci Rep 2022; 12:14685. [PMID: 36038587 PMCID: PMC9424235 DOI: 10.1038/s41598-022-18878-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023] Open
Abstract
8-Oxoguanine DNA glycosylase (OGG1) initiates base excision repair of the oxidative DNA damage product 8-oxoguanine. OGG1 is bifunctional; catalyzing glycosyl bond cleavage, followed by phosphodiester backbone incision via a β-elimination apurinic lyase reaction. The product from the glycosylase reaction, 8-oxoguanine, and its analogues, 8-bromoguanine and 8-aminoguanine, trigger the rate-limiting AP lyase reaction. The precise activation mechanism remains unclear. The product-assisted catalysis hypothesis suggests that 8-oxoguanine and analogues bind at the product recognition (PR) pocket to enhance strand cleavage as catalytic bases. Alternatively, they may allosterically activate OGG1 by binding outside of the PR pocket to induce an active-site conformational change to accelerate apurinic lyase. Herein, steady-state kinetic analyses demonstrated random binding of substrate and activator. 9-Deazaguanine, which can't function as a substrate-competent base, activated OGG1, albeit with a lower Emax value than 8-bromoguanine and 8-aminoguanine. Random compound screening identified small molecules with Emax values similar to 8-bromoguanine. Paraquat-induced mitochondrial dysfunction was attenuated by several small molecule OGG1 activators; benefits included enhanced mitochondrial membrane and DNA integrity, less cytochrome c translocation, ATP preservation, and mitochondrial membrane dynamics. Our results support an allosteric mechanism of OGG1 and not product-assisted catalysis. OGG1 small molecule activators may improve mitochondrial function in oxidative stress-related diseases.
Collapse
|
47
|
Small-Molecule Inhibitors Targeting FEN1 for Cancer Therapy. Biomolecules 2022; 12:biom12071007. [PMID: 35883563 PMCID: PMC9312813 DOI: 10.3390/biom12071007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
DNA damage repair plays a key role in maintaining genomic stability and integrity. Flap endonuclease 1 (FEN1) is a core protein in the base excision repair (BER) pathway and participates in Okazaki fragment maturation during DNA replication. Several studies have implicated FEN1 in the regulation of other DNA repair pathways, including homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Abnormal expression or mutation of FEN1 in cells can cause a series of pathological responses, leading to various diseases, including cancers. Moreover, overexpression of FEN1 contributes to drug resistance in several types of cancers. All this supports the hypothesis that FEN1 could be a therapeutic target for cancer treatment. Targeting FEN1 has been verified as an effective strategy in mono or combined treatment of cancer. Small-molecule compounds targeting FEN1 have also been developed and detected in cancer regression. In this review, we summarize the recent development of small-molecule inhibitors targeting FEN1 in recent years, thereby expanding their therapeutic potential and application.
Collapse
|
48
|
Ahmad HI, Iqbal A, Ijaz N, Ullah MI, Asif AR, Rahman A, Mehmood T, Haider G, Ahmed S, Mahmoud SF, Alghamdi FO, Al Amari HA, Simirgiotis MJ, Chen J. Molecular Evolution of the Activating Transcription Factors Shapes the Adaptive Cellular Responses to Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2153996. [PMID: 35873797 PMCID: PMC9300285 DOI: 10.1155/2022/2153996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) play an essential part in physiology of individual cell. ROS can cause damage to various biomolecules, including DNA. The systems that have developed to harness the impacts of ROS are antique evolutionary adaptations that are intricately linked to almost every aspect of cellular function. This research reveals the idea that during evolution, rather than being largely conserved, the molecular pathways reacting to oxidative stress have intrinsic flexibility. The coding sequences of the ATF2, ATF3, ATF4, and ATF6 genes were aligned to examine selection pressure on the genes, which were shown to be very highly conserved among vertebrate species. A total of 33 branches were explicitly evaluated for their capacity to diversify selection. After accounting for multiple testing, significance was determined using the likelihood ratio test with a threshold of p ≤ 0.05. Positive selection signs in these genes were detected across vertebrate lineages. In the selected test branches of our phylogeny, the synonymous rate variation revealed evidence (LRT, p value = 0.011 ≤ 0.05) of gene-wide episodic diversifying selection. As a result, there is evidence that diversifying selection occurred at least once on at least one test branch. These findings indicate that the activities of ROS-responsive systems are also theoretically flexible and may be altered by environmental selection pressure. By determining where the genes encoding these processes are "targeted" during evolution, we may better understand the mechanism of adaptation to oxidative stress during evolution.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asia Iqbal
- Department of Wild Life and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Science, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Irfan Ullah
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Akhtar Rasool Asif
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang, Pakistan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China
| | - Abdur Rahman
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang, Pakistan
- Department of Animal Nutrition, Afyon Kocatepe University, Turkey
| | - Tahir Mehmood
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Punjab, Pakistan
| | - Ghulam Haider
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fatimah Othman Alghamdi
- National Center for Biotechnology King Abdulaziz City for Science and Technology Riyadh, Saudi Arabia
| | - Hala Abdulrahman Al Amari
- National Center for Biotechnology King Abdulaziz City for Science and Technology Riyadh, Saudi Arabia
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong, Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Zhao Y, Qing B, Xu C, Zhao J, Liao Y, Cui P, Wang G, Cai S, Song Y, Cao L, Duan J. DNA Damage Response Gene-Based Subtypes Associated With Clinical Outcomes in Early-Stage Lung Adenocarcinoma. Front Mol Biosci 2022; 9:901829. [PMID: 35813819 PMCID: PMC9257065 DOI: 10.3389/fmolb.2022.901829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
DNA damage response (DDR) pathways play a crucial role in lung cancer. In this retrospective analysis, we aimed to develop a prognostic model and molecular subtype based on the expression profiles of DDR-related genes in early-stage lung adenocarcinoma (LUAD). A total of 1,785 lung adenocarcinoma samples from one RNA-seq dataset of The Cancer Genome Atlas (TCGA) and six microarray datasets of Gene Expression Omnibus (GEO) were included in the analysis. In the TCGA dataset, a DNA damage response gene (DRG)–based signature consisting of 16 genes was constructed to predict the clinical outcomes of LUAD patients. Patients in the low-DRG score group had better outcomes and lower genomic instability. Then, the same 16 genes were used to develop DRG-based molecular subtypes in the TCGA dataset to stratify early-stage LUAD into two subtypes (DRG1 and DRG2) which had significant differences in clinical outcomes. The Kappa test showed good consistency between molecular subtype and DRG (K = 0.61, p < 0.001). The DRG subtypes were significantly associated with prognosis in the six GEO datasets (pooled estimates of hazard ratio, OS: 0.48 (0.41–0.57), p < 0.01; DFS: 0.50 (0.41–0.62), p < 0.01). Furthermore, patients in the DRG2 group benefited more from adjuvant therapy than standard-of-care, which was not observed in the DRG1 group. In summary, we constructed a DRG-based molecular subtype that had the potential to predict the prognosis of early-stage LUAD and guide the selection of adjuvant therapy for early-stage LUAD patients.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Liming Cao, ; Jianchun Duan,
| | - Jing Zhao
- Burning Rock Biotech, Guangzhou, China
| | | | - Peng Cui
- Burning Rock Biotech, Guangzhou, China
| | | | | | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Liming Cao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liming Cao, ; Jianchun Duan,
| | - Jianchun Duan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
- *Correspondence: Liming Cao, ; Jianchun Duan,
| |
Collapse
|
50
|
Tan T, Li Y, Tang B, Chen Y, Chen X, Xie Q, Hu Z, Chen G. Knockout of SlALKBH2 weakens the DNA damage repair ability of tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111266. [PMID: 35487670 DOI: 10.1016/j.plantsci.2022.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
During the growth and evolution of plants, genomic DNA is subject to constant assault from endogenous and environmental DNA damage compounds, which will result in mutagenic or genotoxic covalent adducts. Whether for prokaryotes, eukaryotes or even viruses, maintaining genome integrity is critical for the continuation of life. Escherichia coli and mammals have evolved the AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases that repair DNA alkylation damage. We identified a functional homologue with EsAlkB and HsALKBH2 in tomatoes, and named it SlALKBH2. In our study, the SlALKBH2 knockout mutant showed hypersensitivity to the DNA mutagen MMS and displayed more severe growth abnormalities than wild-type plants under mutagen treatment, such as slow growth, leaf deformation and early senescence. Additionally, genes with high transcriptional activity, such as rDNA, have increased methylation under MMS treatment. In conclusion, this study shows that the tomato SlALKBH2 gene may play an important role in ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Tingting Tan
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yangyang Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yating Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xinru Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|