1
|
Hu Z, Luo Y, Zhu J, Jiang D, Luo Z, Wu L, Li J, Peng S, Hu J. Role of the P2 × 7 receptor in neurodegenerative diseases and its pharmacological properties. Cell Biosci 2023; 13:225. [PMID: 38093352 PMCID: PMC10720200 DOI: 10.1186/s13578-023-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Neurodegenerative diseases seriously affect patients' physical and mental health, reduce their quality of life, and impose a heavy burden on society. However, their treatment remains challenging. Therefore, exploring factors potentially related to the pathogenesis of neurodegenerative diseases and improving their diagnosis and treatment are urgently needed. Recent studies have shown that P2 × 7R plays a crucial role in regulating neurodegenerative diseases caused by neuroinflammation. P2 × 7R is an adenosine 5'-triphosphate ligand-gated cation channel receptor present in most tissues of the human body. An increase in P2 × 7R levels can affect the progression of neurodegenerative diseases, and the inhibition of P2 × 7R can alleviate neurodegenerative diseases. In this review, we comprehensively describe the biological characteristics (structure, distribution, and function) of this gene, focusing on its potential association with neurodegenerative diseases, and we discuss the pharmacological effects of drugs (P2 × 7R inhibitors) used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziyan Hu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yifan Luo
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jinxi Zhu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lidong Wu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jin Li
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Wu YL, Chen SC, Chang JC, Lin WY, Chen CC, Li CC, Hsieh M, Chen HW, Chang TY, Liu CS, Liu KL. The protective effect of erinacine A-enriched Hericium erinaceus mycelium ethanol extract on oxidative Stress-Induced neurotoxicity in cell and Drosophila models of spinocerebellar ataxia type 3. Free Radic Biol Med 2023; 195:1-12. [PMID: 36549427 DOI: 10.1016/j.freeradbiomed.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yu-Ling Wu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Shiuan-Chih Chen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jui-Chih Chang
- Center of Regenerative Medicine and Tissue Repair, Changhua Christian Hospital, Changhua, 50091, Taiwan; General Research Laboratory of Research Department, Changhua Christian Hospital, Changhua, 50094, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chin-Chu Chen
- Grape King Bio Ltd, Zhong-Li Dist., Taoyuan City, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung, 40203, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 40203, Taiwan
| | - Mingli Hsieh
- Department of Life Science and Life Science Research Center, Tunghai University, Taichung, 40704, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | - Tzu-Yi Chang
- Department of Dietetics and Nutrition, Taipei Veterans General Hospital, Taiwan
| | - Chin-San Liu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan; Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua, 50094, Taiwan; Department of Neurology, Changhua Christian Hospital, Changhua, 50094, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung, 40203, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 40203, Taiwan.
| |
Collapse
|
3
|
Incebacak Eltemur RD, Nguyen HP, Weber JJ. Calpain-mediated proteolysis as driver and modulator of polyglutamine toxicity. Front Mol Neurosci 2022; 15:1020104. [PMID: 36385755 PMCID: PMC9648470 DOI: 10.3389/fnmol.2022.1020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 09/22/2023] Open
Abstract
Among posttranslational modifications, directed proteolytic processes have the strongest impact on protein integrity. They are executed by a variety of cellular machineries and lead to a wide range of molecular consequences. Compared to other forms of proteolytic enzymes, the class of calcium-activated calpains is considered as modulator proteases due to their limited proteolytic activity, which changes the structure and function of their target substrates. In the context of neurodegeneration and - in particular - polyglutamine disorders, proteolytic events have been linked to modulatory effects on the molecular pathogenesis by generating harmful breakdown products of disease proteins. These findings led to the formulation of the toxic fragment hypothesis, and calpains appeared to be one of the key players and auspicious therapeutic targets in Huntington disease and Machado Joseph disease. This review provides a current survey of the role of calpains in proteolytic processes found in polyglutamine disorders. Together with insights into general concepts behind toxic fragments and findings in polyglutamine disorders, this work aims to inspire researchers to broaden and deepen the knowledge in this field, which will help to evaluate calpain-mediated proteolysis as a unifying and therapeutically targetable posttranslational mechanism in neurodegeneration.
Collapse
Affiliation(s)
- Rana Dilara Incebacak Eltemur
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
5
|
Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington's Disease. Int J Mol Sci 2022; 23:780. [PMID: 35054963 PMCID: PMC8775980 DOI: 10.3390/ijms23020780] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulation of misfolded proteins is a common phenomenon of several neurodegenerative diseases. The misfolding of proteins due to abnormal polyglutamine (PolyQ) expansions are linked to the development of PolyQ diseases including Huntington's disease (HD). Though the genetic basis of PolyQ repeats in HD remains prominent, the primary molecular basis mediated by PolyQ toxicity remains elusive. Accumulation of misfolded proteins in the ER or disruption of ER homeostasis causes ER stress and activates an evolutionarily conserved pathway called Unfolded protein response (UPR). Protein homeostasis disruption at organelle level involving UPR or ER stress response pathways are found to be linked to HD. Due to dynamic intricate connections between ER and mitochondria, proteins at ER-mitochondria contact sites (mitochondria associated ER membranes or MAMs) play a significant role in HD development. The current review aims at highlighting the most updated information about different UPR pathways and their involvement in HD disease progression. Moreover, the role of MAMs in HD progression has also been discussed. In the end, the review has focused on the therapeutic interventions responsible for ameliorating diseased states via modulating either ER stress response proteins or modulating the expression of ER-mitochondrial contact proteins.
Collapse
Affiliation(s)
- Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad 500078, Telangana, India; (P.K.); (V.K.); (A.S.); (A.T.); (V.C.)
| | | | | | | | | | | |
Collapse
|
6
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
7
|
Maurice T. Bi-phasic dose response in the preclinical and clinical developments of sigma-1 receptor ligands for the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2021; 16:373-389. [PMID: 33070647 DOI: 10.1080/17460441.2021.1838483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Introduction: The sigma-1 receptor (S1R) is attracting much attention for disease-modifying therapies in neurodegenerative diseases. It is a conserved protein, present in plasma and endoplasmic reticulum (ER) membranes and enriched in mitochondria-associated ER membranes (MAMs). It modulates ER-mitochondria Ca2+ transfer and ER stress pathways. Mitochondrial and MAM dysfunctions contribute to neurodegenerative processes in diseases such as Alzheimer, Parkinson, Huntington or Amyotrophic Lateral Sclerosis. Interestingly, the S1R can be activated by small druggable molecules and accumulating preclinical data suggest that S1R agonists are effective protectants in these neurodegenerative diseases.Area covered: In this review, we will present the data showing the high therapeutic potential of S1R drugs for the treatment of neurodegenerative diseases, focusing on pridopidine as a potent and selective S1R agonist under clinical development. Of particular interest is the bi-phasic (bell-shaped) dose-response effect, representing a common feature of all S1R agonists and described in numerous preclinical models in vitro, in vivo and in clinical trials.Expert opinion: S1R agonists modulate inter-organelles communication altered in neurodegenerative diseases and activate intracellular survival pathways. Research will continue growing in the future. The particular cellular nature of this chaperone protein must be better understood to facilitate the clinical developement of promising molecules.
Collapse
Affiliation(s)
- Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| |
Collapse
|
8
|
Zhou Z, Zhong S, Zhang R, Kang K, Zhang X, Xu Y, Zhao C, Zhao M. Functional analysis of brain derived neurotrophic factor (BDNF) in Huntington's disease. Aging (Albany NY) 2021; 13:6103-6114. [PMID: 33631722 PMCID: PMC7950280 DOI: 10.18632/aging.202603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
The aim of this study is to determine the molecular functions of brain derived neurotrophic factor (BDNF) in Huntington's disease (HD). A total of 1,675 differentially expressed genes (DEGs) were overlapped from HD versus control and BDNF-low versus high groups. Five co-expression modules were constructed using weight gene correlation network analysis, among which the blue and turquoise modules were most strongly correlated with HD and low BDNF. Functional enrichment analyses revealed DEGs in these modules significantly enriched in GABAergic synapse, phagosome, cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), renin-angiotensin system (Ras), Ras-associated protein-1 and retrograde endocannabinoid signaling pathways. The intersection pathways of BDNF, such as cAMP, MAPK and Ras signaling pathways, were identified in global regulatory network. Further performance evaluation of low BDNF accurately predicted HD occurrence according to the area under the curve of 82.4%. In aggregate, our findings highlighted the involvement of low BDNF expression in HD pathogenesis, potentially mediated by cAMP, MAPK and Ras signaling pathways.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA 30602, USA.,Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning, PR China
| |
Collapse
|
9
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
10
|
Interaction of Oxidative Stress and Misfolded Proteins in the Mechanism of Neurodegeneration. Life (Basel) 2020; 10:life10070101. [PMID: 32629809 PMCID: PMC7400128 DOI: 10.3390/life10070101] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022] Open
Abstract
Aggregation of the misfolded proteins β-amyloid, tau, huntingtin, and α-synuclein is one of the most important steps in the pathology underlying a wide spectrum of neurodegenerative disorders, including the two most common ones—Alzheimer’s and Parkinson’s disease. Activity and toxicity of these proteins depends on the stage and form of aggregates. Excessive production of free radicals, including reactive oxygen species which lead to oxidative stress, is proven to be involved in the mechanism of pathology in most of neurodegenerative disorders. Both reactive oxygen species and misfolded proteins play a physiological role in the brain, and only deregulation in redox state and aggregation of the proteins leads to pathology. Here, we review the role of misfolded proteins in the activation of ROS production from various sources in neurons and glia. We discuss if free radicals can influence structural changes of the key toxic intermediates and describe the putative mechanisms by which oxidative stress and oligomers may cause neuronal death.
Collapse
|
11
|
Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP. Quality Control in Huntington's Disease: a Therapeutic Target. Neurotox Res 2019; 36:612-626. [PMID: 31297710 DOI: 10.1007/s12640-019-00087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is a fatal autosomal dominantly inherited brain disease caused by excessively expanded CAG repeats in gene which encodes huntingtin protein. These abnormally encoded huntingtin proteins and their truncated fragments result in disruption of cellular quality mechanism ultimately triggering neuronal death. Despite great efforts, a potential causative agent leading to genetic mutation in HTT, manifesting the neurons more prone to oxidative stress, cellular inflammation, energy depletion and apoptotic death, has not been established yet. Current scenario concentrates on symptomatic pathologies to improvise the disease progression and to better the survival. Most of the therapeutic developments have been converged to rescue the protein homeostasis. In HD, abnormal expansion of glutamine repeats in the protein huntingtin leads to toxic aggregation of huntingtin which in turn impairs the quality control mechanism of cells through damaging the machineries involved in removal of aggregated abnormal protein. Therapeutic approaches to improve the efficiency of aggregate clearance through quality control mechanisms involve protein folding machineries such as chaperones and protein degradation machineries such as proteasome and autophagy. Also, to reduce protein aggregation by enhancing proper folding, to degrade and eliminate the aggregates are suggested to negatively regulate the HD progression associated with the disruption of protein homeostasis. This review focuses on the collection of therapeutic strategies targeting enhancement of protein quality control activity to delay the HD pathogenesis.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Centre, Columbia University, New York, NY, 10032, USA
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Pérez-Sen R, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Miras-Portugal MT, Delicado EG. Dual-Specificity Phosphatase Regulation in Neurons and Glial Cells. Int J Mol Sci 2019; 20:ijms20081999. [PMID: 31018603 PMCID: PMC6514851 DOI: 10.3390/ijms20081999] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023] Open
Abstract
Dual-specificity protein phosphatases comprise a protein phosphatase subfamily with selectivity towards mitogen-activated protein (MAP) kinases, also named MKPs, or mitogen-activated protein kinase (MAPK) phosphatases. As powerful regulators of the intensity and duration of MAPK signaling, a relevant role is envisioned for dual-specificity protein phosphatases (DUSPs) in the regulation of biological processes in the nervous system, such as differentiation, synaptic plasticity, and survival. Important neural mediators include nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) that contribute to DUSP transcriptional induction and post-translational mechanisms of DUSP protein stabilization to maintain neuronal survival and differentiation. Potent DUSP gene inducers also include cannabinoids, which preserve DUSP activity in inflammatory conditions. Additionally, nucleotides activating P2X7 and P2Y13 nucleotide receptors behave as novel players in the regulation of DUSP function. They increase cell survival in stressful conditions, regulating DUSP protein turnover and inducing DUSP gene expression. In general terms, in the context of neural cells exposed to damaging conditions, the recovery of DUSP activity is neuroprotective and counteracts pro-apoptotic over-activation of p38 and JNK. In addition, remarkable changes in DUSP function take place during the onset of neuropathologies. The restoration of proper DUSP levels and recovery of MAPK homeostasis underlie the therapeutic effect, indicating that DUSPs can be relevant targets for brain diseases.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - María José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Paul BD, Snyder SH. Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Front Mol Neurosci 2019; 12:68. [PMID: 30941013 PMCID: PMC6433839 DOI: 10.3389/fnmol.2019.00068] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease triggered by expansion of polyglutamine repeats in the protein huntingtin. Mutant huntingtin (mHtt) aggregates and elicits toxicity by multiple mechanisms which range from dysregulated transcription to disturbances in several metabolic pathways in both the brain and peripheral tissues. Hallmarks of HD include elevated oxidative stress and imbalanced redox signaling. Disruption of antioxidant defense mechanisms, involving antioxidant molecules and enzymes involved in scavenging or reversing oxidative damage, have been linked to the pathophysiology of HD. In addition, mitochondrial function is compromised in HD leading to impaired bioenergetics and elevated production of free radicals in cells. However, the exact mechanisms linking redox imbalance to neurodegeneration are still elusive. This review will focus on the current understanding of aberrant redox homeostasis in HD and potential therapeutic interventions.
Collapse
Affiliation(s)
- Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Chen JY, Parekh M, Seliman H, Bakshinskaya D, Dai W, Kwan K, Chen KY, Liu AYC. Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. J Biol Chem 2018; 293:15581-15593. [PMID: 30143534 PMCID: PMC6177601 DOI: 10.1074/jbc.ra118.002933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
PolyQ-expanded huntingtin (mHtt) variants form aggregates, termed inclusion bodies (IBs), in individuals with and models of Huntington's disease (HD). The role of IB versus diffusible mHtt in neurotoxicity remains unclear. Using a ponasterone (PA)-inducible cell model of HD, here we evaluated the effects of heat shock on the appearance and functional outcome of Htt103QExon1-EGFP expression. Quantitative image analysis indicated that 80-90% of this mHtt protein initially appears as "diffuse" signals in the cytosol, with IBs forming at high mHtt expression. A 2-h heat shock during the PA induction reduced the diffuse signal, but greatly increased mHtt IB formation in both cytosol and nucleus. Dose- and time-dependent mHtt expression suggested that nucleated polymerization drives IB formation. RNA-mediated knockdown of heat shock protein 70 (HSP70) and heat shock cognate 70 protein (HSC70) provided evidence for their involvement in promoting diffuse mHtt to form IBs. Reporter gene assays assessing the impacts of diffuse versus IB mHtt showed concordance of diffuse mHtt expression with the repression of heat shock factor 1, cAMP-responsive element-binding protein (CREB), and NF-κB activity. CREB repression was reversed by heat shock coinciding with mHtt IB formation. In an embryonic striatal neuron-derived HD model, the chemical chaperone sorbitol similarly promoted the structuring of diffuse mHtt into IBs and supported cell survival under stress. Our results provide evidence that mHtt IB formation is a chaperone-supported cellular coping mechanism that depletes diffusible mHtt conformers, alleviates transcription factor dysfunction, and promotes neuron survival.
Collapse
Affiliation(s)
- Justin Y Chen
- From the Department of Cell Biology and Neuroscience and
| | - Miloni Parekh
- From the Department of Cell Biology and Neuroscience and
| | - Hadear Seliman
- From the Department of Cell Biology and Neuroscience and
| | | | - Wei Dai
- From the Department of Cell Biology and Neuroscience and
| | - Kelvin Kwan
- From the Department of Cell Biology and Neuroscience and
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey 08854
| | - Alice Y C Liu
- From the Department of Cell Biology and Neuroscience and
| |
Collapse
|
15
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Almaguer-Gotay D, Almaguer-Mederos LE, Aguilera-Rodríguez R, Rodríguez-Labrada R, Cuello-Almarales D, Estupiñán-Domínguez A, Velázquez-Pérez LC, González-Zaldívar Y, Vázquez-Mojena Y. Spinocerebellar Ataxia Type 2 Is Associated with the Extracellular Loss of Superoxide Dismutase but Not Catalase Activity. Front Neurol 2017; 8:276. [PMID: 28659860 PMCID: PMC5468381 DOI: 10.3389/fneur.2017.00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/29/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is an inherited and still incurable neurodegenerative disorder. Evidence suggests that pro-oxidant agents as well as factors involved in antioxidant cellular defenses are part of SCA2 physiopathology. AIM To assess the influence of superoxide dismutase (SOD3) and catalase (CAT) enzymatic activities on the SCA2 syndrome. METHOD Clinical, molecular, and electrophysiological variables, as well as SOD3 and CAT enzymatic activities were evaluated in 97 SCA2 patients and in 64 age- and sex-matched control individuals. RESULTS Spinocerebellar ataxia type 2 patients had significantly lower SOD3 enzymatic activity than the control group. However, there were no differences between patients and controls for CAT enzymatic activity. The effect size for the loss of patients' SOD3 enzymatic activity was 0.342, corresponding to a moderate effect. SOD3 and CAT enzymatic activities were not associated with the CAG repeat number at the ATXN2 gene. SOD3 and CAT enzymatic activities did not show significant associations with the age at onset, severity score, or the studied electrophysiological markers. CONCLUSION There is a reduced SOD3 enzymatic activity in SCA2 patients with no repercussion on the clinical phenotype.
Collapse
Affiliation(s)
- Dennis Almaguer-Gotay
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | - Dany Cuello-Almarales
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | - Yaimé Vázquez-Mojena
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| |
Collapse
|
17
|
Abstract
The sigma-1 (σ1) receptor has been associated with regulation of intracellular Ca2+ homeostasis, several cellular signaling pathways, and inter-organelle communication, in part through its chaperone activity. In vivo, agonists of the σ1 receptor enhance brain plasticity, with particularly well-described impact on learning and memory. Under pathological conditions, σ1 receptor agonists can induce cytoprotective responses. These protective responses comprise various complementary pathways that appear to be differentially engaged according to pathological mechanism. Recent studies have highlighted the efficacy of drugs that act through the σ1 receptor to mitigate symptoms associated with neurodegenerative disorders with distinct mechanisms of pathogenesis. Here, we will review genetic and pharmacological evidence of σ1 receptor engagement in learning and memory disorders, cognitive impairment, and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U1198, University of Montpellier, Montpellier, 34095, France.
| | - Nino Goguadze
- INSERM U1198, University of Montpellier, Montpellier, 34095, France
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| |
Collapse
|
18
|
Abstract
Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rajiv R. Ratan
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
19
|
Abstract
CONTEXT/OBJECTIVE The purpose of this study was to characterize etiologies of spinal cord injury and disorders (SCI/D) in persons with and without cervical stenosis/spondylosis (CSS) and to describe clinical characteristics and underlying comorbidities in these populations. DESIGN AND SETTING We reviewed administrative data for 1954 Veterans who had onset of traumatic or non-traumatic tetraplegia during FY 1999-2007. This included 1037 with a diagnosis of CSS at or in the two years prior to SCI onset of SCI/D and 917 without a diagnosis of CSS. OUTCOME MEASURES Demographics, etiologies of SCI/D and comorbidities by CSS status. RESULTS Veterans with SCI/D and CSS were older, more likely to have incomplete injuries and more likely to be Black than those with SCI/D and no CSS. Of patients with traumatic etiologies for SCI, 35.1% had a diagnosis of CSS at the time of or in the 2 years prior to SCI onset. Of those with tetraplegia due to falls, 40.0% had CSS, whereas for other known traumatic etiologies the percentages with CSS were lower: vehicular (25.0%); sports (16.1%); and acts of violence (10.2%). Total comorbidity scores measured by the Charlson co morbidity index and CMS Hierarchical Condition Category (CMS-HCC) were higher in those with CSS and SCI/D compared to those with SCI/D without CSS (P < 0.0001 respectively). CONCLUSIONS CSS is commonly present in patients with new traumatic tetraplegia. Falls are a particularly important potentially modifiable risk for SCI in patients with CSS.
Collapse
Affiliation(s)
- Stephen P Burns
- a Spinal Cord Injury Service , Department of Veterans Affairs- Puget Sound Health Care System , Seattle , WA , USA.,b Department of Rehabilitation Medicine , University of Washington , Seattle , WA , USA
| | - Frances Weaver
- c Director, Center of Innovation for Complex Chronic Healthcare, Hines VA Hospital , Chicago , IL , USA.,d Stritch School of Medicine , Loyola University , Chicago , IL , USA
| | - Amy Chin
- e Edward J. Hines, Jr. Veterans Affairs Hospital , Hines , IL , USA
| | - Jelena Svircev
- a Spinal Cord Injury Service , Department of Veterans Affairs- Puget Sound Health Care System , Seattle , WA , USA
| | - Laura Carbone
- f Charlie Norwood Veterans Affairs Medical Center , Augusta , GA , USA.,g Medical College of Georgia, Department of Medicine , Augusta University , Augusta , GA , USA
| |
Collapse
|
20
|
Mäkelä J, Mudò G, Pham DD, Di Liberto V, Eriksson O, Louhivuori L, Bruelle C, Soliymani R, Baumann M, Korhonen L, Lalowski M, Belluardo N, Lindholm D. Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mitochondria and X-linked inhibitor of apoptosis protein. Eur J Neurosci 2016; 43:626-39. [PMID: 26741810 DOI: 10.1111/ejn.13157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 12/03/2015] [Accepted: 12/29/2015] [Indexed: 01/08/2023]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP.
Collapse
Affiliation(s)
- Johanna Mäkelä
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland.,Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, I-90134 Palermo, Italy
| | - Dan Duc Pham
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland.,Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, I-90134 Palermo, Italy
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland
| | - Lauri Louhivuori
- Medicum, Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Céline Bruelle
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland.,Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Rabah Soliymani
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland
| | - Marc Baumann
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland
| | - Laura Korhonen
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland.,Clinicum, Division of Child Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Maciej Lalowski
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, I-90134 Palermo, Italy
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, POB 63, 00014, Haartmaninkatu 8, FIN-00290, Helsinki, Finland.,Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| |
Collapse
|
21
|
Do HT, Bruelle C, Pham DD, Jauhiainen M, Eriksson O, Korhonen LT, Lindholm D. Nerve growth factor (NGF) and pro-NGF increase low-density lipoprotein (LDL) receptors in neuronal cells partly by different mechanisms: role of LDL in neurite outgrowth. J Neurochem 2015; 136:306-15. [PMID: 26484803 DOI: 10.1111/jnc.13397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
Low-density lipoprotein receptors (LDLRs) mediate the uptake of lipoprotein particles into cells, as studied mainly in peripheral tissues. Here, we show that nerve growth factor (NGF) increases LDLR levels in PC6.3 cells and in cultured septal neurons from embryonic rat brain. Study of the mechanisms showed that NGF enhanced transcription of the LDLR gene, acting mainly via Tropomyosin receptor kinase A receptors. Simvastatin, a cholesterol-lowering drug, also increased the LDLR expression in PC6.3 cells. In addition, pro-NGF and pro-brain-derived neurotrophic factor, acting via the p75 neurotrophin receptor (p75NTR) also increased LDLRs. We further observed that Myosin Regulatory Light Chain-Interacting Protein/Inducible Degrader of the LDLR (Mylip/Idol) was down-regulated by pro-NGF, whereas the other LDLR regulator, proprotein convertase subtilisin kexin 9 (PCSK9) was not significantly changed. On the functional side, NGF and pro-NGF increased lipoprotein uptake by neuronal cells as shown using diacetyl-labeled LDL. The addition of serum-derived lipoprotein particles in conjunction with NGF or simvastatin enhanced neurite outgrowth. Collectively, these results show that NGF and simvastatin are able to stimulate lipoprotein uptake by neurons with a positive effect on neurite outgrowth. Increases in LDLRs and lipoprotein particles in neurons could play a functional role during brain development, in neuroregeneration and after brain injuries. Nerve growth factor (NGF) and pro-NGF induce the expression of low-density lipoprotein receptors (LDLRs) in neuronal cells leading to increased LDLR levels. Pro-NGF also down-regulated myosin regulatory light chain-interacting protein/inducible degrader of the LDLR (Mylip/Idol) that is involved in the degradation of LDLRs. NGF acts mainly via Tropomyosin receptor kinase A (TrkA) receptors, whereas pro-NGF stimulates p75 neurotrophin receptor (p75NTR). Elevated LDLRs upon NGF and pro-NGF treatments enhanced lipoprotein uptake by neurons. Addition of LDL particles further led to the stimulation of neurite outgrowth in PC6.3 cells after NGF or simvastatin treatments, suggesting a stimulatory role of lipoproteins on neuronal differentiation. In contrast, pro-NGF had no effect on neurite outgrowth either in the absence or presence of LDL particles. The precise mechanisms by which increased lipoproteins uptake can affect neurite outgrowth warrant further studies.
Collapse
Affiliation(s)
- Hai Thi Do
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Céline Bruelle
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Dan Duc Pham
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Ove Eriksson
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Laura T Korhonen
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Division of Child Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medical Faculty, Medicum, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
22
|
Kharatmal SB, Singh JN, Sharma SS. Calpain inhibitor, MDL 28170 confer electrophysiological, nociceptive and biochemical improvement in diabetic neuropathy. Neuropharmacology 2015; 97:113-21. [DOI: 10.1016/j.neuropharm.2015.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
23
|
Soylu-Kucharz R, Adlesic N, Baldo B, Kirik D, Petersén Å. Hypothalamic overexpression of mutant huntingtin causes dysregulation of brown adipose tissue. Sci Rep 2015; 5:14598. [PMID: 26419281 PMCID: PMC4588570 DOI: 10.1038/srep14598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Expression of mutant huntingtin (htt) protein has been shown to cause metabolic imbalance in animal models of Huntington disease (HD). The pathways involved are not fully understood but dysfunction of both the hypothalamus and brown adipose tissue (BAT) has been implicated. Here we show that targeted expression of mutant HTT in the hypothalamus leads to loss of the A13 dopaminergic cell group located in the zona incerta and reduced mRNA expression of neuropeptide Y1 receptor in the hypothalamus. Furthermore, this is accompanied by downregulation of uncoupling protein 1 expression and PPARγ coactivator-1 alpha in BAT and a rapid body weight gain. Taken together, our data might provide a mechanistic link between expression of mutant HTT, reduced activity of a hypothalamic dopaminergic pathway and dysfunction of BAT and in part explain the development of an obese phenotype in HD mouse models.
Collapse
Affiliation(s)
- Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Natalie Adlesic
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Barbara Baldo
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S.) Unit, Department of Experimental Medical Sciences Lund University, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| |
Collapse
|
24
|
Kim KA, Min A, Lee YA, Shin MH. Degradation of the transcription factors NF-κB, STAT3, and STAT5 is involved in Entamoeba histolytica-induced cell death in Caco-2 colonic epithelial cells. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:459-69. [PMID: 25352693 PMCID: PMC4210727 DOI: 10.3347/kjp.2014.52.5.459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-κB (p65) in Caco-2 cells. However, IκB, an inhibitor of NF-κB, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-κB was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-κB and STATs in colonic epithelial cells, which ultimately accelerates cell death.
Collapse
Affiliation(s)
- Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
25
|
Hyrskyluoto A, Bruelle C, Lundh SH, Do HT, Kivinen J, Rappou E, Reijonen S, Waltimo T, Petersén Å, Lindholm D, Korhonen L. Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degeneration: involvement of the proteasome and ER stress-activated kinase IRE1α. Hum Mol Genet 2014; 23:5928-39. [PMID: 24951540 DOI: 10.1093/hmg/ddu317] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntington's disease (HD) is an autosomal inherited neurological disease caused by a CAG-repeat expansion in the first exon of huntingtin gene encoding for the huntingtin protein (Htt). In HD, there is an accumulation of intracellular aggregates of mutant Htt that negatively influence cellular functions. The aggregates contain ubiquitin, and part of the HD pathophysiology could result from an imbalance in cellular ubiquitin levels. Deubiquitinating enzymes are important for replenishing the ubiquitin pool, but less is known about their roles in brain diseases. We show here that overexpression of the ubiquitin-specific protease-14 (Usp14) reduces cellular aggregates in mutant Htt-expressing cells mainly via the ubiquitin proteasome system. We also observed that the serine-threonine kinase IRE1 involved in endoplasmic reticulum (ER) stress responses is activated in mutant Htt-expressing cells in culture as well as in the striatum of mutant Htt transgenic (BACHD) mice. Usp14 interacted with IRE1 in control cells but less in mutant Htt-expressing cells. Overexpression of Usp14 in turn was able to inhibit phosphorylation of IRE1α in mutant Htt-overexpressing cells and to protect against cell degeneration and caspase-3 activation. These results show that ER stress-mediated IRE1 activation is part of mutant Htt toxicity and that this is counteracted by Usp14 expression. Usp14 effectively reduced cellular aggregates and counteracted cell degeneration indicating an important role of this protein in mutant Htt-induced cell toxicity.
Collapse
Affiliation(s)
- Alise Hyrskyluoto
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00290, Finland, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Céline Bruelle
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00290, Finland, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Sofia H Lundh
- Translational Neuroendocrine Research Unit, Lund University, Lund SE-221 84, Sweden and
| | - Hai Thi Do
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00290, Finland, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jenny Kivinen
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00290, Finland, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elisabeth Rappou
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00290, Finland, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Sami Reijonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tuure Waltimo
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Lund University, Lund SE-221 84, Sweden and
| | - Dan Lindholm
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00290, Finland, Minerva Foundation Institute for Medical Research, Helsinki, Finland,
| | - Laura Korhonen
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00290, Finland, Minerva Foundation Institute for Medical Research, Helsinki, Finland, Division of Child Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
26
|
Li X, Luo R, Chen R, Song L, Zhang S, Hua W, Chen H. Cleavage of IκBα by calpain induces myocardial NF-κB activation, TNF-α expression, and cardiac dysfunction in septic mice. Am J Physiol Heart Circ Physiol 2014; 306:H833-43. [PMID: 24441549 DOI: 10.1152/ajpheart.00893.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies in septic models have shown that myocardial calpain activity and TNF-α expression increase during sepsis and that inhibition of calpain activation downregulates myocardial TNF-α expression and improves cardiac dysfunction. However, the mechanism underlying this pathological process is unclear. Thus, in the present study, we aimed to explore whether IκBα/NF-κB signaling linked myocardial calpain activity and TNF-α expression in septic mice. Adult male mice were injected with LPS (4 mg/kg ip) to induce sepsis. Myocardial calpain activity, IκBα/NF-κB signaling activity, and TNF-α expression were assessed, and myocardial function was evaluated using the Langendorff system. In septic mice, myocardial calpain activity and TNF-α expression were increased and IκBα protein was degraded. Furthermore, NF-κB was activated, as indicated by increased NF-κB p65 phosphorylation, cleavage of p105 into p50, and its nuclear translocation. Administration of the calpain inhibitors calpain inhibitor Ш and PD-150606 prevented the LPS-induced degradation of myocardial IκBα, NF-κB activation, and TNF-α expression and ultimately improved myocardial function. In calpastatin transgenic mice, an endogenous calpain inhibitor and cultured neonatal mouse cardiomyocytes overexpressing calpastatin also inhibited calpain activity, IκBα protein degradation, and NF-κB activation after LPS treatment. In conclusion, myocardial calpain activity was increased in septic mice. Calpain induced myocardial NF-κB activation, TNF-α expression, and myocardial dysfunction in septic mice through IκBα protein cleavage.
Collapse
Affiliation(s)
- Xiaoping Li
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Di Pardo A, Alberti S, Maglione V, Amico E, Cortes EP, Elifani F, Battaglia G, Busceti CL, Nicoletti F, Vonsattel JPG, Squitieri F. Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease. Mol Brain 2013; 6:55. [PMID: 24330808 PMCID: PMC4029620 DOI: 10.1186/1756-6606-6-55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/06/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Huntington Disease (HD) is a neurodegenerative disorder resulting from the expansion of polyglutamine stretch in the huntingtin protein (Htt). Mutant HTT (mHtt) leads to progressive impairment of several molecular pathways that have been linked to disease pathogenesis. Defects in the production of a number of neurotrophic factors have been described as important determinants contributing to the development of HD. We have previously demonstrated that production of transforming growth factor-β1 (TGF-β1) is also deregulated in HD. Peripheral levels of TGF-β1 were markedly reduced early in the disease and returned to normal levels with disease severity. However, the cause and the biochemical origin of such abnormalities are still unclear. RESULTS We report here that the abnormal production of peripheral TGF-β1 depends on the changes in the percentage of TGF-β1-producing macrophages along disease course. Variation in the number of TGF-β1-producing macrophages resulted from differential activation state of the same cells, which displayed phenotypic and functional heterogeneity throughout the clinical course of HD. We further demonstrated that, similar to the periphery, the number of TGF-β1-immunoreactive cells in human post-mortem brain with HD, varied with neuropathological changes. CONCLUSIONS Our data indicate that reduced bioavailability of TGF-β1 in the serum of HD subjects is attributable to the variation of the number of TGF-β1-producing macrophages. Macrophages display a differential ability to produce TGF-β1, which reflects diversity in cells polarization throughout the disease course. Besides elucidating the biochemical origin of TGF-β1 fluctuations in HD, our study highlights an interesting parallelism between periphery and central compartment and underlines the potential of TGF-β1 as a possible indicator suitable for prediction of disease onset in HD.
Collapse
|
28
|
Hyrskyluoto A, Pulli I, Törnqvist K, Huu Ho T, Korhonen L, Lindholm D. Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-κB pathway. Cell Death Dis 2013; 4:e646. [PMID: 23703391 PMCID: PMC3674377 DOI: 10.1038/cddis.2013.170] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/26/2013] [Accepted: 04/23/2013] [Indexed: 12/20/2022]
Abstract
Alterations in mitochondria and increased oxidative stress are associated with the disease progression in Huntington's disease (HD). Endoplasmic reticulum (ER) stress and oxidative damage are linked through the close communication between the ER and mitochondria. Sigma-1 receptor (Sig-1R) is a chaperone protein in the ER that is involved in ER stress regulation, but little is known about its role in HD or the mechanisms for cell protection. Here we show that the Sig-1R agonist, PRE084 increases cell survival and counteracts the deleterious effects caused by N-terminal mutant huntingtin proteins in neuronal PC6.3 cells. Particularly, PRE084 increased the levels of cellular antioxidants by activating the NF-κB pathway that is compromised by the expression of mutant huntingtin proteins. These results show that the Sig-1R agonist has beneficial effects in models of HD and that compounds affecting the Sig-1R may be promising targets for future drug development in HD.
Collapse
Affiliation(s)
- A Hyrskyluoto
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - I Pulli
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - K Törnqvist
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - T Huu Ho
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - L Korhonen
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Division of Child Psychiatry, Helsinki University Central Hospital, 00029 HUS Helsinki, Finland
| | - D Lindholm
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
29
|
Laprairie RB, Kelly MEM, Denovan-Wright EM. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: implications for Huntington's disease. Neuropharmacology 2013; 72:47-57. [PMID: 23602984 DOI: 10.1016/j.neuropharm.2013.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/14/2013] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
Abstract
The type 1 cannabinoid receptor (CB1) is a G protein-coupled receptor that is expressed at high levels in the striatum. Activation of CB1 increases expression of neuronal trophic factors and inhibits neurotransmitter release from GABA-ergic striatal neurons. CB1 mRNA levels can be elevated by treatment with cannabinoids in non-neuronal cells. We wanted to determine whether cannabinoid treatment could induce CB1 expression in a cell culture model of striatal neurons and, if possible, determine the molecular mechanism by which this occurred. We found that treatment of STHdh(7/7) cells with the cannabinoids ACEA, mAEA, and AEA produced a CB1receptor-dependent increase in CB1 promoter activity, mRNA, and protein expression. This response was Akt- and NF-κB-dependent. Because decreased CB1 expression is thought to contribute to the pathogenesis of Huntington's disease (HD), we wanted to determine whether cannabinoids could increase CB1 expression in STHdh(7/111) and (111/111) cells expressing the mutant huntingtin protein. We observed that cannabinoid treatment increased CB1 mRNA levels approximately 10-fold in STHdh(7/111) and (111/111) cells, compared to vehicle treatment. Importantly, cannabinoid treatment improved ATP production, increased the expression of the trophic factor BDNF-2, and the mitochondrial regulator PGC1α, and reduced spontaneous GABA release, in HD cells. Therefore, cannabinoid-mediated increases in CB1 levels could reduce the severity of some molecular pathologies observed in HD.
Collapse
Affiliation(s)
- Robert B Laprairie
- Rm 6E Sir Charles Tupper Medical Bldg, Department of Pharmacology, Dalhousie University, 5850 College St., Halifax, NS, Canada B3H 4R2.
| | | | | |
Collapse
|
30
|
MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci 2013; 33:2313-25. [PMID: 23392662 DOI: 10.1523/jneurosci.4965-11.2013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that sodium butyrate is neuroprotective in Huntington's disease (HD) mice and that this therapeutic effect is associated with increased expression of mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1/DUSP1). Here we show that enhancing MKP-1 expression is sufficient to achieve neuroprotection in lentiviral models of HD. Wild-type MKP-1 overexpression inhibited apoptosis in primary striatal neurons exposed to an N-terminal fragment of polyglutamine-expanded huntingtin (Htt171-82Q), blocking caspase-3 activation and significantly reducing neuronal cell death. This neuroprotective effect of MKP-1 was demonstrated to be dependent on its enzymatic activity, being ablated by mutation of its phosphatase domain and being attributed to inhibition of specific MAP kinases (MAPKs). Overexpression of MKP-1 prevented the polyglutamine-expanded huntingtin-induced activation of c-Jun N-terminal kinases (JNKs) and p38 MAPKs, whereas extracellular signal-regulated kinase (ERK) 1/2 activation was not altered by either polyglutamine-expanded Htt or MKP-1. Moreover, mutants of MKP-1 that selectively prevented p38 or JNK binding confirmed the important dual contributions of p38 and JNK regulation to MKP-1-mediated neuroprotection. These results demonstrate additive effects of p38 and JNK MAPK inhibition by MKP-1 without consequence to ERK activation in this striatal neuron-based paradigm. MKP-1 also provided neuroprotection in vivo in a lentiviral model of HD neuropathology in rat striatum. Together, these data extend previous evidence that JNK- and p38-mediated pathways contribute to HD pathogenesis and, importantly, show that therapies simultaneously inhibiting both JNK and p38 signaling pathways may lead to improved neuroprotective outcomes.
Collapse
|
31
|
Ajayi A, Yu X, Lindberg S, Langel U, Ström AL. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci 2012; 13:86. [PMID: 22827889 PMCID: PMC3412756 DOI: 10.1186/1471-2202-13-86] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 7 (SCA7) is one of nine inherited neurodegenerative disorders caused by polyglutamine (polyQ) expansions. Common mechanisms of disease pathogenesis suggested for polyQ disorders include aggregation of the polyQ protein and induction of oxidative stress. However, the exact mechanism(s) of toxicity is still unclear. RESULTS In this study we show that expression of polyQ expanded ATXN7 in a novel stable inducible cell model first results in a concomitant increase in ROS levels and aggregation of the disease protein and later cellular toxicity. The increase in ROS could be completely prevented by inhibition of NADPH oxidase (NOX) complexes suggesting that ATXN7 directly or indirectly causes oxidative stress by increasing superoxide anion production from these complexes. Moreover, we could observe that induction of mutant ATXN7 leads to a decrease in the levels of catalase, a key enzyme in detoxifying hydrogen peroxide produced from dismutation of superoxide anions. This could also contribute to the generation of oxidative stress. Most importantly, we found that treatment with a general anti-oxidant or inhibitors of NOX complexes reduced both the aggregation and toxicity of mutant ATXN7. In contrast, ATXN7 aggregation was aggravated by treatments promoting oxidative stress. CONCLUSION Our results demonstrates that oxidative stress contributes to ATXN7 aggregation as well as toxicity and show that anti-oxidants or NOX inhibition can ameliorate mutant ATXN7 toxicity.
Collapse
Affiliation(s)
- Abiodun Ajayi
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 21A, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
32
|
Mudò G, Mäkelä J, Liberto VD, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci 2012; 69:1153-65. [PMID: 21984601 PMCID: PMC11114858 DOI: 10.1007/s00018-011-0850-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/31/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
Abstract
Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but little is known about the molecular mechanisms controlling these events. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator that is a master regulator of oxidative stress and mitochondrial metabolism. We show here that transgenic mice overexpressing PGC-1α in dopaminergic neurons are resistant against cell degeneration induced by the neurotoxin MPTP. The increase in neuronal viability was accompanied by elevated levels of mitochondrial antioxidants SOD2 and Trx2 in the substantia nigra of transgenic mice. PGC-1α overexpression also protected against MPTP-induced striatal loss of dopamine, and mitochondria from PGC-1α transgenic mice showed an increased respiratory control ratio compared with wild-type animals. To modulate PGC-1α, we employed the small molecular compound, resveratrol (RSV) that protected dopaminergic neurons against the MPTP-induced cell degeneration almost to the same extent as after PGC-1α overexpression. As studied in vitro, RSV activated PGC-1α in dopaminergic SN4741 cells via the deacetylase SIRT1, and enhanced PGC-1α gene transcription with increases in SOD2 and Trx2. Taken together, the results reveal an important function of PGC-1α in dopaminergic neurons to combat oxidative stress and increase neuronal viability. RSV and other compounds acting via SIRT1/PGC-1α may prove useful as neuroprotective agents in PD and possibly in other neurological disorders.
Collapse
Affiliation(s)
- Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Johanna Mäkelä
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Timofey V. Tselykh
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Melania Olivieri
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Petteri Piepponen
- Faculty of Pharmacy, Division of Pharmacology and Toxicology, University of Helsinki, 00014 Helsinki, Finland
| | - Ove Eriksson
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Research Program Unit, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Annika Mälkiä
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Alessandra Bonomo
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Minna Kairisalo
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jose A. Aguirre
- Department of Human Physiology, School of Medicine, University of Malaga, 27071 Malaga, Spain
| | - Laura Korhonen
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Dan Lindholm
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
33
|
Chen JJ, Salat DH, Rosas HD. Complex relationships between cerebral blood flow and brain atrophy in early Huntington's disease. Neuroimage 2012; 59:1043-51. [PMID: 21945790 PMCID: PMC3787075 DOI: 10.1016/j.neuroimage.2011.08.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/25/2011] [Accepted: 08/29/2011] [Indexed: 01/31/2023] Open
Abstract
Alterations in cerebral blood flow (CBF) may play an important role in the pathophysiology of neurodegenerative disorders such as Huntington's disease (HD). While a few reports have suggested reductions in CBF in HD, little is known about their extent and whether, or how, they might be related to atrophy and to clinical symptoms. We used pulsed arterial-spin labeling MRI in conjunction with high-resolution anatomical MRI to non-invasively measure regional CBF in 17 early stage HD subjects and 41 age- and gender-matched healthy controls. We found profound yet heterogeneous CBF reductions in the cortex, extending to the sensorimotor, paracentral, inferior temporal and lateral occipital regions, with sparing of the neighboring postcentral gyrus, insula and medial occipital areas. As expected, CBF in subcortical regions was also profoundly reduced, and to a similar degree. Unexpectedly, however, the association between CBF reductions and regional atrophy was complex, the two being directly associated in certain areas but not with others. In contrast, CBF was associated with performance on the Stroop, suggesting a potentially important role for alterations in CBF in cognitive deficits in HD. The work described here may have broad-reaching implications for our understanding of HD pathogenesis, progression and emerging therapies.
Collapse
Affiliation(s)
- J Jean Chen
- A.A. Martinos Center for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA.
| | | | | |
Collapse
|
34
|
Hyrskyluoto A, Reijonen S, Kivinen J, Lindholm D, Korhonen L. GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp Cell Res 2012; 318:33-42. [DOI: 10.1016/j.yexcr.2011.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/28/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
35
|
Putkonen N, Kukkonen JP, Mudo G, Putula J, Belluardo N, Lindholm D, Korhonen L. Involvement of cyclin-dependent kinase-5 in the kainic acid-mediated degeneration of glutamatergic synapses in the rat hippocampus. Eur J Neurosci 2011; 34:1212-21. [PMID: 21978141 DOI: 10.1111/j.1460-9568.2011.07858.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased levels of glutamate causing excitotoxic damage accompany neurological disorders such as ischemia/stroke, epilepsy and some neurodegenerative diseases. Cyclin-dependent kinase-5 (Cdk5) is important for synaptic plasticity and is deregulated in neurodegenerative diseases. However, the mechanisms by which kainic acid (KA)-induced excitotoxic damage involves Cdk5 in neuronal injury are not fully understood. In this work, we have thus studied involvement of Cdk5 in the KA-mediated degeneration of glutamatergic synapses in the rat hippocampus. KA induced degeneration of mossy fiber synapses and decreased glutamate receptor (GluR)6/7 and post-synaptic density protein 95 (PSD95) levels in rat hippocampus in vivo after intraventricular injection of KA. KA also increased the cleavage of Cdk5 regulatory protein p35, and Cdk5 phosphorylation in the hippocampus at 12 h after treatment. Studies with hippocampal neurons in vitro showed a rapid decline in GluR6/7 and PSD95 levels after KA treatment with the breakdown of p35 protein and phosphorylation of Cdk5. These changes depended on an increase in calcium as shown by the chelators 1,2-bis(o-aminophenoxy)ethane-N,N,N ',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) and glycol-bis (2-aminoethylether)-N,N,N ',N '-tetra-acetic acid. Inhibition of Cdk5 using roscovitine or employing dominant-negative Cdk5 and Cdk5 silencing RNA constructs counteracted the decreases in GluR6/7 and PSD95 levels induced by KA in hippocampal neurons. The dominant-negative Cdk5 was also able to decrease neuronal degeneration induced by KA in cultured neurons. The results show that Cdk5 is essentially involved in the KA-mediated alterations in synaptic proteins and in cell degeneration in hippocampal neurons after an excitotoxic injury. Inhibition of pathways activated by Cdk5 may be beneficial for treatment of synaptic degeneration and excitotoxicity observed in various brain diseases.
Collapse
Affiliation(s)
- Noora Putkonen
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Haartmaninkatu 8, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
36
|
Bukowska A, Lendeckel U, Bode-Böger SM, Goette A. Physiologic and Pathophysiologic Role of Calpain: Implications for the Occurrence of Atrial Fibrillation. Cardiovasc Ther 2010; 30:e115-27. [DOI: 10.1111/j.1755-5922.2010.00245.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
37
|
Wang CE, Li S, Li XJ. Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington's disease mice. Mol Brain 2010; 3:33. [PMID: 21044321 PMCID: PMC2990748 DOI: 10.1186/1756-6606-3-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease results from expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of huntingtin (htt) and is characterized by preferential neurodegeneration in the striatum of the brain. N171-82Q mice that express N-terminal 171 amino acids of htt with an 82-glutamine repeat show severe neurological phenotypes and die early, suggesting that N-terminal mutant htt is pathogenic. In addition, various cellular factors and genetic modifiers are found to modulate the cytotoxicity of mutant htt. Understanding the contribution of these factors to HD pathogenesis will help identify therapeutics for this disease. To investigate the role of interleukin type 1 (IL-1), a cytokine that has been implicated in various neurological diseases, in HD neurological symptoms, we crossed N171-82Q mice to type I IL-1 receptor (IL-1RI) knockout mice. Mice lacking IL-1RI and expressing N171-82Q show more severe neurological symptoms than N171-82Q or IL-1RI knockout mice, suggesting that lack of IL-1RI can promote the neuronal toxicity of mutant htt. Lack of IL-1RI also increases the accumulation of transgenic mutant htt in the striatum in N171-82Q mice. Since IL-1RI signaling mediates both toxic and protective effects on neurons, its basal function and protective effects may be important for preventing the neuropathology seen in HD.
Collapse
Affiliation(s)
- Chuan-En Wang
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|