1
|
Chen SJ, Chien HC, Tsai SH, Jheng YS, Chen Y, Hsieh PS, Tsui PF, Chien S, Tsai MC. Melatonin Ameliorates Atherosclerotic Plaque Vulnerability by Regulating PPARδ-Associated Smooth Muscle Cell Phenotypic Switching. J Pineal Res 2024; 76:e12988. [PMID: 38982751 DOI: 10.1111/jpi.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Vulnerable atherosclerotic plaque rupture, the leading cause of fatal atherothrombotic events, is associated with an increased risk of mortality worldwide. Peroxisome proliferator-activated receptor delta (PPARδ) has been shown to modulate vascular smooth muscle cell (SMC) phenotypic switching, and, hence, atherosclerotic plaque stability. Melatonin reportedly plays a beneficial role in cardiovascular diseases; however, the mechanisms underlying improvements in atherosclerotic plaque vulnerability remain unknown. In this study, we assessed the role of melatonin in regulating SMC phenotypic switching and its consequential contribution to the amelioration of atherosclerotic plaque vulnerability and explored the mechanisms underlying this process. We analyzed features of atherosclerotic plaque vulnerability and markers of SMC phenotypic transition in high-cholesterol diet (HCD)-fed apolipoprotein E knockout (ApoE-/-) mice and human aortic SMCs (HASMCs). Melatonin reduced atherosclerotic plaque size and necrotic core area while enhancing collagen content, fibrous cap thickness, and smooth muscle alpha-actin positive cell coverage on the plaque cap, which are all known phenotypic characteristics of vulnerable plaques. In atherosclerotic lesions, melatonin significantly decreased the synthetic SMC phenotype and KLF4 expression and increased the expression of PPARδ, but not PPARα and PPARγ, in HCD-fed ApoE-/- mice. These results were subsequently confirmed in the melatonin-treated HASMCs. Further analysis using PPARδ silencing and immunoprecipitation assays revealed that PPARδ plays a role in the melatonin-induced SMC phenotype switching from synthetic to contractile. Collectively, we provided the first evidence that melatonin mediates its protective effect against plaque destabilization by enhancing PPARδ-mediated SMC phenotypic switching, thereby indicating the potential of melatonin in treating atherosclerosis.
Collapse
MESH Headings
- Animals
- Melatonin/pharmacology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Kruppel-Like Factor 4/metabolism
- Humans
- PPAR delta/metabolism
- PPAR delta/genetics
- Mice, Knockout
- Male
- Mice, Knockout, ApoE
- Phenotype
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Apolipoproteins E/deficiency
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Che Chien
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Sin Jheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yi Chen
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Fen Tsui
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Shu Chien
- Department of Bioengineering and Medicine, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2024:S2090-1232(24)00120-6. [PMID: 38555000 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Lien CF, Lin CS, Shyue SK, Hsieh PS, Chen SJ, Lin YT, Chien S, Tsai MC. Peroxisome proliferator-activated receptor δ improves the features of atherosclerotic plaque vulnerability by regulating smooth muscle cell phenotypic switching. Br J Pharmacol 2023; 180:2085-2101. [PMID: 36942453 DOI: 10.1111/bph.16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle cells (SMCs) undergo phenotypic switching during sustained inflammation, contributing to an unfavourable atherosclerotic plaque phenotype. PPARδ plays an important role in regulating SMC functions; however, its role in atherosclerotic plaque vulnerability remains unclear. Here, we explored the pathological roles of PPARδ in atherosclerotic plaque vulnerability in severe atherosclerosis and elucidated the underlying mechanisms. EXPERIMENTAL APPROACH Plasma levels of PPARδ were measured in patients with acute coronary syndrome (ACS) and stable angina (SA). SMC contractile and synthetic phenotypic markers, endoplasmic reticulum (ER) stress, and features of atherosclerotic plaque vulnerability were analysed for the brachiocephalic artery of apolipoprotein E-knockout (ApoE-/- ) mice, fed a high-cholesterol diet (HCD) and treated with or without the PPARδ agonist GW501516. In vitro, the role of PPARδ was elucidated using human aortic SMCs (HASMCs). KEY RESULTS Patients with ACS had significantly lower plasma PPARδ levels than those with SA. GW501516 reduced atherosclerotic plaque vulnerability, a synthetic SMC phenotype, ER stress markers, and NLRP3 inflammasome expression in HCD-fed ApoE-/- mice. ER stress suppressed PPARδ expression in HASMCs. PPARδ activation inhibited ER stress-induced synthetic phenotype development, ER stress-NLRP3 inflammasome axis activation and matrix metalloproteinase 2 (MMP2) expression in HASMCs. PPARδ inhibited NFκB signalling and alleviated ER stress-induced SMC phenotypic switching. CONCLUSIONS AND IMPLICATIONS Low plasma PPARδ levels may be associated with atherosclerotic plaque vulnerability. Our findings provide new insights into the mechanisms underlying the protective effect of PPARδ on SMC phenotypic switching and improvement the features of atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tan Lin
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shu Chien
- Department of Bioengineering and Medicine, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Perez Diaz N, Lione LA, Hutter V, Mackenzie LS. Co-Incubation with PPARβ/δ Agonists and Antagonists Modeled Using Computational Chemistry: Effect on LPS Induced Inflammatory Markers in Pulmonary Artery. Int J Mol Sci 2021; 22:ijms22063158. [PMID: 33808880 PMCID: PMC8003823 DOI: 10.3390/ijms22063158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator activated receptor beta/delta (PPARβ/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARβ/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARβ/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARβ/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L-165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARβ/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARβ/δ agonists leads to a significant increase in Pdk-4 and Angptl-4 mRNA expression, which is significantly decreased in the presence of PPARβ/δ antagonists. Docking using computational chemistry methods indicates that PPARβ/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARβ/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARβ/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARβ/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARβ/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production.
Collapse
Affiliation(s)
- Noelia Perez Diaz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Victoria Hutter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Louise S. Mackenzie
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
5
|
Dhaouadi N, Nehme A, Faour WH, Feugier P, Cerutti C, Kacem K, Eid AH, Li JY, Zibara K. Transforming growth factor-β1 inhibits interleukin-1β-induced expression of inflammatory genes and Cathepsin S activity in human vascular smooth muscle cells. Fundam Clin Pharmacol 2021; 35:979-988. [PMID: 33683760 DOI: 10.1111/fcp.12666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE AND DESIGN This study investigated the opposite mechanisms by which IL-1β and TGF-β1 modulated the inflammatory and migratory phenotypes in cultured human intimal vascular smooth muscle cells vSMCs. MATERIALS AND TREATMENT Primary human vSMCs, obtained from twelve hypertensive patients who underwent carotid endarterectomy, were incubated for 24 hours with either 40 pM TGF-β1, or 1 nmol/L IL-1β, or their combination in presence or absence of anti-TGF-β neutralizing antibody. METHODS The expression levels of matrix metalloproteases and their inhibitors, and the elastolytic enzyme cathepsin S (CTSS) and its inhibitor cystatin C were evaluated with RT-PCR. CTSS activity was measured by fluorometry. RESULTS TGF-β1 reversed IL-1β-induced expression of iNOS, CXCL6, IL1R1, MMP12, and CTSS, while upregulated TIMP2 expression. Furthermore, anti-TGF-β neutralizing antibody abrogated TGF-β effects. Combination with IL-1β and TGF-β1 induced the expression of IL1α, IL1β, IL1R1, and CTSS, but suppressed CST3 expression. CTSS expression in the combination treatment was higher than that of cells treated with anti-TGF-β antibodies alone. Moreover, IL-1β-induced CTSS enzymatic activity was reduced when human vSMCs were co-treated with TGF-β, whereas this reduction was abrogated by anti-TGF-β neutralizing antibody. CONCLUSION TGF-β1 abrogated IL-1β-induced expression of inflammatory genes and elastolytic activity in cultured human vSMCs. Thus, TGF-β1 can play a crucial role in impairing IL-1β-induced vascular inflammation and damage involved in the etiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Nedra Dhaouadi
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France.,Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Ali Nehme
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France.,PRASE, Lebanese University, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Patrick Feugier
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France
| | - Catherine Cerutti
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France
| | - Kamel Kacem
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Ali H Eid
- Biomedical and Pharmaceutical Research Unit and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jacques-Yuan Li
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon.,Department of Biology, Faculty of sciences - I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
6
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
7
|
Parisi V, Petraglia L, Cabaro S, D'Esposito V, Bruzzese D, Ferraro G, Urbani A, Grieco FV, Conte M, Caruso A, Grimaldi MG, de Bellis A, Severino S, Campana P, Pilato E, Comentale G, Raia M, Scalia G, Castaldo G, Formisano P, Leosco D. Imbalance Between Interleukin-1β and Interleukin-1 Receptor Antagonist in Epicardial Adipose Tissue Is Associated With Non ST-Segment Elevation Acute Coronary Syndrome. Front Physiol 2020; 11:42. [PMID: 32116755 PMCID: PMC7012938 DOI: 10.3389/fphys.2020.00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Interleukin-1beta (IL-1β) is crucially involved in the pathogenesis of coronary atherosclerotic diseases (CAD) and its inhibition has proven cardiovascular benefits. Epicardial adipose tissue (EAT) is a local source of inflammatory mediators which may negatively affect the surrounding coronary arteries. In the present study, we explored the relationship between serum and EAT levels of IL-1β and IL-1 receptor antagonist (IL-1ra) in patients with chronic coronary syndrome (CCS) and recent acute coronary syndrome (ACS). Methods We obtained EAT biopsies in 54 CCS (Group 1) and 33 ACS (Group 2) patients undergoing coronary artery bypass grafting. Serum and EAT levels of IL-1β and IL-1ra were measured in all patients. An immunophenotypic study was carried out on EAT biopsies and the CD86 events were studied as markers of M1 macrophages. Results Circulating levels of IL-1β were significantly higher in the overall CAD population compared to a control group [7.64 pg/ml (6.86; 8.57) vs. 1.89 pg/ml (1.81; 2.29); p < 0.001]. In contrast, no differences were observed for serum IL-1ra levels between CAD and controls. Comparable levels of serum IL-1β were found between Groups 1 and 2 [7.6 pg/ml (6.9; 8.7) vs. 7.9 pg/ml (7.2; 8.6); p = 0.618]. In contrast, significantly lower levels of serum IL-1ra were found in Group 2 compared to Group 1 [274 pg/ml (220; 577) vs. 603 pg/ml (334; 1022); p = 0.035]. No differences of EAT levels of IL-1β were found between Group 2 and Group 1 [3.4 pg/ml (2.3; 8.4) vs. 2.4 pg/ml (1.9; 8.0); p = 0.176]. In contrast, significantly lower EAT levels of IL-1ra were found in Group 2 compared to Group 1 [101 pg/ml (40; 577) vs. 1344 pg/ml (155; 5327); p = 0.002]. No correlation was found between EAT levels of IL-1β and CD86 and CD64 events. Conclusion The present study explores the levels of IL-1β and IL-1ra in the serum and in EAT of CCS and ACS patients. ACS seems to be associated to a loss of the counter-regulatory activity of IL-1ra against the pro-inflammatory effects related to IL-1β activation.
Collapse
Affiliation(s)
- Valentina Parisi
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giusy Ferraro
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Andrea Urbani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | | | - Maddalena Conte
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | | | | | | | | | - Pasquale Campana
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Emanuele Pilato
- DAI Emergenze Cardiovascolari, Medicina Clinica e dell'Invecchiamento, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giuseppe Comentale
- DAI Emergenze Cardiovascolari, Medicina Clinica e dell'Invecchiamento, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Maddalena Raia
- Ceinge Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Giulia Scalia
- Ceinge Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Giuseppe Castaldo
- Ceinge Biotecnologie Avanzate s.c. a r.l., Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Yin Y, Yu S, Sun Y, Qin T, Chen S, Ding C, Peng D, Liu X. Glycosylation deletion of hemagglutinin head in the H5 subtype avian influenza virus enhances its virulence in mammals by inducing endoplasmic reticulum stress. Transbound Emerg Dis 2020; 67:1492-1506. [PMID: 31944613 DOI: 10.1111/tbed.13481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Hemagglutinin (HA) glycosylation of avian influenza virus (AIV) effects differently depending on the variation of glycosylation position and numbers. The natural mutation on the glycosylation sites of the AIV HA head occurs frequently. Our previous study shows that deletion of 158 or 169 glycosylation site on the HA head of the H5 subtype AIV strain rS-144-/158+/169+ increases the viral virulence in mammals; however, the mechanism remains unknown. In this study, several AIVs with different deletions at HA head glycosylation sites 144, 158 or 169 were tested for their biological characteristics to clarify the possible mechanism. We found that rS-144-/158-/169+ and rS-144-/158+/169- viruses induced higher levels of inflammatory cytokines than rS-144-/158+/169+ did in the infected cells, but the TCID50 , EID50 and MDT of the viruses showed no difference. Moreover, we found that rS-144-/158-/169+ and rS-144-/158+/169- viruses induced higher levels of endoplasmic reticulum (ER) stress in the cells. Inhibition of inositol-requiring enzyme 1α (IRE1α) phosphorylation reduced the inflammation induced by AIV infection. Furthermore, we found that rS-144-/158-/169+ virus activated the c-Jun N-terminal kinase (JNK), X-box binding protein 1 (XBP1), and nuclear factor-κB pathways by activating IRE1α phosphorylation under ER stress, whereas the rS-144-/158+/169- virus activated only the JNK pathway by altering IRE1α phosphorylation. In vivo analysis of Kira6 intervention further confirmed that ER stress played a key role in higher virulence for HA head 158 or 169 site de-glycosylation AIV. Our findings reveal that deletion of additional HA head glycosylation sites 158 or 169 enhanced the AIV virulence via activating of strong ER stress and inflammation.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Shengqing Yu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| |
Collapse
|
9
|
Jiang YF, Guo LL, Zhang LW, Chu YX, Zhu GL, Lu Y, Zhang L, Lu QS, Jing ZP. Local upregulation of interleukin-1 beta in aortic dissecting aneurysm: correlation with matrix metalloproteinase-2, 9 expression and biomechanical decrease. Interact Cardiovasc Thorac Surg 2019; 28:344-352. [PMID: 30169834 DOI: 10.1093/icvts/ivy256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Our goal was to examine whether interleukin-1 beta (IL-1β) originates locally and its possible relationship with matrix metalloproteinases (MMPs), apoptosis, elastin fibres and biomechanics in aortic dissecting aneurysms (DAs). METHODS Aortic DAs were induced in 24 rats with β-aminopropionitrile (BAPN); another 12 rats without BAPN were designated as controls. Then IL-1β levels were measured both in the circulation and in local aortic specimens. The expression of MMP-2 and MMP-9 and Victoria blue and TUNEL staining were also detected. Biomechanical parameters such as the elasticity modulus were used to detect the biomechanical changes in the aortic wall. The correlation of IL-1β, MMP-2, MMP-9, apoptosis and biomechanical properties was analysed. RESULTS Seventeen rats (17/24, 71%) in the BAPN-treated group died of DA rupture. IL-1β levels were dramatically increased in the DA specimens but not in the circulation. Victoria blue staining confirmed the formation of the DA and the reduction of elastin content after induction by BAPN. The extent of apoptosis in the aortic media was dramatically higher in rats with BAPN-induced DA than that in the control group and that in rats treated with BAPN but without DA. MMP-2 and MMP-9 levels were significantly increased in BAPN-treated rats compared to the controls, but no statistical significance was found between rats with and without DA. There were significant differences in biomechanical parameters, such as the elasticity modulus. Among the 3 groups, IL-1β was positively correlated with MMP-2 and MMP-9 levels and with the elasticity modulus but not with apoptosis. CONCLUSIONS Local IL-1β might participate in the formation of aortic DA through the upregulation of MMP-2 and MMP-9 and the breakage of elastin fibres, which finally weakens the biomechanical properties of the aortic wall.
Collapse
Affiliation(s)
- Yun-Fei Jiang
- Department of Vascular Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ling-Ling Guo
- Department of Biological Therapies for Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Li-Wei Zhang
- Department of Cardio-Thoracic Surgery, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Yong-Xin Chu
- Department of Vascular Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Guang-Lang Zhu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ye Lu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qing-Sheng Lu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zai-Ping Jing
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Gao F, Huang Y, Zhang L, Liu W. Involvement of estrogen receptor and GPER in bisphenol A induced proliferation of vascular smooth muscle cells. Toxicol In Vitro 2019; 56:156-162. [DOI: 10.1016/j.tiv.2019.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
|
11
|
Kang ES, Hwang JS, Lee WJ, Lee GH, Choi MJ, Paek KS, Lim DS, Seo HG. Ligand-activated PPARδ inhibits angiotensin II-stimulated hypertrophy of vascular smooth muscle cells by targeting ROS. PLoS One 2019; 14:e0210482. [PMID: 30620754 PMCID: PMC6324793 DOI: 10.1371/journal.pone.0210482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/25/2018] [Indexed: 11/19/2022] Open
Abstract
We investigated the effect of peroxisome proliferator-activated receptor δ (PPARδ) on angiotensin II (Ang II)-triggered hypertrophy of vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly inhibited Ang II-stimulated protein synthesis in a concentration-dependent manner, as determined by [3H]-leucine incorporation. GW501516-activated PPARδ also suppressed Ang II-induced generation of reactive oxygen species (ROS) in VSMCs. Transfection of small interfering RNA (siRNA) against PPARδ significantly reversed the effects of GW501516 on [3H]-leucine incorporation and ROS generation, indicating that PPARδ is involved in these effects. By contrast, these GW501516-mediated actions were potentiated in VSMCs transfected with siRNA against NADPH oxidase (NOX) 1 or 4, suggesting that ligand-activated PPARδ elicits these effects by modulating NOX-mediated ROS generation. The phosphatidylinositol 3-kinase inhibitor LY294002 also inhibited Ang II-stimulated [3H]-leucine incorporation and ROS generation by preventing membrane translocation of Rac1. These observations suggest that PPARδ is an endogenous modulator of Ang II-triggered hypertrophy of VSMCs, and is thus a potential target to treat vascular diseases associated with hypertrophic changes of VSMCs.
Collapse
Affiliation(s)
- Eun Sil Kang
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Gyeong Hee Lee
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Mi-Jung Choi
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | | | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Bundang-gu, Seongnam, Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Khan NS, Sultan Allai M, Nissar B, Naykoo NA, Hameed I, Majid M, Bhat A, Afshan FU, Ganai BA. Genetic association of Tumour necrosis factor alpha, Interleukin-18 and Interleukin 1 beta with the risk of coronary artery disease: A case-control study outcome from Kashmir. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci 2018; 19:ijms19072013. [PMID: 29996502 PMCID: PMC6073704 DOI: 10.3390/ijms19072013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss as well as damage to tissues like bone and liver. Yet damage to the heart and brain cannot be reversed, resulting in scaring. Thus, there is a great interest in understanding the molecular mechanisms of naturally occurring regeneration and to apply this knowledge to repair human organs. During regeneration, injury-activated immune cells induce wound healing, extracellular matrix remodeling, migration, dedifferentiation and/or proliferation with subsequent differentiation of somatic or stem cells. An anti-inflammatory response stops the regenerative process, which ends with tissue remodeling to achieve the original functional state. Notably, many of these processes are associated with enhanced glycolysis. Therefore, peroxisome proliferator-activated receptor (PPAR) β/δ—which is known to be involved for example in lipid catabolism, glucose homeostasis, inflammation, survival, proliferation, differentiation, as well as mammalian regeneration of the skin, bone and liver—appears to be a promising target to promote mammalian regeneration. This review summarizes our current knowledge of PPARβ/δ in processes associated with wound healing and regeneration.
Collapse
|
14
|
Abstract
BACKGROUND Many studies have reported that the IL-1β + 3954C/T polymorphism (rs1143634) is related to myocardial infarction (MI). To classify the association between IL-1β + 3954C/T and MI susceptibility, we performed a meta-analysis. METHODS We retrieved relevant literature from electronic databases (Embase, PubMed, Cochrane, and Web of Science). Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated with a fixed effect model or a random effect model. Sensitivity analysis and publication bias results are also presented. RESULTS Nine eligible studies (2299 controls and 2203 cases) were included. The pooled results showed a significant relationship between MI and IL-1β + 3954C/T in an allelic comparison (T vs C: OR = 1.13, 95% CI 1.02-1.25, I = 0%, PH = .448) and in a dominant model (TC + TT vs CC: OR = 1.15, 95% CI 1.02-1.30, I = 0%, PH = .880). Ethnic subgroup analysis showed similar results in Caucasian populations: an allelic comparison (T vs C: OR = 1.16, 95% CI 1.04-1.29, I = 0%, PH = .701), homozygote model (TT vs CC: OR = 1.36, 95% CI 1.04-1.79, I = 0%, PH = .673), and dominant model (TC + TT vs CC: OR = 1.17, 95% CI 1.02-1.33, I = 0%, PH = .851). In addition, similar effects remained in subgroups analyses of high-quality studies and PCR-RFLP (restriction fragment length polymorphism) data. CONCLUSION Our meta-analysis proved that IL-1β + 3954C/T is associated with MI susceptibility, especially among Caucasian populations.
Collapse
Affiliation(s)
- Yizhen Fang
- Xiamen University Affiliated Cardiovascular Hospital
| | - Huabin Xie
- Xiamen University Affiliated Cardiovascular Hospital
| | - Zhiyuan Lin
- Center for Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian, China
| |
Collapse
|
15
|
Ahn MY, Ham SA, Yoo T, Lee WJ, Hwang JS, Paek KS, Lim DS, Han SG, Lee CH, Seo HG. Ligand-Activated Peroxisome Proliferator-Activated Receptor δ Attenuates Vascular Oxidative Stress by Inhibiting Thrombospondin-1 Expression. J Vasc Res 2018; 55:75-86. [PMID: 29408825 DOI: 10.1159/000486570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is implicated in vascular diseases associated with oxidative stress, such as abdominal aortic aneurysms, ischemia-reperfusion injury, and atherosclerosis. However, the regulatory mechanisms underlying TSP-1 expression are not fully elucidated. In this study, we found that peroxisome proliferator-activated receptor δ (PPARδ) inhibited oxidative stress-induced TSP-1 expression and migration in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated hydrogen peroxide (H2O2)-induced expression of TSP-1 in VSMCs. Small interfering RNA-mediated knockdown of PPARδ and treatment with GSK0660, a selective PPARδ antagonist, reversed the effect of GW501516 on H2O2-induced expression of TSP-1, suggesting that PPARδ is associated with GW501516 activity. Furthermore, JNK (c-Jun N-terminal kinase), but not p38 and ERK (extracellular signal-regulated kinase), mediated PPARδ-dependent inhibition of TSP-1 expression in VSMCs exposed to H2O2. GW501516- activated PPARδ also reduced the H2O2-induced generation of reactive oxygen species, concomitant with inhibition of VSMC migration. In particular, TSP-1 contributed to the action of PPARδ in the regulation of H2O2-induced interleukin-1β expression. These results suggest that PPARδ-modulated downregulation of TSP-1 is associated with reduced cellular oxidative stress, thereby inhibiting H2O2-induced pheno-typic changes in vascular cells.
Collapse
Affiliation(s)
- Min Young Ahn
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Sun Ah Ham
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Taesik Yoo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, Jechon, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sung Gu Han
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chi-Ho Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Tabrez S, Jabir NR, Firoz CK, Hindawi S, Shakil S, Damanhouri GA, Zaidi SK. Estimation of Interleukin-1β Promoter (−31 C/T and −511 T/C) Polymorphisms and Its Level in Coronary Artery Disease Patients. J Cell Biochem 2017; 118:2977-2982. [DOI: 10.1002/jcb.25958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Nasimudeen R. Jabir
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Chelapram K. Firoz
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Salwa Hindawi
- Faculty of Medicine; Department of Hematology; King Abdulaziz University Hospital; Jeddah Saudi Arabia
| | - Shazi Shakil
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
- Faculty of Applied Medical Sciences; Department of Medical Laboratory Technology; King Abdulaziz University; Jeddah Saudi Arabia
| | - Ghazi A. Damanhouri
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
17
|
Smith RW, Coleman JD, Thompson JT, Vanden Heuvel JP. Therapeutic potential of GW501516 and the role of Peroxisome proliferator-activated receptor β/δ and B-cell lymphoma 6 in inflammatory signaling in human pancreatic cancer cells. Biochem Biophys Rep 2016; 8:395-402. [PMID: 28955982 PMCID: PMC5614479 DOI: 10.1016/j.bbrep.2016.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor that is involved in the regulation of the inflammatory response via activation of anti-inflammatory target genes and ligand-induced disassociation with the transcriptional repressor B-cell lymphoma 6 (BCL6). Chronic pancreatitis is considered to be a significant etiological factor for pancreatic cancer development, and a better understanding of the underlying mechanisms of the transition between inflammation and carcinogenesis would help further elucidate chemopreventative options. The aim of this study was to determine the role of PPARβ/δ and BCL6 in human pancreatic cancer of ductal origin, as well as the therapeutic potential of PPARβ/δ agonist, GW501516. Over-expression of PPARβ/δ inhibited basal and TNFα-induced Nfkb luciferase activity. GW501516-activated PPARβ/δ suppressed TNFα-induced Nfkb reporter activity. RNAi knockdown of Pparb attenuated the GW501516 effect on Nfkb luciferase, while knockdown of Bcl6 enhanced TNFα-induced Nfkb activity. PPARβ/δ activation induced expression of several anti-inflammatory genes in a dose-dependent manner, and GW501516 inhibited Mcp1 promoter-driven luciferase in a BCL6-dependent manner. Several pro-inflammatory genes were suppressed in a BCL6-dependent manner. Conditioned media from GW501516-treated pancreatic cancer cells suppressed pro-inflammatory expression in THP-1 macrophages as well as reduced invasiveness across a basement membrane. These results demonstrate that PPARβ/δ and BCL6 regulate anti-inflammatory signaling in human pancreatic cancer cells by inhibiting NFκB and pro-inflammatory gene expression, and via induction of anti-inflammatory target genes. Activation of PPARβ/δ may be a useful target in pancreatic cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - John P. Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, United States
| |
Collapse
|
18
|
Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Lee CH, Seo HG. Sirtuin 1 Mediates the Actions of Peroxisome Proliferator-Activated Receptor δ on the Oxidized Low-Density Lipoprotein-Triggered Migration and Proliferation of Vascular Smooth Muscle Cells. Mol Pharmacol 2016; 90:522-529. [PMID: 27573670 DOI: 10.1124/mol.116.104679] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) has been implicated in vascular pathophysiology. However, its functions in atherogenic changes of the vascular wall have not been fully elucidated. PPARδ activated by GW501516 (2-[2-methyl-4-[[4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl]methylsulfanyl]phenoxy]acetic acid) significantly inhibited the migration and proliferation of vascular smooth muscle cells (VSMCs) triggered by oxidized low-density lipoprotein (oxLDL). These GW501516-mediated effects were significantly reversed by PPARδ-targeting small-interfering RNA (siRNA), indicating that PPARδ is involved in the action of GW501516. The antiproliferative effect of GW501516 was directly linked to cell cycle arrest at the G0/G1 to S phase transition, which was followed by the down-regulation of cyclin-dependent kinase 4 along with increased levels of p21 and p53. In VSMCs treated with GW501516, the expression of sirtuin 1 (SIRT1) mRNA and protein was time-dependently increased. This GW501516-mediated up-regulation of SIRT1 expression was also demonstrated even in the presence of oxLDL. In addition, GW501516-dependent inhibition of oxLDL-triggered migration and proliferation of VSMCs was almost completely abolished in the presence of SIRT1-targeting siRNA. These effects of GW501516 on oxLDL-triggered phenotypic changes of VSMCs were also demonstrated via activation or inhibition of SIRT1 activity by resveratrol or sirtinol, respectively. Finally, gain or loss of SIRT1 function imitated the action of PPARδ on oxLDL-triggered migration and proliferation of VSMCs. Taken together, these observations indicate that PPARδ-dependent up-regulation of SIRT1 contributes to the antiatherogenic activities of PPARδ by suppressing the migration and proliferation of VSMCs linked to vascular diseases such as restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Sun Ah Ham
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Taesik Yoo
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Won Jin Lee
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Kyung Shin Paek
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Chi-Ho Lee
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| | - Han Geuk Seo
- College of Animal Bioscience and Technology, Konkuk University, Seoul (J.S.H., S.A.H., T.Y., W.J.L., C.-H.L., H.G.S.); Department of Nursing, Semyung University, Jecheon (K.S.P.), South Korea
| |
Collapse
|
19
|
Miyazaki R, Hoka S. Thiamylal sodium increased inflammation and the proliferation of vascular smooth muscle cells. Korean J Anesthesiol 2016; 69:262-9. [PMID: 27274372 PMCID: PMC4891539 DOI: 10.4097/kjae.2016.69.3.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Thiamylal sodium is a common anesthetic barbiturate prepared in alkaline solution for clinical use. There is no previously reported study on the effects of barbiturates on the inflammation and proliferation of vascular smooth muscle cells (VSMCs). Here, we examined the effects of clinical-grade thiamylal sodium solution (TSS) on the inflammation and proliferation of rat VSMCs. Methods Expression levels of interleukin (IL)-1α, IL-1β, IL-6, and toll-like receptors in rat VSMCs were detected by quantitative reverse transcription-polymerase chain reaction and microarray analyses. The production of IL-6 by cultured VSMCs or ex vivo-cultured rat aortic segments was detected in supernatants by enzyme-linked immunosorbent assay. VSMC proliferation and viability were determined by the water-soluble tetrazolium-1 assay and trypan blue staining, respectively. Results TSS increased expression of IL-1α, IL-6, and TLR4 in VSMCs in a dose-dependent manner, and reduced IL-1β expression. Ex vivo TSS stimulation of rat aorta also increased IL-6. Low concentrations of TSS enhanced VSMC proliferation, while high concentrations reduced both cell proliferation and viability. Expression of IL-1 receptor antagonist, which regulates cell proliferation, was not increased by TSS stimulation. Exposure of cells to the TSS additive, sodium carbonate, resulted in significant upregulation of IL-1α and IL-6 mRNA levels, to a greater extent than TSS. Conclusions TSS-induced proinflammatory cytokine production by VSMCs is caused by sodium carbonate. However, pure thiamylal sodium has an anti-inflammatory effect in VSMCs. TSS exposure to VSMCs may promote vascular inflammation, leading to the progression of atherosclerosis or in-stent restenosis, resulting in vessel bypass graft failure.
Collapse
Affiliation(s)
- Ryohei Miyazaki
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Sumio Hoka
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Feng M, Sun T, Zhao Y, Zhang H. Detection of Serum Interleukin-6/10/18 Levels in Sepsis and Its Clinical Significance. J Clin Lab Anal 2016; 30:1037-1043. [PMID: 27184083 DOI: 10.1002/jcla.21977] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/04/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To explore the clinical significance of serum levels of IL-6/10/18 in sepsis. METHODS Sixty-six patients with sepsis were selected to be the case group. Additionally, 42 healthy adults were selected to be the control group. ELISA was used to measure the serum levels of IL-6/10/18, and ROC was utilized to evaluate the diagnostic values of IL-6/10/18 in sepsis. RESULTS The heart rate, respiratory rate, WBC count and APACHE II score in the sepsis group were significantly higher than those in the control group, and these indexes were increased in turn in the mild sepsis group, severe sepsis group, and septic shock group (all P < 0.05 after correction). The serum IL-6/18 levels in sepsis patients were significantly higher than those in the control group, and both of the levels were increased in turn in the mild sepsis group, severe sepsis group, and septic shock group (both P < 0.05). However, no significant difference was found in serum IL-10 level between groups (P > 0.05). The cut-off points of IL-6 and IL-18 were 109.19 pg/ml (sensitivity: 94.4%; specificity: 83.3%) and 116.01 pg/ml (sensitivity: 77.8%; specificity: 83.3%), respectively. Serum IL-6 levels were positively correlated with the APACHE II score and heart rate (both P < 0.001). CONCLUSION Serum levels of IL-6/8 are up-regulated in sepsis patients. Additionally, IL-6 has a greater sensitivity than IL-18. Serum IL-6 levels were positively correlated with the APACHE II score and heart rate, indicating that IL-6 could be used as a potential biomarker for sepsis.
Collapse
Affiliation(s)
- Mingchen Feng
- Department of Intensive Medicine, Jining NO. 1 People's Hospital, Jining, China
| | - Tingting Sun
- Department of Operation Room, Jining NO.1 People's Hospital, Jining, China
| | - Yaxin Zhao
- Department of Pharmacy, Jining NO.1 People's Hospital, Jining, China
| | - Hui Zhang
- Department of Intensive Medicine, Jining NO. 1 People's Hospital, Jining, China.
| |
Collapse
|
21
|
Cero FT, Hillestad V, Sjaastad I, Yndestad A, Aukrust P, Ranheim T, Lunde IG, Olsen MB, Lien E, Zhang L, Haugstad SB, Løberg EM, Christensen G, Larsen KO, Skjønsberg OH. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L378-87. [PMID: 26071556 DOI: 10.1152/ajplung.00342.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Fadila Telarevic Cero
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway;
| | - Vigdis Hillestad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Trine Ranheim
- Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Maria Belland Olsen
- Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Egil Lien
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; Centre of Inflammation Research, Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Solveig Bjærum Haugstad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Else Marit Løberg
- Department of Pathology, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Karl-Otto Larsen
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Center for Heart Failure Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | - Ole Henning Skjønsberg
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Wawrzyniak M, Pich C, Gross B, Schütz F, Fleury S, Quemener S, Sgandurra M, Bouchaert E, Moret C, Mury L, Rommens C, Mottaz H, Dombrowicz D, Michalik L. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. J Allergy Clin Immunol 2015; 135:1625-35.e5. [DOI: 10.1016/j.jaci.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
|
23
|
Barlaka E, Görbe A, Gáspár R, Pálóczi J, Ferdinandy P, Lazou A. Activation of PPARβ/δ protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases. Pharmacol Res 2015; 95-96:102-10. [PMID: 25828396 DOI: 10.1016/j.phrs.2015.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/15/2015] [Accepted: 03/15/2015] [Indexed: 01/26/2023]
Abstract
Heart failure still remains one of the leading causes of morbidity and mortality worldwide. A major contributing factor is reactive oxygen/nitrogen species (RONS) overproduction which is associated with cardiac remodeling partly through cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily and have been implicated in cardioprotection. However, the molecular mechanisms are largely unexplored. In this study we sought to investigate the potential beneficial effects evoked by activation of PPARβ/δ under the setting of oxidative stress induced by H2O2 in adult rat cardiac myocytes. The selective PPARβ/δ agonist GW0742 inhibited the H2O2-induced apoptosis and increased cell viability. In addition, generation of RONS was attenuated in cardiac myocytes in the presence of PPARβ/δ agonist. These effects were abolished in the presence of the PPARβ/δ antagonist indicating that the effect was through PPARβ/δ receptor activation. Treatment with PPARβ/δ agonist was also associated with attenuation of caspase-3 and PARP cleavage, upregulation of anti-apoptotic Bcl-2 and concomitant downregulation of pro-apoptotic Bax. In addition, activation of PPARβ/δ inhibited the oxidative-stress-induced MMP-2 and MMP-9 mRNA upregulation. It is concluded that PPARβ/δ activation exerts a cytoprotective effect in adult rat cardiac myocytes subjected to oxidative stress via inhibition of oxidative stress, MMP expression, and apoptosis. Our data suggest that the novel connection between PPAR signaling and MMP down-regulation in cardiac myocytes might represent a new target for the management of oxidative stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Eleftheria Barlaka
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Greece
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Renáta Gáspár
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - János Pálóczi
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
24
|
Hwang JS, Eun SY, Ham SA, Yoo T, Lee WJ, Paek KS, Do JT, Lim DS, Seo HG. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. Int J Biochem Cell Biol 2015; 62:54-61. [PMID: 25732738 DOI: 10.1016/j.biocel.2015.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022]
Abstract
The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - So Young Eun
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Sun Ah Ham
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Taesik Yoo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Won Jin Lee
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Dae-Seog Lim
- Department of Applied Bioscience, CHA University, 355 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 463-400, Republic of Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
25
|
Ham SA, Lee H, Hwang JS, Kang ES, Yoo T, Paek KS, Do JT, Park C, Oh JW, Kim JH, Han CW, Seo HG. Activation of Peroxisome Proliferator-Activated Receptor δ Inhibits Angiotensin II-Induced Activation of Matrix Metalloproteinase-2 in Vascular Smooth Muscle Cells. J Vasc Res 2014; 51:221-30. [DOI: 10.1159/000365250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 06/07/2014] [Indexed: 11/19/2022] Open
|
26
|
IL-1Ra selectively protects intestinal crypt epithelial cells, but not tumor cells, from chemotoxicity via p53-mediated upregulation of p21WAF1 and p27KIP1. Pharmacol Res 2014; 82:21-33. [DOI: 10.1016/j.phrs.2014.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/27/2022]
|
27
|
Bojic LA, Burke AC, Chhoker SS, Telford DE, Sutherland BG, Edwards JY, Sawyez CG, Tirona RG, Yin H, Pickering JG, Huff MW. Peroxisome Proliferator–Activated Receptor δ Agonist GW1516 Attenuates Diet-Induced Aortic Inflammation, Insulin Resistance, and Atherosclerosis in Low-Density Lipoprotein Receptor Knockout Mice. Arterioscler Thromb Vasc Biol 2014; 34:52-60. [DOI: 10.1161/atvbaha.113.301830] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective—
The peroxisome proliferator–activated receptor (PPAR) δ regulates systemic lipid homeostasis and inflammation. However, the ability of PPARδ agonists to improve the pathology of pre-established lesions and whether PPARδ activation is atheroprotective in the setting of insulin resistance have not been reported. Here, we examine whether intervention with a selective PPARδ agonist corrects metabolic dysregulation and attenuates aortic inflammation and atherosclerosis.
Approach and Results—
Low-density lipoprotein receptor knockout mice were fed a chow or a high-fat, high-cholesterol (HFHC) diet (42% fat, 0.2% cholesterol) for 4 weeks. For a further 8 weeks, the HFHC group was fed either HFHC or HFHC plus GW1516 (3 mg/kg per day). GW1516 significantly attenuated pre-established fasting hyperlipidemia, hyperglycemia, and hyperinsulinemia, as well as glucose and insulin intolerance. GW1516 intervention markedly reduced aortic sinus lesions and lesion macrophages, whereas smooth muscle α-actin was unchanged and collagen deposition enhanced. In aortae, GW1516 increased the expression of the PPARδ-specific gene
Adfp
but not PPARα- or γ-specific genes. GW1516 intervention decreased the expression of aortic proinflammatory M1 cytokines, increased the expression of the anti-inflammatory M2 cytokine
Arg1
, and attenuated the
iNos
/
Arg1
ratio. Enhanced mitogen-activated protein kinase signaling, known to induce inflammatory cytokine expression in vitro, was enhanced in aortae of HFHC-fed mice. Furthermore, the HFHC diet impaired aortic insulin signaling through Akt and forkhead box O1, which was associated with elevated endoplasmic reticulum stress markers CCAAT-enhancer-binding protein homologous protein and 78kDa glucose regulated protein. GW1516 intervention normalized mitogen-activated protein kinase activation, insulin signaling, and endoplasmic reticulum stress.
Conclusions—
Intervention with a PPARδ agonist inhibits aortic inflammation and attenuates the progression of pre-established atherosclerosis.
Collapse
Affiliation(s)
- Lazar A. Bojic
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Amy C. Burke
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Sanjiv S. Chhoker
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Dawn E. Telford
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Brian G. Sutherland
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Jane Y. Edwards
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Cynthia G. Sawyez
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Rommel G. Tirona
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Hao Yin
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - J. Geoffrey Pickering
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| | - Murray W. Huff
- From the Department of Vascular Biology, Robarts Research Institute (L.A.B., A.C.B., S.S.C., D.E.T., B.G.S., J.Y.E., C.G.S., H.Y., J.G.P., M.W.H.), London, Ontario, Canada; and Departments of Biochemistry (L.A.B., A.C.B., S.S.C., J.G.P., M.W.H.), Medicine (D.E.T., J.Y.E., C.G.S., R.G.T., J.G.P., M.W.H.), and Physiology and Pharmacology (R.G.T.), The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Ding Y, Yang KD, Yang Q. The role of PPARδ signaling in the cardiovascular system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:451-73. [PMID: 24373246 DOI: 10.1016/b978-0-12-800101-1.00014-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARα, β/δ, and γ), members of the nuclear receptor transcription factor superfamily, play important roles in the regulation of metabolism, inflammation, and cell differentiation. All three PPAR subtypes are expressed in the cardiovascular system with various expression patterns. Among the three PPAR subtypes, PPARδ is the least studied but has arisen as a potential therapeutic target for cardiovascular and many other diseases. It is known that PPARδ is ubiquitously expressed and abundantly expressed in cardiomyocytes. Accumulated evidence illustrates the role of PPARδ in regulating cardiovascular function and determining pathological progression. In this chapter, we will discuss the current knowledge in the role of PPARδ in the cardiovascular system, the mechanistic insights, and the potential therapeutic utilization for treating cardiovascular disease.
Collapse
Affiliation(s)
- Yishu Ding
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin D Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
29
|
Cheang WS, Fang X, Tian XY. Pleiotropic effects of peroxisome proliferator-activated receptor γ and δ in vascular diseases. Circ J 2013; 77:2664-71. [PMID: 24107399 DOI: 10.1253/circj.cj-13-0647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptors gamma (PPARγ) and delta (PPARδ) are nuclear receptors that have significant physiological effects on glucose and lipid metabolism. Experimental studies in animal models of metabolic disease have demonstrated their effects on improving lipid profile, insulin sensitivity, and reducing inflammatory responses. PPARγ and -δ are also expressed in the vasculature and their beneficial effects have been examined in various cardiovascular disease models such as atherosclerosis, hypertension, diabetic vascular complications, etc. using pharmacological ligands or genetic tools including viral vectors and transgenic mice. These studies suggest that PPARγ and δ are antiinflammatory, antiatherogenic, antioxidant, and antifibrotic against vascular diseases. Several signaling pathways, effector molecules, as well as coactivators/repressors have been identified as responsible for the protective effects of PPARγ and -δ in the vasculature. We discuss the pleiotropic effect of PPARγ and δ in vascular dysfunction, including atherosclerosis, hypertension, vascular remodeling, vascular injury, and diabetic vasculopathy, in various animal models, and the major underlying mechanisms. We also compare the phenotypes of several endothelial cell/vascular smooth muscle-specific PPARγ and -δ knockout and overexpressing transgenic mice in various disease models, and the implications underlying the functional importance of vascular PPARγ and δ in regulating whole-body homeostasis.
Collapse
Affiliation(s)
- Wai San Cheang
- Institute of Vascular Medicine and School of Biomedical Sciences, Chinese University of Hong Kong
| | | | | |
Collapse
|
30
|
Hamaya R, Ogawa M, Suzuki JI, Kobayashi N, Hirata Y, Nagai R, Komuro I, Isobe M. A selective peroxisome proliferator-activated receptor-β/δ agonist attenuates neointimal hyperplasia after wire-mediated arterial injury. Expert Opin Investig Drugs 2013; 22:1095-106. [DOI: 10.1517/13543784.2013.820702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Role of Peroxisome Proliferator-Activated Receptor β/δ and B-Cell Lymphoma-6 in Regulation of Genes Involved in Metastasis and Migration in Pancreatic Cancer Cells. PPAR Res 2013; 2013:121956. [PMID: 23737761 PMCID: PMC3659435 DOI: 10.1155/2013/121956] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 04/07/2013] [Indexed: 12/19/2022] Open
Abstract
PPARβ/δ is a ligand-activated transcription factor that regulates various cellular functions via induction of target genes directly or in concert with its associated transcriptional repressor, BCL-6. Matrix remodeling proteinases are frequently over-expressed in pancreatic cancer and are involved with metastasis. The present study tested the hypothesis that PPARβ/δ is expressed in human pancreatic cancer cells and that its activation could regulate MMP-9, decreasing cancer cells ability to transverse the basement membrane. In human pancreatic cancer tissue there was significantly higher expression of MMP-9 and PPARβ/δ, and lower levels of BCL-6 mRNA. PPARβ/δ activation reduced the TNF α -induced expression of various genes implicated in metastasis and reduced the invasion through a basement membrane in cell culture models. Through the use of short hairpin RNA inhibitors of PPARβ/δ, BCL-6, and MMP-9, it was evident that PPARβ/δ was responsible for the ligand-dependent effects whereas BCL-6 dissociation upon GW501516 treatment was ultimately responsible for decreasing MMP-9 expression and hence invasion activity. These results suggest that PPARβ/δ plays a role in regulating pancreatic cancer cell invasion through regulation of genes via ligand-dependent release of BCL-6 and that activation of the receptor may provide an alternative therapeutic method for controlling migration and metastasis.
Collapse
|
32
|
Sung HJ, Son SJ, Yang SJ, Rhee KJ, Kim YS. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase. BMB Rep 2012; 45:414-8. [PMID: 22831977 DOI: 10.5483/bmbrep.2012.45.7.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.
Collapse
Affiliation(s)
- Ho Joong Sung
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Gyeongi-Do, Korea
| | | | | | | | | |
Collapse
|
33
|
Associations between interleukin-1 gene polymorphisms and coronary heart disease risk: a meta-analysis. PLoS One 2012; 7:e45641. [PMID: 23029154 PMCID: PMC3446929 DOI: 10.1371/journal.pone.0045641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/22/2012] [Indexed: 11/20/2022] Open
Abstract
Objective A great number of studies regarding the associations between IL-1B-511, IL-1B+3954 and IL-1RN VNTR polymorphisms within the IL-1gene cluster and coronary heart disease (CHD) have been published. However, results have been inconsistent. In this study, a meta-analysis was performed to investigate the associations. Methods Published literature from PubMed and Embase databases were searched for eligible publications. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using random- or fixed- effect model. Results Thirteen studies (3,219 cases/2,445 controls) for IL-1B-511 polymorphism, nine studies (1,828 cases/1,818 controls) for IL-1B+3954 polymorphism and twelve studies (2,987 cases/ 2,208 controls) for IL-1RN VNTR polymorphism were included in this meta analysis. The results indicated that both IL-1B-511 and IL-1B+3954 polymorphisms were not associated with CHD risk (IL-1B-511 T vs. C: OR = 0.98, 95%CI 0.87–1.09; IL-1B+3954 T vs. C: OR = 1.06, 95%CI 0.95–1.19). Similarly, there was no association between IL-1RN VNTR polymorphism and CHD risk (*2 vs. L: OR = 1.00, 95%CI 0.85–1.17). Conclusions This meta-analysis suggested that there were no associations between IL-1 gene cluster polymorphisms and CHD.
Collapse
|
34
|
Lee H, Ham SA, Kim MY, Kim JH, Paek KS, Kang ES, Kim HJ, Hwang JS, Yoo T, Park C, Kim JH, Lim DS, Han CW, Seo HG. Activation of PPARδ counteracts angiotensin II-induced ROS generation by inhibiting rac1 translocation in vascular smooth muscle cells. Free Radic Res 2012; 46:912-9. [PMID: 22519881 DOI: 10.3109/10715762.2012.687448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Taube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 302:H2148-65. [PMID: 22447947 DOI: 10.1152/ajpheart.00907.2011] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abdominal obesity is a major risk factor for cardiovascular disease, and recent studies highlight a key role of adipose tissue dysfunction, inflammation, and aberrant adipokine release in this process. An increased demand for lipid storage results in both hyperplasia and hypertrophy, finally leading to chronic inflammation, hypoxia, and a phenotypic change of the cellular components of adipose tissue, collectively leading to a substantially altered secretory output of adipose tissue. In this review we have assessed the adipo-vascular axis, and an overview of adipokines associated with cardiovascular disease is provided. This resulted in a first list of more than 30 adipokines. A deeper analysis only considered adipokines that have been reported to impact on inflammation and NF-κB activation in the vasculature. Out of these, the most prominent link to cardiovascular disease was found for leptin, TNF-α, adipocyte fatty acid-binding protein, interleukins, and several novel adipokines such as lipocalin-2 and pigment epithelium-derived factor. Future work will need to address the potential role of these molecules as biomarkers and/or drug targets.
Collapse
Affiliation(s)
- Annika Taube
- Paul Langerhans Group, German Diabetes Center, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
36
|
Lawrie A, Hameed AG, Chamberlain J, Arnold N, Kennerley A, Hopkinson K, Pickworth J, Kiely DG, Crossman DC, Francis SE. Paigen diet-fed apolipoprotein E knockout mice develop severe pulmonary hypertension in an interleukin-1-dependent manner. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1693-705. [PMID: 21835155 DOI: 10.1016/j.ajpath.2011.06.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/31/2011] [Accepted: 06/08/2011] [Indexed: 12/20/2022]
Abstract
Inflammatory mechanisms are proposed to play a significant role in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have described PAH in fat-fed apolipoprotein E knockout (ApoE(-/-)) mice. We have reported that signaling in interleukin-1-receptor-knockout (IL-1R1(-/-)) mice leads to a reduction in diet-induced systemic atherosclerosis. We subsequently hypothesized that double-null (ApoE(-/-)/IL-1R1(-/-)) mice would show a reduced PAH phenotype compared with that of ApoE(-/-) mice. Male IL-1R1(-/-), ApoE(-/-), and ApoE(-/-)/IL-1R1(-/-) mice were fed regular chow or a high-fat diet (Paigen diet) for 8 weeks before phenotyping for PAH. No abnormal phenotype was observed in the IL-1R1(-/-) mice. Fat-fed ApoE(-/-) mice developed significantly increased right ventricular systolic pressure and substantial pulmonary vascular remodeling. Surprisingly, ApoE(-/-)/IL-1R1(-/-) mice showed an even more severe PAH phenotype. Further molecular investigation revealed the expression of a putative, alternatively primed IL-1R1 transcript expressed within the lungs but not aorta of ApoE(-/-)/IL-1R1(-/-) mice. Treatment of ApoE(-/-) and ApoE(-/-)/IL-1R1(-/-) mice with IL-1-receptor antagonist prevented progression of the PAH phenotype in both strains. Blocking IL-1 signaling may have beneficial effects in treating PAH, and alternative IL-1-receptor signaling in the lung may be important in driving PAH pathogenesis.
Collapse
Affiliation(s)
- Allan Lawrie
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The peroxisome proliferator-activated receptors (PPARs) and the retinoid X receptors (RXRs) are ligand-activated transcription factors that coordinately regulate gene expression. This PPAR-RXR transcriptional complex plays a critical role in energy balance, including triglyceride metabolism, fatty acid handling and storage, and glucose homeostasis: processes whose dysregulation characterize obesity, diabetes, and atherosclerosis. PPARs and RXRs are also involved directly in inflammatory and vascular responses in endothelial and vascular smooth muscle cells. New insights into fundamental aspects of PPAR and RXR biology, and their actions in the vasculature, continue to appear. Although RXRs are obligate heterodimeric partners for PPAR action, the part that RXRs, and their endogenous retinoid mediators, exert in the vessel wall is less well understood. Biological insights into PPAR-RXRs may help inform interpretation of clinical trials with synthetic PPAR agonists and prospects for future PPAR therapeutics. Importantly, the extensive data establishing a key role for PPARs and RXRs in energy balance, inflammation, and vascular biology stands separately from the clinical experience with any given synthetic PPAR agonist. Both the basic science data and the clinical experience with PPAR agonists identify the need to better understand these important transcriptional regulators.
Collapse
Affiliation(s)
- Jorge Plutzky
- From Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
38
|
van Bilsen M, van Nieuwenhoven FA. PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets 2011; 14:1029-45. [PMID: 20854178 DOI: 10.1517/14728222.2010.512917] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD The role of peroxisome proliferator-activated receptors PPARα, PPARδ and PPARγ in cardiovascular disease is receiving widespread attention. As ligand-activated nuclear receptors, they play a role in regulation of lipid and glucose metabolism. This feature of the PPARs has been successfully exploited to treat systemic metabolic diseases, like hyperlipidemia and type-2 diabetes. Indirectly, their lipid lowering effect also leads to a reduction of the risk for cardiovascular diseases, primarily atherosclerosis. AREAS COVERED IN THIS REVIEW The pleiotropic effects of each of the PPAR isotypes on vascular and cardiac disease are discussed, with special emphasis on the molecular mechanism of action and on preclinical observations. The mechanism underlying the beneficial effect of PPARs is not confined to whole body metabolism, but also includes modulation of other vital processes, such as inflammation and cell fate (proliferation, differentiation, apoptosis). WHAT THE READER WILL GAIN A large body of preclinical studies indicates that, in addition to their effect on atherogenesis, PPAR ligands also impact on ischemic heart disease and the development of cardiac failure. It remains to be established to what extent these intriguing observations can be translated into clinical practice. TAKE HOME MESSAGE The versatile mechanism of action extends the potential therapeutic profile of the PPARs enormously. Conversely, this versatility makes it harder to attain a specific therapeutic effect, without increasing the risk of undesirable side effects. The future challenge will be to design PPAR-based therapeutic strategies that minimize the detrimental side effects.
Collapse
Affiliation(s)
- Marc van Bilsen
- Maastricht University, Cardiovascular Research Institute Maastricht, Department of Physiology, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|