1
|
Li X, Sim D, Wang Y, Feng S, Longo B, Li G, Andreassen C, Hasturk O, Stout A, Yuen JSK, Cai Y, Sanders E, Sylvia R, Hatz S, Olsen T, Herget T, Chen Y, Kaplan DL. Fiber-based biomaterial scaffolds for cell support towards the production of cultivated meat. Acta Biomater 2025; 191:292-307. [PMID: 39522627 DOI: 10.1016/j.actbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The in vitro production of animal-derived foods via cellular agriculture is emerging as a key solution to global food security challenges. Here, the potential for fiber-based scaffolds, including silk and cotton, in the cultivation of muscle cells for tissue formation was pursued. Mechanical properties and cytocompatibility with the mouse myoblast cell line C2C12 and immortalized bovine muscle satellite cells (iBSCs) were assessed, as well as pre-digestion options for the materials due to their resilience within the human digestive track. The fibers supported cell adhesion, proliferation, and guided muscle cell orientation, facilitating myotube formation per differentiation. A progressive increase in biomass was also documented. Interestingly, iBSC proliferation was enhanced with coatings of recombinant proteins while C2C12 cells showed minimal response. Thus, both cotton and silk yarns were suitable as fiber-based scaffolds towards cell supportive goals, suggesting an alternative path toward structured protein-rich foods via this initial stage of textile engineering for food. Biomass prediction models were generated, enabling forecasts of cell growth and maturation across various scaffold conditions and cell types. This capability enhances the precision of the cultivation process towards an engineering approach, building on the inherent benefits of hierarchical muscle tissue structure, but here via textile engineering with these initial muscle-coated edible fibers. Further, the approach offers to reduce costs by optimizing cultivation time and media needs. These approaches are part of a foundation for future scalable and sustainable cultivated meat production. STATEMENT OF SIGNIFICANCE: This research investigates the use of one-dimensional fiber-based scaffolds for cultivated meat production, contributing to advancements in cellular agriculture. It introduces a method to measure changes in biomass and scaffold degradation throughout the cultivation process. Additionally, our development of biomass prediction models improves the precision and predictability of cultivated meat production. This research not only aids in scaling up cultivated meats but also enhances the use of textile engineering techniques in tissue engineering, paving the way for producing complex, three-dimensional meat structures more sustainably.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Davin Sim
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Shuo Feng
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brooke Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Christel Andreassen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Andrew Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yixin Cai
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ella Sanders
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Sonja Hatz
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Timothy Olsen
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Thomas Herget
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| |
Collapse
|
2
|
Zhong W, Chen J, Xie Q, Cheng W, Zhao M, Sun Y, Dai J, Zhang J. A Novel UBM/SIS Composite Biological Scaffold for 2-Year Abdominal Defect Repairing and Strength Recovery in Canine Model. Adv Biol (Weinh) 2025; 9:e2400131. [PMID: 39542874 DOI: 10.1002/adbi.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/21/2024] [Indexed: 11/17/2024]
Abstract
Biological scaffolds are widely utilized in hernia treatment due to their exceptional pro-regenerative properties, which mitigate scar formation. However, serious complications occurred, caused by inflammatory response, premature degradation, and mechanical failure. Consequently, improvements of the biological scaffold are necessary to mitigate these risks. In this study, a novel biological scaffold integrating basement membrane-containing urinary bladder matrix (UBM) and small intestinal submucosa (SIS) is developed, and its safety and effectiveness are assessed in comparison to a commercial SIS (c-SIS) scaffold. The introduction of UBM as top surface layers significantly promotes cell adhesion, facilitating rapid formation of isolated regeneration zone. Proteomic analysis has demonstrated a more efficient decellularization of the UBM/SIS scaffold, which subsequently mitigates inflammation in murine models, and promotes the polarization of macrophages toward the pro-healing M2 phenotype in a rat model of abdominal wall muscle defect. Furthermore, a two-year repair trial is conducted on a full-thickness abdominal wall muscle defect in canine model and confirmed that the UBM/SIS scaffold exhibits reduced seroma occurrences and enhanced tissue repair performances. Overall, the efficacy of this novel biological scaffold suggests its potential to minimize hernia recurrence in clinical practice and mitigate patient suffering from severe inflammatory responses.
Collapse
Affiliation(s)
- Weidong Zhong
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Department of Gastrointestinal Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, 214400, China
| | - Jinshui Chen
- Department of General Surgery, The 991st Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang, Hubei, 441003, China
| | - Qifeng Xie
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wenyue Cheng
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Meibiao Zhao
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yang Sun
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jing Dai
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jian Zhang
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
3
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Klabukov I, Smirnova A, Yakimova A, Kabakov AE, Atiakshin D, Petrenko D, Shestakova VA, Sulina Y, Yatsenko E, Stepanenko VN, Ignatyuk M, Evstratova E, Krasheninnikov M, Sosin D, Baranovskii D, Ivanov S, Shegay P, Kaprin AD. Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:437-453. [DOI: 10.3390/jmp5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence cell differentiation and proliferation through specific mechanisms of chemical and mechanical sensing. The development of body tissues during ontogenesis is accompanied by changes not only in cells but also in the composition and properties of the extracellular matrix. Similarly, tumor development in carcinogenesis is accompanied by a continuous change in the properties of the extracellular matrix of tumor cells, called ‘oncomatrix’, as the tumor matures, from the development of the primary focus to the stage of metastasis. In this paper, the characteristics of the composition and properties of the extracellular matrix of tumor tissues are considered, as well as changes to the composition and properties of the matrix during the evolution of the tumor and metastasis. The extracellular matrix patterns of tumor tissues can be used as biomarkers of oncological diseases as well as potential targets for promising anti-tumor therapies.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Smirnova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Petrenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Victoria A. Shestakova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Vasiliy N. Stepanenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Michael Krasheninnikov
- Scientific and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry Sosin
- Center for Strategic Planning and Management of Medical and Biological Health Risks of the FMBA of Russia, 119121 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergey Ivanov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
5
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
6
|
Li J, Xu Y, Quan Y, He Y, Lu F, Gao J, Yao Y, Liao Y. Type IV Collagen Promotes Adipogenic Differentiation of Adipose Stem Cells. Aesthetic Plast Surg 2024; 48:2536-2544. [PMID: 38538770 DOI: 10.1007/s00266-024-03890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/30/2024] [Indexed: 07/13/2024]
Abstract
Type IV collagen is a major component of the extracellular matrix in adipose tissue. It is secreted during the lipogenic differentiation of mesenchymal stem cells, but its direct impact and mechanism on the differentiation of adipose-derived stem cells (ASCs) into lipids are unclear. In this study, ASCs were obtained from human liposuction samples and cultured. Lipogenic induction of ASCs was achieved using lipogenic induction medium. Immunofluorescence analysis revealed differential expression of type IV collagen during the early and late stages of adipogenic induction, displaying a distinct morphological encapsulation of ASCs. Silencing of type IV collagen using siRNA resulted in a significant decrease in adipogenic capacity, as indicated by reduced lipid droplet formation and downregulation of adipogenic-related gene transcription. Conversely, supplementation of the culture medium with synthetic type IV collagen demonstrated enhanced adipogenic induction efficiency, accompanied by upregulation of YAP/TAZ protein expression and its downstream target gene transcription. Furthermore, inhibition of the YAP/TAZ pathway using the inhibitor Blebbistatin attenuated the functionality of type IV collagen, leading to decreased lipid droplet formation and downregulation of adipocyte maturation-related gene expression. These findings highlight the crucial role of type IV collagen in promoting adipogenic differentiation of ASCs and suggest its involvement in the YAP/TAZ-mediated Hippo pathway.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Jian Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yidan Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yuping Quan
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, 350 001, People's Republic of China
| | - Yufei He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Kwon HC, Jung HS, Kothuri V, Han SG. Current status and challenges for cell-cultured milk technology: a systematic review. J Anim Sci Biotechnol 2024; 15:81. [PMID: 38849927 PMCID: PMC11161985 DOI: 10.1186/s40104-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture. While most cellular agriculture is predominantly centered on the production of cultured meat, there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture. This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production. Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture. Currently, various companies synthesize milk components through precision fermentation technology. Nevertheless, several startup companies are pursuing animal cell-based technology, driven by public concerns regarding genetically modified organisms in precision fermentation technology. Hence, this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components, specifically emphasizing the structural, functional, and productive aspects of mammary epithelial cells, providing new information for industry and academia.
Collapse
Affiliation(s)
- Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun Su Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Vahinika Kothuri
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Rekvig OP. SLE: a cognitive step forward-a synthesis of rethinking theories, causality, and ignored DNA structures. Front Immunol 2024; 15:1393814. [PMID: 38895113 PMCID: PMC11183320 DOI: 10.3389/fimmu.2024.1393814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is classified by instinctual classification criteria. A valid proclamation is that these formally accepted SLE classification criteria legitimate the syndrome as being difficult to explain and therefore enigmatic. SLE involves scientific problems linked to etiological factors and criteria. Our insufficient understanding of the clinical condition uniformly denoted SLE depends on the still open question of whether SLE is, according to classification criteria, a well-defined one disease entity or represents a variety of overlapping indistinct syndromes. Without rational hypotheses, these problems harm clear definition(s) of the syndrome. Why SLE is not anchored in logic, consequent, downstream interdependent and interactive inflammatory networks may rely on ignored predictive causality principles. Authoritative classification criteria do not reflect consequent causality criteria and do not unify characterization principles such as diagnostic criteria. We need now to reconcile legendary scientific achievements to concretize the delimitation of what SLE really is. Not all classified SLE syndromes are "genuine SLE"; many are theoretically "SLE-like non-SLE" syndromes. In this study, progressive theories imply imperative challenges to reconsider the fundamental impact of "the causality principle". This may offer us logic classification and diagnostic criteria aimed at identifying concise SLE syndromes as research objects. Can a systems science approach solve this problem?
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
11
|
Czarnowska E, Ratajska A, Jankowska-Steifer E, Flaht-Zabost A, Niderla-Bielińska J. Extracellular matrix molecules associated with lymphatic vessels in health and disease. Histol Histopathol 2024; 39:13-34. [PMID: 37350542 DOI: 10.14670/hh-18-641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Lymphatic vessels (LyVs), responsible for fluid, solute, and immune cell homeostasis in the body, are closely associated with the adjacent extracellular matrix (ECM) molecules whose structural and functional impact on LyVs is currently more appreciated, albeit not entirely elucidated. These molecules, serving as a platform for various connective tissue cell activities and affecting LyV biology should be considered also as an integral part of the lymphatic system. Any alterations and changes in ECM molecules over the course of disease impair the function and structure of the LyV network. Remodeling of LyV cells, which are components of lymphatic vessel walls, also triggers alterations in ECM molecules and interstitial tissue composition. Therefore, in this review we aimed to present the current knowledge on ECM in tissues and particularly on molecules surrounding lymphatics in normal conditions and in disease.
Collapse
Affiliation(s)
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
12
|
Capella-Monsonís H, Cramer M, Turner N, Reing J, Zhang L, Kronengold RT, Bartolacci J, Badylak SF. The composition and mechanical properties of porcine placental ECM from three different breeds. Biomed Phys Eng Express 2023; 9:065012. [PMID: 37725946 DOI: 10.1088/2057-1976/acfb05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Biologic scaffolds are extensively used in various clinical applications such as musculotendinous reconstruction, hernia repair or wound healing. Biologic scaffolds used in these applications vary in species, breed and tissue of origin, and other variables that affect their properties. Decellularization and sterilization processes also determine the characteristics of these scaffolds. The goal of the present study is to compare the composition and mechanical properties of decellularized porcine placental scaffolds from three different porcine breeds: Landrace, York and Duroc. Placental extracellular matrix (ECM) scaffolds from the three porcine breeds preserved the amnion/chorion ECM structure and the basement membrane markers laminin and collagen type IV. ECM placental scaffolds showed similar contents of collagen, elastin and lipids, and minimal differences in glycosaminoglycans content. Mechanical properties from the three breeds ECM placental scaffolds were also similar and stable for 24 months. While this study serves as preliminary characterization of porcine ECM scaffolds, future studies will determine their compatibility and suitability for tissue engineering applications.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Madeline Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Neill Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Janet Reing
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Li Zhang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | | - Joseph Bartolacci
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
13
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
14
|
Cazzola A, Calzón Lozano D, Menne DH, Dávila Pedrera R, Liu J, Peña-Jiménez D, Fontenete S, Halin C, Perez-Moreno M. Lymph Vessels Associate with Cancer Stem Cells from Initiation to Malignant Stages of Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13615. [PMID: 37686421 PMCID: PMC10488284 DOI: 10.3390/ijms241713615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated lymph vessels and lymph node involvement are critical staging criteria in several cancers. In skin squamous cell carcinoma, lymph vessels play a role in cancer development and metastatic spread. However, their relationship with the cancer stem cell niche at early tumor stages remains unclear. To address this gap, we studied the lymph vessel localization at the cancer stem cell niche and observed an association from benign skin lesions to malignant stages of skin squamous cell carcinoma. By co-culturing lymphatic endothelial cells with cancer cell lines representing the initiation and promotion stages, and conducting RNA profiling, we observed a reciprocal induction of cell adhesion, immunity regulation, and vessel remodeling genes, suggesting dynamic interactions between lymphatic and cancer cells. Additionally, imaging analyses of the cultured cells revealed the establishment of heterotypic contacts between cancer cells and lymph endothelial cells, potentially contributing to the observed distribution and maintenance at the cancer stem cell niche, inducing downstream cellular responses. Our data provide evidence for an association of lymph vessels from the early stages of skin squamous cell carcinoma development, opening new avenues for better comprehending their involvement in cancer progression.
Collapse
Affiliation(s)
- Anna Cazzola
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David Calzón Lozano
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dennis Hirsch Menne
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Raquel Dávila Pedrera
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jingcheng Liu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Silvia Fontenete
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
McIntyre DC, Nance J. Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling. Development 2023; 150:dev201640. [PMID: 37497562 PMCID: PMC10445801 DOI: 10.1242/dev.201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
Collapse
Affiliation(s)
- Daniel C. McIntyre
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- University of Virginia, Department of Biology, 90 Geldard Drive, Physical Life Science Building Room 318, Charlottesville, VA 22904, USA
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Lutz M, Levanti M, Karns R, Gourdon G, Lindquist D, Timchenko NA, Timchenko L. Therapeutic Targeting of the GSK3β-CUGBP1 Pathway in Myotonic Dystrophy. Int J Mol Sci 2023; 24:10650. [PMID: 37445828 PMCID: PMC10342152 DOI: 10.3390/ijms241310650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3β-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3β-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3β-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.
Collapse
Affiliation(s)
- Maggie Lutz
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Miranda Levanti
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Rebekah Karns
- Departments of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Genevieve Gourdon
- Sorbonne Université, Inserm, institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France;
| | - Diana Lindquist
- Imagine Research Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Nikolai A. Timchenko
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
- Department of Surgery, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Lubov Timchenko
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| |
Collapse
|
17
|
Song S, Ha AW, Kim W. Quercetin inhibits body weight gain and adipogenesis via matrix metalloproteinases in mice fed a high-fat diet. Nutr Res Pract 2023; 17:438-450. [PMID: 37266112 PMCID: PMC10232201 DOI: 10.4162/nrp.2023.17.3.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Limited studies reported that quercetin inhibited adipogenesis and neovascularization by inhibiting matrix metalloproteinases (MMPs) activity, but such mechanisms have not been elucidated in animal experiments. In this study, we investigated the inhibitory effects of quercetin on weight gain and adipose tissue growth through the regulation of mRNA expressions of adipogenic transcription factors and MMPs in mice fed a high-fat diet (HFD). MATERIALS/METHODS Five-wk-old C57BL/6J mice were fed a normal diet (ND), HFD, HFD containing 0.05% of quercetin (HFQ0.05), or HFD containing 0.15% of quercetin (HFQ0.15) for 16 wks. Glycerol-3-phosphate dehydrogenase (GPDH) activity was measured using a commercial kit. The mRNA expressions of transcription factors related to adipocyte differentiation were determined by real-time polymerase chain reaction (PCR). The mRNA expressions of MMPs and concentrations of MMPs were measured by real-time PCR and enzyme-linked immunosorbent assay kit, respectively. RESULTS Quercetin intake reduced body weight gain and epididymal adipose tissue weights (P < 0.05). GPDH activity was higher in the HFD group than in the ND group but lower in the quercetin groups (P < 0.05). The mRNA expressions of CCAAT/enhancer binding protein β (C/EBPβ), C/EBPα, peroxisome proliferator-activated receptor γ, and fatty acid-binding protein 4 were lower in the quercetin groups than in the HFD group (P < 0.05). Similarly, the mRNA expression and concentrations of MMP-2 and MMP-9 were significantly lower in the quercetin groups than in the HFD group (P < 0.05). CONCLUSION The study confirms that quercetin suppresses body weight gain and adipogenesis by inhibiting transcription factors related to adipocyte differentiation and MMPs (MMP-2 and MMP-9), in mice fed a HFD.
Collapse
Affiliation(s)
- SeungMin Song
- Department of Food Science and Nutrition, Dankook University, Chungnam 31116, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, Chungnam 31116, Korea
| | - WooKyoung Kim
- Department of Food Science and Nutrition, Dankook University, Chungnam 31116, Korea
| |
Collapse
|
18
|
Jain P, Rimal R, Möller M, Singh S. Topographical influence of electrospun basement membrane mimics on formation of cellular monolayer. Sci Rep 2023; 13:8382. [PMID: 37225757 DOI: 10.1038/s41598-023-34934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Functional unit of many organs like lung, kidney, intestine, and eye have their endothelial and epithelial monolayers physically separated by a specialized extracellular matrix called the basement membrane. The intricate and complex topography of this matrix influences cell function, behavior and overall homeostasis. In vitro barrier function replication of such organs requires mimicking of these native features on an artificial scaffold system. Apart from chemical and mechanical features, the choice of nano-scale topography of the artificial scaffold is integral, however its influence on monolayer barrier formation is unclear. Though studies have reported improved single cell adhesion and proliferation in presence of pores or pitted topology, corresponding influence on confluent monolayer formation is not well reported. In this work, basement membrane mimic with secondary topographical cues is developed and its influence on single cells and their monolayers is investigated. We show that single cells cultured on fibers with secondary cues form stronger focal adhesions and undergo increased proliferation. Counterintuitively, absence of secondary cues promoted stronger cell-cell interaction in endothelial monolayers and promoted formation of integral tight barriers in alveolar epithelial monolayers. Overall, this work highlights the importance of choice of scaffold topology to develop basement barrier function in in vitro models.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
20
|
Alghamdi MA, AL-Eitan LN, Tarkhan AH. Integrative analysis of gene expression and DNA methylation to identify biomarkers of non-genital warts induced by low-risk human papillomaviruses infection. Heliyon 2023; 9:e16101. [PMID: 37215908 PMCID: PMC10196596 DOI: 10.1016/j.heliyon.2023.e16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Background Human papillomaviruses have been shown to dysregulate the gene expression and DNA methylation profiles of their host cells over the course of infection. However, there is a lack of information on the impact of low-risk HPV infection and wart formation on host cell's expression and methylation patterns. Therefore, the objective of this study is to analyse the genome and methylome of common warts using an integrative approach. Methods In the present study, gene expression (GSE136347) and methylation (GSE213888) datasets of common warts were obtained from the GEO database. Identification of the differentially expressed and differentially methylated genes was carried out using the RnBeads R package and the edgeR Bioconductor package. Next, functional annotation of the identified genes was obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Network construction and analyses of the gene-gene, protein-protein, and signaling interactions of the differentially expressed and differentially methylated genes was performed using the GeneMANIA web interface, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the Signaling Network Open Resource 2.0 (SIGNOR 2.0), respectively. Lastly, significant hub genes were identified using the Cytoscape application CytoHubba. Results A total of 276 genes were identified as differentially expressed and differentially methylated in common warts, with 52% being upregulated and hypermethylated. Functional enrichment analysis identified extracellular components as the most enriched annotations, while network analyses identified ELN, ITGB1, TIMP1, MMP2, LGALS3, COL1A1 and ANPEP as significant hub genes. Conclusions To the best knowledge of the authors, this is the first integrative study to be carried out on non-genital warts induced by low-risk HPV types. Future studies are required to re-validate the findings in larger populations using alternative approaches.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
21
|
Kobayashi K. Culture Models to Investigate Mechanisms of Milk Production and Blood-Milk Barrier in Mammary Epithelial Cells: a Review and a Protocol. J Mammary Gland Biol Neoplasia 2023; 28:8. [PMID: 37126158 PMCID: PMC10151314 DOI: 10.1007/s10911-023-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
Mammary epithelial cells (MECs) are the only cell type that produces milk during lactation. MECs also form less-permeable tight junctions (TJs) to prevent the leakage of milk and blood components through the paracellular pathway (blood-milk barrier). Multiple factors that include hormones, cytokines, nutrition, and temperature regulate milk production and TJ formation in MECs. Multiple intracellular signaling pathways that positively and negatively regulate milk production and TJ formation have been reported. However, their regulatory mechanisms have not been fully elucidated. In addition, unidentified components that regulate milk production in MECs likely exist in foods, for example plants. Culture models of functional MECs that recapitulate milk production and TJs are useful tools for their study. Such models enable the elimination of indirect effects via cells other than MECs and allows for more detailed experimental conditions. However, culture models of MECs with inappropriate functionality may result in unphysiological reactions that never occur in lactating mammary glands in vivo. Here, I briefly review the physiological functions of alveolar MECs during lactation in vivo and culture models of MECs that feature milk production and less-permeable TJs, together with a protocol for establishment of MEC culture with functional TJ barrier and milk production capability using cell culture inserts.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
22
|
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023; 11:biomedicines11030794. [PMID: 36979772 PMCID: PMC10045055 DOI: 10.3390/biomedicines11030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
The skin serves as an important barrier protecting the body from physical, chemical and pathogenic hazards as well as regulating the bi-directional transport of water, ions and nutrients. In order to improve the knowledge on skin structure and function as well as on skin diseases, animal experiments are often employed, but anatomical as well as physiological interspecies differences may result in poor translatability of animal-based data to the clinical situation. In vitro models, such as human reconstructed epidermis or full skin equivalents, are valuable alternatives to animal experiments. Enormous advances have been achieved in establishing skin models of increasing complexity in the past. In this review, human skin structures are described as well as the fast evolving technologies developed to reconstruct the complexity of human skin structures in vitro.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
23
|
Staab-Weijnitz CA, Onursal C, Nambiar D, Vanacore R. Assessment of Collagen in Translational Models of Lung Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:213-244. [PMID: 37195533 DOI: 10.1007/978-3-031-26625-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany.
| | - Ceylan Onursal
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany
| | - Deepika Nambiar
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roberto Vanacore
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Fu C, Chen L, Cheng Y, Yang W, Zhu H, Wu X, Cai B. Identification of immune biomarkers associated with basement membranes in idiopathic pulmonary fibrosis and their pan-cancer analysis. Front Genet 2023; 14:1114601. [PMID: 36936416 PMCID: PMC10017543 DOI: 10.3389/fgene.2023.1114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown etiology, characterized by diffuse alveolitis and alveolar structural damage. Due to the short median survival time and poor prognosis of IPF, it is particularly urgent to find new IPF biomarkers. Previous studies have shown that basement membranes (BMs) are associated with the development of IPF and tumor metastasis. However, there is still a lack of research on BMs-related genes in IPF. Therefore, we investigated the expression level of BMs genes in IPF and control groups, and explored their potential as biomarkers for IPF diagnosis. In this study, the GSE32537 and GSE53845 datasets were used as training sets, while the GSE24206, GSE10667 and GSE101286 datasets were used as validation sets. In the training set, seven immune biomarkers related to BMs were selected by differential expression analysis, machine learning algorithm (LASSO, SVM-RFE, Randomforest) and ssGSEA analysis. Further ROC analysis confirmed that seven BMs-related genes played an important role in IPF. Finally, four immune-related Hub genes (COL14A1, COL17A1, ITGA10, MMP7) were screened out. Then we created a logistic regression model of immune-related hub genes (IHGs) and used a nomogram to predict IPF risk. The nomogram model was evaluated to have good reliability and validity, and ROC analysis showed that the AUC value of IHGs was 0.941 in the training set and 0.917 in the validation set. Pan-cancer analysis showed that IHGs were associated with prognosis, immune cell infiltration, TME, and drug sensitivity in 33 cancers, suggesting that IHGs may be potential targets for intervention in human diseases including IPF and cancer.
Collapse
Affiliation(s)
- Chenkun Fu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lina Chen
- Guiyang Public Health Clinical Center, Guiyang, China
- Guizhou Medical University, Guiyang, China
| | - Yiju Cheng
- Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Guiyang, Guiyang, China
- *Correspondence: Yiju Cheng, ; Wenting Yang,
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Yiju Cheng, ; Wenting Yang,
| | - Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Banruo Cai
- Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
25
|
Blanco-Elices C, Morales-Álvarez C, Chato-Astrain J, González-Gallardo C, Ávila-Fernández P, Campos F, Carmona R, Martín-Piedra MÁ, Garzón I, Alaminos M. Development of stromal differentiation patterns in heterotypical models of artificial corneas generated by tissue engineering. Front Bioeng Biotechnol 2023; 11:1124995. [PMID: 37034263 PMCID: PMC10076743 DOI: 10.3389/fbioe.2023.1124995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: We carried out a histological characterization analysis of the stromal layer of human heterotypic cornea substitutes generated with extra-corneal cells to determine their putative usefulness in tissue engineering. Methods: Human bioartificial corneas were generated using nanostructured fibrin-agarose biomaterials with corneal stromal cells immersed within. To generate heterotypical corneas, umbilical cord Wharton's jelly stem cells (HWJSC) were cultured on the surface of the stromal substitutes to obtain an epithelial-like layer. These bioartificial corneas were compared with control native human corneas and with orthotypical corneas generated with human corneal epithelial cells on top of the stromal substitute. Both the corneal stroma and the basement membrane were analyzed using histological, histochemical and immunohistochemical methods in samples kept in culture and grafted in vivo for 12 months in the rabbit cornea. Results: Our results showed that the stroma of the bioartificial corneas kept ex vivo showed very low levels of fibrillar and non-fibrillar components of the tissue extracellular matrix. However, in vivo implantation resulted in a significant increase of the contents of collagen, proteoglycans, decorin, keratocan and lumican in the corneal stroma, showing higher levels of maturation and spatial organization of these components. Heterotypical corneas grafted in vivo for 12 months showed significantly higher contents of collagen fibers, proteoglycans and keratocan. When the basement membrane was analyzed, we found that all corneas grafted in vivo showed intense PAS signal and higher contents of nidogen-1, although the levels found in human native corneas was not reached, and a rudimentary basement membrane was observed using transmission electron microscopy. At the epithelial level, HWJSC used to generate an epithelial-like layer in ex vivo corneas were mostly negative for p63, whereas orthotypical corneas and heterotypical corneas grafted in vivo were positive. Conclusion: These results support the possibility of generating bioengineered artificial corneas using non-corneal HWJSC. Although heterotypical corneas were not completely biomimetic to the native human corneas, especially ex vivo, in vivo grafted corneas demonstrated to be highly biocompatible, and the animal cornea became properly differentiated at the stroma and basement membrane compartments. These findings open the door to the future clinical use of these bioartificial corneas.
Collapse
Affiliation(s)
- Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Carmen Morales-Álvarez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Miguel Ángel Martín-Piedra, ; Ingrid Garzón,
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Miguel Ángel Martín-Piedra, ; Ingrid Garzón,
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
26
|
Chen K, Liu S, Lu C, Gu X. A prognostic and therapeutic hallmark developed by the integrated profile of basement membrane and immune infiltrative landscape in lung adenocarcinoma. Front Immunol 2022; 13:1058493. [PMID: 36532024 PMCID: PMC9748099 DOI: 10.3389/fimmu.2022.1058493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Basement membranes (BMs) are specialised extracellular matrices that maintain cellular integrity and resist the breaching of carcinoma cells for metastases while regulating tumour immunity. The tumour immune microenvironment (TME) is essential for tumour growth and the response to and benefits from immunotherapy. In this study, the BM score and TME score were constructed based on the expression signatures of BM-related genes and the presence of immune cells in lung adenocarcinoma (LUAD), respectively. Subsequently, the BM-TME classifier was developed with the combination of BM score and TME score for accurate prognostic prediction. Further, Kaplan-Meier survival estimation, univariate Cox regression analysis and receiver operating characteristic curves were used to cross-validate and elucidate the prognostic prediction value of the BM-TME classifier in several cohorts. Findings from functional annotation analysis suggested that the potential molecular regulatory mechanisms of the BM-TME classifier were closely related to the cell cycle, mitosis and DNA replication pathways. Additionally, the guiding value of the treatment strategy of the BM-TME classifier for LUAD was determined. Future clinical disease management may benefit from the findings of our research.
Collapse
Affiliation(s)
- Kaijie Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuang Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Xuefeng Gu, ; Changlian Lu,
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Xuefeng Gu, ; Changlian Lu,
| |
Collapse
|
27
|
Bittencourt DMDC, Oliveira P, Michalczechen-Lacerda VA, Rosinha GMS, Jones JA, Rech EL. Bioengineering of spider silks for the production of biomedical materials. Front Bioeng Biotechnol 2022; 10:958486. [PMID: 36017345 PMCID: PMC9397580 DOI: 10.3389/fbioe.2022.958486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Spider silks are well known for their extraordinary mechanical properties. This characteristic is a result of the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Advances in synthetic biology have enabled the design and production of spidroins with the aim of biomimicking the structure-property-function relationships of spider silks. Although in nature only fibers are formed from spidroins, in vitro, scientists can explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. The versatility of spidroins, along with their biocompatible and biodegradable nature, also placed them as leading-edge biological macromolecules for improved drug delivery and various biomedical applications. Accordingly, in this review, we highlight the relationship between the molecular structure of spider silk and its mechanical properties and aims to provide a critical summary of recent progress in research employing recombinantly produced bioengineered spidroins for the production of innovative bio-derived structural materials.
Collapse
Affiliation(s)
- Daniela Matias de C. Bittencourt
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology—Synthetic Biology, Brasília, DF, Brazil
| | - Paula Oliveira
- Department of Biology, Utah State University, Logan, UT, United States
| | | | - Grácia Maria Soares Rosinha
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology—Synthetic Biology, Brasília, DF, Brazil
| | - Justin A. Jones
- Department of Biology, Utah State University, Logan, UT, United States
| | - Elibio L. Rech
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology—Synthetic Biology, Brasília, DF, Brazil
| |
Collapse
|
28
|
Rodrigues-Amorim D, Rivera-Baltanás T, Fernández-Palleiro P, Iglesias-Martínez-Almeida M, Freiría-Martínez L, Jarmardo-Rodriguez C, Del Carmen Vallejo-Curto M, Álvarez-Ariza M, López-García M, de Las Heras E, García-Caballero A, Olivares JM, Spuch C. Changes in the Brain Extracellular Matrix Composition in schizophrenia: A Pathophysiological Dysregulation and a Potential Therapeutic Target. Cell Mol Neurobiol 2022; 42:1921-1932. [PMID: 33712885 PMCID: PMC11421689 DOI: 10.1007/s10571-021-01073-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
The brain extracellular matrix (ECM) is involved in crucial processes of neural support, neuronal and synaptic plasticity, extrasynaptic transmission, and neurotransmission. ECM is a tridimensional fibrillary meshwork composed of macromolecules that determine its bioactivity and give it unique characteristics. The characterization of the brain ECM is critical to understand its dynamic in SZ. Thus, a comparative study was developed with 71 patients with schizophrenia (SZ) and 70 healthy controls. Plasma of participants was analysed by label-free liquid chromatography-tandem mass spectrometry, and the results were validated using the classical western blot method. Lastly, immunostaining of post-mortem human brain tissue was performed to analyse the distribution of the brain ECM proteins by confocal microscopy. The analysis identified four proteins: fibronectin, lumican, nidogen-1, and secreted protein acidic and rich in cysteine (SPARC) as components of the brain ECM. Statistical significance was found for fibronectin (P = 0.0166), SPARC (P = 0.0003), lumican (P = 0.0012), and nidogen-1 (P < 0.0001) that were decreased in the SZ group. Fluorescence imaging of prefrontal cortex (PFC) sections revealed a lower expression of ECM proteins in SZ. Our study proposes a pathophysiological dysregulation of proteins of the brain ECM, whose abnormal composition leads to a progressive neuronal impairment and consequently to neurodegenerative processes due to lack of neurophysiological support and dysregulation of neuronal homeostasis. Moreover, the brain ECM and its components are potential pharmacological targets to develop new therapeutic approaches to treat SZ.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Luis Freiría-Martínez
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Cynthia Jarmardo-Rodriguez
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - María Del Carmen Vallejo-Curto
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - María Álvarez-Ariza
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Marta López-García
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Elena de Las Heras
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - Alejandro García-Caballero
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain
| | - José Manuel Olivares
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain.
- Head of Department of Psychiatry, Galicia Sur Health Research Institute - IISGS, Hospital Álvaro Cunqueiro, Estrada Clara Campoamor, 341, Vigo, Spain.
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain.
| |
Collapse
|
29
|
Jain P, Rauer SB, Möller M, Singh S. Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules 2022; 23:3081-3103. [PMID: 35839343 PMCID: PMC9364315 DOI: 10.1021/acs.biomac.2c00402] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Advancements in the field of tissue engineering have
led to the
elucidation of physical and chemical characteristics of physiological
basement membranes (BM) as specialized forms of the extracellular
matrix. Efforts to recapitulate the intricate structure and biological
composition of the BM have encountered various advancements due to
its impact on cell fate, function, and regulation. More attention
has been paid to synthesizing biocompatible and biofunctional fibrillar
scaffolds that closely mimic the natural BM. Specific modifications
in biomimetic BM have paved the way for the development of in vitro models like alveolar-capillary barrier, airway
models, skin, blood-brain barrier, kidney barrier, and metastatic
models, which can be used for personalized drug screening, understanding
physiological and pathological pathways, and tissue implants. In this
Review, we focus on the structure, composition, and functions of in vivo BM and the ongoing efforts to mimic it synthetically.
Light has been shed on the advantages and limitations of various forms
of biomimetic BM scaffolds including porous polymeric membranes, hydrogels,
and electrospun membranes This Review further elaborates and justifies
the significance of BM mimics in tissue engineering, in particular
in the development of in vitro organ model systems.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | - Smriti Singh
- Max-Planck-Institute for Medical Research, Heidelberg 69028, Germany
| |
Collapse
|
30
|
Hu M, Ling Z, Ren X. Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng 2022; 16:13. [PMID: 35637526 PMCID: PMC9153193 DOI: 10.1186/s13036-022-00292-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix (ECM) constitutes the main acellular microenvironment of cells in almost all tissues and organs. The ECM not only provides mechanical support, but also mediates numerous biochemical interactions to guide cell survival, proliferation, differentiation, and migration. Thus, better understanding the everchanging temporal and spatial shifts in ECM composition and structure - the ECM dynamics - will provide fundamental insight regarding extracellular regulation of tissue homeostasis and how tissue states transition from one to another during diverse pathophysiological processes. This review outlines the mechanisms mediating ECM-cell interactions and highlights how changes in the ECM modulate tissue development and disease progression, using the lung as the primary model organ. We then discuss existing methodologies for revealing ECM compositional dynamics, with a particular focus on tracking newly synthesized ECM proteins. Finally, we discuss the ramifications ECM dynamics have on tissue engineering and how to implement spatial and temporal specific extracellular microenvironments into bioengineered tissues. Overall, this review communicates the current capabilities for studying native ECM dynamics and delineates new research directions in discovering and implementing ECM dynamics to push the frontier forward.
Collapse
Affiliation(s)
- Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
31
|
Zhou S, Chen S, Pei YA, Pei M. Nidogen: A matrix protein with potential roles in musculoskeletal tissue regeneration. Genes Dis 2022; 9:598-609. [PMID: 35782975 PMCID: PMC9243345 DOI: 10.1016/j.gendis.2021.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Basement membrane proteins are known to guide cell structures, differentiation, and tissue repair. Although there is a wealth of knowledge on the functions of laminins, perlecan, and type IV collagen in maintaining tissue homeostasis, not much is known about nidogen. As a key molecule in the basement membrane, nidogen contributes to the formation of a delicate microenvironment that proves necessary for stem cell lineage-specific differentiation. In this review, the expression of nidogen is delineated at both cellular and tissue levels from embryonic to adult stages of development; the effect of nidogens is also summarized in the context of musculoskeletal development and regeneration, including but not limited to adipogenesis, angiogenesis, chondrogenesis, myogenesis, and neurogenesis. Furthermore, potential mechanisms underlying the role of nidogens in stem cell-based tissue regeneration are also discussed. This concise review is expected to facilitate our existing understanding and utilization of nidogen in tissue engineering and regeneration.
Collapse
|
32
|
Lijten OW, Rosero Salazar DH, van Erp M, Bronkhorst E, Von den Hoff JW. Effect of niche components on masseter satellite cell differentiation on fibrin coatings. Eur J Oral Sci 2022; 130:e12849. [PMID: 35020959 PMCID: PMC9303748 DOI: 10.1111/eos.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
In skeletal muscles, niche factors stimulate satellite cells to activate and induce muscle regeneration after injury. In vitro, matrigel is widely used for myoblast differentiation, however, is unsuitable for clinical applications. Therefore, this study aimed to analyze attachment and differentiation of satellite cells into myotubes on fibrin coatings with selected niche components. The attachment of satellite cells to fibrin alone and fibrin with niche components (laminin, collagen‐IV, laminin‐entactin complex [LEC]) were compared to matrigel. Only on matrigel and fibrin with LEC, Pax7‐positive cells attached well. Then, LEC was selected to analyze proliferation, differentiation, and fusion indices. The proliferation index at day 1 on fibrin‐LEC (22.5%, SD 9.1%) was similar to that on matrigel (30.8% [SD 11.1%]). The differentiation index on fibrin‐LEC (28.7% [SD 6.1%] at day 5 and 32.8% [SD 6.7%] at day 7) was similar to that on matrigel (40.1% [5.1%] at day 5 and 27.1% [SD 4.3%] at day 7). On fibrin‐LEC, the fusion index at day 9 (26.9% [SD 11.5%]) was similar to that on matrigel (25.5% [SD 4.7%]). Our results showed that the addition of LEC enhances the formation of myotubes on fibrin. Fibrin with LEC might be suitable to enhance muscle regeneration after surgery such as cleft palate repair and other muscle defects.
Collapse
Affiliation(s)
- Olivier Willem Lijten
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Doris Haydee Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali, Colombia
| | - Merijn van Erp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Kciuk M, Gielecińska A, Budzinska A, Mojzych M, Kontek R. Metastasis and MAPK Pathways. Int J Mol Sci 2022; 23:ijms23073847. [PMID: 35409206 PMCID: PMC8998814 DOI: 10.3390/ijms23073847] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide. In many cases, the treatment of the disease is limited due to the metastasis of cells to distant locations of the body through the blood and lymphatic drainage. Most of the anticancer therapeutic options focus mainly on the inhibition of tumor cell growth or the induction of cell death, and do not consider the molecular basis of metastasis. The aim of this work is to provide a comprehensive review focusing on cancer metastasis and the mitogen-activated protein kinase (MAPK) pathway (ERK/JNK/P38 signaling) as a crucial modulator of this process.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
- Correspondence:
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| |
Collapse
|
34
|
Burgess JK, Harmsen MC. Chronic lung diseases: entangled in extracellular matrix. Eur Respir Rev 2022; 31:31/163/210202. [PMID: 35264410 DOI: 10.1183/16000617.0202-2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| |
Collapse
|
35
|
Morais MRPT, Tian P, Lawless C, Murtuza-Baker S, Hopkinson L, Woods S, Mironov A, Long DA, Gale DP, Zorn TMT, Kimber SJ, Zent R, Lennon R. Kidney organoids recapitulate human basement membrane assembly in health and disease. eLife 2022; 11:e73486. [PMID: 35076391 PMCID: PMC8849328 DOI: 10.7554/elife.73486] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal, and adult kidney proteomes, we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney organoid BM assembly and provide a platform for understanding its wider relevance in human development and disease.
Collapse
Affiliation(s)
- Mychel RPT Morais
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Pinyuan Tian
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Syed Murtuza-Baker
- Division of Informatics, Imaging and Data Sciences, University of ManchesterManchesterUnited Kingdom
| | - Louise Hopkinson
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, University of ManchesterManchesterUnited Kingdom
| | - Aleksandr Mironov
- Electron Microscopy Core Facility, University of ManchesterManchesterUnited Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, University College LondonLondonUnited Kingdom
| | - Daniel P Gale
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
| | - Telma MT Zorn
- Department of Cell and Developmental Biology, University of São PauloSão PauloBrazil
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, University of ManchesterManchesterUnited Kingdom
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation TrustManchesterUnited Kingdom
| |
Collapse
|
36
|
Kolasa M, Galita G, Majsterek I, Kucharska E, Czerczak K, Wasko J, Becht A, Fraczyk J, Gajda A, Pietrzak L, Szymanski L, Krakowiak A, Draczynski Z, Kolesinska B. Screening of Self-Assembling of Collagen IV Fragments into Stable Structures Potentially Useful in Regenerative Medicine. Int J Mol Sci 2021; 22:13584. [PMID: 34948383 PMCID: PMC8708666 DOI: 10.3390/ijms222413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the research was to check whether it is possible to use fragments of type IV collagen to obtain, as a result of self-assembling, stable spatial structures that could be used to prepare new materials useful in regenerative medicine. Collagen IV fragments were obtained by using DMT/NMM/TosO- as a coupling reagent. The ability to self-organize and form stable spatial structures was tested by the CD method and microscopic techniques. Biological studies covered: resazurin assay (cytotoxicity assessment) on BJ, BJ-5TA and C2C12 cell lines; an alkaline version of the comet assay (genotoxicity), Biolegend Legendplex human inflammation panel 1 assay (SC cell lines, assessment of the inflammation activity) and MTT test to determine the cytotoxicity of the porous materials based on collagen IV fragments. It was found that out of the pool of 37 fragments (peptides 1-33 and 2.1-2.4) reconstructing the outer sphere of collagen IV, nine fragments (peptides: 2, 4, 5, 6, 14, 15, 25, 26 and 30), as a result of self-assembling, form structures mimicking the structure of the triple helix of native collagens. The stability of spatial structures formed as a result of self-organization at temperatures of 4 °C, 20 °C, and 40 °C was found. The application of the MST method allowed us to determine the Kd of binding of selected fragments of collagen IV to ITGα1β1. The stability of the spatial structures of selected peptides made it possible to obtain porous materials based on their equimolar mixture. The formation of the porous materials was found for cross-linked structures and the material stabilized only by weak interactions. All tested peptides are non-cytotoxic against all tested cell lines. Selected peptides also showed no genotoxicity and no induction of immune system responses. Research on the use of porous materials based on fragments of type IV collagen, able to form stable spatial structures as scaffolds useful in regenerative medicine, will be continued.
Collapse
Affiliation(s)
- Marcin Kolasa
- General Command of the Polish Armed Forces, Medical Division, Zwirki i Wigury 103/105, 00-912 Warsaw, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ewa Kucharska
- Department Geriatrics and Social Work, Jesuit University Ignatianum in Cracow, Kopernika 26, 31-501 Krakow, Poland;
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Angelika Becht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Lukasz Pietrzak
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Lukasz Szymanski
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| |
Collapse
|
37
|
Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, Cribbs CG, Van Ry PM. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci 2021; 22:12690. [PMID: 34884495 PMCID: PMC8657545 DOI: 10.3390/ijms222312690] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (J.C.V.); (B.C.J.); (D.J.J.); (N.A.F.); (E.L.D.); (C.S.); (C.G.C.)
| |
Collapse
|
38
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
39
|
Rosero Salazar DH, van Rheden REM, van Hulzen M, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Fibrin with Laminin-Nidogen Reduces Fibrosis and Improves Soft Palate Regeneration Following Palatal Injury. Biomolecules 2021; 11:1547. [PMID: 34680180 PMCID: PMC8533998 DOI: 10.3390/biom11101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze the effects of fibrin constructs enhanced with laminin-nidogen, implanted in the wounded rat soft palate. Fibrin constructs with and without laminin-nidogen were implanted in 1 mm excisional wounds in the soft palate of 9-week-old rats and compared with the wounded soft palate without implantation. Collagen deposition and myofiber formation were analyzed at days 3, 7, 28 and 56 after wounding by histochemistry. In addition, immune staining was performed for a-smooth muscle actin (a-SMA), myosin heavy chain (MyHC) and paired homeobox protein 7 (Pax7). At day 56, collagen areas were smaller in both implant groups (31.25 ± 7.73% fibrin only and 21.11 ± 6.06% fibrin with laminin-nidogen)) compared to the empty wounds (38.25 ± 8.89%, p < 0.05). Moreover, the collagen area in the fibrin with laminin-nidogen group was smaller than in the fibrin only group (p ˂ 0.05). The areas of myofiber formation in the fibrin only group (31.77 ± 10.81%) and fibrin with laminin-nidogen group (43.13 ± 10.39%) were larger than in the empty wounds (28.10 ± 11.68%, p ˂ 0.05). Fibrin-based constructs with laminin-nidogen reduce fibrosis and improve muscle regeneration in the wounded soft palate. This is a promising strategy to enhance cleft soft palate repair and other severe muscle injuries.
Collapse
Affiliation(s)
- Doris H. Rosero Salazar
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
- Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali 760008, Colombia
| | - René E. M. van Rheden
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Manon van Hulzen
- Central Facility for Research with Laboratory Animals (CDL), Radboud University Medical Centre, 6525EZ Nijmegen, The Netherlands;
| | - Paola L. Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands;
| | - Frank A. D. T. G. Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Johannes W. Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| |
Collapse
|
40
|
Perugini V, Santin M. A Substrate-Mimicking Basement Membrane Drives the Organization of Human Mesenchymal Stromal Cells and Endothelial Cells Into Perivascular Niche-Like Structures. Front Cell Dev Biol 2021; 9:701842. [PMID: 34650967 PMCID: PMC8507467 DOI: 10.3389/fcell.2021.701842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix-derived products (e.g. Matrigel) are widely used for in vitro cell cultures both as two-dimensional (2D) substrates and as three-dimensional (3D) encapsulation gels because of their ability to control cell phenotypes through biospecific cues. However, batch-to-batch variations, poor stability, cumbersome handling, and the relatively high costs strictly limit their use. Recently, a new substrate known as PhenoDrive-Y has been used as 2D coating of tissue culture plastic showing to direct the bone marrow mesenchymal stromal cells (MSCs) toward the formation of 3D spheroids. When organized into 3D spheroids, the MSCs expressed levels of pluripotency markers and of paracrine angiogenic activity higher than those of the MSCs adhering as fibroblast-like colonies on tissue culture plastic. The formation of the spheroids was attributed to the properties of this biomaterial that resemble the main features of the basement membrane by mimicking the mesh structure of collagen IV and by presenting the cells with orderly spaced laminin bioligands. In this study, PhenoDrive-Y was compared to Matrigel for its ability to drive the formation of perivascular stem cell niche-like structures in 2D co-culture conditions of human endothelial cells and adult bone marrow MSCs. Morphological analyses demonstrated that, when compared to Matrigel, PhenoDrive-Y led endothelial cells to sprout into a more consolidated tubular network and that the MSCs nestled as compact spheroids above the anastomotic areas of this network resemble more closely the histological features of the perivascular stem cell niche. A study of the expressions of relevant markers led to the identification of the pathways linking the PhenoDrive-Y biomimicking properties to the acquired histological features, demonstrating the enhanced levels of stemness, renewal potential, predisposition to migration, and paracrine activities of the MSCs.
Collapse
Affiliation(s)
- Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
41
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
42
|
Liu H, Wu C, Zhao H, Zhang F, Zhao G, Lin X, Wang S, Wang X, Yu F, Ning Y, Yang L, Liu P, Zhang F, Xu P, Qu C, Lammi MJ, Guo X. The first human induced pluripotent stem cell line of Kashin-Beck disease reveals involvement of heparan sulfate proteoglycan biosynthesis and PPAR pathway. FEBS J 2021; 289:279-293. [PMID: 34324261 DOI: 10.1111/febs.16143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Kashin-Beck disease (KBD) is an endemic osteochondropathy. Due to a lack of suitable animal or cellular disease models, the research progress on KBD has been limited. Our goal was to establish the first disease-specific human induced pluripotent stem cell (hiPSC) cellular disease model of KBD, and to explore its etiology and pathogenesis exploiting transcriptome sequencing. HiPSCs were reprogrammed from dermal fibroblasts of two KBD and one healthy control donor via integration-free vectors. Subsequently, hiPSCs were differentiated into chondrocytes through three-week culture. Gene expression profiles in KBD, normal primary chondrocytes, and hiPSC-derived chondrocytes were defined by RNA sequencing. A Venn diagram was constructed to show the number of shared differentially expressed genes (DEGs) between KBD and normal. Gene oncology and Kyoto Encyclopedia of Genes and Genomes annotations were performed, and six DEGs were further validated in other individuals by RT-qPCR. KBD cellular disease models were successfully established by generation of hiPSC lines. Seventeen consistent and significant DEGs present in all compared groups (KBD and normal) were identified. RT-qPCR validation gave consistent results with the sequencing data. Glycosaminoglycan biosynthesis-heparan sulfate/heparin; PPAR signaling pathway; and cell adhesion molecules (CAMs) were identified to be significantly altered in KBD. Differentiated chondrocytes derived from KBD-origin hiPSCs provide the first cellular disease model for etiological studies of KBD. This study also provides new sights into the pathogenesis and etiology of KBD and is likely to inform the development of targeted therapeutics for its treatment.
Collapse
Affiliation(s)
- Huan Liu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Cuiyan Wu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Feng'e Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Xialu Lin
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Sen Wang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Xi Wang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Fangfang Yu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Yujie Ning
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Lei Yang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Peilong Liu
- Department of Foot and Ankle Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Feng Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Hong Hui Hospital of Xi'an Jiaotong University, China
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Sweden
| | - Mikko J Lammi
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Department of Integrative Medical Biology, Umeå University, Sweden
| | - Xiong Guo
- School of Public Health, Health Science Center of Xi'an Jiaotong University, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, China
| |
Collapse
|
43
|
Sterling JP, Lombardi VC. Decreasing the Likelihood of Multiple Organ Dysfunction Syndrome in Burn Injury with Early Antioxidant Treatment. Antioxidants (Basel) 2021; 10:antiox10081192. [PMID: 34439439 PMCID: PMC8389021 DOI: 10.3390/antiox10081192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/21/2023] Open
Abstract
Major burn trauma initiates a cascade of physiological events that cause profound stress on the body, resulting in significant complications which often lead to death. An understanding of these events may afford earlier and more precise interventions which, in turn, may reduce these complications, thus, improving patient outcomes. Burn trauma is associated with numerous inflammatory events that result in the release of free radicals, which promote oxidative stress and subsequent tissue damage. These mass-inflammatory events affect the body systemically, leading to several detrimental responses including complement activation, excessive histamine release, decrease in blood pressure, release of reactive oxygen species, and ultimately multiple organ dysfunction syndrome (MODS). However, recent studies conducted on the use of antioxidants as a part of a burn treatment protocol have shown promising results. In this review, we will discuss the current research and advancements in the treatment of burn trauma with the use of antioxidants, and how the early administration of antioxidant can possibly reduce the risk of developing MODS.
Collapse
Affiliation(s)
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, NV 89557, USA
- Correspondence: ; Tel.: +1-775-682-8278
| |
Collapse
|
44
|
Oudart JB, Villemin M, Brassart B, Sellier C, Terryn C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Ramont L, Brassart-Pasco S. F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adh Migr 2021; 15:215-223. [PMID: 34308743 PMCID: PMC8312610 DOI: 10.1080/19336918.2021.1951425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We previously demonstrated that F4 peptide (CNPEDCLYPVSHAHQR) from collagen XIX was able to inhibit melanoma cell migrationin vitro and cancer progression in a mouse melanoma model. The aim of the present work was to study the anti-angiogenic properties of F4 peptide. We demonstrated that F4 peptide inhibited VEGF-induced pseudo-tube formation on Matrigel by endothelial cells and endothelial sprouting in a rat aortic ring assay. By affinity chromatography, we identified αvβ3 and α5β1 integrins as potential receptors for F4 peptide on endothelial cell surface. Using solid phase assays, we proved the direct interaction between F4 and both integrins. Taken together, our results demonstrate that F4 peptide is a potent antitumor agent inhibiting both angiogenesis and tumor cell migration.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Matthieu Villemin
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Bertrand Brassart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christèle Sellier
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christine Terryn
- PICT, Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Aurélie Dupont-Deshorgue
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Jean Claude Monboisse
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - François-Xavier Maquart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Laurent Ramont
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| |
Collapse
|
45
|
Kaushik BK, Singh L, Singh R, Zhu G, Zhang B, Wang Q, Kumar S. Detection of Collagen-IV Using Highly Reflective Metal Nanoparticles-Immobilized Photosensitive Optical Fiber-Based MZI Structure. IEEE Trans Nanobioscience 2021; 19:477-484. [PMID: 32603296 DOI: 10.1109/tnb.2020.2998520] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work, a photosensitive (PS) optical fiber-based Mach-Zehnder interferometer (MZI) structure is developed to diagnose the presence of collagen-IV in human bodies. The MZI is fabricated by sequentially splicing the single mode-multimode-photosensitive-multimode-single mode (SMPMS) fiber segments. The sensing region in MZI structure is created by partially removing the cladding of photosensitive fiber by using 40% hydrofluoric (HF) acid and depositing the layers of highly reflective metal nanoparticles (NPs) over it. The used NPs are polyvinyl alcohol stabilized silver nanoparticles (PVA-AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnO-NPs). The size of AuNPs, PVA-AgNPs, and ZnO-NPs are 10 ± 0.2 nm, ∼ 4 -5 nm, and < 50 nm, respectively. In order to avoid the interference of other biomolecules in the detection of collagen-IV, the sensing region is functionalized with a collagenase enzyme. The sensing ability of the probe is ascertained by sensing a wide concentration of collagen solution ranging from 0 ng/ml to [Formula: see text]/ml. It is observed that sensing performance of probe is much better on immobilizing it with PVA-AgNPs and ZnO-NPs.
Collapse
|
46
|
Roncato F, Regev O, Yadav SK, Alon R. Microtubule destabilization is a critical checkpoint of chemotaxis and transendothelial migration in melanoma cells but not in T cells. Cell Adh Migr 2021; 15:166-179. [PMID: 34152257 PMCID: PMC8218694 DOI: 10.1080/19336918.2021.1934958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microtubules (MTs) control cell shape and intracellular cargo transport. The role of MT turnover in the migration of slow-moving cells through endothelial barriers remains unclear. To irreversibly interfere with MT disassembly, we have used the MT-stabilizing agent zampanolide (ZMP) in Β16F10 melanoma as amodel of slow-moving cells. ZMP-treated B16 cells failed to follow chemotactic gradients across rigid confinements and could not generate stable sub-endothelial pseudopodia under endothelial monolayers. In vivo, ZMP-treated Β16 cells failed to extravasate though lung capillaries. In contrast to melanoma cells, the chemotaxis and transendothelial migration of ZMP-treated Tcells were largely conserved. This is afirst demonstration that MT disassembly is akey checkpoint in the directional migration of cancer cells but not of lymphocytes.
Collapse
Affiliation(s)
- Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Sijilmassi O, Del Río Sevilla A, Maldonado Bautista E, Barrio Asensio MDC. Gestational folic acid deficiency alters embryonic eye development: Possible role of basement membrane proteins in eye malformations. Nutrition 2021; 90:111250. [PMID: 33962364 DOI: 10.1016/j.nut.2021.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Folic acid (FA) is crucial before and during early pregnancy. FA deficiency can occur because dietary FA intake is low in mothers at the time of conception. Likewise, various ocular pathologies are related to the alteration of extracellular matrices. The present study aimed to investigate the association between maternal FA deficiency and congenital eye defects. We also investigated whether maternal diet deficient in FA alters the expression of collagen IV and laminin-1 as a possible mechanism responsible for the appearance of ocular malformations. Both proteins are the main components of the basal lamina, and form an interlaced network that creates a relevant scaffold basement membrane. Basal laminae are involved in tissues maintenance and implicated in regulating many cellular processes. METHODS A total of 57 mouse embryos were classified into the following groups: Control group, (mothers were fed a standard rodent diet), and D2 and D8 groups (mothers were fed FA-deficient [FAD] diet for 2 or 8 wk, respectively). Female mice from group D2 were fed a FAD diet (0 mg/kg diet + 1% succinyl sulfathiazole used to block the synthesis of FA) for 2 wk from the day after mating until day 14.5 of gestation (E14.5). On the other hand, female mice from group D8 were fed a FAD diet for 8 wk (6 wk before conception and during the first 2 wk of pregnancy). For the data analysis, we first estimated the incidence of malformations in each group. Then, the statistical analysis was performed using IBM SPSS Statistics, version 25.0. Expression patterns of collagen IV and laminin-1 were examined with the immunohistochemical technique. RESULTS Our results showed that mice born to FA-deficient mothers had several congenital eye abnormalities. Embryos from dams fed a short-term FAD diet were found to have many significant abnormalities in both anterior and posterior segments, as well as choroidal vessel abnormalities. However, embryos from dams fed a long-term FAD diet had a significantly higher incidence of eye defects. Finally, maternal FA deficiency increased the expression of both collagen IV and laminin-1. Likewise, changes in the spatial localization and organization of collagen IV were observed. CONCLUSIONS A maternal FAD diet for a short-term period causes eye developmental defects and induces overexpression of both collagen IV and laminin-1. The malformations observed are probably related to alterations in the expression of basement membrane proteins.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain.
| | - Aurora Del Río Sevilla
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain; Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| | - Estela Maldonado Bautista
- Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| | - María Del Carmen Barrio Asensio
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain; Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| |
Collapse
|
48
|
Hacking SM, Chakraborty B, Nasim R, Vitkovski T, Thomas R. A Holistic Appraisal of Stromal Differentiation in Colorectal Cancer: Biology, Histopathology, Computation, and Genomics. Pathol Res Pract 2021; 220:153378. [PMID: 33690050 DOI: 10.1016/j.prp.2021.153378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Cancer comprises epithelial tumor cells and associated stroma, often times referred to as the "tumoral microenvironment". Cancer-associated fibroblasts (CAFs) are the most notable components of the tumor mesenchyme. CAFs promote the initiation of cancer through angiogenesis, invasion and metastasis. Histologically, the differentiation of stroma has been reported to correlate with prognostic outcomes in patients with colorectal cancer. This review summarizes our current understanding of the extracellular matrix (ECM) in colorectal carcinoma (CRC), showcasing the functions of CAFs and its role in stromal differentiation (SD). We also review current state-of-the-art biology, histopathology, computation, and genomics in the setting of the stroma. SD is distinctive morphologically, and is easily recognized by a surgical pathologist; we offer a lexicon and guide for discovering the essence of stroma, as well as an incipient vision of the future for computation and molecular genomics. We propose that the mesenchymal phenotype, which encompasses a cancer migratory/metastatic capacity, could occur through the process of SD. Looking forward, pathologists will need to invest time and energy into SD, embracing the concept and propagating its use. For patients with colorectal cancer, stroma is a brave new frontier, one not only rich in biologic diversity, but also potentially critical for therapeutic decision making.
Collapse
Affiliation(s)
- Sean M Hacking
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States.
| | - Baidarbhi Chakraborty
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, United States
| | | | - Taisia Vitkovski
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Rebecca Thomas
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| |
Collapse
|
49
|
Liu SW, Li HT, Ge RS, Cheng CY. NC1-peptide derived from collagen α3 (IV) chain is a blood-tissue barrier regulator: lesson from the testis. Asian J Androl 2021; 23:123-128. [PMID: 32896837 PMCID: PMC7991810 DOI: 10.4103/aja.aja_44_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Collagen α3 (IV) chains are one of the major constituent components of the basement membrane in the mammalian testis. Studies have shown that biologically active fragments, such as noncollagenase domain (NC1)-peptide, can be released from the C-terminal region of collagen α3 (IV) chains, possibly through the proteolytic action of metalloproteinase 9 (MMP9). NC1-peptide was shown to promote blood–testis barrier (BTB) remodeling and fully developed spermatid (e.g., sperm) release from the seminiferous epithelium because this bioactive peptide was capable of perturbing the organization of both actin- and microtubule (MT)-based cytoskeletons at the Sertoli cell–cell and also Sertoli–spermatid interface, the ultrastructure known as the basal ectoplasmic specialization (ES) and apical ES, respectively. More importantly, recent studies have shown that this NC1-peptide-induced effects on cytoskeletal organization in the testis are mediated through an activation of mammalian target of rapamycin complex 1/ribosomal protein S6/transforming retrovirus Akt1/2 protein (mTORC1/rpS6/Akt1/2) signaling cascade, involving an activation of cell division control protein 42 homolog (Cdc42) GTPase, but not Ras homolog family member A GTPase (RhoA), and the participation of end-binding protein 1 (EB1), a microtubule plus (+) end tracking protein (+TIP), downstream. Herein, we critically evaluate these findings, providing a critical discussion by which the basement membrane modulates spermatogenesis through one of its locally generated regulatory peptides in the testis.
Collapse
Affiliation(s)
- Shi-Wen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Hui-Tao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
50
|
Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Res Ther 2020; 11:510. [PMID: 33246508 PMCID: PMC7694925 DOI: 10.1186/s13287-020-02021-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stem cell therapies represent a promising tool in regenerative medicine. Considering the drawbacks of direct stem cell injections (e.g. poor cell localisation), extracellular matrix-based biomaterials (e.g. scaffolds and tissue grafts), due to their compositional biofunctionality and cytocompatibility, are under investigation as potential stem cell carriers. METHODS The present study assessed the potential of three commercially available extracellular matrix-based biomaterials [a collagen/glycosaminoglycan scaffold (Integra™ Matrix Wound Dressing), a decellularised porcine peritoneum (XenoMEM™) and a porcine urinary bladder (MatriStem™)] as human adipose-derived stem cell delivery vehicles. RESULTS Both tissue grafts induced significantly (p < 0.01) higher human adipose-derived stem cell proliferation in vitro over the collagen scaffold, especially when the cells were seeded on the basement membrane side. Human adipose-derived stem cell phenotype and trilineage differentiation potential was preserved in all biomaterials. In a splinted wound healing nude mouse model, in comparison to sham, biomaterials alone and cells alone groups, all biomaterials seeded with human adipose-derived stem cells showed a moderate improvement of wound closure, a significantly (p < 0.05) lower wound gap and scar index and a significantly (p < 0.05) higher proportion of mature collagen deposition and angiogenesis (the highest, p < 0.01, was observed for the cell loaded at the basement membrane XenoMEM™ group). All cell-loaded biomaterial groups retained more cells at the implantation side than the direct injection group, even though they were loaded with half of the cells than the cell injection group. CONCLUSIONS This study further advocates the use of extracellular matrix-based biomaterials (in particular porcine peritoneum) as human adipose-derived stem cell delivery vehicles. Comparative analysis of a collagen scaffold (Integra™ Matrix Wound Dressing) and two tissue grafts [decellularised porcine peritoneum (XenoMEM™) and porcine urinary bladder (MatriStem™)] as human adipose-derived stem cells carriers.
Collapse
|