1
|
Xu S, Liu Y, Yang S, Fei W, Qin J, Lu W, Xu J. FXN targeting induces cell death in ovarian cancer stem-like cells through PRDX3-Mediated oxidative stress. iScience 2024; 27:110506. [PMID: 39184439 PMCID: PMC11342215 DOI: 10.1016/j.isci.2024.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer stem cells (OCSCs) significantly impact the prognosis, chemoresistance, and treatment outcomes in OC. While ferroptosis has been proven effective against OCSCs, the intricate relationship between ferroptosis and OCSCs remains incompletely understood. Here, we enriched ovarian cancer stem-like cells (OCSLCs) through mammosphere culture, as an OCSC model. OCSLCs displayed heightened ferroptosis susceptibility, correlating with elevated FXN levels compared to non-stem OC cells. FXN has recently emerged as a potential regulator in ferroptosis. FXN knockdown diminished stemness marker nanog, sphere-forming ability, increased reactive oxygen species (ROS) generation, and attenuated OCSLCs viability. FXN overexpression exacerbated ferroptosis resistance and reduced RSL3-induced cell death. FXN knockdown impeded OCSLC xenograft tumor growth and exacerbated the degeneration of peroxiredoxin 3 (PRDX3), a mitochondrial antioxidant protein participates in oxidative stress. Thus, elevated FXN in OCSLCs suppresses ROS accumulation, fostering ferroptosis resistance, and regulates the antioxidant protein PRDX3. FXN emerges as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Yuwan Liu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shizhou Yang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Jiale Qin
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
2
|
Pujari R, Dubey SK. Relevance of glyco-biomakers and glycan profiles in cancer stem cells. Glycobiology 2024; 34:cwad019. [PMID: 36864577 DOI: 10.1093/glycob/cwad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Altered and aberrant glycosylation signatures have been linked to being a hallmark in a variety of human disorders including cancer. Cancer stem cells (CSCs), capable of self-renewal and differentiation, have recently been credited with a unique notion of disease genesis and implicated as the cause for initiation and recurrence of the disease in a new regime of neoplastic transformations hypothesis. Many biomarkers relating to diagnostic and prognostic intents have been discovered using the ubiquitous and abundant surface glycan patterns on CSCs. Various technological advancements have been developed to identify and determine concerns with glycosylation structure. However, the nature and purpose of the glycan moiety on these glycosylation pattern have not yet been thoroughly investigated. This review, thus, summarizes the process of glycosylation in CSCs, variations in glycosylation patterns in various stem cells, aberrant glycosylation patterns in cancer, the role of glycosylation in tumor cell adhesion, cell-matrix interactions, and signaling, as well as cancer detection and treatment. The function of carbohydrates as prospective serum biomarkers, some clinically authorized biomarkers, and potential novel biomarkers relating to cancer disease diagnosis and prognosis are also discussed in the review.
Collapse
Affiliation(s)
- Rohit Pujari
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
3
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
4
|
Cirillo N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int J Mol Sci 2023; 24:15812. [PMID: 37958796 PMCID: PMC10649834 DOI: 10.3390/ijms242115812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaluronic acid (HA) receptor CD44 is widely used for identifying cancer stem cells and its activation promotes stemness. Recent evidence shows that overexpression of CD44 is associated with poor prognosis in most human cancers and mediates therapy resistance. For these reasons, in recent years, CD44 has become a treatment target in precision oncology, often via HA-conjugated antineoplastic drugs. Importantly, HA molecules of different sizes have a dual effect and, therefore, may enhance or attenuate the CD44-mediated signaling pathways, as they compete with endogenous HA for binding to the receptors. The magnitude of these effects could be crucial for cancer progression, as well as for driving the inflammatory response in the tumor microenvironment. The increasingly common use of HA-conjugated drugs in oncology, as well as HA-based compounds as adjuvants in cancer treatment, adds further complexity to the understanding of the net effect of hyaluronan-CD44 activation in cancers. In this review, I focus on the significance of CD44 in malignancy and discuss the dichotomous function of the hyaluronan/CD44 axis in cancer progression.
Collapse
Affiliation(s)
- Nicola Cirillo
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
5
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
6
|
Nowicki A, Kulus M, Wieczorkiewicz M, Pieńkowski W, Stefańska K, Skupin-Mrugalska P, Bryl R, Mozdziak P, Kempisty B, Piotrowska-Kempisty H. Ovarian Cancer and Cancer Stem Cells-Cellular and Molecular Characteristics, Signaling Pathways, and Usefulness as a Diagnostic Tool in Medicine and Oncology. Cancers (Basel) 2021; 13:cancers13164178. [PMID: 34439332 PMCID: PMC8394875 DOI: 10.3390/cancers13164178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Ovarian cancer is still a high-risk, metastatic disease, often diagnosed at a late stage. Difficulties in its treatment are associated with high resistance to chemotherapy and recurrence. Responsible for the malignant features of cancer are considered to be cancer stem cells (CSCs), which generate new cells by modifying various signaling pathways. Signaling pathways are crucial for the regulation of epithelial-mesenchymal transition, metastasis, and self-renewal of CSCs. New therapies based on the use of inhibitors that block CSC growth and proliferation signals are being investigated. The current histological classification of ovarian tumors, their epidemiology, and the recent knowledge of ovarian CSCs, with particular emphasis on their molecular basis, are important considerations. Abstract Despite the increasing development of medicine, ovarian cancer is still a high-risk, metastatic disease that is often diagnosed at a late stage. In addition, difficulties in its treatment are associated with high resistance to chemotherapy and frequent relapse. Cancer stem cells (CSCs), recently attracting significant scientific interest, are considered to be responsible for the malignant features of tumors. CSCs, as the driving force behind tumor development, generate new cells by modifying different signaling pathways. Moreover, investigations on different types of tumors have shown that signaling pathways are key to epithelial-mesenchymal transition (EMT) regulation, metastasis, and self-renewal of CSCs. Based on these established issues, new therapies are being investigated based on the use of inhibitors to block CSC growth and proliferation signals. Many reports indicate that CSC markers play a key role in cancer metastasis, with hopes placed in their targeting to block this process and eliminate relapses. Current histological classification of ovarian tumors, their epidemiology, and the most recent knowledge of ovarian CSCs, with particular emphasis on their molecular background, are important aspects for consideration. Furthermore, the importance of signaling pathways involved in tumor growth, development, and metastasis, is also presented.
Collapse
Affiliation(s)
- Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Wojciech Pieńkowski
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paul Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Correspondence:
| |
Collapse
|
7
|
Tam C, Rao S, Waye MMY, Ng TB, Wang CC. Autophagy signals orchestrate chemoresistance of gynecological cancers. Biochim Biophys Acta Rev Cancer 2021; 1875:188525. [PMID: 33600824 DOI: 10.1016/j.bbcan.2021.188525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gynecological cancers are characterized by a high mortality rate when chemoresistance develops. Autophagy collaborates with apoptosis and participates in homeostasis of chemoresistance. Recent findings supported that crosstalk of necrotic, apoptotic and autophagic factors, and chemotherapy-driven hypoxia, oxidative stress and ER stress play critical roles in chemoresistance in gynecological cancers. Meanwhile, current studies have shown that autophagy could be regulated by and cooperate with metabolic regulator, survival factors, stemness factors and specific post-translation modification in chemoresistant tumor cells. Meanwhile, non-coding RNA and autophagy crosstalk also contribute to the chemoresistance. Until now, analysis of individual autophagy factors towards the clinical significance and chemoresistance in gynecological cancer is still lacking. We suggest comprehensive integrated analysis of cellular homeostasis and tumor microenvironment to clarify the role of autophagy and the associated factors in cancer progression and chemoresistance. Panel screening of pan-autophagic factors will pioneer the development of risk models for predicting efficacy of chemotherapy and guidelines for systematic treatment and precision medicine.
Collapse
Affiliation(s)
- Chit Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shitao Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Medical Technology and Engineering, Fujian Medical University, Fujian, China
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Distinct Side Population Cell Subtypes Have Different Stemness Levels in Human Ovarian Cancer Cells. Curr Med Sci 2021; 41:127-132. [PMID: 33582916 DOI: 10.1007/s11596-021-2327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/30/2020] [Indexed: 10/22/2022]
Abstract
The stemness of different side population (SP) cell subtypes in ovarian cancer cells was studied, and the heterogeneity of ovarian cancer stem cells was analyzed. The cisplatin-resistant human serous ovarian cancer cell line C13 was stained with the bisbenzimide Hoechst 33342. A flow cytometry-based fluorescence-activated sorting method was used to obtain lower-SP (LSP) cells, upper-SP (USP) cells, and non-SP cells (NSP) based on their sensitivity to the staining time and Hoechst dye concentration. The sphere-forming capability, expression levels of stem cell markers, resistance to high concentrations of cisplatin, and subcutaneous tumorigenicity in NOD/SCID mice of the different cell subtypes were evaluated. The C13 cells contained SP cells with stemness characteristics, and the LSP cell subtype expressed higher levels of stem cell markers, had higher in vitro sphere-forming capability, higher cisplatin resistance and higher in vivo subcutaneous tumorigenesis than USP cells (P<0.05). NSP cells had no stemness. In conclusion, different subtypes of ovarian cancer SP cells have different stemness levels, and ovarian cancer stem cells may be heterogeneous.
Collapse
|
9
|
Di Fiore R, Suleiman S, Ellul B, O’Toole SA, Savona-Ventura C, Felix A, Napolioni V, Conlon NT, Kahramanoglu I, Azzopardi MJ, Dalmas M, Calleja N, Brincat MR, Muscat-Baron Y, Sabol M, Dimitrievska V, Yordanov A, Vasileva-Slaveva M, von Brockdorff K, Micallef RA, Kubelac P, Achimas-Cadariu P, Vlad C, Tzortzatou O, Poka R, Giordano A, Felice A, Reed N, Herrington CS, Faraggi D, Calleja-Agius J. GYNOCARE Update: Modern Strategies to Improve Diagnosis and Treatment of Rare Gynecologic Tumors—Current Challenges and Future Directions. Cancers (Basel) 2021; 13:cancers13030493. [PMID: 33514073 PMCID: PMC7865420 DOI: 10.3390/cancers13030493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary More than 50% of all the tumors affecting the female genital tract can be classified as rare and usually have a poor prognosis owing to delayed diagnosis and treatment. Currently, gynecologic cancer research, due to distinct scientific and technological challenges, is lagging behind. Moreover, the overall efforts for addressing these challenges are fragmented across different countries. The European Network for Gynecological Rare Cancer Research: GYNOCARE aims to address these challenges by creating a unique network between key stakeholders covering distinct domains from basic research to cure. GYNOCARE is part of a European Collaboration in Science and Technology (COST) with the aim to focus on the development of new approaches to improve the diagnosis and treatment of rare gynecological tumors. Here, we provide a brief overview describing the goals of this COST Action and its future challenges with the aim to continue fighting against this rare cancer. Abstract More than 50% of all gynecologic tumors can be classified as rare (defined as an incidence of ≤6 per 100,000 women) and usually have a poor prognosis owing to delayed diagnosis and treatment. In contrast to almost all other common solid tumors, the treatment of rare gynecologic tumors (RGT) is often based on expert opinion, retrospective studies, or extrapolation from other tumor sites with similar histology, leading to difficulty in developing guidelines for clinical practice. Currently, gynecologic cancer research, due to distinct scientific and technological challenges, is lagging behind. Moreover, the overall efforts for addressing these challenges are fragmented across different European countries and indeed, worldwide. The GYNOCARE, COST Action CA18117 (European Network for Gynecological Rare Cancer Research) programme aims to address these challenges through the creation of a unique network between key stakeholders covering distinct domains from concept to cure: basic research on RGT, biobanking, bridging with industry, and setting up the legal and regulatory requirements for international innovative clinical trials. On this basis, members of this COST Action, (Working Group 1, “Basic and Translational Research on Rare Gynecological Cancer”) have decided to focus their future efforts on the development of new approaches to improve the diagnosis and treatment of RGT. Here, we provide a brief overview of the current state-of-the-art and describe the goals of this COST Action and its future challenges with the aim to stimulate discussion and promote synergy across scientists engaged in the fight against this rare cancer worldwide.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (R.D.F.); (S.S.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (R.D.F.); (S.S.)
| | - Bridget Ellul
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, Dublin 8, Ireland;
| | - Charles Savona-Ventura
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Ana Felix
- Department of Pathology, Campo dos Mártires da Pátria, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, UNL, 130, 1169-056 Lisboa, Portugal;
| | - Valerio Napolioni
- Genomic And Molecular Epidemiology (GAME) Lab., School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Neil T. Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, 9 Dublin, Ireland;
| | - Ilker Kahramanoglu
- Department of Gynecologic Oncology, Emsey Hospital, Istanbul 3400, Turkey;
| | - Miriam J. Azzopardi
- Directorate for Health Information and Research, PTA 1313 G’Mangia, Malta; (M.J.A.); (N.C.)
| | - Miriam Dalmas
- Office of the Chief Medical Officer, Department of Policy in Health, Ministry for Health, 15 Merchants Street, VLT 1171 Valletta, Malta;
| | - Neville Calleja
- Directorate for Health Information and Research, PTA 1313 G’Mangia, Malta; (M.J.A.); (N.C.)
| | - Mark R. Brincat
- Department of Obstetrics and Gynaecology, Mater Dei Hospital, Triq Dun Karm, MSD 2090 Msida, Malta; (M.R.B.); (Y.M.-B.)
| | - Yves Muscat-Baron
- Department of Obstetrics and Gynaecology, Mater Dei Hospital, Triq Dun Karm, MSD 2090 Msida, Malta; (M.R.B.); (Y.M.-B.)
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Kristelle von Brockdorff
- Sir Anthony Mamo Oncology Centre, Department of Oncology and Radiotherapy, Mater Dei Hospital, MSD 2090 Msida, Malta; (K.v.B.); (R.A.M.)
| | - Rachel A. Micallef
- Sir Anthony Mamo Oncology Centre, Department of Oncology and Radiotherapy, Mater Dei Hospital, MSD 2090 Msida, Malta; (K.v.B.); (R.A.M.)
| | - Paul Kubelac
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”. 34–36 Republicii Street, 400015 Cluj-Napoca, Romania;
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.A.-C.); (C.V.)
| | - Patriciu Achimas-Cadariu
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.A.-C.); (C.V.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.A.-C.); (C.V.)
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj Napoca, Romania
| | - Olga Tzortzatou
- Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4 str., 11527 Athens, Greece;
| | - Robert Poka
- Institute of Obstetrics and Gynaecology, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Alex Felice
- Centre of Molecular Medicine and BioBanking, Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Nicholas Reed
- Beatson Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK;
| | - C. Simon Herrington
- Cancer Research UK Edinburgh Centre, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - David Faraggi
- Department of Statistics, University of Haifa, Haifa 31905, Israel;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (R.D.F.); (S.S.)
- Correspondence: ; Tel.: +356-2340-1892
| |
Collapse
|
10
|
Kim SI, Hwang WY, Lee M, Kim HS, Kim K, Chung HH, No JH, Kim JW, Kim YB, Park NH, Song YS, Suh DH. Survival impact of extended cycles of second-line chemotherapy in platinum-sensitive relapsed ovarian cancer patients with residual tumor after six cycles. BMC Cancer 2020; 20:1199. [PMID: 33287758 PMCID: PMC7720565 DOI: 10.1186/s12885-020-07658-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/17/2020] [Indexed: 01/02/2023] Open
Abstract
Background To determine if extended chemotherapy improves survival outcomes in patients with platinum-sensitive relapsed epithelial ovarian cancer (EOC) who have residual disease after six cycles of second-line chemotherapy. Methods In this study, 135 EOC patients who experienced platinum-sensitive recurrence after primary treatment between 2008 and 2018, and had a residual tumor ≥0.5 cm (detected on CT scans) after completing six cycles of second-line, platinum-based chemotherapy, were retrospectively reviewed. Based on the number of main therapy cycles (second-line chemotherapy), we divided patients into an extended group (>6 cycles, n = 52) or a standard group (6 cycles, n = 83) and compared patient characteristics and survival outcomes between these groups. Results The extended group had a shorter platinum-free interval after primary treatment than the standard group (median, 11.0 vs. 13.1 months; P = 0.018). Secondary debulking surgery was less frequently performed in the standard group (1.9% vs. 19.3%; P = 0.003). After six chemotherapy cycles, the extended and standard groups showed similar serum CA-125 levels (P = 0.122) and residual tumor sizes (P = 0.232). There was no difference in overall survival (OS) between the groups (P = 0.382), although the extended group had significantly worse progression-free survival (PFS) than the standard group (median, 13.9 vs. 15.1 months; P = 0.012). Multivariate analyses revealed that platinum-free interval was an independent prognostic factor for PFS and OS, but extended chemotherapy was not (PFS: HR, 1.25; 95% CI, 0.84–1.85; P = 0.279; and OS: HR, 1.36; 95% CI, 0.72–2.56; P = 0.342). We observed consistent results in the subset of patients who did not undergo secondary debulking surgery. Conclusions More than six cycles of platinum-based chemotherapy might not improve survival outcomes in patients with platinum-sensitive recurrent EOC who had a residual tumor ≥0.5 cm after six cycles of second-line chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07658-8.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Woo Yeon Hwang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Noh Hyun Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
11
|
Martincuks A, Li PC, Zhao Q, Zhang C, Li YJ, Yu H, Rodriguez-Rodriguez L. CD44 in Ovarian Cancer Progression and Therapy Resistance-A Critical Role for STAT3. Front Oncol 2020; 10:589601. [PMID: 33335857 PMCID: PMC7736609 DOI: 10.3389/fonc.2020.589601] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Despite significant progress in cancer therapy over the last decades, ovarian cancer remains the most lethal gynecologic malignancy worldwide with the five-year overall survival rate less than 30% due to frequent disease recurrence and chemoresistance. CD44 is a non-kinase transmembrane receptor that has been linked to cancer metastatic progression, cancer stem cell maintenance, and chemoresistance development via multiple mechanisms across many cancers, including ovarian, and represents a promising therapeutic target for ovarian cancer treatment. Moreover, CD44-mediated signaling interacts with other well-known pro-tumorigenic pathways and oncogenes during cancer development, such as signal transducer and activator of transcription 3 (STAT3). Given that both CD44 and STAT3 are strongly implicated in the metastatic progression and chemoresistance of ovarian tumors, this review summarizes currently available evidence about functional crosstalk between CD44 and STAT3 in human malignancies with an emphasis on ovarian cancer. In addition to the role of tumor cell-intrinsic CD44 and STAT3 interaction in driving cancer progression and metastasis, we discuss how CD44 and STAT3 support the pro-tumorigenic tumor microenvironment and promote tumor angiogenesis, immunosuppression, and cancer metabolic reprogramming in favor of cancer progression. Finally, we review the current state of therapeutic CD44 targeting and propose superior treatment possibilities for ovarian cancer.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | |
Collapse
|
12
|
Zhou N, Ma X, Hu W, Ren P, Zhao Y, Zhang T. Effect of RGD content in poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-alt-maleic acid) hydrogels on the expansion of ovarian cancer stem-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111477. [PMID: 33255056 DOI: 10.1016/j.msec.2020.111477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022]
Abstract
The extracellular matrix (ECM) affects cell behaviors, such as survival, proliferation, motility, invasion, and differentiation. The arginine-glycine-aspartic acid (RGD) sequence is present in several ECM proteins, such as fibronectin, collagen type I, fibrinogen, laminin, vitronectin, and osteopontin. It is very critical to develop ECM-like substrates with well-controlled features for the investigation of influence of RGD on the behavior of tumor cells. In this study, poly(ethylene glycol) (PEG)-crosslinked poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)) hydrogels (PEMM) with different RGD contents were synthesized, fully characterized, and established as in vitro culture platforms to investigate the effects of RGD content on cancer stem cell (CSC) enrichment. The morphology, proliferation, and viability of SK-OV-3 ovarian cancer cells cultured on hydrogels with different RGD contents, the expression of CSC markers and malignant signaling pathway-related genes, and drug resistance were systematically evaluated. The cell aggregates formed on the hydrogel surface with a lower RGD content acquired certain CSC-like properties, thus drug resistance was enhanced. In contrast, the drug sensitivity of cells on the higher RGD content surface increased because of less CSC-like properties. However, the presence of RGD in the stiff hydrogels (PEMM2) had less effect on the stemness expression than did its presence in the soft hydrogels (PEMM1). The results suggest that RGD content and matrix stiffness can lead to synergetic effects on the expression of cancer cell stemness and the epithelial-mesenchymal transition (EMT), interleukin-6 (IL-6), and Wnt pathways.
Collapse
Affiliation(s)
- Naizhen Zhou
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoe Ma
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
13
|
Zhou N, Ma X, Bernaerts KV, Ren P, Hu W, Zhang T. Expansion of Ovarian Cancer Stem-like Cells in Poly(ethylene glycol)-Cross-Linked Poly(methyl vinyl ether-alt-maleic acid) and Alginate Double-Network Hydrogels. ACS Biomater Sci Eng 2020; 6:3310-3326. [DOI: 10.1021/acsbiomaterials.9b01967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Naizhen Zhou
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoe Ma
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Yue Y, Xia L, Xu S, Wang C, Wang X, Lu W, Xie X. SURF4 maintains stem-like properties via BIRC3 in ovarian cancer cells. J Gynecol Oncol 2020; 31:e46. [PMID: 32026660 PMCID: PMC7286753 DOI: 10.3802/jgo.2020.31.e46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE As cancer stem cells (CSCs) are considered as the origin of tumor development, recurrence, and drug resistance, we aimed to explore the mechanism related to modulating stemness in CSCs, thus facilitating to search for new therapeutic strategy for ovarian cancer. METHODS In this study, ovarian cancer stem cells (OCSCs) induced from cell line 3AO and A2780 were enriched in serum-free medium (SFM). The effect of SURF4 on CSC-like properties was evaluated by sphere-forming assays, re-differentiation assays, quantitative real-time polymerase chain reaction, flow cytometry, Western blotting, cell viability assays and in vivo xenograft experiments. The downstream molecule participating in SURF4 maintaining stemness was screened by RNA-sequencing and identified by the experiments of gene function. RESULTS SURF4 was upregulated expressed in OCSCs. Knockdown of SURF4 reduced the expression of the related stem markers (SOX2 and c-MYC), inhibited self-renewal ability, and improved the sensitivity to chemotherapeutic drugs (paclitaxel and cisplatin) in OCSCs. SURF4 knockdown also inhibited tumorigenesis in nonobese diabetic/severe combined immunodeficiency mice. BIRC3 expression was controlled by SURF4, and BIRC3 showed the similar effect as SURF4 did, and BIRC3 overexpression partially recovered stem-like properties abolished by SURF4 knockdown. CONCLUSION Our findings suggest that SURF4 possesses the ability to maintain stemness of OCSCs via BIRC3, and may serve as a potential target in stem cell-targeted therapy for ovarian cancer.
Collapse
Affiliation(s)
- Yongfang Yue
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lili Xia
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Conghui Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
15
|
Yang S, Chen T, Huang L, Xu S, Cao Z, Zhang S, Xu J, Li Y, Yue Y, Lu W, Cheng X, Xie X. High-Risk Human Papillomavirus E7 Maintains Stemness Via APH1B In Cervical Cancer Stem-Cell Like Cells. Cancer Manag Res 2019; 11:9541-9552. [PMID: 31814758 PMCID: PMC6858839 DOI: 10.2147/cmar.s194239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine whether early proteins from high-risk human papillomavirus (HPV) have the capacity to maintain cellular stemness. Patients and methods First, we isolated cancer stem cell like cells from two cervical cancer cell lines, SiHa and CaSki, using non-adhesive culture with serum-free medium. Second, we knocked down HPV16 E7 in SiHa sphere cells and overexpressed HPV16 E7 in U2OS sphere cells. Third, we used RNA-seq analysis and Western blotting to screen and identify the expression of differentially expressed genes in SiHa cells with HPV16 E7 knockdown. Results We found that both SiHa and CaSki cells grew as cell spheres (oncospheres) and shared the properties of cancer stem cells, including high expression of stem cell marker OCT4 and SOX2, self-renew, and resistance to chemotherapeutic drugs. The stem-like properties were deprived when HPV16 E7 was knocked down in SiHa sphere cells and maintained when HPV16 E7 was over-expressed in U2OS sphere cells. APH1B was up-regulated, among differential expression genes, in SiHa cells with HPV16 E7 knockdown and modulated cellular stemness and SiHa sphere cells with APH1B knockdown regained the stem-like properties deprived by E7 inhibition. Conclusion HPV16 E7 possesses the capacity to maintain cellular stemness and APH1B may participate in this process in cervical cancer sphere cells.
Collapse
Affiliation(s)
- Shizhou Yang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Tingting Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Lu Huang
- Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhu Cao
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yongfang Yue
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11070934. [PMID: 31277278 PMCID: PMC6678643 DOI: 10.3390/cancers11070934] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients. Although significant developments have occurred since OCSCs were first described, the involvement of CSCs in ovarian tumor metastasis is not fully understood. Here, we discuss putative CSC markers and the fundamental role of CSCs in facilitating tumor dissemination in OC. Additionally, we focus on promising CSC-targeting strategies in preclinical and clinical studies of OC and discuss potential challenges in CSC research.
Collapse
|
17
|
Targeting Ovarian Cancer Cells Overexpressing CD44 with Immunoliposomes Encapsulating Glycosylated Paclitaxel. Int J Mol Sci 2019; 20:ijms20051042. [PMID: 30818864 PMCID: PMC6429518 DOI: 10.3390/ijms20051042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15–20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies.
Collapse
|
18
|
Al-Alem LF, Pandya UM, Baker AT, Bellio C, Zarrella BD, Clark J, DiGloria CM, Rueda BR. Ovarian cancer stem cells: What progress have we made? Int J Biochem Cell Biol 2018; 107:92-103. [PMID: 30572025 DOI: 10.1016/j.biocel.2018.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor heterogeneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to readily adapt to environmental, immunologic and pharmacologic cues. The plasticity and ability to inactivate or activate signaling pathways promoting their longevity has been, and continues to be, the challenge faced in developing successful CSC targeted therapies. Identifying and understanding unique ovarian CSC markers and the pathways they utilize could reveal new therapeutic opportunities that may offer alternative adjuvant treatment options. Herein, we will discuss the current state of ovarian CSC characterization, their contribution to disease resistance, recurrence and shed light on clinical trials that may target the CSC population.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca D Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Celeste M DiGloria
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Xu S, Yue Y, Zhang S, Zhou C, Cheng X, Xie X, Wang X, Lu W. STON2 negatively modulates stem-like properties in ovarian cancer cells via DNMT1/MUC1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:305. [PMID: 30518424 PMCID: PMC6282299 DOI: 10.1186/s13046-018-0977-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022]
Abstract
Background Cancer stem cells (CSCs) possess abilities of self-renewal and differentiation, have oncogenic potential and are regarded to be the source of cancer recurrence. However, the mechanism by which CSCs maintain their stemness remains largely unclear. Methods In this study, the cell line-derived ovarian CSCs (OCSCs), 3AO and Caov3, were enriched in serum-free medium (SFM). Differentially expressed proteins were compared between the OCSC subpopulation and parental cells using liquid chromatography (LC)-mass spectrometry (MS)/MS label-free quantitative proteomics. Sphere-forming ability assays, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), western blotting, and in vivo xenograft experiments were performed to evaluate stemness. RNA-sequencing (RNA-seq) and pyrosequencing were used to reveal the mechanism by which STON2 negatively modulates the stem-like properties of ovarian cancer cells. Results Among the 74 most differentially expressed proteins, stonin 2 (STON2) was confirmed to be down-regulated in the OCSC subpopulation. We show that STON2 negatively modulates the stem-like properties of ovarian cancer cells, which are characterized by sphere formation, a CD44+CD24− ratio, and by CSC- and epithelial mesenchymal transition (EMT)-related markers. STON2 knockdown also accelerated tumorigenesis in NOD/SCID mice. Further investigation revealed a downstream target, mucin 1 (MUC1), as up-regulated upon the down regulation of STON2. A decrease in both DNA methyltransferase 1 (DNMT1) expression and methylation in the promoter region of MUC1 was associated with subsequently elevated MUC1 expression, as detected in STON2 knockdown in 3AO and Caov3 cells. Direct DNMT1 knockdown simultaneously elevated MUC1 expression. The functional significance of this STON2-DNMT1/MUC1 pathway is supported by the observation that STON2 overexpression suppresses MUC1-induced sphere formation of OCSCs. The paired expression of STON2 and MUC1 in ovarian cancer specimens was also detected revealing the prognostic value of STON2 expression to be highly dependent on MUC1 expression. Conclusions Our results imply that STON2 may negatively regulate stemness in ovarian cancer cells via DNMT1-MUC1 mediated epigenetic modification. STON2 is therefore involved in OCSC biology and may represent a therapeutic target for innovative treatments aimed at ovarian cancer eradication. Electronic supplementary material The online version of this article (10.1186/s13046-018-0977-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yongfang Yue
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
20
|
Aghaalikhani N, Rashtchizadeh N, Shadpour P, Allameh A, Mahmoodi M. Cancer stem cells as a therapeutic target in bladder cancer. J Cell Physiol 2018; 234:3197-3206. [PMID: 30471107 DOI: 10.1002/jcp.26916] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Bladder cancer is one of the most prevalent genitourinary cancers responsible for about 150,000 deaths per year worldwide. Currently, several treatments, such as endoscopic and open surgery, appended by local or systemic immunotherapy, chemotherapy, and radiotherapy are used to treat this malignancy. However, the differences in treatment outcome among patients suffering from bladder cancer are considered as one of the important challenges. In recent years, cancer stem cells, representing a population of undifferentiated cells with stem-cell like properties, have been eyed as a major culprit for the high recurrence rate in superficial papillary bladder cancer. Cancer stem cells have been reported to be resistant to conventional treatments, such as chemotherapy, radiation, and immunotherapy, which induce selective pressure on tumoral populations resulting in selection and growth of the resistant cells. Therefore, targeting the therapeutic aspects of cancer stem cells in bladder cancer may be promising. In this study, we briefly discuss the biology of bladder cancer and then address the possible relationship between molecular biology of bladder cancer and cancer stem cells. Subsequently, the mechanisms of resistance applied by cancer stem cells against the conventional therapeutic tools, especially chemotherapy, are discussed. Moreover, by emphasizing the biomarkers described for cancer stem cells in bladder cancer, we have provided, described, and proposed targets on cancer stem cells for therapeutic interventions and, finally, reviewed some immunotargeting strategies against bladder cancer stem cells.
Collapse
Affiliation(s)
- Nazi Aghaalikhani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pejman Shadpour
- Hasheminejad Kidney Centre (HKC), Hospital Management Research Centre (HMRC), University of Medical Sciences (IUMS), Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Mahmoodi
- Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
21
|
Wang L, Xu T, Cui M. Are ovarian cancer stem cells the target for innovative immunotherapy? Onco Targets Ther 2018; 11:2615-2626. [PMID: 29780254 PMCID: PMC5951213 DOI: 10.2147/ott.s155458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells with the ability of self-renewal and differentiation, are believed to be responsible for tumor generation, progression, metastasis, and relapse. Ovarian cancer, the most malignant gynecological cancer, has consistent pathology behavior with CSC model, which suggests that therapies based on ovarian cancer stem cells (OCSCs) can gain a more successful prognosis. Much evidence has proved that epigenetic mechanism played an important role in tumor formation and sustainment. Since CSCs are generally resistant to conventional therapies (chemotherapy and radiotherapy), immunotherapy is a more effective method that has been implemented in the clinic. Chimeric antigen receptor (CAR)-T cell, an adoptive cellular immunotherapy, which results in apparent elimination of tumor in both hematologic and solid cancers, could be used for ovarian cancer. This review covers the basic conception of CSCs and OCSCs, the implication of epigenetic mechanism underlying cancer evolution considering CSC model, the immunotherapies reported for ovarian cancer targeting OCSCs currently, and the relationship between immune system and hierarchy cancer organized by CSCs. Particularly, the promising prospects and potential pitfalls of targeting OCSC surface markers to design CAR-T cellular immunotherapy are discussed here.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Manhua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
22
|
Surface markers of cancer stem-like cells of ovarian cancer and their clinical relevance. Contemp Oncol (Pozn) 2018; 22:48-55. [PMID: 29628794 PMCID: PMC5885077 DOI: 10.5114/wo.2018.73885] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSLCs) are defined as cancer cells with stem cell characteristics. Although CSLCs constitute no more than a few percent of the tumor mass, they play important roles in cancer chemo-resistance, metastasis and disease recurrence. Ovarian cancer (OC) is considered the most aggressive gynecological malignancy in which the role of CSLCs is of major significance, although it remains to be specified. The studies describing ovarian CSLC phenotype vary in the definition of the molecular pattern of expression of the main markers such as CD133, CD44, CD117, and CD24. Stem-like features of OC have been shown to correlate with the clinical course of the disease and permit diagnosis, prognosis and treatment outcome to be improved. Identification of CSLC markers could provide hallmarks which, related to the chemo-resistance of the disease, will facilitate treatment selection. This review describes recent advances in research on stem-like cell status in OC, mainly focusing on surface markers of CSLCs and their clinical relevance.
Collapse
|
23
|
Xie T, Mo L, Li L, Mao N, Li D, Liu D, Zuo C, Huang D, Pan Q, Yang L, Wang S. Identification of side population cells in human lung adenocarcinoma A549 cell line and elucidation of the underlying roles in lung cancer. Oncol Lett 2018; 15:4900-4906. [PMID: 29552128 PMCID: PMC5840558 DOI: 10.3892/ol.2018.7956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 06/29/2017] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to isolate and characterize side population (SP) cells in the human lung cancer A549 cell line, and elucidate the molecular mechanism of SP cells underlying lung cancer. The SP and non-SP (NSP) cells in A549 cells were isolated and their differentiation was analyzed by fluorescence-activated cell sorting. An in vitro plate clone assay, Matrigel® Transwell assay and chemoresistance analysis of the sorted SP and NSP cells were performed. In addition, the sorted SP and NSP cells were injected into BALB/c nude mice to detect their tumorigenic potential in vivo. The expression of ATP-binding cassette sub-family G member 2 (ABCG2) in transplanted tumors was detected by immunohistochemistry. The SP and NSP cells were successfully isolated. The results demonstrated that SP cells accounted for 1.09% of live A549 cells. SP cells produced SP and NSP cells, while NSP cells only produced NSP cells. In addition, SP cells formed more colonies, exhibited improved invasive ability and increased levels of chemoresistance compared with NSP cells in vitro. SP cells demonstrated a higher tumorigenic potential in BALB/c nude mice, and the number of ABCG2-positive cells in the SP xenograft tumors were significantly increased compared with that in the NSP xenograft tumors. The present study indicated that SP cells isolated from the human lung cancer A549 cell line demonstrated increased tumorigenicity, and improved invasive ability and chemoresistance compared with NSP cells. In addition, detection of ABCG2 expression may assist in predicting the chemotherapeutic outcome of patients, and serve as a target for treating lung cancer.
Collapse
Affiliation(s)
- Tong Xie
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lingzhao Mo
- Department of Gynecologic Oncology, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Gynecologic Oncology, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Naiquan Mao
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Danrong Li
- Experimental Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Deseng Liu
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuantian Zuo
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dingming Huang
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Pan
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Yang
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shoufeng Wang
- Department of Thoracic Surgery, The Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
24
|
Ma J, Salamoun J, Wipf P, Edwards R, Van Houten B, Qian W. Combination of a thioxodihydroquinazolinone with cisplatin eliminates ovarian cancer stem cell-like cells (CSC-LCs) and shows preclinical potential. Oncotarget 2017; 9:6042-6054. [PMID: 29464053 PMCID: PMC5814193 DOI: 10.18632/oncotarget.23679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cell-like cells (CSC-LCs) contribute to drug resistance and recurrence of ovarian cancer. Strategies that can eradicate CSC-LCs are expected to substantially improve the outcome of ovarian cancer treatment. We have previously identified a class of thioxodihydroquinazolinone small molecules, which have strong synergistic antitumor activity with platinum drugs, the standard chemotherapeutic agents for ovarian cancer treatment. In the current study, using the activity of aldehyde dehydrogenase (ALDH) as a marker of CSC-LCs, we demonstrated that the combination of thioxodihydroquinazolinone compound 19 with cisplatin is able to diminish ALDH-high CSC-LC populations in both platinum-resistant ovarian cancer cell lines and primary ovarian cancer cells from metastatic ascites of a cisplatin-resistant patient. Compound 19 enhanced the accumulation of intracellular cisplatin in ALDH-high ovarian CSC-LCs. The combination of compound 19 with cisplatin was also able to reduce the sphere-forming capability of cisplatin-resistant ovarian cancer cells. Using a spheroid-based in vitro metastasis model of ovarian cancer, we demonstrated that the co-administration of compound 19 with cisplatin prevents ovarian cancer spheroid cells from attaching to substratum and spreading. In a cisplatin-resistant in vivo intraperitoneal xenograft mouse model, the combination of compound 19 with cisplatin significantly reduced tumor burden, as compared to cisplatin alone. Taken together, our study demonstrated that thioxodihydroquinazolinones represent a new class of agents that in combination with cisplatin are capable of eliminating CSC-LCs in ovarian cancer. Further development of thioxodihydroquinazolinone small molecules may yield a more effective treatment for cisplatin-resistant metastatic ovarian cancer.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College of HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Joseph Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Accelerated Chemical Discovery Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert Edwards
- Department of Obstetrics and Gynecology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Wei Qian
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, and UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Peng Q, Qin J, Zhang Y, Cheng X, Wang X, Lu W, Xie X, Zhang S. Autophagy maintains the stemness of ovarian cancer stem cells by FOXA2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:171. [PMID: 29187221 PMCID: PMC5707869 DOI: 10.1186/s13046-017-0644-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
Background Cancer stem cells (CSCs) are regarded as the main cell type responsible for the initiation, metastasis, drug resistance, and recurrence of cancer. But the mechanism by which cancer stem cells maintain their stemness remains unclear. Methods and Results In the present study, ovarian cancer stem cells (OCSCs) were revealed to have an enhanced autophagic flux. Furthermore, their chemoresistance and ability to self-renewal in vitro were decreased when autophagy was inhibited by Bafilomycin A1(BafA1), Chloroquine(CQ) or autophagy related 5(ATG5) knockdown. PCR array screening determined that Forkhead Box A2(FOXA2) was highly expressed in OCSCs, and correspondingly regulated by autophagy activity. In addition, the self-renewal ability was decreased in the case of FOXA2 knockdown by shRNA in OCSCs. Overexpression of FOXA2 from the pEGFP(+)-FOXA2 plasmid partially reversed the depressed self-renewal ability of OCSCs during autophagy inhibition. Conclusions Our findings suggest that autophagy, through participation of FOXA2, maintains the characteristics of OCSCs. Autophagy and FOXA2 are therefore potential targets for ovarian cancer stem cell directed therapies. Electronic supplementary material The online version of this article (10.1186/s13046-017-0644-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiaohua Peng
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jiale Qin
- Department of Ultrasound; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yanan Zhang
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Weiguo Lu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
26
|
Abstract
Glycans are essential for the maintenance of normal biological function, with alterations in glycan expression being a hallmark of cancer. Cancer stem cells (CSCs) are a subset of cells within a tumour capable of self-renewal, cellular differentiation and resistances to conventional therapies. As is the case with stem cells, marker proteins present on the cell surface are frequently used to identify and enrich CSCs, with the expression of these markers statistical correlating with the likelihood of cancer recurrence and overall patient survival. As such CSC markers are of high clinical relevance. The majority of markers currently used to identify CSC populations are glycoproteins, and although the diverse biological roles for many of these markers are known, the nature and function of the glycan moiety on these glycoproteins remains to be fully elucidated. This mini-review summarises our current knowledge regarding the types and extent of CSC marker glycosylation, and the various roles that these glycans play in CSC biology, including in mediating cell adhesion, metastasis, evading apoptosis, tear shear resistance, tumour growth, maintaining pluripotency, self-renewal, trafficking, maintaining stability, maintaining enzymatic activity and aiding epithelial mesenchymal transitioning. Given that CSCs markers have multiple diverse biological functions, and are potentially of significant diagnostic and therapeutic benefit the search for new markers that are uniquely expressed on CSCs is vital to selectively target/identify this subset of cancer cells. As such we have also outlined how high-throughput lectin microarrays can be used to successfully profile the glycosylation status of CSC and to identify glyco-markers unique to CSCs.
Collapse
|
27
|
Zanotti L, Romani C, Tassone L, Todeschini P, Tassi RA, Bandiera E, Damia G, Ricci F, Ardighieri L, Calza S, Marchini S, Beltrame L, Tognon G, D'Incalci M, Pecorelli S, Sartori E, Odicino F, Ravaggi A, Bignotti E. MAL gene overexpression as a marker of high-grade serous ovarian carcinoma stem-like cells that predicts chemoresistance and poor prognosis. BMC Cancer 2017; 17:366. [PMID: 28545541 PMCID: PMC5445497 DOI: 10.1186/s12885-017-3334-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/09/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The existence of cancer stem cells (CSCs) within a tumor bulk has been demonstrated for many solid tumors including epithelial ovarian carcinoma (EOC). CSCs have been associated to tumor invasion, metastasis and development of chemoresistant recurrences. In this context, we aim to characterize EOC CSCs from the molecular point of view in order to identify potential biomarkers associated with chemoresistance. METHODS We isolated a population of cells with stem-like characteristics (OVA-BS4 spheroids) from a primary human EOC cell line under selective conditions. OVA-BS4 spheroids were characterized for drug response by cytotoxicity assays and their molecular profile was investigated by microarray and RT-qPCR. Finally, we performed a gene expression study in a cohort of 74 high-grade serous EOC (HGSOC) patients by RT-qPCR. RESULTS Spheroids exhibited properties of self-renewal and a pronounced expression of well-known stem cell genes. Moreover, they demonstrated greater resistance towards several anticancer drugs compared to parent cell line, consistent with their higher ABCG2 gene expression. From microarray studies MAL (T-cell differentiation protein) emerged as the most up-regulated gene in spheroids, compared to parent cell line. In HGSOC patients, MAL was significantly overexpressed in platinum-resistant compared to platinum-sensitive patients and resulted as an independent prognostic marker of survival. CONCLUSIONS This investigation provides an important contribution to the identification of molecular markers of ovarian CSCs and chemoresistance. Successful translation of molecular findings would lead to a better comprehension of the mechanisms triggering chemoresistant recurrences, to the individuation of novel therapeutic targets and to the personalization of treatment regimens.
Collapse
Affiliation(s)
- Laura Zanotti
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
| | - Chiara Romani
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Laura Tassone
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Paola Todeschini
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Renata Alessandra Tassi
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Elisabetta Bandiera
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Giovanna Damia
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Francesca Ricci
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Laura Ardighieri
- Department of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sergio Marchini
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Sergio Pecorelli
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Enrico Sartori
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Franco Odicino
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Antonella Ravaggi
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
28
|
Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS One 2017; 12:e0171044. [PMID: 28196146 PMCID: PMC5308810 DOI: 10.1371/journal.pone.0171044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/13/2017] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer (OVC) patients who receive chemotherapy often acquire drug resistance within one year. This can lead to tumor reoccurrence and metastasis, the major causes of mortality. We report a transient increase of a small distinctive CXCR4High/CD24Low cancer stem cell population (CXCR4High) in A2780 and SKOV-3 OVC cell lines in response to cisplatin, doxorubicin, and paclitaxel, treatments. The withdrawal of the drug challenges reversed this cell-state transition. CXCR4High exhibits dormancy in drug resistance and mesenchymal-like invasion, migration, colonization, and tumor formation properties. The removal of this cell population from a doxorubicin-resistant A2780 lineage (A2780/ADR) recovered the sensitivity to drug treatments. A cytotoxic peptide (CXCR4-KLA) that can selectively target cell-surface CXCR4 receptor was further synthesized to investigate the therapeutic merits of targeting CXCR4High. This peptide was more potent than the conventional CXCR4 antagonists (AMD3100 and CTCE-9908) in eradicating the cancer stem cells. When used together with cytotoxic agents such as doxorubicin and cisplatin, the combined drug-peptide regimens exhibited a synergistic cell-killing effect on A2780, A2780/ADR, and SKOV-3. Our data suggested that chemotherapy could establish drug-resistant and tumor-initiating properties of OVC via reversible CXCR4 cell state transition. Therapeutic strategies designed to eradicate rather than antagonize CXCR4High might offer a far-reaching potential as supportive chemotherapy.
Collapse
|
29
|
Zhang Y, Sun B, Zhao X, Sun H, Cui W, Liu Z, Yao X, Dong X. Spheres derived from the human SN12C renal cell carcinoma cell line are enriched in tumor initiating cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:163. [PMID: 27756344 PMCID: PMC5070383 DOI: 10.1186/s13046-016-0442-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
Background Recently, tumor initiating cells (TICs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor initiation, recurrence and metastasis. The isolation and identification of TICs could help to develop novel therapeutic strategies. Methods In this study, we isolated spheroid cells from human renal cell carcinoma (RCC) cell line SN12C in stem cell-conditioned medium. The stemness characteristics of spheroid cells, including tumorigenicity, self-renewal, proliferation and aldehyde dehydrogenase (ALDH) activity were evaluated; the expression levels of stemness genes and related proteins were assessed. Furthermore, study examined the differentiation of TICs into endothelial cells and the relationship between TICs and EMT. Results Our data demonstrated that spheroid cells cultured in defined serum-free medium possessed TIC properties, such as high tumorigenic capacity, upregulation of TIC-related genes and proteins, persistent self-renewal and extensive proliferation. Furthermore, spheroid cells were more aggressive in growth, invasion, scratch recovery, clonogenic survival and high aldehyde dehydrogenase (ALDH) activity. Interestingly, a marked increase in tumor vascularity compared to adherent tumors in vivo, and spheroid cells can differentiate into functional endothelial-like cells in vitro suggesting a role of tumor initiating cells in tumor angiogenesis. The spheroid cells also demonstrated down-regulated E-cadherin and up-regulated Vimentin expression, which is the typical phenotype of EMT. Conclusions These results suggest that spheroid cells with tumor initiating cells-like characteristics contributed to tumor generation, progression, high tumorigenicity, pro-angiogenic capability and relationship with EMT. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify TICs.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Baocun Sun
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China. .,Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Cui
- Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Zhiyong Liu
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xin Yao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| |
Collapse
|
30
|
The effect of salinomycin on ovarian cancer stem-like cells. Obstet Gynecol Sci 2016; 59:261-8. [PMID: 27462592 PMCID: PMC4958671 DOI: 10.5468/ogs.2016.59.4.261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The identification of cancer stem-like cells is a recent development in ovarian cancer. Compared to other cancer cells, cancer stem-like cells present more chemo-resistance and more aggressive characteristics. They play an important role in the recurrence and drug resistance of cancer. Therefore, the target therapy of cancer stem-like cell may become a promising and effective approach for ovarian cancer treatment. It may also help to provide novel diagnostic and therapeutic strategies. METHODS The OVCAR3 cell line was cultured under serum-free conditions to produce floating spheres. The CD44(+)CD117(+) cell line was isolated from the human ovarian cancer cell line OVCAR3 by using immune magnetic-activated cell sorting system. The expression of stemness genes such as OCT3/4, NANOG and SOX2 mRNA were determined by reverse transcription polymerase chain reaction. OVCAR3 parental and OVCAR3 CD44(+)CD117(+) cells were grown in different doses of paclitaxel and salinomycin to evaluate the effect of salinomycin. And growth inhibition of OVCAR3 CD44(+)CD117(+) cells by paclitaxel combined with salinomycin was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. RESULTS Tumor spheroids generated from the OVCAR3 cell line are shown to have highly enriched CD44 and CD117 expression. Treatment with a combination of paclitaxel and salinomycin demonstrated growth inhibition of OVCAR3 CD44(+)CD117(+) cells. CONCLUSION The present study is a detailed investigation on the expression of CD44 and CD117 in cancer stem cells and evaluates their specific tumorigenic characteristics in ovarian cancer. This study also demonstrates significant growth inhibition of cancer stem-like cells by paclitaxel combined with salinomycin. Identification of these cancer stem-like cell markers and growth inhibition effect of salinomycin may be the next step to the development of novel target therapy in ovarian cancer.
Collapse
|
31
|
Sharrow AC, Perkins B, Collector MI, Yu W, Simons BW, Jones RJ. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy. Gynecol Oncol 2016; 142:341-8. [PMID: 27017984 DOI: 10.1016/j.ygyno.2016.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. METHODS We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. RESULTS ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. CONCLUSIONS Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes.
Collapse
Affiliation(s)
- Allison C Sharrow
- Department of Pathology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Brandy Perkins
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Michael I Collector
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA
| | - Wayne Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Brian W Simons
- Departments of Pathology and Molecular & Comparative Pathobiology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Richard J Jones
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| |
Collapse
|
32
|
Abstract
Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients.
Collapse
Affiliation(s)
- Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA.
| |
Collapse
|
33
|
IQGAP1 Is Involved in Enhanced Aggressive Behavior of Epithelial Ovarian Cancer Stem Cell-Like Cells During Differentiation. Int J Gynecol Cancer 2016; 25:559-65. [PMID: 25675045 PMCID: PMC4406980 DOI: 10.1097/igc.0000000000000394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Wide metastasis is one of characteristics of ovarian cancer. Cancer stem cells, as a source in cancer invasion and metastasis, possess powerful potential of differentiation. Scaffolding IQ domain GTPase-activating protein 1 (IQGAP1) plays a key role in the invasion and metastasis of cancer cells, but IQGAP1’s role in cancer stem cells including ovarian cancer was unclear. Methods Spheroid culture with serum-free medium was used for enriching ovarian cancer stem cell-like cells (CSC-LCs) from 3AO cell line, and a medium with 10% fetal bovine serum was used to induce the differentiation of CSC-LCs. Immunofluorescence was for detecting the stem markers OCT4 and SOX2. The quantitative real-time-polymerase chain reaction and Western blotting were performed to determine the messenger RNA and protein expression of IQGAP1, respectively. The capacity of cell invasion was evaluated by transwell chamber assay. Results Ovarian CSC-LCs obtained through spheroid culture showed irregularly elongated appearance, CD24 negative, and OCT4 and SOX2 positive. IQGAP1 expression was decreased in ovarian CSC-LCs compared with parental 3AO cells, but increased de novo during the differentiation of CSC-LCs. Knockdown of IQGAP1 by specific small interfering RNA remarkably weakened invasion capacity of 2-day differentiated ovarian CSC-LCs. Conclusions Increased IQGAP1 expression during the differentiation of CSC-LCs is involved in an aggressive cell behavior, which may contribute to metastasis of ovarian cancer.
Collapse
|
34
|
Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang JY, Ye F, Fu YF, Zhou CY, Lu WG, Cheng XD, Xie X. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy 2016; 11:225-38. [PMID: 25607466 DOI: 10.1080/15548627.2014.998931] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.
Collapse
Key Words
- 95% CI, 95% confidence interval
- ALDOC, aldolase C, fructose-bisphosphate
- ATG5, autophagy-related 5
- BECN1
- BECN1, Beclin 1, autophagy-related
- BafA1, bafilomycin A1
- CNN3, calponin 3, acidic
- DAPI, 4', 6-diamidino-2-phenylindole
- FLNA, filamin A, α
- GO, gene ontology
- GenMAPP, gene microarray pathway profiler
- HBSS, Hank's balanced salt solution
- HR, hazard ratio
- KEGG, Kyoto encyclopedia of genes and genome
- LC-MS/MS, liquid chromatography-mass spectrometry/ mass spectrometry
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- OS, overall survival
- PFS, progression-free survival
- PGAM1, phosphoglycerate mutase 1 (brain)
- SQSTM1, sequestosome 1
- TNF, tumor necrosis factor
- TXN, thioredoxin
- TXNDC17
- TXNDC17, thioredoxin domain containing 17
- UTP23, small subunit (SSU) processome component, homolog (yeast)
- autophagy
- ovarian cancer
- paclitaxel resistance
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Song-Fa Zhang
- a Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine ; Zhejiang University ; Hangzhou , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang H, Yang M, Lin L, Ren H, Lin C, Lin S, Shen G, Ji B, Meng C. HepG2 cells acquire stem cell-like characteristics after immune cell stimulation. Cell Oncol (Dordr) 2015; 39:35-45. [DOI: 10.1007/s13402-015-0249-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 01/06/2023] Open
|
36
|
Farace C, Oliver JA, Melguizo C, Alvarez P, Bandiera P, Rama AR, Malaguarnera G, Ortiz R, Madeddu R, Prados J. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells. PLoS One 2015; 10:e0134111. [PMID: 26230845 PMCID: PMC4521885 DOI: 10.1371/journal.pone.0134111] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities of SLRP in response to CSC enrichment, simultaneously acquiring TMZ resistance, cellular heterogeneity, and a quiescent phenotype, suggesting a novel pivotal role for SLRP in drug resistance and cell plasticity of CSC-like, allowing cell survival and ECM/niche modulation potential.
Collapse
Affiliation(s)
- Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail: (CF); (RM)
| | | | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pablo Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ana Rosa Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Giulia Malaguarnera
- Research Center "The Great Senescence", University of Catania, Catania, Italy
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- National Institute of Biostructures and Biosystem (INBB), Rome, Italy
- * E-mail: (CF); (RM)
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| |
Collapse
|
37
|
Ozakpinar OB, Maurer AM, Ozsavci D. Ovarian stem cells: From basic to clinical applications. World J Stem Cells 2015; 7:757-768. [PMID: 26029346 PMCID: PMC4444615 DOI: 10.4252/wjsc.v7.i4.757] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/28/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The field of reproductive biology has undergone significant developments in the last decade. The notion that there is a fixed reserve pool of oocytes before birth was established by Zuckerman in 1951. However, in 2004, an article published in nature challenged this central dogma of mammalian reproductive biology. Tilly’s group reported the existence of ovarian germline stem cells (GSCs) in postnatal ovaries of mice and suggested that the bone marrow could be an extragonadal source of ovarian GSCs. These findings were strongly criticized; however, several independent groups have since successfully isolated and characterized ovarian GSCs in postnatal mice. The ovarian GSCs are located in the ovarian surface epithelium and express markers of undifferentiated GSCs. When transplanted into mouse ovaries, mouse ovarian GSCs could differentiate and produce embryos and offspring. Similarly, in a recent study, ovarian GSCs were found to be present in the ovaries of women of reproductive age. Conversely, there is increasing evidence that stem cells responsible for maintaining a healthy state in normal tissue may be a source of some cancers, including ovarian cancer. Cancer stem cells (CSCs) have been found in many tissues, including ovaries. Some researchers have suggested that ovarian cancer may be a result of the transformation and dysfunction of ovarian GSCs with self-renewal properties. Drug resistant and metastasis-generating CSCs are responsible for many important problems affecting ovarian cancer patients. Therefore, the identification of CSCs will provide opportunities for the development of new therapeutic strategies for treatments for infertility and ovarian cancer. In this article, we summarize the current understanding of ovarian GSCs in adult mammals, and we also discuss whether there is a relationship between GSCs and CSCs.
Collapse
|
38
|
Vochem R, Einenkel J, Horn LC, Ruschpler P. [Importance of the tumor stem cell hypothesis for understanding ovarian cancer]. DER PATHOLOGE 2015; 35:361-70. [PMID: 24992976 DOI: 10.1007/s00292-014-1910-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Despite complex surgical and systemic therapies epithelial ovarian cancer has a poor prognosis. A small quantity of tumorigenic cells termed cancer stem cells (CSC) are responsible for the development of chemoresistance and high rates of recurrence. OBJECTIVES This review presents the CSC hypothesis and describes methods of identification and enrichment of CSCs as well as approaches for the therapeutic use of these findings. MATERIAL AND METHODS A systematic literature review based on PubMed and Web of Science was carried out. RESULTS The CSC model is based on a hierarchical structure of tumors with few CSCs and variably differentiated tumor cells constituting the tumor bulk. Only the CSCs possess tumorigenic potential. Other essential functional characteristics of CSCs are their potential for self-renewal and their ability to differentiate into further cell types. The CSCs are structurally characterized by different surface markers and changes in certain signaling pathways. Currently there are phase I and II studies in progress investigating specific influences on CSCs. CONCLUSION Various clinical characteristics of the course of disease in ovarian cancer are aptly represented by the tumor stem cell model. In spite of precisely defined functional characteristics of CSCs, surface markers and signaling pathways show individual differences and vary between tumor entities. This complicates identification and enrichment. Current experimental findings in various approaches and even first clinical studies raise hopes for a personalized cancer therapy targeting CSCs.
Collapse
Affiliation(s)
- R Vochem
- Zentrum für Frauen- und Kindermedizin, Gynäkologische Onkologie, Universitätsfrauenklinik Leipzig, Liebigstr. 20a, 04103, Leipzig, Deutschland
| | | | | | | |
Collapse
|
39
|
Kwon AY, Kim GI, Jeong JY, Song JY, Kwack KB, Lee C, Kang HY, Kim TH, Heo JH, An HJ. VAV3 Overexpressed in Cancer Stem Cells Is a Poor Prognostic Indicator in Ovarian Cancer Patients. Stem Cells Dev 2015; 24:1521-35. [PMID: 25715123 DOI: 10.1089/scd.2014.0588] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ovarian carcinoma is a highly lethal malignancy due to frequent relapse and drug resistance. Cancer stem cells (CSCs) are thought to contribute significantly to disease relapse and drug resistance. In this study, a subpopulation of CSCs of ovarian carcinoma was isolated and the genes differentially expressed in these cells were identified to characterize CSCs and to find candidate biomarkers. Ovarian carcinoma cells from patients were primarily cultured, and spheroid-forming cells (SFCs) were isolated. The characteristic genes of SFCs were identified through cDNA microarray and validation by quantitative real-time polymerase chain reaction and immunohistochemistry, and the association of their expression with clinicopathologic parameters was analyzed. GSC (4.26-fold), VAV3 (7.05-fold), FOXA2 (12.06-fold), LEF1 (17.26-fold), COMP (21.33-fold), GRIN2A (9.36-fold), CD86 (23.14-fold), PYY (4.18-fold), NKX3-2 (10.35-fold), and PDK4 (74.26-fold) were significantly upregulated in SFCs compared with parental cancer cells. With validation for human ovarian carcinomas, LEF1, PYY, NKX3-2, and WNT3A were significantly upregulated in chemoresistant cancers compared with chemosensitive cancers. Overexpression of LEF1, VAV3, and NKX3-2 was significantly associated with distant metastasis by immunohistochemistry. VAV3 overexpression was an independent poor survival indicator (hazard ratio=15.27, P<0.05) by multivariate Cox analysis. The further functional assay revealed that VAV3 knockdown regulated CSC activation and ovarian cancer cell proliferation and sensitized paclitaxel (PTX)-resistant cancer cells to PTX treatment. Taken together, we identified by high-throughput analysis of CSCs that VAV3 overexpression is a novel biomarker for poor prognosis and survival in ovarian carcinoma.
Collapse
Affiliation(s)
- Ah-Young Kwon
- 1 Department of Pathology, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Gwang-Il Kim
- 1 Department of Pathology, College of Medicine, CHA University , Sungnam, Republic of Korea.,2 Institute for Clinical Research, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Ju-Yeon Jeong
- 2 Institute for Clinical Research, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Ji-Ye Song
- 2 Institute for Clinical Research, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Kyu-Beom Kwack
- 3 Department of Biomedical Science, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Chan Lee
- 4 Department of Gynecologic Oncology, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Hae-Youn Kang
- 1 Department of Pathology, College of Medicine, CHA University , Sungnam, Republic of Korea.,2 Institute for Clinical Research, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Tae-Heon Kim
- 1 Department of Pathology, College of Medicine, CHA University , Sungnam, Republic of Korea.,2 Institute for Clinical Research, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Jin-Hyung Heo
- 1 Department of Pathology, College of Medicine, CHA University , Sungnam, Republic of Korea.,2 Institute for Clinical Research, College of Medicine, CHA University , Sungnam, Republic of Korea
| | - Hee Jung An
- 1 Department of Pathology, College of Medicine, CHA University , Sungnam, Republic of Korea.,2 Institute for Clinical Research, College of Medicine, CHA University , Sungnam, Republic of Korea
| |
Collapse
|
40
|
An emerging question about putative cancer stem cells in established cell lines-are they true stem cells or a fluctuating cell phenotype? ACTA ACUST UNITED AC 2015; 3. [PMID: 26925434 DOI: 10.14343/jcscr.2015.3e1004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been proposed that established cell lines contain populations of cancer stem cells (CSCs), which are responsible for expansion of these cell lines and their metastatic potential. To address this issue better, we employed a human ovarian cancer cell line, A2780, and sorted cells according to the postulated highly mestatatic cancer stem cell phenotype, CD24+CD44-, and the less-metastatic CD24-CD44+ and CD24-CD44- phenotypes. These cells were employed in chemotaxis assays in vitro to migrate in response to conditioned media harvested from bone marrow or liver cells damaged by irradiation and in in vivo assays to grow tumors after injection into immunodeficient mice. We also sorted single cells expressing all three phenotypes by FACS and expanded them to grow clones. We found that the CD24+CD44- cells are a highly migratory population compared with CD24-CD44+ and CD24-CD44- cells and were seeded in higher numbers in murine bone marrow and liver after intravenous injection. Most importantly, we observed that singly sorted cells efficiently expanded ex vivo into cell populations that represented all phenotypes of the parental cell line. Thus, our data indicate that cells expressing a certain set of markers, e.g., CD24, have at any given moment a higher potential to migrate and metastasize. However, cells that are CD24-negative, if expanded from a singly sorted cell, may give rise to cells containing all of the markers, including CD24. Based on this finding, we propose that the CSC phenotype in cell lines fluctuates with cell expansion.
Collapse
|
41
|
Wang H, Paczulla A, Lengerke C. Evaluation of stem cell properties in human ovarian carcinoma cells using multi and single cell-based spheres assays. J Vis Exp 2015:e52259. [PMID: 25590994 DOI: 10.3791/52259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Years of research indicates that ovarian cancers harbor a heterogeneous mixture of cells including a subpopulation of so-called "cancer stem cells" (CSCs) responsible for tumor initiation, maintenance and relapse following conventional chemotherapies. Identification of ovarian CSCs is therefore an important goal. A commonly used method to assess CSC potential in vitro is the spheres assay in which cells are plated under non-adherent culture conditions in serum-free medium supplemented with growth factors and sphere formation is scored after a few days. Here, we review currently available protocols for human ovarian cancer spheres assays and perform a side-by-side analysis between commonly used multi cell-based assays and a more accurate system based on single cell plating. Our results indicate that both multi cell-based as well as single cell-based spheres assays can be used to investigate sphere formation in vitro. The more laborious and expensive single cell-based assays are more suitable for functional assessment of individual cells and lead to overall more accurate results while multi cell-based assays can be strongly influenced by the density of plated cells and require titration experiments upfront. Methylcellulose supplementation to multi cell-based assays can be effectively used to reduce mechanical artifacts.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biomedicine, University Hospital Basel; Department of Internal Medicine II, University Hospital Tübingen
| | - Anna Paczulla
- Department of Biomedicine, University Hospital Basel
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital Basel; Department of Internal Medicine II, University Hospital Tübingen;
| |
Collapse
|
42
|
Ffrench B, Gasch C, O'Leary JJ, Gallagher MF. Developing ovarian cancer stem cell models: laying the pipeline from discovery to clinical intervention. Mol Cancer 2014; 13:262. [PMID: 25495823 PMCID: PMC4295405 DOI: 10.1186/1476-4598-13-262] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/27/2014] [Indexed: 01/06/2023] Open
Abstract
Despite decades of research, ovarian cancer is still associated with unacceptably high mortality rates, which must be addressed by novel therapeutic approaches. One avenue through which this may be achieved is targeting of tumor-initiating 'Cancer Stem Cells' (CSCs). CSCs are sufficient to generate primary and recurrent disease through extensive rounds of asymmetric division, which maintain the CSC pool while producing the tissues that form the bulk of the tumor. CSCs thrive in the harsh tumor niche, are generally refractory to therapeutic intervention and closely-linked to the Epithelial-Mesenchymal Transition process, which facilitates invasion and metastasis. While it is well-accepted that CSC-targeting must be assessed as a novel therapeutic avenue, few ovarian CSC models have been developed due to perceived and actual difficulties associated with the process of 'CSC Discovery'. In this article we review contemporary approaches to CSC Discovery and argue that this process should start with an understanding of the specific challenges associated with clinical intervention, laying the pipeline backwards towards CSC Discovery. Such an approach would expedite the bridging of the gap between laboratory isolation and clinical targeting of ovarian CSCs.
Collapse
Affiliation(s)
- Brendan Ffrench
- Department of Histopathology, Trinity College Dublin, Trinity Centre for Health Sciences, St James Hospital, Dublin 8, Ireland.
| | | | | | | |
Collapse
|
43
|
Garson K, Vanderhyden BC. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction 2014; 149:R59-70. [PMID: 25301968 DOI: 10.1530/rep-14-0234] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lack of significant progress in the treatment of epithelial ovarian cancer (EOC) underscores the need to gain a better understanding of the processes that lead to chemoresistance and recurrence. The cancer stem cell (CSC) hypothesis offers an attractive explanation of how a subpopulation of cells within a patient's tumour might remain refractory to treatment and subsequently form the basis of recurrent chemoresistant disease. This review examines the literature defining somatic stem cells of the ovary and fallopian tube, two tissues that give rise to EOC. In addition, considerable research has been reviewed, that has identified subpopulations of EOC cells, based on marker expression (CD133, CD44, CD117, CD24, epithelial cell adhesion molecule, LY6A, ALDH1 and side population (SP)), which are enriched for tumour initiating cells (TICs). While many studies identified either CD133 or CD44 as markers useful for enriching for TICs, there is little consensus. This suggests that EOC cells may have a phenotypic plasticity that may preclude the identification of universal markers defining a CSC. The assay that forms the basis of quantifying TICs is the xenograft assay. Considerable controversy surrounds the xenograft assay and it is essential that some of the potential limitations be examined in this review. Highlighting such limitations or weaknesses is required to properly evaluate data and broaden our interpretation of potential mechanisms that might be contributing to the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Kenneth Garson
- Ottawa Hospital Research InstituteCentre for Cancer Therapeutics, Ottawa, Ontario, Canada K1H 8L6Department of Cellular and Molecular MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Barbara C Vanderhyden
- Ottawa Hospital Research InstituteCentre for Cancer Therapeutics, Ottawa, Ontario, Canada K1H 8L6Department of Cellular and Molecular MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 Ottawa Hospital Research InstituteCentre for Cancer Therapeutics, Ottawa, Ontario, Canada K1H 8L6Department of Cellular and Molecular MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
44
|
Yan J, Tang D. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response. Exp Cell Res 2014; 328:132-142. [DOI: 10.1016/j.yexcr.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/20/2014] [Accepted: 08/11/2014] [Indexed: 01/06/2023]
|
45
|
Meng E, Mitra A, Tripathi K, Finan MA, Scalici J, McClellan S, da Silva LM, Reed E, Shevde LA, Palle K, Rocconi RP. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One 2014; 9:e107142. [PMID: 25216266 PMCID: PMC4162571 DOI: 10.1371/journal.pone.0107142] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022] Open
Abstract
Objective Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. Methods Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. Results ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. Conclusion This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.
Collapse
Affiliation(s)
- Erhong Meng
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Aparna Mitra
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Kaushlendra Tripathi
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Michael A. Finan
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Jennifer Scalici
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Steve McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Luciana Madeira da Silva
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Eddie Reed
- National Institutes of Health, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, United States of America
| | - Lalita A. Shevde
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Komaraiah Palle
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail: (KP); (RPR)
| | - Rodney P. Rocconi
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail: (KP); (RPR)
| |
Collapse
|
46
|
GFP Stable Transfection Facilitated the Characterization of Lung Cancer Stem Cells. Mol Biotechnol 2014; 56:1079-88. [DOI: 10.1007/s12033-014-9788-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Zhang L, Xia Y, Li L, Wang Y, Liu Y, Li C, Yu T. Cancer stem cell-like cells exist in mucoepidermoid carcinoma cell line MC3. Oncol Res 2014; 20:589-600. [PMID: 24139417 DOI: 10.3727/096504013x13775486749452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Strong evidence for the presence of cancer stem cells (CSCs) in tumors exists. CSCs play an important role in the development, invasion, and drug resistance of carcinoma. Poorly differentiated mucoepidermoid carcinoma (MEC) is a lethal malignancy of human salivary gland tumors. However, whether there are CSCs in MEC and their phenotypes remains unclear. We isolated side population (SP) and sphere-forming cells from the MEC cell line MC3 and identified their characteristics. The results showed that sphere-forming assays could enrich stem cell-like cells, with this group of cells exhibiting high cloning efficiency, possessing strong tumorigenic ability, and highly expressing Oct4 based on PCR and immunocytochemistry assays. They also highly expressed CD44 and lowly expressed CD24 according to PCR, immunocytochemistry assays, and fluorescence-activated cell sorting analysis. Higher cloning efficiency was observed in the SP cells, but PCR revealed that the SP and non-SP cells did not statistically differ in their expression of ABCG2, Oct4, CD44, and CD24. In spite of these, the findings were not conclusive on whether SP cells are stem cell-like cells. In conclusion, CSC-like cells do exist in the MC3 cell line, and sphere-forming assays could enrich them, sphere-forming and SP cells are not the same kind of cell subpopulations, and the characteristics of SP cells need to be further investigated.
Collapse
Affiliation(s)
- Louqiang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Shah MM, Landen CN. Ovarian cancer stem cells: are they real and why are they important? Gynecol Oncol 2013; 132:483-9. [PMID: 24321398 DOI: 10.1016/j.ygyno.2013.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/15/2022]
Abstract
The cancer stem cell hypothesis has been put forward as a paradigm to describe varying levels of aggressiveness in heterogeneous tumors. Specifically, many subpopulations have been clearly demonstrated to possess increased tumorigenicity in mice, broad differentiating capacity, and resistance to therapy. However, the extent to which these experimental findings are potentially clinically significant is still not clear. This review will describe the principles of this emerging hypothesis, ways in which it may be appropriate in ovarian cancer based on the clinical course of the disease, and how we might exploit it to improve outcomes in ovarian cancer patients.
Collapse
Affiliation(s)
- Monjri M Shah
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles N Landen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
49
|
Di J, Duiveman-de Boer T, Figdor CG, Torensma R. Aiming to immune elimination of ovarian cancer stem cells. World J Stem Cells 2013; 5:149-162. [PMID: 24179603 PMCID: PMC3812519 DOI: 10.4252/wjsc.v5.i4.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/15/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer accounts for only 3% of all cancers in women, but it causes more deaths than any other gynecologic cancer. Treatment with chemotherapy and cytoreductive surgery shows a good response to the therapy. However, in a large proportion of the patients the tumor grows back within a few years. Cancer stem cells, that are less responsive to these treatments, are blamed for this recurrence of disease. Immune therapy either cellular or humoral is a novel concept to treat cancer. It is based on the notice that immune cells invade the tumor. However, the tumor invest heavily to escape from immune elimination by recruiting several immune suppressive mechanisms. These processes are normally in place to limit excessive immune activation and prevent autoimmune phenomena. Here, we discuss current knowledge about the immune (suppressive) status in ovarian cancer. Moreover, we discuss the immunological targets of ovarian cancer stem cells.
Collapse
|
50
|
Yasuda K, Torigoe T, Morita R, Kuroda T, Takahashi A, Matsuzaki J, Kochin V, Asanuma H, Hasegawa T, Saito T, Hirohashi Y, Sato N. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population. PLoS One 2013; 8:e68187. [PMID: 23967051 PMCID: PMC3742724 DOI: 10.1371/journal.pone.0068187] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/28/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem-like cells (CSCs)/cancer-initiaiting cells (CICs) are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP) analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDHBr) cells from ovarian cancer cells. Both SP cells and ALDHBr cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2), than those of main population (MP) cells and ALDHLow cells, respectively. We analyzed an SP and ALDHBr overlapping population (SP/ALDHBr), and the SP/ALDHBr population exhibited higher tumor-initiating ability than that of SP cells or ALDHBr cells, enabling initiation of tumor with as few as 102 cells. Furthermore, SP/ADLHBr population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDHLow, MP/ALDHBr and MP/ALDHLow cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDHBr population was detected in several gynecological cancer cells with ratios of 0.1% for HEC—1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDHBr overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.
Collapse
Affiliation(s)
- Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takahumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Akari Takahashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Junichi Matsuzaki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| |
Collapse
|