1
|
Abstract
Abstract
Viruses completely rely on the energy and metabolic systems of host cells for life activities. Viral infections usually lead to cytopathic effects and host diseases. To date, there are still no specific clinical vaccines or drugs against most viral infections. Therefore, understanding the molecular and cellular mechanisms of viral infections is of great significance to prevent and treat viral diseases. A variety of viral infections are related to the p38 MAPK signalling pathway, and p38 is an important host factor in virus-infected cells. Here, we introduce the different signalling pathways of p38 activation and then summarise how different viruses induce p38 phosphorylation. Finally, we provide a general summary of the effect of p38 activation on virus replication. Our review provides integrated data on p38 activation and viral infections and describes the potential application of targeting p38 as an antiviral strategy.
Collapse
|
2
|
Ouaguia L, Moralès O, Aoudjehane L, Wychowski C, Kumar A, Dubuisson J, Calmus Y, Conti F, Delhem N. Hepatitis C Virus Improves Human Tregs Suppressive Function and Promotes Their Recruitment to the Liver. Cells 2019; 8:cells8101296. [PMID: 31652598 PMCID: PMC6829901 DOI: 10.3390/cells8101296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The role of regulatory T cells (Tregs) is now well established in the progression of hepatocellular carcinoma (HCC) linked to Hepatitis C virus (HCV) infection. However, nothing is known about the potential interplay between Tregs and HCV. In this pilot study, we have investigated the ability of Tregs to hang HCV on and the subsequent effect on their suppressive function and phenotype. Moreover, we have evaluated how HCV could promote the recruitment of Tregs by infected primary human hepatocytes. Methods: Tregs of healthy donors were incubated with JFH-1/HCVcc. Viral inoculation was assessed using adapted assays (RT-qPCR, Flow Citometry (FACS) and Western Blot (WB). Expression of Tregs phenotypic (CD4, CD25, CD127 and Foxp3) and functional (IL-10, GZMB, TGF-β1 and IL-2) markers was monitored by RT-qPCR, FACS and ELISA. Suppressive activity was validated by suppressive assays. Tregs recruitment by infected primary hepatic cells was evaluated using Boyden Chamber. Results: Tregs express the classical HCV receptors (CD81, CLDN1 and LDLR) and some co-receptors (CD5). HCV inoculation significantly increases the suppressive phenotype and activity of Tregs, and raises their anergy by inducing an unexpected IL-2 production. Moreover, HCV infection induces the expression of chemokines (CCL17, CXCL16, and CCL20) by primary hepatic human hepatocytes and chemokine receptors (CCR4, CXCR6 and CCR6) by Tregs. Finally, infected hepatocytes have a significantly higher potential to recruit Tregs in a seemingly CCL20-dependent manner. Conclusions: Direct interaction between HCV and Tregs represents a newly defined mechanism that could potentiate HCV immune evasion and favor intratumoral recruitment contributing to HCC progression.
Collapse
Affiliation(s)
- Laurissa Ouaguia
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| | - Olivier Moralès
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| | - Lynda Aoudjehane
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France.
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
| | - Czeslaw Wychowski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Abhishek Kumar
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Yvon Calmus
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France.
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, F-75013 Paris, France.
| | - Filomena Conti
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France.
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, F-75013 Paris, France.
| | - Nadira Delhem
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| |
Collapse
|
3
|
Karamichali E, Serti E, Gianneli A, Papaefthymiou A, Kakkanas A, Foka P, Seremetakis A, Katsarou K, Trougakos IP, Georgopoulou U. The unexpected function of a highly conserved YXXΦ motif in HCV core protein. INFECTION GENETICS AND EVOLUTION 2017; 54:251-262. [PMID: 28687362 DOI: 10.1016/j.meegid.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 01/09/2023]
Abstract
Hepatitis C virus (HCV) is an RNA positive strand virus, member of the Flaviviridae family. The HCV viral particle is composed of a capsid containing the genome, surrounded by an endoplasmic reticulum (ER)-derived lipid bilayer where E1 and E2 are assembled as heterodimers. However, different forms of viral particles have been identified in the serum of HCV-infected patients, including non-enveloped particles. Previous reports have demonstrated that HCV non-enveloped capsid-like particles (HCVne) can be generated by HCV core protein sequence. This sequence possesses a highly conserved ΥΧΧΦ motif and distal di-leucine motifs that confer primary endocytosis signals, enabling HCVne to enter hepatic cells via clathrin-mediated endocytosis. Although HCV core's primary function is to encapsidate the viral genome, it also interacts with a variety of cellular proteins in order to regulate host cell functions such as gene transcription, lipid metabolism, apoptosis and several signaling pathways. In this report, we demonstrate that the YXXΦ motif of HCV core protein is crucial for the architectural integrity of the particulate form of HCVne. Moreover, we show that the YXXΦ motif in the HCV core sequence plays a pivotal role in the signaling events following HCVne clathrin-mediated endocytosis by inducing the AP-2 clathrin adaptor protein, which in turn redirect HCVne trafficking to the lipid droplets (LDs) via the endosomal-lysosomal pathway. HCVne and LDs co-localization affects the HCV life cycle by enhancing viral replication.
Collapse
Affiliation(s)
| | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Greece
| | | | | | | | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Greece
| | | | | | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | | |
Collapse
|
4
|
Porcine reproductive and respiratory syndrome virus (PRRSV) up-regulates IL-8 expression through TAK-1/JNK/AP-1 pathways. Virology 2017; 506:64-72. [PMID: 28347884 PMCID: PMC7111726 DOI: 10.1016/j.virol.2017.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
The acute phase of respiratory distress caused by porcine reproductive and respiratory syndrome virus (PRRSV) is likely a consequence of the release of inflammatory cytokines in the lung. IL-8, the main chemokine and activator of neutrophils, might be related to the lung injury upon PRRSV infection. In this study, we showed that PRRSV induced IL-8 expression in vivo and in vitro. Subsequently, we demonstrated that JNK and NF-κB pathways were activated upon PRRSV infection and required for the enhancement of IL-8 expression. We further verified that PRRSV-activated TAK-1 was essential for the activation of JNK and NF-κB pathways and IL-8 expression. Moreover, we revealed an AP-1 binding motif in the cloned porcine IL-8 (pIL-8) promoter, and deletion of this motif abolished the pIL-8 promoter activity. Finally, we found that the JNK-activated AP-1 subunit c-Jun was critical for the up-regulation of IL-8 expression by PRRSV. These data suggest that PRRSV-induced IL-8 production is likely through the TAK-1/JNK/AP-1 pathways. PRRSV infection induces IL-8 expression in vitro and in vivo. PRRSV up-regulates IL-8 expression through TAK-1/JNK/AP-1 pathways. AP-1 element in porcine IL-8 promoter is essential for PRRSV induced IL-8 expression.
Collapse
|
5
|
Georgopoulou U, Dimitriadis A, Foka P, Karamichali E, Mamalaki A. Hepcidin and the iron enigma in HCV infection. Virulence 2014; 5:465-76. [PMID: 24626108 PMCID: PMC4063809 DOI: 10.4161/viru.28508] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An estimated 30-40% of patients with chronic hepatitis C have elevated serum iron, transferrin saturation, and ferritin levels. Clinical data suggest that iron is a co-morbidity factor for disease progression following HCV infection. Iron is essential for a number of fundamental metabolic processes in cells and organisms. Mammalian iron homeostasis is tightly regulated and this is maintained through the coordinated action of sensory and regulatory networks that modulate the expression of iron-related proteins at the transcriptional and/or posttranscriptional levels. Disturbances of iron homeostasis have been implicated in infectious disease pathogenesis. Viruses, similarly to other pathogens, can escape recognition by the immune system, but they need iron from their host to grow and spread. Hepcidin is a 25-aa peptide, present in human serum and urine and represents the key peptide hormone, which modulates iron homeostasis in the body. It is synthesized predominantly by hepatocytes and its mature form is released in circulation. In this review, we discuss recent advances in the exciting crosstalk of molecular mechanisms and cell signaling pathways by which iron and hepcidin production influences HCV-induced liver disease.
Collapse
Affiliation(s)
- Urania Georgopoulou
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Pelagia Foka
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece; Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Eirini Karamichali
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| |
Collapse
|
6
|
Fernandez-Ponce C, Dominguez-Villar M, Aguado E, Garcia-Cozar F. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells. PLoS One 2014; 9:e85191. [PMID: 24465502 PMCID: PMC3896374 DOI: 10.1371/journal.pone.0085191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/30/2013] [Indexed: 12/11/2022] Open
Abstract
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.
Collapse
Affiliation(s)
- Cecilia Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Margarita Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Francisco Garcia-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| |
Collapse
|
7
|
Yang Q, Liu Y, Shi Y, Zheng M, He J, Chen Z. The role of intracellular high-mobility group box 1 in the early activation of Kupffer cells and the development of Con A-induced acute liver failure. Immunobiology 2013; 218:1284-92. [DOI: 10.1016/j.imbio.2013.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/21/2013] [Indexed: 01/26/2023]
|
8
|
Doumba PP, Serti E, Boutsikou M, Konstadoulakis MM, Georgopoulou U, Koskinas J. Phenotypic and functional alterations of primary human PBMCs induced by HCV non-enveloped capsid-like particles uptake. Cell Mol Life Sci 2013; 70:3463-74. [PMID: 23645326 PMCID: PMC11113332 DOI: 10.1007/s00018-013-1344-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/01/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus non-enveloped particles circulate in the serum of HCV-infected patients and are believed to be involved in viral persistence. It was previously demonstrated that recombinant HCVne particles can efficiently enter T cells. In this study we investigated the effect of this entry on the phenotype and function of PBMCs, focused on the CD4+ and CD8+ T-cells. We have generated recombinant HCVne in the absence of other viral proteins. PBMCs from healthy donors were sampled after incubation either with HCVne or the control at different time points. Levels of expression of CD107a, CD25, CTLA-4, and T regulatory cells were estimated and cytokine expression and secretion were also monitored. Peripheral T cells expressed elevated CD127. The intracellular expression of the inhibitory marker CTLA-4 (CD152) increased significantly on peripheral T cells at late hours post-treatment, compared to the respective non-treated group. Despite the fact that there was an initial immune response due to HCVne uptake, T cells were driven to a partial exhausted phenotype. A significant induction of CD4+CD25+(hi)CD127-regulatory T cells at late hours was observed. Consistently, Foxp3+CD4+ T cells were also increased. In parallel, a significant transcriptional activation and increased secretion of IL-2, IL-10, and IFN-γ, was recorded. Moreover, mRNA transcription of TGF-β was considerably elevated. HCVne particles have the potential to shape the immune response by modifying specific phenotypic and functional markers mainly on CD4+ T cells and driving them to partial exhaustion as well as to Treg expansion.
Collapse
Affiliation(s)
- Polyxeni P. Doumba
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Boutsikou
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Manousos M. Konstadoulakis
- Laboratory of Surgical Research, 1st Department of Propaedeutic Surgery, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | | | - John Koskinas
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
9
|
Interferon alpha and ribavirin collaboratively regulate p38 mitogen-activated protein kinase signaling in hepatoma cells. Cytokine 2013; 61:801-7. [PMID: 23410505 DOI: 10.1016/j.cyto.2013.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 12/16/2012] [Accepted: 01/04/2013] [Indexed: 01/03/2023]
Abstract
Signaling events triggered by interferon alpha (IFN-α) and ribavirin are involved in anti-hepatitis C virus (HCV) action. The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in HCV pathogenesis. Effects of IFN-α and ribavirin on p38 MAPK signaling were investigated in human hepatoma cells. Type I IFN receptor 2 (IFNAR2) mediated IFN-α-induced p38 MAPK phosphorylation. Also, p38 MAPK phosphorylation was enhanced by ribavirin. Treatment for 48 h with a combination of IFN-α and ribavirin increased p38 MAPK phosphorylation, whereas the treatment for 72 h reduced p38 MAPK phosphorylation. Cell culture-derived HCV (HCVcc) infection dramatically increased p38 MAPK phosphorylation and such phosphorylation was inhibited by IFN-α or ribavirin. Moreover, siRNA-mediated knockdown of p38 MAPK resulted in enhancement of ribavirin-dependent HCV RNA replication. These results suggest that regulation of p38 MAPK signaling by IFN-α and ribavirin might contribute to anti-HCV action.
Collapse
|
10
|
Doumba PP, Nikolopoulou M, Gomatos IP, Konstadoulakis MM, Koskinas J. Co-culture of primary human tumor hepatocytes from patients with hepatocellular carcinoma with autologous peripheral blood mononuclear cells: study of their in vitro immunological interactions. BMC Gastroenterol 2013; 13:17. [PMID: 23331458 PMCID: PMC3564683 DOI: 10.1186/1471-230x-13-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/11/2013] [Indexed: 02/08/2023] Open
Abstract
Background Many studies have suggested that the immune response may play a crucial role in the progression of hepatocellular carcinoma (HCC). Therefore, our aim was to establish a (i) functional culture of primary human tumor hepatocytes and non-tumor from patients with hepatocellular carcinoma (HCC) and (ii) a co-culture system of HCC and non-HCC hepatocytes with autologous peripheral blood mononuclear cells (PBMCs) in order to study in vitro cell-to-cell interactions. Methods Tumor (HCC) and non-tumor (non-HCC) hepatocytes were isolated from the liver resection specimens of 11 patients operated for HCC, while PBMCs were retrieved immediately prior to surgery. Four biopsies were obtained from patients with no liver disease who had surgery for non malignant tumor (normal hepatocytes). Hepatocytes were either cultured alone (monoculture) or co-cultured with PBMCs. Flow cytometry measurements for MHC class II expression, apoptosis, necrosis and viability (7AAD) were performed 24 h, 48 h and 72 h in co-culture and monocultures. Results HCC and non-HCC hepatocytes exhibited increased MHC-II expression at 48h and 72h in co-culture with PBMCs as compared to monoculture, with MHC II-expressing HCC hepatocytes showing increased viability at 72 h. PBMCs showed increased MHC-II expression (activation) in co-culture with HCC as compared to non-HCC hepatocytes at all time points. Moreover, CD8+ T cells had significantly increased apoptosis and necrosis at 48h in co-culture with HCC hepatocytes as compared to monocultures. Interestingly, MHC-II expression on both HCC and non-HCC hepatocytes in co-culture was positively correlated with the respective activated CD8+ T cells. Conclusions We have established an in vitro co-culture model to study interactions between autologous PBMCs and primary HCC and non-HCC hepatocytes. This direct interaction leads to increased antigen presenting ability of HCC hepatocytes, activation of PBMCs with a concomitant apoptosis of activated CD8+ T cells. Although, a partially effective immune response against HCC exists, still tumor hepatocytes manage to escape.
Collapse
Affiliation(s)
- Polyxeni P Doumba
- 2nd Department of Internal Medicine, Medical School of Athens, University of Athens, Hippokration Hospital, 114 Vas, Sofias Avenue, Athens 171 23, Greece
| | | | | | | | | |
Collapse
|
11
|
Kwofie SK, Schaefer U, Sundararajan VS, Bajic VB, Christoffels A. HCVpro: Hepatitis C virus protein interaction database. INFECTION GENETICS AND EVOLUTION 2011; 11:1971-7. [DOI: 10.1016/j.meegid.2011.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/24/2011] [Accepted: 09/02/2011] [Indexed: 02/07/2023]
|
12
|
Katsarou K, Tsitoura P, Georgopoulou U. MEK5/ERK5/mef2: a novel signaling pathway affected by hepatitis C virus non-enveloped capsid-like particles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1854-62. [PMID: 21767578 DOI: 10.1016/j.bbamcr.2011.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Hepatitis C virus (HCV) is an RNA positive strand virus, member of the Flaviviridae family. The viral particle is composed of a capsid containing the genome, surrounded by E1 and E2 proteins, however different forms of viral particles have been observed including non-enveloped particles. Previous reports have proposed that hepatitis C non-enveloped capsid-like particles (HCVne) enter cells of hepatic origin via clathrin-mediated endocytosis, during which different signaling events occur. In this report we show that HCVne particles are capable of inducing the recently discovered ERK5 pathway, in a dose dependent way. The ERK5 pathway can be activated by growth factors and other extracellular signals. This specific activation occurs through a well characterized upstream kinase, MEK5, and is capable of inducing gene regulation of mef2. In contrast, when HCV core structural and NS5A non-structural proteins were expressed endogenously no activation of this pathway was detected. These cell signaling events could be of critical importance and might give clues for the elucidation of cellular manifestations associated with HCV infection.
Collapse
|