1
|
Gan BH, Bonvin E, Paschoud T, Personne H, Reusser J, Cai X, Rauscher R, Köhler T, van Delden C, Polacek N, Reymond JL. Stereorandomized Oncocins with Preserved Ribosome Binding and Antibacterial Activity. J Med Chem 2024. [PMID: 39445394 DOI: 10.1021/acs.jmedchem.4c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We recently showed that solid-phase peptide synthesis using racemic amino acids yields stereorandomized peptides comprising all possible diastereomers as homogeneous, single-mass products that can be purified by HPLC and that stereorandomization modulates activity, toxicity, and stability of membrane-disruptive cyclic and linear antimicrobial peptides (AMPs) and dendrimers. Here, we tested if stereorandomization might be compatible with target binding peptides with the example of the proline-rich AMP oncocin, which inhibits the bacterial ribosome. Stereorandomization of up to nine C-terminal residues preserved ribosome binding and antibacterial effects including activities against drug-resistant bacteria and protected against serum degradation. Surprisingly, fully stereorandomized oncocin was as active as L-oncocin in dilute growth media stimulating peptide uptake, although it did not bind the ribosome, indicative of an alternative mechanism of action. These experiments show that stereorandomization can be compatible with target binding peptides and can help understand their mechanism of action.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Etienne Bonvin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Thierry Paschoud
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Hippolyte Personne
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jérémie Reusser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Xingguang Cai
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Robert Rauscher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Huang W, Baliga C, Aleksandrova EV, Atkinson G, Polikanov YS, Vázquez-Laslop N, Mankin AS. Activity, structure, and diversity of Type II proline-rich antimicrobial peptides from insects. EMBO Rep 2024:10.1038/s44319-024-00277-5. [PMID: 39415050 DOI: 10.1038/s44319-024-00277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Apidaecin 1b (Api), the first characterized Type II Proline-rich antimicrobial peptide (PrAMP), is encoded in the honey bee genome. It inhibits bacterial growth by binding in the nascent peptide exit tunnel of the ribosome after the release of the completed protein and trapping the release factors. By genome mining, we have identified 71 PrAMPs encoded in insect genomes as pre-pro-polyproteins. Having chemically synthesized and tested the activity of 26 peptides, we demonstrate that despite significant sequence variation in the N-terminal sequence, the majority of the PrAMPs that retain the conserved C-terminal sequence of Api are able to trap the ribosome at the stop codons and induce stop codon readthrough-all hallmarks of Type II PrAMP mode of action. Some of the characterized PrAMPs exhibit superior antibacterial activity in comparison with Api. The newly solved crystallographic structures of the ribosome complexed with Api and with the more active peptide Fva1 from the stingless bee demonstrate the universal placement of the PrAMPs' C-terminal pharmacophore in the post-release ribosome despite variations in their N-terminal sequence.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chetana Baliga
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, New BEL Road, MSR Nagar, Bangalore, Karnataka, 560054, India
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Gemma Atkinson
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Yury S Polikanov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
K R G, Balenahalli Narasingappa R, Vishnu Vyas G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon 2024; 10:e38079. [PMID: 39386776 PMCID: PMC11462253 DOI: 10.1016/j.heliyon.2024.e38079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a critical component of the innate immune system, playing a key role in defending against a variety of pathogenic microorganisms. While many AMPs act primarily on the cell membrane of target pathogens, leading to lysis and subsequent cell death, less is known about their nonlytic membrane activity. This nonlytic activity allows AMPs to target and disrupt bacterial cells without causing lysis, leading to bacterial death through alternative mechanisms.Understanding these nonlytic properties of AMPs is crucial, as they present a promising alternative to traditional antibiotics, which can induce bacterial resistance and have adverse effects on human health and the environment. The mechanisms by which AMPs exhibit nonlytic membrane activity are still being explored. However, it is believed that AMPs penetrate the bacterial membrane and interact directly with internal cellular components such as DNA, RNA, and various enzymes essential for microbial survival and replication. This interaction disrupts metabolic homeostasis, ultimately resulting in bacterial death.The nonlytic activity of AMPs also results in minimal damage to host cells and tissues, making them attractive candidates for the development of new, more effective antibiotics. This review emphasizes the mechanisms by which AMPs nonlytically target cellular components, including DNA, proteins, RNA, and other biomolecules, and discusses their clinical significance. Understanding these mechanisms may pave the way for developing alternatives to conventional antibiotics, offering a solution to the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Gagandeep K R
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Ramesh Balenahalli Narasingappa
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Gatta Vishnu Vyas
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
- ICAR-AICRP On Post Harvest Engineering and Technology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, 560065, India
| |
Collapse
|
4
|
Peerzade IJ, Peddha MS, Halami PM. The lasso peptide produced by Bacillus licheniformis MCC 2514 demonstrates efficacy in treating in-vivoSalmonella Typhimurium infection. Int J Biol Macromol 2024; 281:136470. [PMID: 39393737 DOI: 10.1016/j.ijbiomac.2024.136470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Salmonella, a significant pathogen transmitted through food, presents a substantial threat to public health. The issue of antibiotic misuse is causing a quest for alternative replacements. An antimicrobial peptide, predicted as lasso peptide 2514 (LP-2514), derived from the probiotic bacteria Bacillus licheniformis MCC 2514, has demonstrated effectiveness against various foodborne pathogens including Salmonella. This study aims to assess the efficacy of this peptide in vivo. Mice infected with Salmonella Typhimurium received daily oral administration of LP-2514 (30 mg/kg/day) for 2 weeks until the symptoms subsided. After the treatment, biochemical and histopathological parameters were examined. LP-2514 treated mice demonstrated reduced infection, as evidenced by a 5-fold decrease in aspartate aminotransferase concentration and a 10-fold decrease in alanine aminotransferase concentration in plasma. Nitric oxide generation was decreased by 61.23 %, C-reactive protein by 75.9 %, and numerous antioxidant enzymes were elevated to suppress the infection. Increased expression of the anti-inflammatory marker Interleukin-10 (IL-10) by 43-fold was observed in treated mice, while untreated mice displayed elevated expression of pro-inflammatory cytokines indicating the severity of infection. Hence, LP-2514 successfully alleviated the disease symptoms caused by S. Typhimurium, thus exhibiting as a potential replacement for antibiotics or food-grade preservatives.
Collapse
Affiliation(s)
| | | | - Prakash M Halami
- Microbiology and Fermentation Technology Department, CSIR-CFTRI, India.
| |
Collapse
|
5
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
6
|
Tereshchenkov AG, Khairullina ZZ, Volynkina IA, Lukianov DA, Nazarov PA, Pavlova JA, Tashlitsky VN, Razumova EA, Ipatova DA, Timchenko YV, Senko DA, Efremenkova OV, Paleskava A, Konevega AL, Osterman IA, Rodin IA, Sergiev PV, Dontsova OA, Bogdanov AA, Sumbatyan NV. Triphenylphosphonium Analogs of Short Peptide Related to Bactenecin 7 and Oncocin 112 as Antimicrobial Agents. Pharmaceutics 2024; 16:148. [PMID: 38276518 PMCID: PMC10818380 DOI: 10.3390/pharmaceutics16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Antimicrobial peptides (AMPs) have recently attracted attention as promising antibacterial agents capable of acting against resistant bacterial strains. In this work, an approach was applied, consisting of the conjugation of a peptide related to the sequences of bactenecin 7 (Bac7) and oncocin (Onc112) with the alkyl(triphenyl)phosphonium (alkyl-TPP) fragment in order to improve the properties of the AMP and introduce new ones, expand the spectrum of antimicrobial activity, and reduce the inhibitory effect on the eukaryotic translation process. Triphenylphosphonium (TPP) derivatives of a decapeptide RRIRPRPPYL were synthesized. It was comprehensively studied how the modification of the AMP affected the properties of the new compounds. It was shown that while the reduction in the Bac7 length to 10 a.a. residues dramatically decreased the affinity to bacterial ribosomes, the modification of the peptide with alkyl-TPP moieties led to an increase in the affinity. New analogs with structures that combined a decapeptide related to Bac7 and Onc112-Bac(1-10, R/Y)-and TPP attached to the C-terminal amino acid residue via alkylamide linkers, inhibited translation in vitro and were found to be more selective inhibitors of bacterial translation compared with eukaryotic translation than Onc112 and Bac7. The TPP analogs of the decapeptide related to Bac7 and Onc112 suppressed the growth of both Gram-negative bacteria, similar to Onc112 and Bac7, and Gram-positive ones, similar to alkyl-TPP derivatives, and also acted against some resistant laboratory strains. Bac(1-10, R/Y)-C2-TPP, containing a short alkylamide linker between the decapeptide and TPP, was transferred into the E. coli cells via the SbmA transporter protein. TPP derivatives of the decapeptide Bac(1-10, R/Y) containing either a decylamide or ethylamide linker caused B. subtilis membrane depolarization, similar to alkyl-TPP. The Bac(1-10, R/Y)-C2-TPP analog was proven to be non-toxic for mammalian cells using the MTT test.
Collapse
Affiliation(s)
- Andrey G. Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
| | - Zimfira Z. Khairullina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Inna A. Volynkina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Dmitrii A. Lukianov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Pavel A. Nazarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
| | - Julia A. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
| | - Vadim N. Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Elizaveta A. Razumova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Daria A. Ipatova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Yury V. Timchenko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Dmitry A. Senko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga V. Efremenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia;
| | - Alena Paleskava
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia (A.L.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Andrey L. Konevega
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia (A.L.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- NBICS Center, NRC “Kurchatov Institute”, 123182 Moscow, Russia
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Igor A. Rodin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Petr V. Sergiev
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey A. Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia V. Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| |
Collapse
|
7
|
Wang J, Chen L, Qin S, Xie M, Luo SZ, Li W. Advances in biosynthesis of peptide drugs: Technology and industrialization. Biotechnol J 2024; 19:e2300256. [PMID: 37884278 DOI: 10.1002/biot.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Peptide drugs are developed from endogenous or synthetic peptides with specific biological activities. They have advantages of strong target specificity, high efficacy and low toxicity, thus showing great promise in the treatment of many diseases such as cancer, infections, and diabetes. Although an increasing number of peptide drugs have entered market in recent years, the preparation of peptide drug substances is yet a bottleneck problem for their industrial production. Comparing to the chemical synthesis method, peptide biosynthesis has advantages of simple synthesis, low cost, and low contamination. Therefore, the biosynthesis technology of peptide drugs has been widely used for manufacturing. Herein, we reviewed the development of peptide drugs and recent advances in peptide biosynthesis technology, in order to shed a light to the prospect of industrial production of peptide drugs based on biosynthesis technology.
Collapse
Affiliation(s)
- Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Mingyuan Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| |
Collapse
|
8
|
Shaikh AY, Björkling F, Zabicka D, Tomczak M, Urbas M, Domraceva I, Kreicberga A, Franzyk H. Structure-activity study of oncocin: On-resin guanidinylation and incorporation of homoarginine, 4-hydroxyproline or 4,4-difluoroproline residues. Bioorg Chem 2023; 141:106876. [PMID: 37797458 DOI: 10.1016/j.bioorg.2023.106876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Antimicrobial peptides (AMPs) often display guanidinium functionalities, and hence robust synthetic procedures are needed to facilitate access to analogues with unnatural homologues of arginine (Arg = R). Initially, a resin-bound Arg/Pro-rich fluoren-9-yl-methyloxycarbonyl-protected fragment (Fmoc-RPRPPR) of the AMP oncocin (i.e., VDKPPYLPRPRPPRRIYNR-NH2) was employed in a comparative on-resin assessment of commercial guanidinylation reagents head-to-head with the recently studied bis-Boc-protected triazole-based reagent, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]-carboxamidine, which was synthesized by a chromatography-free procedure. This reagent was found to enable quantitative conversion in solid-phase peptide synthesis (SPPS) of peptides displaying homoarginine (Har) residues and/or an N-terminal guanidinium group. SPPS was used to obtain analogues of the 18-mer oncocin with single as well as multiple Arg → Har modifications. In addition, the effect of replacement of proline (Pro) residues in oncocin was explored by incorporating single or multiple trans-4-hydroxy-l-proline (Hyp) or 4,4-difluoro-l-proline (Dfp) residues, which both affected hydrophobicity. The resulting peptide library was tested against both Gram-negative and Gram-positive bacteria. Analysis of the minimal inhibitory concentrations (MICs) showed that analogues, displaying modifications at positions 4, 5 and 12 (originally Pro residues), had retained or slightly improved antimicrobial activity. Next, an oncocin analogue with two stabilizing l-Arg → d-Arg replacements in the C-terminal part was further modified by triple-replacement of Pro by either Dfp or Hyp in positions 4, 5, and 12. The resulting analogue displaying three Pro → Dfp modifications proved to possess the best activity profile: MICs of 1-2 µg/mL against E. coli and Klebsiella pneumoniae, less than 1% hemolysis at 800 µg/mL, and an IC50 above 1280 µg/mL in HepG2 cells. Thus, incorporation of bis-fluorinated Pro residues appears to constitute a novel tool in structure-activity studies aimed at optimization of Pro-rich AMPs.
Collapse
Affiliation(s)
- Ashif Y Shaikh
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark; Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Fredrik Björkling
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Dorota Zabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland
| | - Malgorzata Urbas
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland
| | - Ilona Domraceva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Agrita Kreicberga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Henrik Franzyk
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark.
| |
Collapse
|
9
|
Mardirossian M, Gruppuso M, Guagnini B, Mihalić F, Turco G, Porrelli D. Advantages of agarose on alginate for the preparation of polysaccharide/hydroxyapatite porous bone scaffolds compatible with a proline-rich antimicrobial peptide. Biomed Mater 2023; 18:065018. [PMID: 37827164 DOI: 10.1088/1748-605x/ad02d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
The optimized proline-rich antimicrobial peptide B7-005 was loaded on bone scaffolds based on polysaccharides and hydroxyapatite. Alginate was firstly chosen in order to exploit its negative charges, which allowed an efficient B7-005 loading but hindered its release, due to the strong interactions with the positive charged peptide. Hence, alginate was substituted with agarose which allowed to prepare scaffolds with similar structure, porosity, and mechanical performance than the ones prepared with alginate and hydroxyapatite. Moreover, agarose scaffolds could release B7-005 within the first 24 h of immersion in aqueous environment. The peptide did not impaired MG-63 cell adhesion and proliferation in the scaffold, and a positive cell proliferation trend was observed up to two weeks. The released B7-005 was effective against the pathogensE. coli, K. pneumoniae, andA. baumannii, but not againstS. aureusandP. aeruginosa, thus requiring further tuning of the system to improve its antimicrobial activity.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Franka Mihalić
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
10
|
Richards A, Lupoli TJ. Peptide-based molecules for the disruption of bacterial Hsp70 chaperones. Curr Opin Chem Biol 2023; 76:102373. [PMID: 37516006 PMCID: PMC11217992 DOI: 10.1016/j.cbpa.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.
Collapse
Affiliation(s)
- Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
11
|
Wang A, Zhou M, Chen Q, Jin H, Xu G, Guo R, Wang J, Lai R. Functional Analyses of Three Targeted DNA Antimicrobial Peptides Derived from Goats. Biomolecules 2023; 13:1453. [PMID: 37892141 PMCID: PMC10605153 DOI: 10.3390/biom13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
With the increase in drug-resistant bacteria, new antibacterial drugs have emerged as a prominent area of research and development. Antimicrobial peptides (AMPs), as innate immune agents, have garnered significant attention due to their potent, rapid, and broad-spectrum antibacterial activity. This study focused on investigating the functionality of three AMPs (CATH 1, CATH 2, and MAP34-B) derived from goat submandibular glands. Among these AMPs, CATH 2 and MAP34-B exhibited direct antibacterial activity against both Gram-negative and Gram-positive bacteria, primarily targeting the bacterial membrane. Additionally, these two AMPs were found to have the potential to induce reactive oxygen species (ROS) production in bacterial cells and interact with bacterial genome DNA, which may play a crucial role in their mechanisms of action. Furthermore, both CATH 1 and CATH 2 demonstrated significant antioxidant activity, and all three AMPs exhibited potential anti-inflammatory activity. Importantly, the cytotoxic activity of these AMPs against mammalian cells was found to be weak, and their hemolytic activity was extremely low. Overall, the characteristics of these three AMPs found in goat submandibular glands offer new insights for the study of host protection from an immunological perspective. They hold promise as potential candidates for the development of novel antibacterial agents, particularly in the context of combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Mengying Zhou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China;
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Mangano K, Klepacki D, Ohanmu I, Baliga C, Huang W, Brakel A, Krizsan A, Polikanov YS, Hoffmann R, Vázquez-Laslop N, Mankin AS. Inhibition of translation termination by the antimicrobial peptide Drosocin. Nat Chem Biol 2023; 19:1082-1090. [PMID: 36997647 PMCID: PMC10757563 DOI: 10.1038/s41589-023-01300-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
The proline-rich antimicrobial peptide (PrAMP) Drosocin (Dro) from fruit flies shows sequence similarity to other PrAMPs that bind to the ribosome and inhibit protein synthesis by varying mechanisms. The target and mechanism of action of Dro, however, remain unknown. Here we show that Dro arrests ribosomes at stop codons, probably sequestering class 1 release factors associated with the ribosome. This mode of action is comparable to that of apidaecin (Api) from honeybees, making Dro the second member of the type II PrAMP class. Nonetheless, analysis of a comprehensive library of endogenously expressed Dro mutants shows that the interactions of Dro and Api with the target are markedly distinct. While only a few C-terminal amino acids of Api are critical for binding, the interaction of Dro with the ribosome relies on multiple amino acid residues distributed throughout the PrAMP. Single-residue substitutions can substantially enhance the on-target activity of Dro.
Collapse
Affiliation(s)
- Kyle Mangano
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Irueosa Ohanmu
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Chetana Baliga
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Weiping Huang
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra Brakel
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Leipzig University, Leipzig, Germany
| | - Andor Krizsan
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine (BBZ), Leipzig University, Leipzig, Germany
| | - Yury S Polikanov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ralf Hoffmann
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany.
- Center for Biotechnology and Biomedicine (BBZ), Leipzig University, Leipzig, Germany.
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Belhadj Slimen I, Yerou H, Ben Larbi M, M’Hamdi N, Najar T. Insects as an alternative protein source for poultry nutrition: a review. Front Vet Sci 2023; 10:1200031. [PMID: 37662983 PMCID: PMC10470001 DOI: 10.3389/fvets.2023.1200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
This review summarizes the most relevant scientific literature related to the use of insects as alternative protein sources in poultry diets. The black soldier fly, the housefly, the beetle, mealworms, silkworms, earthworms, crickets, and grasshoppers are in the spotlight because they have been identified as an important future source of sustainable animal proteins for poultry feeding. Insect meals meet poultry requirements in terms of nutritional value, essential amino acid composition, nutrient digestibility, and feed acceptance. Furthermore, they are enriched with antimicrobial peptides and bioactive molecules that can improve global health. Results from poultry studies suggest equivalent or enhanced growth performances and quality of end-products as compared to fish meal and soybean meal. To outline this body of knowledge, this article states established threads of research about the nutrient profiles and the digestibility of insect meals, their subsequent effects on the growth and laying performances of poultry as well as the quality of meat, carcass, and eggs. To fully exploit insect-derived products, the effects of insect bioactive molecules (antimicrobial peptides, fatty acids, and polysaccharides) were addressed. Furthermore, as edible insects are likely to take a meaningful position in the feed and food chain, the safety of their derived products needs to be ensured. Some insights into the current knowledge on the prevalence of pathogens and contaminants in edible insects were highlighted. Finally, the effect of insect farming and processing treatment on the nutritive value of insect larvae was discussed. Our overview reveals that using insects can potentially solve problems related to reliance on other food sources, without altering the growth performances and the quality of meat and eggs.
Collapse
Affiliation(s)
- Imen Belhadj Slimen
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Houari Yerou
- Department of Agronomic Sciences, SNV Institute, Mustapha Stambouli University, Mascara, Algeria
- Laboratory of Geo Environment and Development of Spaces, Mascara University, Mascara, Algeria
| | - Manel Ben Larbi
- Higher School of Agriculture, University of Carthage, Mateur, Tunisia
| | - Naceur M’Hamdi
- Research Laboratory of Ecosystems and Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Taha Najar
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| |
Collapse
|
14
|
Gambato S, Bellotto O, Mardirossian M, Di Stasi A, Gennaro R, Pacor S, Caporale A, Berti F, Scocchi M, Tossi A. Designing New Hybrid Antibiotics: Proline-Rich Antimicrobial Peptides Conjugated to the Aminoglycoside Tobramycin. Bioconjug Chem 2023. [PMID: 37379329 PMCID: PMC10360068 DOI: 10.1021/acs.bioconjchem.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Resistance to aminoglycoside antibiotics is a serious problem, typically arising from inactivating enzymes, reduced uptake, or increased efflux in the important pathogens for which they are used as treatment. Conjugating aminoglycosides to proline-rich antimicrobial peptides (PrAMPs), which also target ribosomes and have a distinct bacterial uptake mechanism, might mutually benefit their individual activities. To this aim we have developed a strategy for noninvasively modifying tobramycin to link it to a Cys residue and through this covalently link it to a Cys-modified PrAMP by formation of a disulfide bond. Reduction of this bridge in the bacterial cytosol should release the individual antimicrobial moieties. We found that the conjugation of tobramycin to the well-characterized N-terminal PrAMP fragment Bac7(1-35) resulted in a potent antimicrobial capable of inactivating not only tobramycin-resistant bacterial strains but also those less susceptible to the PrAMP. To a certain extent, this activity also extends to the shorter and otherwise poorly active fragment Bac7(1-15). Although the mechanism that allows the conjugate to act when its individual components do not is as yet unclear, results are very promising and suggest this may be a way of resensitizing pathogens that have developed resistance to the antibiotic.
Collapse
Affiliation(s)
- Stefano Gambato
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri, 1, 34127 Trieste, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Andrea Caporale
- CNR, Institute of Crystallography, SS 14 Km 163.5 c/o Area Science Park, Basovizza, 34149 Trieste, Italy
- CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", 80134 Napoli, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri, 1, 34127 Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| |
Collapse
|
15
|
Patyra E, Kwiatek K. Insect Meals and Insect Antimicrobial Peptides as an Alternative for Antibiotics and Growth Promoters in Livestock Production. Pathogens 2023; 12:854. [PMID: 37375544 DOI: 10.3390/pathogens12060854] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The extensive use of antibiotics in animal production has led to the development of antibiotic-resistant microorganisms and the search for alternative antimicrobial agents in animal production. One such compound may be antimicrobial peptides (AMPs), which are characterized by, among others, a wide range of biocidal activity. According to scientific data, insects produce the largest number of antimicrobial peptides, and the changing EU legislation has allowed processed animal protein derived from insects to be used in feed for farm animals, which, in addition to a protein supplement, may prove to be an alternative to antibiotics and antibiotic growth promoters due to their documented beneficial impact on livestock health. In animals that were fed feeds with the addition of insect meals, changes in their intestinal microbiota, strengthened immunity, and increased antibacterial activity were confirmed to be positive effects obtained thanks to the insect diet. This paper reviews the literature on sources of antibacterial peptides and the mechanism of action of these compounds, with particular emphasis on insect antibacterial peptides and their potential impact on animal health, and legal regulations related to the use of insect meals in animal nutrition.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| |
Collapse
|
16
|
Libourel C, Keller J, Brichet L, Cazalé AC, Carrère S, Vernié T, Couzigou JM, Callot C, Dufau I, Cauet S, Marande W, Bulach T, Suin A, Masson-Boivin C, Remigi P, Delaux PM, Capela D. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. NATURE PLANTS 2023:10.1038/s41477-023-01441-w. [PMID: 37322127 PMCID: PMC10356618 DOI: 10.1038/s41477-023-01441-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.
Collapse
Affiliation(s)
- Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Lukas Brichet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Tabatha Bulach
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Philippe Remigi
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| | - Delphine Capela
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
17
|
Jangir PK, Ogunlana L, Szili P, Czikkely M, Shaw LP, Stevens EJ, Yu Y, Yang Q, Wang Y, Pál C, Walsh TR, MacLean CR. The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. eLife 2023; 12:e84395. [PMID: 37094804 PMCID: PMC10129329 DOI: 10.7554/elife.84395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Antimicrobial peptides (AMPs) offer a promising solution to the antibiotic resistance crisis. However, an unresolved serious concern is that the evolution of resistance to therapeutic AMPs may generate cross-resistance to host AMPs, compromising a cornerstone of the innate immune response. We systematically tested this hypothesis using globally disseminated mobile colistin resistance (MCR) that has been selected by the use of colistin in agriculture and medicine. Here, we show that MCR provides a selective advantage to Escherichia coli in the presence of key AMPs from humans and agricultural animals by increasing AMP resistance. Moreover, MCR promotes bacterial growth in human serum and increases virulence in a Galleria mellonella infection model. Our study shows how the anthropogenic use of AMPs can drive the accidental evolution of resistance to the innate immune system of humans and animals. These findings have major implications for the design and use of therapeutic AMPs and suggest that MCR may be difficult to eradicate, even if colistin use is withdrawn.
Collapse
Affiliation(s)
- Pramod K Jangir
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Lois Ogunlana
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Petra Szili
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
- Doctoral School of Multidisciplinary Medical Sciences, University of SzegedSzegedHungary
| | - Marton Czikkely
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
| | - Liam P Shaw
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Emily J Stevens
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhouChina
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and RegulaWon, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
| | - Timothy R Walsh
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Craig R MacLean
- Department of Biology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
18
|
He S, Yang Z, Li X, Wu H, Zhang L, Shan A, Wang J. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine. Acta Biomater 2023; 164:175-194. [PMID: 37100185 DOI: 10.1016/j.actbio.2023.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Recently, much emphasis has been placed on solving the intrinsic defects of antimicrobial peptides (AMPs), especially their susceptibility to protease digestion for the systemic application of antibacterial biomaterials. Although many strategies have increased the protease stability of AMPs, antimicrobial activity was severely compromised, thereby substantially weakening their therapeutic effect. To address this issue, we introduced hydrophobic group modifications at the N-terminus of proteolysis-resistant AMPs D1 (AArIIlrWrFR) through end-tagging with stretches of natural amino acids (W and I), unnatural amino acid (Nal) and fatty acids. Of these peptides, N1 tagged with a Nal at N-terminus showed the highest selectivity index (GMSI = 19.59), with a 6.73-fold improvement over D1. In addition to potent broad-spectrum antimicrobial activity, N1 also exhibited high antimicrobial stability toward salts, serum and proteases in vitro and ideal biocompatibility and therapeutic efficacy in vivo. Furthermore, N1 killed bacteria through multiple mechanisms, involving disruption of bacterial membranes and inhibition of bacterial energy metabolism. Indeed, appropriate terminal hydrophobicity modification opens up new avenues for developing and applying high-stability peptide-based antibacterial biomaterials. STATEMENT OF SIGNIFICANCE: To improve the potency and stability of proteolysis-resistant antimicrobial peptides (AMPs) without increasing toxicity, we constructed a convenient and tunable platform based on different compositions and lengths of hydrophobic end modifications. By tagging an Nal at the N-terminal, the obtained target compound N1 exhibited strong antimicrobial activity and desirable stability under multifarious environments in vitro (protease, salts and serum), and also showed favorable biocompatibility and therapeutic efficacy in vivo. Notably, N1exerted its bactericidal effect by damaging bacterial cell membranes and inhibiting bacterial energy metabolism in a dual mode. The findings provide a potential method for designing or optimizing proteolysis-resistant AMPs thus promoting the development and application of peptide-based antibacterial biomaterial.
Collapse
Affiliation(s)
- Shiqi He
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hua Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
19
|
Mohammed GK, Böttger R, Krizsan A, Volke D, Mötzing M, Li S, Knappe D, Hoffmann R. In Vitro Properties and Pharmacokinetics of Temporarily PEGylated Onc72 Prodrugs. Adv Healthc Mater 2023; 12:e2202368. [PMID: 36631971 PMCID: PMC11469207 DOI: 10.1002/adhm.202202368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Indexed: 01/13/2023]
Abstract
The favorable properties of antimicrobial peptides (AMPs) to rapidly kill pathogens are often limited by unfavorable pharmacokinetics due to fast degradation and renal clearance rates. Here, a prodrug strategy linking proline-rich AMP Onc72 to polyethylene glycol (PEGs) with average molecular weights of 5 and 20 kDa via a peptide linker containing a protease cleavage site is tested for the first time in vivo. Onc72 is released from these 5k- and 20k-prodrugs in mouse serum with half-life times (t1/2 ) of 8 and 14 h, respectively. Importantly, PEGylation protects Onc72 from proteolytic degradation providing a prolonged release of Onc72, balancing the degradation of free Onc72, and leading to relatively stable Onc72 concentrations and high antibacterial activities. The prodrugs are not hemolytic on human erythrocytes and show only slight cytotoxic effects on human cell lines indicating promising safety margins. When administered subcutaneously to female CD-1 mice, the prodrugs elimination t1/2 are 66 min and ≈5.5 h, respectively, compared to 43 min of free Onc72. The maximal Onc72 plasma levels are obtained ≈1 and ≈8 h postadministration, respectively. In conclusion, the prodrugs provide extended elimination t1/2 and a constant release of Onc72 in mice, potentially limiting adverse effects and increasing efficacy.
Collapse
Affiliation(s)
- Gubran Khalil Mohammed
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Roland Böttger
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBCV6T 1Z3Canada
| | - Andor Krizsan
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Daniela Volke
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Marina Mötzing
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Shyh‐Dar Li
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBCV6T 1Z3Canada
| | - Daniel Knappe
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
- EnBiotix GmbH04103LeipzigGermany
| | - Ralf Hoffmann
- Institute of Bioanalytical ChemistryFaculty of Chemistry and MineralogyLeipzig University04103LeipzigGermany
- Center for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| |
Collapse
|
20
|
Cui Q, Yu HD, Xu QJ, Liu Y, Wang YT, Li PH, Kong LC, Zhang HP, Jiang XY, Giuliodori AM, Fabbretti A, He CG, Ma HX. Antibiotic synergist OM19r reverses aminoglycoside resistance in multidrug-resistant Escherichia coli. Front Microbiol 2023; 14:1144946. [PMID: 37143537 PMCID: PMC10151501 DOI: 10.3389/fmicb.2023.1144946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction The continued emergence and spread of multidrug-resistant (MDR) bacterial pathogens require a new strategy to improve the efficacy of existing antibiotics. Proline-rich antimicrobial peptides (PrAMPs) could also be used as antibacterial synergists due to their unique mechanism of action. Methods Utilizing a series of experiments on membrane permeability, In vitro protein synthesis, In vitro transcription and mRNA translation, to further elucidate the synergistic mechanism of OM19r combined with gentamicin. Results A proline-rich antimicrobial peptide OM19r was identified in this study and its efficacy against Escherichia coli B2 (E. coli B2) was evaluated on multiple aspects. OM19r increased antibacterial activity of gentamicin against multidrug-resistance E. coli B2 by 64 folds, when used in combination with aminoglycoside antibiotics. Mechanistically, OM19r induced change of inner membrane permeability and inhibited translational elongation of protein synthesis by entering to E. coli B2 via intimal transporter SbmA. OM19r also facilitated the accumulation of intracellular reactive oxygen species (ROS). In animal models, OM19r significantly improved the efficacy of gentamicin against E. coli B2. Discussion Our study reveals that OM19r combined with GEN had a strong synergistic inhibitory effect against multi-drug resistant E. coli B2. OM19r and GEN inhibited translation elongation and initiation, respectively, and ultimately affected the normal protein synthesis of bacteria. These findings provide a potential therapeutic option against multidrug-resistant E. coli.
Collapse
Affiliation(s)
- Qi Cui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Han-Dong Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qi-Jun Xu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yue Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yu-Ting Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Peng-Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hai-Peng Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Xiu-Yun Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Anna Maria Giuliodori
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cheng-Guang He
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, China
- Cheng-Guang He,
| | - Hong-Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, China
- *Correspondence: Hong-Xia Ma,
| |
Collapse
|
21
|
Borovsky D, Rougé P, Shatters RG. Bactericidal Properties of Proline-Rich Aedes aegypti Trypsin Modulating Oostatic Factor ( AeaTMOF). LIFE (BASEL, SWITZERLAND) 2022; 13:life13010019. [PMID: 36675967 PMCID: PMC9862690 DOI: 10.3390/life13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The antimicrobial properties of proline-rich Aedes aegypti decapeptide TMOF (AeaTMOF) and oncocin112 (1-13) were compared. Incubations with multidrug-resistant Escherichia coli cells showed that AeaTMOF (5 mM) was able to completely inhibit bacterial cell growth, whereas oncocin112 (1-13) (20 mM) partially inhibited bacterial growth as compared with bacterial cells that were not multidrug-resistant cells. AeaTMOF (5 mM) was very effective against Acinetobacter baumannii and Pseudomonas aeruginosa, completely inhibiting cell growth during 15 h incubations. AeaTMOF (5 mM) completely inhibited the Gram-positive bacteria Staphylococcus aureus and Bacillus thurengiensis sups. Israelensis cell growth, whereas oncocin112 (1-13) (10 and 20 mM) failed to affect bacterial cell growth. E. coli cells that lack the SbmA transporter were inhibited by AeaTMOF (5 mM) and not by oncocin112 (1-13) (10 to 20 mM), indicating that AeaTMOF can use other bacterial transporters than SbmA that is mainly used by proline-rich antimicrobial peptides. Incubation of E. coli cells with NaAzide showed that AeaTMOF does not use ABC-like transporters that use ATP hydrolysis to import molecules into bacterial cells. Three-dimensional modeling and docking of AeaTMOF to SbmA and MdtM transporters showed that AeaTMOF can bind these proteins, and the binding location of AeaTMOF inside these protein transporters allows AeaTMOF to be transported into the bacterial cytosol. These results show that AeaTMOF can be used as a future antibacterial agent against both multidrug-resistant Gram-positive and -negative bacteria.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Pierre Rougé
- Faculte des Sciences Pharmaceutiques, 3106 Toulouse, France
| | | |
Collapse
|
22
|
He S, Yang Z, Li X, Wu H, Zhang L, Wang J, Shan A. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death. Acta Biomater 2022; 153:540-556. [PMID: 36162762 DOI: 10.1016/j.actbio.2022.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022]
Abstract
The biggest application bottleneck of antimicrobial peptides (AMPs) is the low oral bioavailability caused by the poor stability of digestive enzymes in the gastrointestinal tract. However, the research methods and evaluation criteria of available studies about anti-proteolytic strategies are not uniform and far from the actual environment in vivo. Here, we developed a research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving the protease stability of AMPs on the same platform for the first time. After a comprehensive analysis, Dab modification is identified as the most effective strategy to improve the trypsin stability of AMPs. By further modulating the proteolytic resistance optimization motif (DabW)n, U1-2WD is obtained with ideal stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which forms amorphous aggregates in the bacteria environment to trigger the agglutination of bacterial cells to prevent bacterial escape. It then kills bacteria by disrupting bacterial membranes and inhibiting bacterial energy metabolism. Overall, our work has led to a new understanding of the effectiveness of proteolytic resistance strategies and accelerated the development of anti-proteolytic AMPs to combat multidrug-resistant bacterial infections. STATEMENT OF SIGNIFICANCE: We developed research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving protease stability of AMPs on the same platform for the first time. we found effective strategies to resist trypsin hydrolysis: modification with backbone (β-Arg), D-enantiomer (D-Arg) and L-2,4-diaminobutanoic acid (Dab). Further, the proteolytic resistance optimization motif (DabW)n was designed. When n=3, derivative U1-2WD was obtained with desirable stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which can self-aggregate into amorphous aggregates in the bacteria environment to mediate the agglutination and sedimentation of bacterial cells to prevent bacterial escape, and then kill bacteria by destroying bacterial membranes and inhibiting bacterial energy metabolism.
Collapse
Affiliation(s)
- Shiqi He
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hua Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
23
|
Multi-omics study identifies novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism by simulated diabetes on coronary endothelial cells. Sci Rep 2022; 12:12027. [PMID: 35835939 PMCID: PMC9283518 DOI: 10.1038/s41598-022-16300-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery endothelial cells (CAEC) exert an important role in the development of cardiovascular disease. Dysfunction of CAEC is associated with cardiovascular disease in subjects with type 2 diabetes mellitus (T2DM). However, comprehensive studies of the effects that a diabetic environment exerts on this cellular type are scarce. The present study characterized the molecular perturbations occurring on cultured bovine CAEC subjected to a prolonged diabetic environment (high glucose and high insulin). Changes at the metabolite and peptide level were assessed by Liquid Chromatography–Mass Spectrometry (LC–MS2) and chemoinformatics. The results were integrated with published LC–MS2-based quantitative proteomics on the same in vitro model. Our findings were consistent with reports on other endothelial cell types and identified novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism in cells under a diabetic environment. Manual data inspection revealed disturbances on tryptophan catabolism and biosynthesis of phenylalanine-based, glutathione-based, and proline-based peptide metabolites. Fluorescence microscopy detected an increase in binucleation in cells under treatment that also occurred when human CAEC were used. This multi-omics study identified particular molecular perturbations in an induced diabetic environment that could help unravel the mechanisms underlying the development of cardiovascular disease in subjects with T2DM.
Collapse
|
24
|
van Os N, Javed A, Broere F, van Dijk A, Balhuizen MD, van Eijk M, Rooijakkers SHM, Bardoel BW, Heesterbeek DAC, Haagsman HP, Veldhuizen E. Novel insights in antimicrobial and immunomodulatory mechanisms of action of PepBiotics CR-163 and CR-172. J Glob Antimicrob Resist 2022; 30:406-413. [PMID: 35840108 DOI: 10.1016/j.jgar.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Recently our group developed a novel group of antimicrobial peptides termed PepBiotics, of which peptides CR-163 and CR-172 showed optimized antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus without inducing antimicrobial resistance. In this study, the antibacterial mechanism of action and the immunomodulatory activity of these two PepBiotics was explored. METHODS RAW264.7 cells were used to determine the ability of PepBiotics to neutralize LPS-and LTA-induced activation of macrophages. Isothermal titration calorimetry and competition assays with dansyl-labeled polymyxin B determined binding characteristics to LPS and LTA. Combined bacterial killing with subsequent macrophage activation assays was performed to determine so-called silent killing'. Finally, flow cytometry of peptide-treated genetically engineered E. coli,expressing GFP and mCherry in the cytoplasm and periplasm, respectively further established the antimicrobial mechanism of PepBiotics. RESULTS Both CR-163 and CR-172 were shown to have broad-spectrum activity against ESKAPE pathogens and E. coli, using a membranolytic mechanism of action. PepBiotics could exothermically bind LPS/LTA and were able to replace polymyxin B. Finally, it was demonstrated that bacteria killed by PepBiotics were less prone to stimulate immune cells, contrary to gentamicin and heat-killed bacteria that still elicited a strong immune response CONCLUSIONS: These studies highlight the multifunctional nature of the two peptide antibiotics as both broad spectrum antimicrobial and immunomodulator. Their ability to kill bacteria and reduce unwanted subsequent immune activation is a major advantage and highlights their potential for future therapeutic use.
Collapse
Affiliation(s)
- Nico van Os
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Ali Javed
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Melanie D Balhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Martin van Eijk
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Edwin Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Rončević T, Gerdol M, Mardirossian M, Maleš M, Cvjetan S, Benincasa M, Maravić A, Gajski G, Krce L, Aviani I, Hrabar J, Trumbić Ž, Derks M, Pallavicini A, Weingarth M, Zoranić L, Tossi A, Mladineo I. Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Acta Biomater 2022; 146:131-144. [PMID: 35470073 DOI: 10.1016/j.actbio.2022.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Mario Mardirossian
- Department of Medical Sciences, University of Trieste, Trieste 34125, Italy
| | - Matko Maleš
- Faculty of Maritime Studies, University of Split, Split 21000, Croatia
| | - Svjetlana Cvjetan
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Split 21000, Croatia
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Split 21000, Croatia
| | - Jerko Hrabar
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split 21000, Croatia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Split 21000, Croatia
| | - Maik Derks
- NMR spectroscopy, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht 3584CH, The Netherlands; Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Markus Weingarth
- NMR spectroscopy, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht 3584CH, The Netherlands
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, Split 21000, Croatia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Biology Centre Czech Academy of Sciences, Institute of Parasitology BC CAS, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
26
|
Antimicrobial peptides from freshwater invertebrate species: potential for future applications. Mol Biol Rep 2022; 49:9797-9811. [PMID: 35716292 DOI: 10.1007/s11033-022-07483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Invertebrates are a significant source of antimicrobial peptides because they lack an adaptive immune system and must rely on their innate immunity to survive in a pathogen-infested environment. Various antimicrobial peptides that represent major components of invertebrate innate immunity have been described in a number of investigations over the last few decades. In freshwater invertebrates, antimicrobial peptides have been identified in arthropods, annelids, molluscs, crustaceans, and cnidarians. Freshwater invertebrate species contain antimicrobial peptides from the families astacidin, macin, defensin, and crustin, as well as other antimicrobial peptides that do not belong to these families. They show broad spectrum activities greatly directed against bacteria and to a less extent against fungi and viruses. This review focuses on antimicrobial peptides found in freshwater invertebrates, highlighting their features, structure-activity connections, antimicrobial processes, and possible applications in the food industry, animal husbandry, aquaculture, and medicine. The methods for their synthesis, purification, and characterization, as well as the obstacles and strategies for their development and application, are also discussed.
Collapse
|
27
|
Gruber KA, Ji RL, Gallazzi F, Jiang S, Van Doren SR, Tao YX, Newton Northup J. Development of a Therapeutic Peptide for Cachexia Suggests a Platform Approach for Drug-like Peptides. ACS Pharmacol Transl Sci 2022; 5:344-361. [PMID: 35592439 PMCID: PMC9112415 DOI: 10.1021/acsptsci.1c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/19/2022]
Abstract
During the development of a melanocortin (MC) peptide drug to treat the condition of cachexia (a hypermetabolic state producing lean body mass wasting), we were confronted with the need for peptide transport across the blood-brain barrier (BBB): the MC-4 receptors (MC4Rs) for metabolic rate control are located in the hypothalamus, i.e., behind the BBB. Using the term "peptides with BBB transport", we screened the medical literature like a peptide library. This revealed numerous "hits"-peptides with BBB transport and/or oral activity. We noted several features common to most peptides in this class, including a dipeptide sequence of nonpolar residues, primary structure cyclization (whole or partial), and a Pro-aromatic motif usually within the cyclized region. Based on this, we designed an MC4R antagonist peptide, TCMCB07, that successfully treated many forms of cachexia. As part of our pharmacokinetic characterization of TCMCB07, we discovered that hepatobiliary extraction from blood accounted for a majority of the circulating peptide's excretion. Further screening of the literature revealed that TCMCB07 is a member of a long-forgotten peptide class, showing active transport by a multi-specific bile salt carrier. Bile salt transport peptides have predictable pharmacokinetics, including BBB transport, but rapid hepatic clearance inhibited their development as drugs. TCMCB07 shares the general characteristics of the bile salt peptide class but with a much longer half-life of hours, not minutes. A change in its C-terminal amino acid sequence slows hepatic clearance. This modification is transferable to other peptides in this class, suggesting a platform approach for producing drug-like peptides.
Collapse
Affiliation(s)
- Kenneth A Gruber
- John M. Dalton Cardiovascular Research Center, and Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri 65211, United States.,Tensive Controls, Inc., Columbia, Missouri 65211, United States
| | - Ren-Lai Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interaction Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Shaokai Jiang
- Department of Chemistry and NMR Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States`
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | | |
Collapse
|
28
|
Handley TNG, Li W, Welch NG, O’Brien-Simpson NM, Hossain MA, Wade JD. Evaluation of Potential DnaK Modulating Proline-Rich Antimicrobial Peptides Identified by Computational Screening. Front Chem 2022; 10:875233. [PMID: 35494637 PMCID: PMC9043238 DOI: 10.3389/fchem.2022.875233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022] Open
Abstract
The day is rapidly approaching where current antibiotic therapies will no longer be effective due to the development of multi-drug resistant bacteria. Antimicrobial peptides (AMPs) are a promising class of therapeutic agents which have the potential to help address this burgeoning problem. Proline-rich AMPs (PrAMPs) are a sub-class of AMPs, that have multiple modes of action including modulation of the bacterial protein folding chaperone, DnaK. They are highly effective against Gram-negative bacteria and have low toxicity to mammalian cells. Previously we used an in silico approach to identify new potential PrAMPs from the DRAMP database. Four of these peptides, antibacterial napin, attacin-C, P9, and PP30, were each chemically assembled and characterized. Together with synthetic oncocin as a reference, each peptide was then assessed for antibacterial activity against Gram-negative/Gram-positive bacteria and for in vitro DnaK modulation activity. We observed that these peptides directly modulate DnaK activity independently of eliciting or otherwise an antibiotic effect. Based on our findings, we propose a change to our previously established PrAMP definition to remove the requirement for antimicrobial activity in isolation, leaving the following classifiers: >25% proline, modulation of DnaK AND/OR the 70S ribosome, net charge of +1 or more, produced in response to bacterial infection AND/OR with pronounced antimicrobial activity.
Collapse
Affiliation(s)
- Thomas N. G. Handley
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - Wenyi Li
- ACTV Research Group, Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas G. Welch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - John D. Wade
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: John D. Wade,
| |
Collapse
|
29
|
Pan K, Jin S, Wang Y, Yu Z, Sun J, Liu T, Zhang Z, Zhang T, Li Z, Zhao J. Crucial Residues of C-Terminal Oligopeptide C60 to Improve the Yield of Prebiotic Xylooligosaccharides by Truncated Mutation. Foods 2022; 11:foods11060862. [PMID: 35327284 PMCID: PMC8954191 DOI: 10.3390/foods11060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/04/2022] Open
Abstract
Increasing the yields of short xylooligosaccharides by enzymatic production is efficient to improve prebiotic effects. Previously, C-terminal oligopeptide C60 was found to accelerate short xylooligosaccharides. Herein, in order to further understand the molecular mechanism of C60, the sequence analysis firstly showed that C60 displays typical properties of a linker (rich in proline/alanine/glycine/glutamine/arginine, 8.33–20.00%). C60 shared the highest identity with the N-terminal region of esterase (98.33%) and high identity with the linker between xylanase and esterase from Prevotella sp. (56.50%), it is speculated to originate from an early linker between XynA and another domain. Besides, structure simulation showed that C60 enhances the molecular interactions between substrate and active residues to improve catalytic efficiency. Moreover, three truncated variants with different lengths of C-terminal regions were successfully generated in Escherichia coli. The specific activities of variants were 6.44–10.24 fold of that of XynA-Tr, and their optimal temperature and pH were the same as XynA-Tr. Three truncated variants released more xylooligosaccharides, especially xylobiose (46.33, 43.41, and 49.60%), than XynA-Tr (32.43%). These results are helpful to understand the molecular mechanism of C60, and also provide new insight to improve the yields of short xylooligosaccharides by molecular modification at the terminal of xylanases.
Collapse
Affiliation(s)
- Kungang Pan
- Qilu Institute of Technology, School of Chemical and Biological Engineering, Jinan 250200, China;
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Shanzheng Jin
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Yue Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Zhao Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Junhao Sun
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Tianhui Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Zhengjie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.J.); (Y.W.); (Z.Y.); (J.S.); (T.L.); (Z.Z.); (T.Z.)
- Correspondence: (Z.L.); (J.Z.)
| | - Junqi Zhao
- Qilu Institute of Technology, School of Chemical and Biological Engineering, Jinan 250200, China;
- Correspondence: (Z.L.); (J.Z.)
| |
Collapse
|
30
|
Brakel A, Krizsan A, Itzenga R, Kraus CN, Otvos L, Hoffmann R. Influence of Substitutions in the Binding Motif of Proline-Rich Antimicrobial Peptide ARV-1502 on 70S Ribosome Binding and Antimicrobial Activity. Int J Mol Sci 2022; 23:ijms23063150. [PMID: 35328571 PMCID: PMC8950706 DOI: 10.3390/ijms23063150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Proline-rich antimicrobial peptides (PrAMPs) are promising candidates to treat bacterial infections. The designer peptide ARV-1502 exhibits strong antimicrobial effects against Enterobacteriaceae both in vitro and in vivo. Since the inhibitory effects of ARV-1502 reported for the 70 kDa heat-shock protein DnaK do not fully explain the antimicrobial activity of its 176 substituted analogs, we further studied their effect on the bacterial 70S ribosome of Escherichia coli, a known target of PrAMPs. ARV-1502 analogues, substituted in positions 3, 4, and 8 to 12 (underlined) of the binding motif D3KPRPYLPRP12 with aspartic acid, lysine, serine, phenylalanine or leucine, were tested in a competitive fluorescence polarization (FP) binding screening assay using 5(6)-carboxyfluorescein-labeled (Cf-) ARV-1502 and the 70S ribosome isolated from E. coli BW25113. While their effect on ribosomal protein expression was studied for green fluorescent protein (GFP) in a cell-free expression system (in vitro translation), the importance of known PrAMP transporters SbmA and MdtM was investigated using E. coli BW25113 and the corresponding knockout mutants. The dissociation constant (Kd) of 201 ± 16 nmol/L obtained for Cf-ARV-1502 suggests strong binding to the E. coli 70S ribosome. An inhibitory binding assay indicated that the binding site overlaps with those of other PrAMPs including Onc112 and pyrrhocoricin as well as the non-peptidic antibiotics erythromycin and chloramphenicol. All these drugs and drug candidates bind to the exit-tunnel of the 70S ribosome. Substitutions of the C-terminal fragment of the binding motif YLPRP reduced binding. At the same time, inhibition of GFP expression increased with net peptide charge. Interestingly, the MIC values of wild-type and ΔsbmA and ΔmdtM knockout mutants indicated that substitutions in the ribosomal binding motif altered also the bacterial uptake, which was generally improved by incorporation of hydrophobic residues. In conclusion, most substituted ARV-1502 analogs bound weaker to the 70S ribosome than ARV-1502 underlining the importance of the YLPRP binding motif. The weaker ribosomal binding correlated well with decreased antimicrobial activity in vitro. Substituted ARV-1502 analogs with a higher level of hydrophobicity or positive net charge improved the ribosome binding, inhibition of translation, and bacterial uptake.
Collapse
Affiliation(s)
- Alexandra Brakel
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, 04109 Leipzig, Germany; (A.K.); (R.I.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04109 Leipzig, Germany
- Correspondence: (A.B.); (R.H.)
| | - Andor Krizsan
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, 04109 Leipzig, Germany; (A.K.); (R.I.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04109 Leipzig, Germany
| | - Renke Itzenga
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, 04109 Leipzig, Germany; (A.K.); (R.I.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04109 Leipzig, Germany
| | - Carl N. Kraus
- Aceragen Inc., Durham, NC 27709, USA; (C.N.K.); (L.O.J.)
| | - Laszlo Otvos
- Aceragen Inc., Durham, NC 27709, USA; (C.N.K.); (L.O.J.)
- Institute of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary
| | - Ralf Hoffmann
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, 04109 Leipzig, Germany; (A.K.); (R.I.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04109 Leipzig, Germany
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
31
|
Zhang C, Hu Z, Lone AG, Artami M, Edwards M, Zouboulis CC, Stein M, Harris-Tryon TA. Small proline-rich proteins (SPRRs) are epidermally produced antimicrobial proteins that defend the cutaneous barrier by direct bacterial membrane disruption. eLife 2022; 11:76729. [PMID: 35234613 PMCID: PMC8912919 DOI: 10.7554/elife.76729] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human skin functions as a physical barrier, preventing the entry of foreign pathogens while also accommodating a myriad of commensal microorganisms. A key contributor to the skin landscape is the sebaceous gland. Mice devoid of sebocytes are prone to skin infection, yet our understanding of how sebocytes function in host defense is incomplete. Here we show that the small proline-rich proteins, SPRR1 and SPRR2 are bactericidal in skin. SPRR1B and SPPR2A were induced in human sebocytes by exposure to the bacterial cell wall component lipopolysaccharide (LPS). Colonization of germ-free mice was insufficient to trigger increased SPRR expression in mouse skin, but LPS injected into mouse skin triggered the expression of the mouse SPRR orthologous genes, Sprr1a and Sprr2a, through stimulation of MYD88. Both mouse and human SPRR proteins displayed potent bactericidal activity against MRSA (methicillin-resistant Staphylococcus aureus), Pseudomonas aeruginosa and skin commensals. Thus, Sprr1a-/-;Sprr2a-/- mice are more susceptible to MRSA and Pseudomonas aeruginosa skin infection. Lastly, mechanistic studies demonstrate that SPRR proteins exert their bactericidal activity through binding and disruption of the bacterial membrane. Taken together, these findings provide insight into the regulation and antimicrobial function of SPRR proteins in skin and how the skin defends the host against systemic infection.
Collapse
Affiliation(s)
- Chenlu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zehan Hu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Abdul G Lone
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Methinee Artami
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Marshall Edwards
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Christos C Zouboulis
- Department of Dermatology, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Maggie Stein
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Tamia A Harris-Tryon
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
32
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
33
|
Brakel A, Kolano L, Kraus CN, Otvos L, Hoffmann R. Functional Effects of ARV-1502 Analogs Against Bacterial Hsp70 and Implications for Antimicrobial Activity. Front Chem 2022; 10:798006. [PMID: 35223768 PMCID: PMC8864165 DOI: 10.3389/fchem.2022.798006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 01/19/2023] Open
Abstract
The antimicrobial peptide (AMP) ARV-1502 was designed based on naturally occurring short proline-rich AMPs, including pyrrhocoricin and drosocin. Identification of chaperone DnaK as a therapeutic target in Escherichia coli triggered intense research on the ligand-DnaK-interactions using fluorescence polarization and X-ray crystallography to reveal the binding motif and characterize the influence of the chaperone on protein refolding activity, especially in stress situations. In continuation of this research, 182 analogs of ARV-1502 were designed by substituting residues involved in antimicrobial activity against Gram-negative pathogens. The peptides synthesized on solid-phase were examined for their binding to E. coli and S. aureus DnaK providing 15 analogs with improved binding characteristics for at least one DnaK. These 15 analogs were distinguished from the original sequence by their increased hydrophobicity parameters. Additionally, the influence of the entire DnaK chaperone system, including co-chaperones DnaJ and GrpE on refolding and ATPase activity, was investigated. The increasingly hydrophobic peptides showed a stronger inhibitory effect on the refolding activity of E. coli chaperones, reducing protein refolding by up to 64%. However, these more hydrophobic peptides had only a minor effect on the ATPase activity. The most dramatic changes on the ATPase activity involved peptides with aspartate substitutions. Interestingly, these peptides resulted in a 59% reduction of the ATPase activity in the E. coli chaperone system whereas they stimulated the ATPase activity in the S. aureus system up to 220%. Of particular note is the improvement of the antimicrobial activity against S. aureus from originally >128 µg/mL to as low as 16 µg/mL. Only a single analog exhibited improved activity over the original value of 8 µg/mL against E. coli. Overall, the various moderate-throughput screenings established here allowed identifying (un)favored substitutions on 1) DnaK binding, 2) the ATPase activity of DnaK, 3) the refolding activity of DnaK alone or together with co-chaperones, and 4) the antimicrobial activity against both E. coli and S. aureus.
Collapse
Affiliation(s)
- Alexandra Brakel
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- *Correspondence: Alexandra Brakel, ; Ralf Hoffmann,
| | - Lisa Kolano
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | - Laszlo Otvos
- Aceragen, Inc., Durham, NC, United States
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Ralf Hoffmann
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- *Correspondence: Alexandra Brakel, ; Ralf Hoffmann,
| |
Collapse
|
34
|
McKenna CH, Asgari D, Crippen TL, Zheng L, Sherman RA, Tomberlin JK, Meisel RP, Tarone AM. Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. INSECT MOLECULAR BIOLOGY 2022; 31:85-100. [PMID: 34613655 DOI: 10.1111/imb.12740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a continuing challenge in medicine. There are various strategies for expanding antibiotic therapeutic repertoires, including the use of blow flies. Their larvae exhibit strong antibiotic and antibiofilm properties that alter microbiome communities. One species, Lucilia sericata, is used to treat problematic wounds due to its debridement capabilities and its excretions and secretions that kill some pathogenic bacteria. There is much to be learned about how L. sericata interacts with microbiomes at the molecular level. To address this deficiency, gene expression was assessed after feeding exposure (1 h or 4 h) to two clinically problematic pathogens: Pseudomonas aeruginosa and Acinetobacter baumannii. The results identified immunity-related genes that were differentially expressed when exposed to these pathogens, as well as non-immune genes possibly involved in gut responses to bacterial infection. There was a greater response to P. aeruginosa that increased over time, while few genes responded to A. baumannii exposure, and expression was not time-dependent. The response to feeding on pathogens indicates a few common responses and features distinct to each pathogen, which is useful in improving the wound debridement therapy and helps to develop biomimetic alternatives.
Collapse
Affiliation(s)
- C H McKenna
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - D Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - T L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, USA
| | - L Zheng
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R A Sherman
- BioTherapeutics, Education and Research (BTER) Foundation, Irvine, CA, USA
- Monarch Labs, Irvine, CA, USA
| | - J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A M Tarone
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Antibacterial Properties of Melanoidins Produced from Various Combinations of Maillard Reaction against Pathogenic Bacteria. Microbiol Spectr 2021; 9:e0114221. [PMID: 34908471 PMCID: PMC8672907 DOI: 10.1128/spectrum.01142-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel melanoidins are produced by the Maillard reaction. Here, melanoidins with high antibacterial activity were tested by examining various combinations of reducing sugars and amino acids as reaction substrates. Twenty-two types of melanoidins were examined by combining two reducing sugars (glucose and xylose) and eleven l-isomers of amino acids (alanine, arginine, glutamine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, and valine) to confirm the effects of these melanoidins on the growth of Listeria monocytogenes at 25°C. The melanoidins produced from the combination of d-xylose with either l-phenylalanine (Xyl-Phe) or l-proline (Xyl-Pro), for which absorbance at 420 nm was 3.5 ± 0.2, completely inhibited the growth of L. monocytogenes at 25°C for 48 h. Both of the melanoidins exhibited growth inhibition of L. monocytogenes which was equivalent to the effect of nisin (350 IU/mL). The antimicrobial spectrum of both melanoidins was also investigated for 10 different species of bacteria, including both Gram-positive and Gram-negative species. While Xyl-Phe-based melanoidin successfully inhibited the growth of Bacillus cereus and Brevibacillus brevis, Xyl-Pro-based melanoidin inhibited the growth of Salmonella enterica Typhimurium. However, no clear trend in the antimicrobial spectrum of the melanoidins against different bacterial species was observed. The findings in the present study suggest that melanoidins generated from xylose with phenylalanine and/or proline could be used as potential novel alternative food preservatives derived from food ingredients to control pathogenic bacteria. IMPORTANCE Although the antimicrobial effect of melanoidins has been reported in some foods, there have been few comprehensive investigations on the antimicrobial activity of combinations of reaction substrates of the Maillard reaction. The present study comprehensively investigated the potential of various combinations of reducing sugars and amino acids. Because the melanoidins examined in this study were produced simply by heating in an autoclave at 121°C for 60 min, the targeted melanoidins can be easily produced. The melanoidins produced from combinations of xylose with either phenylalanine or proline exhibited a wide spectrum of antibiotic effects against various pathogens, including Listeria monocytogenes, Bacillus cereus, and Salmonella enterica Typhimurium. Since the antibacterial effect of the melanoidins on L. monocytogenes was equivalent to that of a nisin solution (350 IU/mL), we might expect a practical application of melanoidins as novel food preservatives.
Collapse
|
36
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
37
|
Hosfelt J, Richards A, Zheng M, Adura C, Nelson B, Yang A, Fay A, Resager W, Ueberheide B, Glickman JF, Lupoli TJ. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Cell Chem Biol 2021; 29:854-869.e9. [PMID: 34818532 DOI: 10.1016/j.chembiol.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
DnaK is the bacterial homolog of Hsp70, an ATP-dependent chaperone that helps cofactor proteins to catalyze nascent protein folding and salvage misfolded proteins. In the pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), DnaK and its cofactors are proposed antimycobacterial targets, yet few small-molecule inhibitors or probes exist for these families of proteins. Here, we describe the repurposing of a drug called telaprevir that is able to allosterically inhibit the ATPase activity of DnaK and to prevent chaperone function by mimicking peptide substrates. In mycobacterial cells, telaprevir disrupts DnaK- and cofactor-mediated cellular proteostasis, resulting in enhanced efficacy of aminoglycoside antibiotics and reduced resistance to the frontline TB drug rifampin. Hence, this work contributes to a small but growing collection of protein chaperone inhibitors, and it demonstrates that these molecules disrupt bacterial mechanisms of survival in the presence of different antibiotic classes.
Collapse
Affiliation(s)
- Jordan Hosfelt
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meng Zheng
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Insitute, New York, NY 10065, USA
| | - William Resager
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
38
|
Hu Z, Zhang C, Sifuentes-Dominguez L, Zarek CM, Propheter DC, Kuang Z, Wang Y, Pendse M, Ruhn KA, Hassell B, Behrendt CL, Zhang B, Raj P, Harris-Tryon TA, Reese TA, Hooper LV. Small proline-rich protein 2A is a gut bactericidal protein deployed during helminth infection. Science 2021; 374:eabe6723. [PMID: 34735226 DOI: 10.1126/science.abe6723] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A diverse group of antimicrobial proteins (AMPs) helps protect the mammalian intestine from varied microbial challenges. We show that small proline-rich protein 2A (SPRR2A) is an intestinal antibacterial protein that is phylogenetically unrelated to previously discovered mammalian AMPs. In this study, SPRR2A was expressed in Paneth cells and goblet cells and selectively killed Gram-positive bacteria by disrupting their membranes. SPRR2A shaped intestinal microbiota composition, restricted bacterial association with the intestinal surface, and protected against Listeria monocytogenes infection. SPRR2A differed from other intestinal AMPs in that it was induced by type 2 cytokines produced during helminth infection. Moreover, SPRR2A protected against helminth-induced bacterial invasion of intestinal tissue. Thus, SPRR2A is a distinctive AMP triggered by type 2 immunity that protects the intestinal barrier during helminth infection.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chenlu Zhang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis Sifuentes-Dominguez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina M Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel C Propheter
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhao Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mihir Pendse
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian Hassell
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci 2021; 22:ijms222111401. [PMID: 34768832 PMCID: PMC8584040 DOI: 10.3390/ijms222111401] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.
Collapse
Affiliation(s)
- Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-65939528
| |
Collapse
|
40
|
Erdem Büyükkiraz M, Kesmen Z. Recombinant expression and coexpression of oyster defensin and proline-rich peptide in Komagataella phaffii. Biotechnol Appl Biochem 2021; 69:1998-2007. [PMID: 34586650 DOI: 10.1002/bab.2262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/19/2021] [Indexed: 11/06/2022]
Abstract
Proline-rich peptide (CgPrp) and defensin (CgDef), oyster (Crassostrea gigas)-originated antimicrobial peptides (AMPs), were produced by the recombinant technique in Komagataella phaffii GS115 cells. For this purpose, the nucleotide sequences encoding the CgPrp and CgDef peptides were synthesized by the recursive PCR technique, and ligated in pPICZaA expression vector. Additionally, the expression cassettes of pPICZαA-CgDef and pPICZαA-CgPrp were combined using in vitro multimer ligation strategy to construct the coexpression vector pPICZaA-CgPrp-CgDef. The expression and coexpression vectors transformed into K. phaffii GS115 cells by electroporation. At the end of the 0.5% methanol-induced expression stage for 96 h, the recombinant peptides were purified from the culture medium. The concentrations of purified peptides were changed between 1.05 and 1.21 mg/L. The recombinant peptides successfully inhibited the growth of tested Gram-positive bacterial strains belonging to Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Listeria monocytogenes, and Bacillus cereus. The minimum inhibitory concentrations (MIC) of recombinant CgPrp, CgDef, and CgPrp-CgDef peptides against tested bacteria were in the range of 12.50-25.00, 18.75-75.00, and 5.80-11.60 pg/μl, respectively. The results of the study proved that the recombinant CgPrp, CgDef, and CgPrp-CgDef peptides expressed in K. phaffii might have good potential for the inhibition of common Gram-positive pathogenic bacteria, including drug-resistant MRSA.
Collapse
Affiliation(s)
| | - Zülal Kesmen
- Faculty of Engineering, Food Engineering Department, Erciyes University, Kayseri, Turkey
| |
Collapse
|
41
|
Pacor S, Benincasa M, Musso MV, Krce L, Aviani I, Pallavicini A, Scocchi M, Gerdol M, Mardirossian M. The proline-rich myticalins from Mytilus galloprovincialis display a membrane-permeabilizing antimicrobial mode of action. Peptides 2021; 143:170594. [PMID: 34118363 DOI: 10.1016/j.peptides.2021.170594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bivalve mollusks are continuously exposed to potentially pathogenic microorganisms living in the marine environment. Not surprisingly, these filter-feeders developed a robust innate immunity to protect themselves, which includes a broad panel of antimicrobial peptides. Among these, myticalins represent a recently discovered family of linear cationic peptides expressed in the gills of Mytilus galloprovincialis. Even though myticalins and insect and mammalian proline-rich antimicrobial peptides (PrAMPs) share a similar amino acid composition, we here show that none of the tested mussel peptides use a non-lytic mode of action relying on the bacterial transporter SbmA. On the other hand, all the tested myticalins perturbed and permeabilized the membranes of E. coli BW25113, as shown by flow-cytometry and atomic force microscopy. Circular dichroism spectra revealed that most myticalins did not adopt recognizable secondary structures in the presence of amphipathic environments, such as biological membranes. To explore possible uses of myticalins for biotech, we assessed their biocompatibility with a human cell line. Non-negligible cytotoxic effects displayed by myticalins indicate that their optimization would be required before their further use as lead compounds in the development of new antibiotics.
Collapse
Affiliation(s)
- Sabrina Pacor
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Monica Benincasa
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Maria Valentina Musso
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Soba B3-18, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Soba B3-18, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Alberto Pallavicini
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Marco Scocchi
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Mario Mardirossian
- Department of Medical Sciences, University of Trieste, Laboratorio Clinica Odontostomatologica, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
42
|
Yin CM, Pan XY, Cao XT, Li T, Zhang YH, Lan JF. A crayfish ALF inhibits the proliferation of microbiota by binding to RPS4 and MscL of E. coli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104106. [PMID: 33878364 DOI: 10.1016/j.dci.2021.104106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs), most of which are small proteins, are necessary for innate immunity against pathogens. Anti-lipopolysaccharide factor (ALF) with a conserved lipopolysaccharide binding domain (LBD) can bind to lipopolysaccharide (LPS) and neutralize LPS activity. The antibacterial mechanism of ALF, especially its role in bacteria, needs to be further investigated. In this study, the antibacterial role of an anti-lipopolysaccharide factor (PcALF5) derived from Procambarus clarkii was analyzed. PcALF5 could inhibit the replication of the microbiota in vitro and enhance the bacterial clearance ability in crayfish in vivo. Far-western blot assay results indicated that PcALF5 bound to two proteins of E. coli (approximately 25 kDa and 15 kDa). Mass spectrometry (MS), far-western blot assay, and pull-down results showed that 30S ribosomal protein S4 (RPS4, 25 kD) interacted with PcALF5. Further studies revealed that another E. coli protein binding to PcALF5 could be the large mechanosensitive channel (MscL), which is reported to participate in the transport of peptides and antibiotics. Additional assays showed that PcALF5 inhibited protein synthesis and promoted the transcription of ribosomal component genes in E. coli. Overall, these results indicate that PcALF5 could transfer into E. coli by binding to MscL and inhibit protein synthesis by interacting with RPS4. This study reveals the mechanism underlying ALF involvement in the antibacterial immune response and provides a new reference for the research on antibacterial drugs.
Collapse
Affiliation(s)
- Cheng-Ming Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Yi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Tong Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying-Hao Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiang-Feng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
43
|
Armas F, Di Stasi A, Mardirossian M, Romani AA, Benincasa M, Scocchi M. Effects of Lipidation on a Proline-Rich Antibacterial Peptide. Int J Mol Sci 2021; 22:7959. [PMID: 34360723 PMCID: PMC8347091 DOI: 10.3390/ijms22157959] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria by inhibiting protein synthesis after its internalization, which is mainly supported by the bacterial transporter SbmA. In this study, we tested two different lipidated forms of Bac7(1-16) with the aim of extending its activity against those bacterial species that lack SbmA. We linked a C12-alkyl chain or an ultrashort cationic lipopeptide Lp-I to the C-terminus of Bac7(1-16). Both the lipidated Bac-C12 and Bac-Lp-I forms acquired activity at low micromolar MIC values against several Gram-positive and Gram-negative bacteria. Moreover, unlike Bac7(1-16), Bac-C12, and Bac-Lp-I did not select resistant mutants in E. coli after 14 times of exposure to sub-MIC concentrations of the respective peptide. We demonstrated that the extended spectrum of activity and absence of de novo resistance are likely related to the acquired capability of the peptides to permeabilize cell membranes. These results indicate that C-terminal lipidation of a short proline-rich peptide profoundly alters its function and mode of action and provides useful insights into the design of novel broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Federica Armas
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
- Area Science Park, Padriciano, 34149 Trieste, Italy
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
- Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy
| | | | - Monica Benincasa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (A.D.S.); (M.M.); (M.B.)
| |
Collapse
|
44
|
Mayer MP. The Hsp70-Chaperone Machines in Bacteria. Front Mol Biosci 2021; 8:694012. [PMID: 34164436 PMCID: PMC8215388 DOI: 10.3389/fmolb.2021.694012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
The ATP-dependent Hsp70s are evolutionary conserved molecular chaperones that constitute central hubs of the cellular protein quality surveillance network. None of the other main chaperone families (Tig, GroELS, HtpG, IbpA/B, ClpB) have been assigned with a comparable range of functions. Through a multitude of functions Hsp70s are involved in many cellular control circuits for maintaining protein homeostasis and have been recognized as key factors for cell survival. Three mechanistic properties of Hsp70s are the basis for their high versatility. First, Hsp70s bind to short degenerate sequence motifs within their client proteins. Second, Hsp70 chaperones switch in a nucleotide-controlled manner between a state of low affinity for client proteins and a state of high affinity for clients. Third, Hsp70s are targeted to their clients by a large number of cochaperones of the J-domain protein (JDP) family and the lifetime of the Hsp70-client complex is regulated by nucleotide exchange factors (NEF). In this review I will discuss advances in the understanding of the molecular mechanism of the Hsp70 chaperone machinery focusing mostly on the bacterial Hsp70 DnaK and will compare the two other prokaryotic Hsp70s HscA and HscC with DnaK.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
45
|
Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021; 14:471. [PMID: 34067510 PMCID: PMC8156082 DOI: 10.3390/ph14050471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.
Collapse
Affiliation(s)
- Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (B.V.); (M.G.); (G.M.)
| | | | | | | |
Collapse
|
46
|
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
In the past few decades, peptide antibacterial products with unique antibacterial mechanisms have attracted widespread interest. They can effectively reduce the probability of drug resistance of bacteria and are biocompatible, so they possess tremendous development prospects. This review provides recent research and analysis on the basic types of antimicrobial peptides (including poly (amino acid)s, short AMPs, and lipopeptides) and factors to optimize antimicrobial effects. It also summarizes the two most important modes of action of antimicrobial peptides and the latest developments in the application of AMPs, including antimicrobial agent, wound healing, preservative, antibacterial coating and others. Finally, we discuss the remaining challenges to improve the antibacterial peptides and propose prospects in the field.
Collapse
Affiliation(s)
- Yuhan Yan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuanze Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Zhiwen Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xinhao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
47
|
Liu FF, Ding C, Yang LL, Li H, Rao XJ. Identification and analysis of two lebocins in the oriental armyworm Mythimna separata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103962. [PMID: 33301794 DOI: 10.1016/j.dci.2020.103962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The insect immune system can produce defensive molecules, such as antimicrobial peptides (AMPs), to eliminate invading pathogens. Here, we report the identification of two cDNAs (MseLeb1, MseLeb2) that encode lepidopteral lebocin preproproteins in the oriental armyworm, Mythimna separata. Their open reading frames are 483/492 bp that encode 161/164 aa peptides. MseLeb1 is mainly expressed in the fat body and epidermis, while MseLeb2 is mainly expressed in the fat body, Malpighian tube, and epidermis. They were significantly induced by Escherichia coli, Staphylococcus aureus, and Beauveria bassiana in hemocytes. The preproproteins can be processed after RXXR motifs into mature peptides. Multiple sequence alignment indicates that MseLeb1 (18-42, 121-161) are potentially active peptides. Five peptides were synthesized for analyses: 18-42, 121-161, 121-154, 121-151, 121-146. Synthetic peptides showed agglutinating activity, but no hemolytic activity. Bacterial growth assay, colony formation assay, and electron microscopy revealed that synthetic peptides can inhibit bacterial growth and disrupt bacterial cell wall. B. bassiana conidia and blastospores were lysed by synthetic peptides. These results indicate that MseLeb1 and MseLeb2 are immune responsive lebocins, and the mature peptides have antibacterial and antifungal activities.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Li-Ling Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
48
|
Upert G, Luther A, Obrecht D, Ermert P. Emerging peptide antibiotics with therapeutic potential. MEDICINE IN DRUG DISCOVERY 2021; 9:100078. [PMID: 33398258 PMCID: PMC7773004 DOI: 10.1016/j.medidd.2020.100078] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 02/09/2023] Open
Abstract
This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.
Collapse
Key Words
- ADMET, absorption, distribution, metabolism and excretion – toxicity in pharmacokinetics
- AMP, antimicrobial peptide
- AMR, antimicrobial resistance
- ATCC, ATCC cell collection
- Antibiotic
- BAM, β-barrel assembly machinery
- CC50, cytotoxic concentration to kill 50% of cells
- CD, circular dichroism
- CFU, colony forming unit
- CLSI, clinical and laboratory standards institute
- CMS, colistin methane sulfonate
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- ESKAPE, acronym encompassing six bacterial pathogens (often carrying antibiotic resistance): Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp
- FDA, U. S. Food and Drug Administration
- HABP, hospital acquired bacterial pneumonia
- HDP, host-defense peptide
- HEK293, human embryonic kidney 293 cells
- HK-2, human kidney 2 cells (proximal tubular cell line)
- HepG2, human hepatocellular carcinoma cell line
- Hpg, 4-hydroxy-phenyl glycine
- ITC, isothermal titration calorimetry
- KPC, Klebsiella pneumoniae metallo-β-lactamase C resistant
- LPS, lipopolysaccharide
- LptA, lipopolysaccharide transport protein A
- LptC, lipopolysaccharide transport protein C
- LptD, lipopolysaccharide transport protein D
- MDR, multidrug-resistant
- MH-I, Müller-Hinton broth I
- MH-II, Müller-Hinton broth II (cation adjusted)
- MIC, minimal inhibitory concentration
- MRSA, methicilline-resistant S. aureus
- MSSA, methicilline-sensitive S. aureus
- MoA, mechanism (mode) of action
- NDM-1, New Delhi metallo-β-lactamase resistant
- NOAEL, no adverse effect level
- ODL, odilorhabdin
- OMPTA (outer membrane targeting antibiotic)
- OMPTA, outer membrane targeting antibiotic
- Omp, outer membrane protein
- PBMC, peripheral mononuclear blood cell
- PBP, penicillin-binding protein
- PBS, phosphate-buffered saline
- PK, pharmacokinetics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- POPG, 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-(1-glycerol)
- PrAMPs, polyproline antimicrobial peptides
- RBC, red blood cell
- SAR, structure-activity relationship
- SPR, surface plasmon resonance
- SPase I, signal peptidase I
- VABP, ventilator associated bacterial pneumonia
- VIM-1, beta-lactamase 2 (K. pneumoniae)
- VISA, vancomycin-intermediate S. aureus
- VRE, vancomycin-resistant enterococcus
- WHO, World Health Organization
- WT, wild type
- WTA, wall teichoic acid
- XDR, extremely drug-resistant
- antimicrobial peptide
- antimicrobial resistance
- bid, bis in die (two times a day)
- i.p., intraperitoneal
- i.v., intravenous
- lipopeptide
- mITT population, minimal intend-to-treat population
- peptide antibiotic
- s.c., subcutaneous
Collapse
Affiliation(s)
- Gregory Upert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Anatol Luther
- Bachem AG, Hauptstrasse 114, 4416 Bubendorf, Switzerland
| | - Daniel Obrecht
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Philipp Ermert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| |
Collapse
|
49
|
Welch NG, Li W, Hossain MA, Separovic F, O'Brien-Simpson NM, Wade JD. (Re)Defining the Proline-Rich Antimicrobial Peptide Family and the Identification of Putative New Members. Front Chem 2020; 8:607769. [PMID: 33335890 PMCID: PMC7736402 DOI: 10.3389/fchem.2020.607769] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
As we rapidly approach a post-antibiotic era in which multi-drug resistant bacteria are ever-pervasive, antimicrobial peptides (AMPs) represent a promising class of compounds to help address this global issue. AMPs are best-known for their membrane-disruptive mode of action leading to bacteria cell lysis and death. However, many AMPs are also known to be non-lytic and have intracellular modes of action. Proline-rich AMPs (PrAMPs) are one such class, that are generally membrane permeable and inhibit protein synthesis leading to a bactericidal outcome. PrAMPs are highly effective against Gram-negative bacteria and yet show very low toxicity against eukaryotic cells. Here, we review both the PrAMP family and the past and current definitions for this class of peptides. Computational analysis of known AMPs within the DRAMP database (http://dramp.cpu-bioinfor.org/) and assessment of their PrAMP-like properties have led us to develop a revised definition of the PrAMP class. As a result, we subsequently identified a number of unknown and unclassified peptides containing motifs of striking similarity to known PrAMP-based DnaK inhibitors and propose a series of new sequences for experimental evaluation and subsequent addition to the PrAMP family.
Collapse
Affiliation(s)
- Nicholas G Welch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Wenyi Li
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia.,Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Frances Separovic
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia.,Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia.,Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Synthesis and in Silico Modelling of the Potential Dual Mechanistic Activity of Small Cationic Peptides Potentiating the Antibiotic Novobiocin against Susceptible and Multi-Drug Resistant Escherichia coli. Int J Mol Sci 2020; 21:ijms21239134. [PMID: 33266278 PMCID: PMC7730182 DOI: 10.3390/ijms21239134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/24/2023] Open
Abstract
Cationic antimicrobial peptides have attracted interest, both as antimicrobial agents and for their ability to increase cell permeability to potentiate other antibiotics. However, toxicity to mammalian cells and complexity have hindered development for clinical use. We present the design and synthesis of very short cationic peptides (3–9 residues) with potential dual bacterial membrane permeation and efflux pump inhibition functionality. Peptides were designed based upon in silico similarity to known active peptides and efflux pump inhibitors. A number of these peptides potentiate the activity of the antibiotic novobiocin against susceptible Escherichia coli and restore antibiotic activity against a multi-drug resistant E. coli strain, despite having minimal or no intrinsic antimicrobial activity. Molecular modelling studies, via docking studies and short molecular dynamics simulations, indicate two potential mechanisms of potentiating activity; increasing antibiotic cell permeation via complexation with novobiocin to enable self-promoted uptake, and binding the E. coli RND efflux pump. These peptides demonstrate potential for restoring the activity of hydrophobic drugs.
Collapse
|