1
|
Greve JN, Schwäbe FV, Taft MH, Manstein DJ. Biochemical characterization of cardiac α-actin mutations A21V and D26N implicated in hypertrophic cardiomyopathy. Cytoskeleton (Hoboken) 2024; 81:815-831. [PMID: 38459932 PMCID: PMC11615838 DOI: 10.1002/cm.21852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) affects .2% of the world's population and is inherited in an autosomal dominant manner. Mutations in cardiac α-actin are the cause in 1%-5% of all observed cases. Here, we describe the recombinant production, purification, and characterization of the HCM-linked cardiac α-actin variants p.A21V and p.D26N. Mass spectrometric analysis of the initially purified recombinant cardiac α-actin variants and wild-type protein revealed improper N-terminal processing in the Spodoptera frugiperda (Sf-9) insect cell system, compromising the labeling of the protein with fluorescent probes for biochemical studies. Therefore, we produced N-terminal deletion mutants lacking the N-terminal cysteine (ΔC2). The ΔC2 wild-type construct behaved similar to porcine cardiac α-actin purified from native Sus scrofa heart tissue and all ΔC2 constructs showed improved fluorescent labeling. Further analysis of untruncated and ΔC2 constructs showed that while neither the A21V nor the D26N mutation affects nucleotide binding, they cause a similar slowing of the rate of filament formation as well as a reduction in the thermal stability of monomeric and filamentous cardiac α-actin. In vitro motility assays and transient-kinetic studies probing the interaction of the actin variants with cardiac β-myosin revealed perturbed actomyosin interactions and a reduced motile activity for the p.D26N variant. Addition of the small molecule effector EMD 57033, which targets cardiac β-myosin, rescued the approximately 40% drop in velocity observed with the p.D26N constructs and activated the motile activity of wild-type and p.D26N to the same level of 1100 nm s-1.
Collapse
Affiliation(s)
- Johannes N. Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Frederic V. Schwäbe
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
- Division for Structural BiochemistryHannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
2
|
Kyriazi D, Voth L, Bader A, Ewert W, Gerlach J, Elfrink K, Franz P, Tsap MI, Schirmer B, Damiano-Guercio J, Hartmann FK, Plenge M, Salari A, Schöttelndreier D, Strienke K, Bresch N, Salinas C, Gutzeit HO, Schaumann N, Hussein K, Bähre H, Brüsch I, Claus P, Neumann D, Taft MH, Shcherbata HR, Ngezahayo A, Bähler M, Amiri M, Knölker HJ, Preller M, Tsiavaliaris G. An allosteric inhibitor of RhoGAP class-IX myosins suppresses the metastatic features of cancer cells. Nat Commun 2024; 15:9947. [PMID: 39550360 PMCID: PMC11569205 DOI: 10.1038/s41467-024-54181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
Aberrant Ras homologous (Rho) GTPase signalling is a major driver of cancer metastasis, and GTPase-activating proteins (GAPs), the negative regulators of RhoGTPases, are considered promising targets for suppressing metastasis, yet drug discovery efforts have remained elusive. Here, we report the identification and characterization of adhibin, a synthetic allosteric inhibitor of RhoGAP class-IX myosins that abrogates ATPase and motor function, suppressing RhoGTPase-mediated modes of cancer cell metastasis. In human and murine adenocarcinoma and melanoma cell models, including three-dimensional spheroid cultures, we reveal anti-migratory and anti-adhesive properties of adhibin that originate from local disturbances in RhoA/ROCK-regulated signalling, affecting actin-dynamics and actomyosin-based cell-contractility. Adhibin blocks membrane protrusion formation, disturbs remodelling of cell-matrix adhesions, affects contractile ring formation, and disrupts epithelial junction stability; processes severely impairing single/collective cell migration and cytokinesis. Combined with the non-toxic, non-pathological signatures of adhibin validated in organoids, mouse and Drosophila models, this mechanism of action provides the basis for developing anti-metastatic cancer therapies.
Collapse
Affiliation(s)
- Despoina Kyriazi
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lea Voth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Almke Bader
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Wiebke Ewert
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | | - Kerstin Elfrink
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - Falk K Hartmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Masina Plenge
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Katharina Strienke
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Nadine Bresch
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Claudio Salinas
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Nora Schaumann
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, KRH Klinikum Nordstadt, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Mass Spectrometry-Metabolomics, Hannover Medical School, Hanover, Germany
| | - Inga Brüsch
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Anaclet Ngezahayo
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | |
Collapse
|
3
|
Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A 2024; 121:e2405020121. [PMID: 39503885 PMCID: PMC11572969 DOI: 10.1073/pnas.2405020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/17/2024] [Indexed: 11/13/2024] Open
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
4
|
Scott B, Greenberg L, Squarci C, Campbell KS, Greenberg MJ. Danicamtiv reduces myosin's working stroke but enhances contraction by activating the thin filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617269. [PMID: 39416013 PMCID: PMC11482770 DOI: 10.1101/2024.10.09.617269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Heart failure is a leading cause of death worldwide, and even with current treatments, the 5-year transplant-free survival rate is only ~50-70%. As such, there is a need to develop new treatments for patients that improve survival and quality of life. Recently, there have been efforts to develop small molecules for heart failure that directly target components of the sarcomere, including cardiac myosin. One such molecule, danicamtiv, recently entered phase II clinical trials; however, its mechanism of action and direct effects on myosin's mechanics and kinetics are not well understood. Using optical trapping techniques, stopped flow transient kinetics, and in vitro reconstitution assays, we found that danicamtiv reduces the size of cardiac myosin's working stroke, and in contrast to studies in muscle fibers, we found that it does not affect actomyosin detachment kinetics at the level of individual crossbridges. We demonstrate that danicamtiv accelerates actomyosin association kinetics, leading to increased recruitment of myosin crossbridges and subsequent thin filament activation at physiologically-relevant calcium concentrations. Finally, we computationally model how the observed changes in mechanics and kinetics at the level of single crossbridges contribute to increased cardiac contraction and improved diastolic function compared to the related myotrope, omecamtiv mecarbil. Taken together, our results have important implications for the design of new sarcomeric-targeting compounds for heart failure.
Collapse
Affiliation(s)
- Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caterina Squarci
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
5
|
Spudich JA. From amoeboid myosin to unique targeted medicines for a genetic cardiac disease. Front Physiol 2024; 15:1496569. [PMID: 39529926 PMCID: PMC11550953 DOI: 10.3389/fphys.2024.1496569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Significant advances in structural and biochemical research validate the 9-year-old hypothesis that cardiac hypercontractility seen in patients with hypertrophic cardiomyopathy is primarily caused by sarcomeric mutations that increase the number of myosin molecules available for actin interaction.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Childers MC, Regnier M. Dynamics of the Pre-Powerstroke Myosin Lever Arm and the Effects of Omecamtiv Mecarbil. Int J Mol Sci 2024; 25:10425. [PMID: 39408754 PMCID: PMC11477208 DOI: 10.3390/ijms251910425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The binding of small molecules to sarcomeric myosin can elicit powerful effects on the chemomechanical cycle, making them effective therapeutics in the clinic and research tools at the benchtop. However, these myotropes can have complex effects that act on different phases of the crossbridge cycle and which depend on structural, dynamic, and environmental variables. While small molecule binding sites have been identified crystallographically and their effects on contraction studied extensively, small molecule-induced dynamic changes that link structure-function are less studied. Here, we use molecular dynamics simulations to explore how omecamtiv mecarbil (OM), a cardiac myosin-specific myotrope, alters the coordinated dynamics of the lever arm and the motor domain in the pre-powerstroke state. We show that the lever arm adopts a range of orientations and find that different lever arm orientations are accompanied by changes in the hydrogen bonding patterns near the converter. We find that the binding of OM to myosin reduces the conformational heterogeneity of the lever arm orientation and also adjusts the average lever arm orientation. Finally, we map out the distinct conformations and ligand-protein interactions adopted by OM. These results uncover some structural factors that govern the motor domain-tail orientations and the mechanisms by which OM primes the pre-powerstroke myosin heads.
Collapse
Affiliation(s)
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
8
|
Bodt SML, Ge J, Ma W, Rasicci DV, Desetty R, McCammon JA, Yengo CM. Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release. PNAS NEXUS 2024; 3:pgae279. [PMID: 39108304 PMCID: PMC11302452 DOI: 10.1093/pnasnexus/pgae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (threefold) the maximum steady-state actin-activated ATPase activity (k cat) and decreases (eightfold) the actin concentration at which ATPase is one-half maximal (K ATPase). We also found a twofold to fourfold increase in the actin-activated power stroke and phosphate release rate constants at 30 μM actin, which overall enhanced the duty ratio threefold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2β S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis.
Collapse
Affiliation(s)
- Skylar M L Bodt
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - Jinghua Ge
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - Wen Ma
- Department of Physics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, 64 Medical Center Dr, Morgantown, WV 26506, USA
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Vogel A, Arnese R, Gudino Carrillo RM, Sehr D, Deszcz L, Bylicki A, Meinhart A, Clausen T. UNC-45 assisted myosin folding depends on a conserved FX 3HY motif implicated in Freeman Sheldon Syndrome. Nat Commun 2024; 15:6272. [PMID: 39054317 PMCID: PMC11272940 DOI: 10.1038/s41467-024-50442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Myosin motors are critical for diverse motility functions, ranging from cytokinesis and endocytosis to muscle contraction. The UNC-45 chaperone controls myosin function mediating the folding, assembly, and degradation of the muscle protein. Here, we analyze the molecular mechanism of UNC-45 as a hub in myosin quality control. We show that UNC-45 forms discrete complexes with folded and unfolded myosin, forwarding them to downstream chaperones and E3 ligases. Structural analysis of a minimal chaperone:substrate complex reveals that UNC-45 binds to a conserved FX3HY motif in the myosin motor domain. Disrupting the observed interface by mutagenesis prevents myosin maturation leading to protein aggregation in vivo. We also show that a mutation in the FX3HY motif linked to the Freeman Sheldon Syndrome impairs UNC-45 assisted folding, reducing the level of functional myosin. These findings demonstrate that a faulty myosin quality control is a critical yet unexplored cause of human myopathies.
Collapse
Affiliation(s)
- Antonia Vogel
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Renato Arnese
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Ricardo M Gudino Carrillo
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University, Vienna, Austria
| | - Daria Sehr
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Andrzej Bylicki
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
- Vienna BioCenter Core Facilities, Vienna, Austria.
| |
Collapse
|
10
|
Garg A, Jansen S, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.583979. [PMID: 38559046 PMCID: PMC10979883 DOI: 10.1101/2024.03.10.583979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine Johns Hopkins University Baltimore MD USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. Proc Natl Acad Sci U S A 2024; 121:e2315472121. [PMID: 38377203 PMCID: PMC10907259 DOI: 10.1073/pnas.2315472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Kainomyx, Inc., Palo Alto, CA94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Colby J. Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Greg R. Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA94305
- Kainomyx, Inc., Palo Alto, CA94304
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
12
|
Kochurova AM, Beldiia EA, Nefedova VV, Ryabkova NS, Yampolskaya DS, Matyushenko AM, Bershitsky SY, Kopylova GV, Shchepkin DV. N-Terminal Fragment of Cardiac Myosin Binding Protein C Modulates Cooperative Mechanisms of Thin Filament Activation in Atria and Ventricles. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:116-129. [PMID: 38467549 DOI: 10.1134/s0006297924010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied. We examined effect of the N-terminal C0-C1-m-C2 (C0-C2) fragment of cMyBP-C on actin-myosin interaction using ventricular and atrial myosin in an in vitro motility assay. The C0-C2 fragment of cMyBP-C significantly reduced the maximum sliding velocity of thin filaments on both myosin isoforms and increased the calcium sensitivity of the actin-myosin interaction. The C0-C2 fragment had different effects on the kinetics of ATP and ADP exchange, increasing the affinity of ventricular myosin for ADP and decreasing the affinity of atrial myosin. The effect of the C0-C2 fragment on the activation of the thin filament depended on the myosin isoforms. Atrial myosin activates the thin filament less than ventricular myosin, and the C0-C2 fragment makes these differences in the myosin isoforms more pronounced.
Collapse
Affiliation(s)
- Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Evgenia A Beldiia
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
| | - Victoria V Nefedova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia S Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- HyTest Ltd., Turku, 20520, Finland
| | - Daria S Yampolskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexander M Matyushenko
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia.
| |
Collapse
|
13
|
Kakimoto Y, Ueda A, Ito M, Tanaka M, Kubota T, Isozaki S, Osawa M. Proteomic profiling of sudden cardiac death with acquired cardiac hypertrophy. Int J Legal Med 2023; 137:1453-1461. [PMID: 37284852 PMCID: PMC10421815 DOI: 10.1007/s00414-023-03038-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cardiac hypertrophy, which develops in middle-aged and older individuals as a consequence of hypertension and obesity, is an established risk factor for sudden cardiac death (SCD). However, it is sometimes difficult to differentiate SCD with acquired cardiac hypertrophy (SCH) from compensated cardiac hypertrophy (CCH), at autopsy. We aimed to elucidate the proteomic alteration in SCH, which can be a guideline for future postmortem diagnosis. METHODS Cardiac tissues were sampled at autopsy. SCH group consisted of ischemic heart failure, hypertensive heart failure, and aortic stenosis. CCH group included cases of non-cardiac death with cardiac hypertrophy. The control group comprised cases of non-cardiac death without cardiac hypertrophy. All patients were aged > 40 years, and hypertrophic cardiomyopathy was not included in this study. We performed histological examination and shotgun proteomic analysis, followed by quantitative polymerase chain reaction analysis. RESULTS Significant obesity and myocardial hypertrophy, and mild myocardial fibrosis were comparable in SCH and CCH cases compared to control cases. The proteomic profile of SCH cases was distinguishable from those of CCH and control cases, and many sarcomere proteins were increased in SCH cases. Especially, the protein and mRNA levels of MYH7 and MYL3 were significantly increased in SCH cases. CONCLUSION This is the first report of cardiac proteomic analysis in SCH and CCH cases. The stepwise upregulation of sarcomere proteins may increase the risk for SCD in acquired cardiac hypertrophy before cardiac fibrosis progresses significantly. These findings can possibly aid in the postmortem diagnosis of SCH in middle-aged and older individuals.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | - Atsushi Ueda
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Tomoko Kubota
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Shotaro Isozaki
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
14
|
Liu C, Karabina A, Meller A, Bhattacharjee A, Agostino CJ, Bowman GR, Ruppel KM, Spudich JA, Leinwand LA. Homologous mutations in β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547385. [PMID: 37425764 PMCID: PMC10327197 DOI: 10.1101/2023.07.02.547385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β -cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known if their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β , embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins, with the most dramatic in perinatal, but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing ATPase cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β , myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents the first direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are yet another testament to myosin's highly allosteric nature.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Anastasia Karabina
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Artur Meller
- Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO 63110
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110
| | - Ayan Bhattacharjee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Colby J Agostino
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Greg R Bowman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Kainomyx, Inc., Palo Alto, CA 94304
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| |
Collapse
|
15
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single-molecule mechanics and kinetics of cardiac myosin interacting with regulated thin filaments. Biophys J 2023; 122:2544-2555. [PMID: 37165621 PMCID: PMC10323011 DOI: 10.1016/j.bpj.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and nonmuscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin-filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin-filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin-filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations at both saturating and physiologically relevant subsaturating calcium concentrations, thin-filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for the modeling of cardiac physiology and diseases.
Collapse
Affiliation(s)
- Sarah R Clippinger Schulte
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
16
|
Prodanovic M, Wang Y, Mijailovich SM, Irving T. Using Multiscale Simulations as a Tool to Interpret Equatorial X-ray Fiber Diffraction Patterns from Skeletal Muscle. Int J Mol Sci 2023; 24:8474. [PMID: 37239821 PMCID: PMC10218096 DOI: 10.3390/ijms24108474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Synchrotron small-angle X-ray diffraction is the method of choice for nm-scale structural studies of striated muscle under physiological conditions and on millisecond time scales. The lack of generally applicable computational tools for modeling X-ray diffraction patterns from intact muscles has been a significant barrier to exploiting the full potential of this technique. Here, we report a novel "forward problem" approach using the spatially explicit computational simulation platform MUSICO to predict equatorial small-angle X-ray diffraction patterns and the force output simultaneously from resting and isometrically contracting rat skeletal muscle that can be compared to experimental data. The simulation generates families of thick-thin filament repeating units, each with their individually predicted occupancies of different populations of active and inactive myosin heads that can be used to generate 2D-projected electron density models based on known Protein Data Bank structures. We show how, by adjusting only a few selected parameters, we can achieve a good correspondence between experimental and predicted X-ray intensities. The developments presented here demonstrate the feasibility of combining X-ray diffraction and spatially explicit modeling to form a powerful hypothesis-generating tool that can be used to motivate experiments that can reveal emergent properties of muscle.
Collapse
Affiliation(s)
- Momcilo Prodanovic
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia;
- FilamenTech, Inc., Newton, MA 02458, USA;
| | - Yiwei Wang
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Mathematics, University of California, Riverside, CA 92521, USA
| | | | - Thomas Irving
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
17
|
Lee LA, Barrick SK, Buvoli AE, Walklate J, Stump WT, Geeves M, Greenberg MJ, Leinwand LA. Distinct effects of two hearing loss-associated mutations in the sarcomeric myosin MYH7b. J Biol Chem 2023; 299:104631. [PMID: 36963494 PMCID: PMC10141508 DOI: 10.1016/j.jbc.2023.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics but increased actin sliding velocity because of an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results suggest that each mutation independently affects MYH7b function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside the sarcomere.
Collapse
Affiliation(s)
- Lindsey A Lee
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA
| | - Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ada E Buvoli
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leslie A Leinwand
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA.
| |
Collapse
|
18
|
Velayuthan LP, Moretto L, Tågerud S, Ušaj M, Månsson A. Virus-free transfection, transient expression, and purification of human cardiac myosin in mammalian muscle cells for biochemical and biophysical assays. Sci Rep 2023; 13:4101. [PMID: 36907906 PMCID: PMC10008826 DOI: 10.1038/s41598-023-30576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Myosin expression and purification is important for mechanistic insights into normal function and mutation induced changes. The latter is particularly important for striated muscle myosin II where mutations cause several debilitating diseases. However, the heavy chain of this myosin is challenging to express and the standard protocol, using C2C12 cells, relies on viral infection. This is time and work intensive and associated with infrastructural demands and biological hazards, limiting widespread use and hampering fast generation of a wide range of mutations. We here develop a virus-free method to overcome these challenges. We use this system to transfect C2C12 cells with the motor domain of the human cardiac myosin heavy chain. After optimizing cell transfection, cultivation and harvesting conditions, we functionally characterized the expressed protein, co-purified with murine essential and regulatory light chains. The gliding velocity (1.5-1.7 µm/s; 25 °C) in the in vitro motility assay as well as maximum actin activated catalytic activity (kcat; 8-9 s-1) and actin concentration for half maximal activity (KATPase; 70-80 µM) were similar to those found previously using virus based infection. The results should allow new types of studies, e.g., screening of a wide range of mutations to be selected for further characterization.
Collapse
Affiliation(s)
- Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Sven Tågerud
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| |
Collapse
|
19
|
Barrick SK, Garg A, Greenberg L, Zhang S, Lin CY, Stitziel NO, Greenberg MJ. Functional assays reveal the pathogenic mechanism of a de novo tropomyosin variant identified in patient with dilated cardiomyopathy. J Mol Cell Cardiol 2023; 176:58-67. [PMID: 36739943 PMCID: PMC11285302 DOI: 10.1016/j.yjmcc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and a major indicator for heart transplant. Human genetic studies have identified over a thousand causal mutations for DCM in genes involved in a variety of cellular processes, including sarcomeric contraction. A substantial clinical challenge is determining the pathogenicity of novel variants in disease-associated genes. This challenge of connecting genotype and phenotype has frustrated attempts to develop effective, mechanism-based treatments for patients. Here, we identified a de novo mutation (T237S) in TPM1, the gene that encodes the thin filament protein tropomyosin, in a patient with DCM and conducted in vitro experiments to characterize the pathogenicity of this novel variant. We expressed recombinant mutant protein, reconstituted it into thin filaments, and examined the effects of the mutation on thin filament function. We show that the mutation reduces the calcium sensitivity of thin filament activation, as previously seen for known pathogenic mutations. Mechanistically, this shift is due to mutation-induced changes in tropomyosin positioning along the thin filament. We demonstrate that the thin filament activator omecamtiv mecarbil restores the calcium sensitivity of thin filaments regulated by the mutant tropomyosin, which lays the foundation for additional experiments to explore the therapeutic potential of this drug for patients harboring the T237S mutation. Taken together, our results suggest that the TPM1 T237S mutation is likely pathogenic and demonstrate how functional in vitro characterization of pathogenic protein variants in the lab might guide precision medicine in the clinic.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Meller A, Lotthammer JM, Smith LG, Novak B, Lee LA, Kuhn CC, Greenberg L, Leinwand LA, Greenberg MJ, Bowman GR. Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains. eLife 2023; 12:e83602. [PMID: 36705568 PMCID: PMC9995120 DOI: 10.7554/elife.83602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least six of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 ms of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin's binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 μM vs. 0.36 μM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Louis G Smith
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Medical Scientist Training Program, Washington University in St. LouisPhiladelphiaUnited States
| | - Lindsey A Lee
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Catherine C Kuhn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Leslie A Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado BoulderBoulderUnited States
- BioFrontiers InstituteBoulderUnited States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. LouisSt LouisUnited States
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
21
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single Molecule Mechanics and Kinetics of Cardiac Myosin Interacting with Regulated Thin Filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522880. [PMID: 36711892 PMCID: PMC9881944 DOI: 10.1101/2023.01.09.522880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and non-muscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations, thin filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for both disease modeling and computational models of muscle contraction. Significance Statement Human heart contraction is powered by the molecular motor β-cardiac myosin, which pulls on thin filaments consisting of actin and the regulatory proteins troponin and tropomyosin. In some muscle and non-muscle systems, these regulatory proteins tune the kinetics, mechanics, and load dependence of the myosin working stroke. Despite having a central role in health and disease, it is not well understood whether the mechanics or kinetics of β-cardiac myosin are affected by regulatory proteins. We show that regulatory proteins do not affect the mechanics or load-dependent kinetics of the working stroke at physiologically relevant ATP concentrations; however, they can affect the kinetics at low ATP concentrations, suggesting a mechanism beyond simple steric blocking. This has important implications for modeling of cardiac physiology and diseases.
Collapse
|
22
|
Lee LA, Barrick SK, Meller A, Walklate J, Lotthammer JM, Tay JW, Stump WT, Bowman G, Geeves MA, Greenberg MJ, Leinwand LA. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles. J Biol Chem 2022; 299:102657. [PMID: 36334627 PMCID: PMC9800208 DOI: 10.1016/j.jbc.2022.102657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.
Collapse
Affiliation(s)
- Lindsey A. Lee
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Samantha K. Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Artur Meller
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeffrey M. Lotthammer
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Gregory Bowman
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A. Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA,For correspondence: Leslie A. Leinwand
| |
Collapse
|
23
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
24
|
Wang T, Spahiu E, Osten J, Behrens F, Grünhagen F, Scholz T, Kraft T, Nayak A, Amrute-Nayak M. Cardiac ventricular myosin and slow skeletal myosin exhibit dissimilar chemomechanical properties despite bearing the same myosin heavy chain isoform. J Biol Chem 2022; 298:102070. [PMID: 35623390 PMCID: PMC9243179 DOI: 10.1016/j.jbc.2022.102070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
The myosin II motors are ATP-powered force-generating machines driving cardiac and muscle contraction. Myosin II heavy chain isoform-beta (β-MyHC) is primarily expressed in the ventricular myocardium and in slow-twitch muscle fibers, such as M. soleus. M. soleus-derived myosin II (SolM-II) is often used as an alternative to the ventricular β-cardiac myosin (βM-II); however, the direct assessment of biochemical and mechanical features of the native myosins is limited. By employing optical trapping, we examined the mechanochemical properties of native myosins isolated from the rabbit heart ventricle and soleus muscles at the single-molecule level. We found purified motors from the two tissue sources, despite expressing the same MyHC isoform, displayed distinct motile and ATPase kinetic properties. We demonstrate βM-II was approximately threefold faster in the actin filament-gliding assay than SolM-II. The maximum actomyosin (AM) detachment rate derived in single-molecule assays was also approximately threefold higher in βM-II, while the power stroke size and stiffness of the "AM rigor" crossbridge for both myosins were comparable. Our analysis revealed a higher AM detachment rate for βM-II, corresponding to the enhanced ADP release rates from the crossbridge, likely responsible for the observed differences in the motility driven by these myosins. Finally, we observed a distinct myosin light chain 1 isoform (MLC1sa) that associates with SolM-II, which might contribute to the observed kinetics differences between βM-II and SolM-II. These results have important implications for the choice of tissue sources and justify prerequisites for the correct myosin heavy and light chains to study cardiomyopathies.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Jennifer Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Florentine Behrens
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Fabius Grünhagen
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
25
|
Gargey A, Nesmelov YE. Electrostatic interaction of loop 1 and backbone of human cardiac myosin regulates the rate of ATP induced actomyosin dissociation. J Muscle Res Cell Motil 2022; 43:1-8. [PMID: 34825297 PMCID: PMC8897261 DOI: 10.1007/s10974-021-09611-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022]
Abstract
Double mutation D208Q:K450L was introduced in the beta isoform of human cardiac myosin to remove the salt bridge D208:K450 connecting loop 1 and the seven-stranded beta sheet within the myosin head. Beta isoform-specific salt bridge D208:K450, restricting the flexibility of loop 1, was previously discovered in molecular dynamics simulations. Earlier it was proposed that loop 1 modulates nucleotide affinity to actomyosin and we hypothesized that the electrostatic interactions between loop 1 and myosin head backbone regulate ATP binding to and ADP dissociation from actomyosin, and therefore, the time of the strong actomyosin binding. To examine the hypothesis we expressed the wild type and mutant of the myosin head construct (1-843 amino acid residues) in differentiated C2C12 cells, and the kinetics of ATP-induced actomyosin dissociation and ADP release were characterized using stopped-flow spectrofluorometry. Both constructs exhibit a fast rate of ATP binding to actomyosin and a slow rate of ADP dissociation, showing that ADP release limits the time of the strongly bound state of actomyosin. We observed a faster rate of ATP-induced actomyosin dissociation with the mutant, compared to the wild type actomyosin. The rate of ADP release from actomyosin remains the same for the mutant and the wild type actomyosin. We conclude that the flexibility of loop 1 is a factor affecting the rate of ATP binding to actomyosin and actomyosin dissociation. The flexibility of loop 1 does not affect the rate of ADP release from human cardiac actomyosin.
Collapse
Affiliation(s)
- Akhil Gargey
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
- Department of Biological Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.
| |
Collapse
|
26
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
27
|
Prodanovic M, Geeves MA, Poggesi C, Regnier M, Mijailovich SM. Effect of Myosin Isoforms on Cardiac Muscle Twitch of Mice, Rats and Humans. Int J Mol Sci 2022; 23:1135. [PMID: 35163054 PMCID: PMC8835009 DOI: 10.3390/ijms23031135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
To understand how pathology-induced changes in contractile protein isoforms modulate cardiac muscle function, it is necessary to quantify the temporal-mechanical properties of contractions that occur under various conditions. Pathological responses are much easier to study in animal model systems than in humans, but extrapolation between species presents numerous challenges. Employing computational approaches can help elucidate relationships that are difficult to test experimentally by translating the observations from rats and mice, as model organisms, to the human heart. Here, we use the spatially explicit MUSICO platform to model twitch contractions from rodent and human trabeculae collected in a single laboratory. This approach allowed us to identify the variations in kinetic characteristics of α- and β-myosin isoforms across species and to quantify their effect on cardiac muscle contractile responses. The simulations showed how the twitch transient varied with the ratio of the two myosin isoforms. Particularly, the rate of tension rise was proportional to the fraction of α-myosin present, while the β-isoform dominated the rate of relaxation unless α-myosin was >50%. Moreover, both the myosin isoform and the Ca2+ transient contributed to the twitch tension transient, allowing two levels of regulation of twitch contraction.
Collapse
Affiliation(s)
- Momcilo Prodanovic
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia;
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia
- FilamenTech, Inc., Newtown, MA 02458, USA
| | - Michael A. Geeves
- Department of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK;
| | - Corrado Poggesi
- Department of Experimental & Clinical Medicine, University of Florence, 20134 Florence, Italy;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA;
| | - Srboljub M. Mijailovich
- FilamenTech, Inc., Newtown, MA 02458, USA
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
28
|
Barrick SK, Greenberg MJ. Cardiac myosin contraction and mechanotransduction in health and disease. J Biol Chem 2021; 297:101297. [PMID: 34634306 PMCID: PMC8559575 DOI: 10.1016/j.jbc.2021.101297] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin's functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
29
|
Barrick SK, Greenberg L, Greenberg MJ. A troponin T variant linked with pediatric dilated cardiomyopathy reduces the coupling of thin filament activation to myosin and calcium binding. Mol Biol Cell 2021; 32:1677-1689. [PMID: 34161147 PMCID: PMC8684737 DOI: 10.1091/mbc.e21-02-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a significant cause of pediatric heart failure. Mutations in proteins that regulate cardiac muscle contraction can cause DCM; however, the mechanisms by which molecular-level mutations contribute to cellular dysfunction are not well understood. Better understanding of these mechanisms might enable the development of targeted therapeutics that benefit patient subpopulations with mutations that cause common biophysical defects. We examined the molecular- and cellular-level impacts of a troponin T variant associated with pediatric-onset DCM, R134G. The R134G variant decreased calcium sensitivity in an in vitro motility assay. Using stopped-flow and steady-state fluorescence measurements, we determined the molecular mechanism of the altered calcium sensitivity: R134G decouples calcium binding by troponin from the closed-to-open transition of the thin filament and decreases the cooperativity of myosin binding to regulated thin filaments. Consistent with the prediction that these effects would cause reduced force per sarcomere, cardiomyocytes carrying the R134G mutation are hypocontractile. They also show hallmarks of DCM that lie downstream of the initial insult, including disorganized sarcomeres and cellular hypertrophy. These results reinforce the importance of multiscale studies to fully understand mechanisms underlying human disease and highlight the value of mechanism-based precision medicine approaches for DCM.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
30
|
Chakraborti A, Baldo AP, Tardiff JC, Schwartz SD. Investigation of the Recovery Stroke and ATP Hydrolysis and Changes Caused Due to the Cardiomyopathic Point Mutations in Human Cardiac β Myosin. J Phys Chem B 2021; 125:6513-6521. [PMID: 34105970 DOI: 10.1021/acs.jpcb.1c03144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human cardiac β myosin undergoes the cross-bridge cycle as part of the force-generating mechanism of cardiac muscle. The recovery stroke is considered one of the key steps of the kinetic cycle as it is the conformational rearrangement required to position the active site residues for hydrolysis of ATP and interaction with actin. We explored the free-energy surface of the transition and investigated the effect of the genetic cardiomyopathy causing mutations R453C, I457T, and I467T on this step using metadynamics. This work extends previous studies on Dictyostelium myosin II with engineered mutations. Here, like previously, we generated an unbiased thermodynamic ensemble of reactive trajectories for the chemical step using transition path sampling. Our methodologies were able to predict the changes to the dynamics of the recovery stroke as well as predict the pathway of breakdown of ATP to ADP and HPO42- with the stabilization of the metaphosphate intermediate. We also observed clear differences between the Dictyostelium myosin II and human cardiac β myosin for ATP hydrolysis as well as predict the effect of the mutation I467T on the chemical step.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
31
|
Rasicci DV, Kirkland O, Moonschi FH, Wood NB, Szczesna-Cordary D, Previs MJ, Wenk JF, Campbell KS, Yengo CM. Impact of regulatory light chain mutation K104E on the ATPase and motor properties of cardiac myosin. J Gen Physiol 2021; 153:212025. [PMID: 33891674 PMCID: PMC8077168 DOI: 10.1085/jgp.202012811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the cardiac myosin regulatory light chain (RLC, MYL2 gene) are known to cause inherited cardiomyopathies with variable phenotypes. In this study, we investigated the impact of a mutation in the RLC (K104E) that is associated with hypertrophic cardiomyopathy (HCM). Previously in a mouse model of K104E, older animals were found to develop cardiac hypertrophy, fibrosis, and diastolic dysfunction, suggesting a slow development of HCM. However, variable penetrance of the mutation in human populations suggests that the impact of K104E may be subtle. Therefore, we generated human cardiac myosin subfragment-1 (M2β-S1) and exchanged on either the wild type (WT) or K104E human ventricular RLC in order to assess the impact of the mutation on the mechanochemical properties of cardiac myosin. The maximum actin-activated ATPase activity and actin sliding velocities in the in vitro motility assay were similar in M2β-S1 WT and K104E, as were the detachment kinetic parameters, including the rate of ATP-induced dissociation and the ADP release rate constant. We also examined the mechanical performance of α-cardiac myosin extracted from transgenic (Tg) mice expressing human wild type RLC (Tg WT) or mutant RLC (Tg K104E). We found that α-cardiac myosin from Tg K104E animals demonstrated enhanced actin sliding velocities in the motility assay compared with its Tg WT counterpart. Furthermore, the degree of incorporation of the mutant RLC into α-cardiac myosin in the transgenic animals was significantly reduced compared with wild type. Therefore, we conclude that the impact of the K104E mutation depends on either the length or the isoform of the myosin heavy chain backbone and that the mutation may disrupt RLC interactions with the myosin lever arm domain.
Collapse
Affiliation(s)
- David V Rasicci
- Pennsylvania State University College of Medicine, Hershey, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol 2021; 153:211992. [PMID: 33856419 PMCID: PMC8054178 DOI: 10.1085/jgp.202012787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Jeanne M Nerbonne
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
33
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
34
|
Mijailovich SM, Prodanovic M, Poggesi C, Geeves MA, Regnier M. Multiscale modeling of twitch contractions in cardiac trabeculae. J Gen Physiol 2021; 153:e202012604. [PMID: 33512405 PMCID: PMC7852458 DOI: 10.1085/jgp.202012604] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding the dynamics of a cardiac muscle twitch contraction is complex because it requires a detailed understanding of the kinetic processes of the Ca2+ transient, thin-filament activation, and the myosin-actin cross-bridge chemomechanical cycle. Each of these steps has been well defined individually, but understanding how all three of the processes operate in combination is a far more complex problem. Computational modeling has the potential to provide detailed insight into each of these processes, how the dynamics of each process affect the complexity of contractile behavior, and how perturbations such as mutations in sarcomere proteins affect the complex interactions of all of these processes. The mechanisms involved in relaxation of tension during a cardiac twitch have been particularly difficult to discern due to nonhomogeneous sarcomere lengthening during relaxation. Here we use the multiscale MUSICO platform to model rat trabecular twitches. Validation of computational models is dependent on being able to simulate different experimental datasets, but there has been a paucity of data that can provide all of the required parameters in a single experiment, such as simultaneous measurements of force, intracellular Ca2+ transients, and sarcomere length dynamics. In this study, we used data from different studies collected under similar experimental conditions to provide information for all the required parameters. Our simulations established that twitches either in an isometric sarcomere or in fixed-length, multiple-sarcomere trabeculae replicate the experimental observations if models incorporate a length-tension relationship for the nonlinear series elasticity of muscle preparations and a scheme for thick-filament regulation. The thick-filament regulation assumes an off state in which myosin heads are parked onto the thick-filament backbone and are unable to interact with actin, a state analogous to the super-relaxed state. Including these two mechanisms provided simulations that accurately predict twitch contractions over a range of different conditions.
Collapse
Affiliation(s)
| | - Momcilo Prodanovic
- Bioengineering Research and Development Center, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Corrado Poggesi
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA
| |
Collapse
|
35
|
Mijailovich SM, Prodanovic M, Poggesi C, Powers JD, Davis J, Geeves MA, Regnier M. The effect of variable troponin C mutation thin filament incorporation on cardiac muscle twitch contractions. J Mol Cell Cardiol 2021; 155:112-124. [PMID: 33636222 DOI: 10.1016/j.yjmcc.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
One of the complexities of understanding the pathology of familial forms of cardiac diseases is the level of mutation incorporation in sarcomeres. Computational models of the sarcomere that are spatially explicit offer an approach to study aspects of mutational incorporation into myofilaments that are more challenging to get at experimentally. We studied two well characterized mutations of cardiac TnC, L48Q and I61Q, that decrease or increase the release rate of Ca2+ from cTnC, k-Ca, resulting in HCM and DCM respectively [1]. Expression of these mutations in transgenic mice was used to provide experimental data for incorporation of 30 and 50% (respectively) into sarcomeres. Here we demonstrate that fixed length twitch contractions of trabeculae from mice containing mutant differ from WT; L48Q trabeculae have slower relaxation while I61Q trabeculae have markedly reduced peak tension. Using our multiscale modelling approach [2] we were able to describe the tension transients of WT mouse myocardium. Tension transients for the mutant cTnCs were simulated with changes in k-Ca, measured experimentally for each cTnC mutant in whole troponin complex, a change in the affinity of cTnC for cTnI, and a reduction in the number of detached crossbridges available for binding. A major advantage of the multiscale explicit 3-D model is that it predicts the effects of variable mutation incorporation, and the effects of variations in mutation distribution within thin filaments in sarcomeres. Such effects are currently impossible to explore experimentally. We explored random and clustered distributions of mutant cTnCs in thin filaments, as well as distributions of individual thin filaments with only WT or mutant cTnCs present. The effects of variable amounts of incorporation and non-random distribution of mutant cTnCs are more marked for I61Q than L48Q cTnC. We conclude that this approach can be effective for study on mutations in multiple proteins of the sarcomere. SUMMARY: A challenge in experimental studies of diseases is accounting for the effect of variable mutation incorporation into myofilaments. Here we use a spatially explicit computational approach, informed by experimental data from transgenic mice expressing one of two mutations in cardiac Troponin C that increase or decrease calcium sensitivity. We demonstrate that the model can accurately describe twitch contractions for the data and go on to explore the effect of variable mutant incorporation and localization on simulated cardiac muscle twitches.
Collapse
Affiliation(s)
| | - Momcilo Prodanovic
- Bioengineering Research and Development Center (BioIRC), Kragujevac 34000, Serbia; Faculty of Engineering, University of Kragujevac, Kragujevac 34000, Serbia
| | - Corrado Poggesi
- Department of Experimental & Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Dept. of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Michael A Geeves
- Dept. of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
36
|
Snoberger A, Barua B, Atherton JL, Shuman H, Forgacs E, Goldman YE, Winkelmann DA, Ostap EM. Myosin with hypertrophic cardiac mutation R712L has a decreased working stroke which is rescued by omecamtiv mecarbil. eLife 2021; 10:63691. [PMID: 33605878 PMCID: PMC7895523 DOI: 10.7554/elife.63691] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/31/2021] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathies (HCMs) are the leading cause of acute cardiac failure in young individuals. Over 300 mutations throughout β-cardiac myosin, including in the motor domain, are associated with HCM. A β-cardiac myosin motor mutation (R712L) leads to a severe form of HCM. Actin-gliding motility of R712L-myosin is inhibited, despite near-normal ATPase kinetics. By optical trapping, the working stroke of R712L-myosin was decreased 4-fold, but actin-attachment durations were normal. A prevalent hypothesis that HCM mutants are hypercontractile is thus not universal. R712 is adjacent to the binding site of the heart failure drug omecamtiv mecarbil (OM). OM suppresses the working stroke of normal β-cardiac myosin, but remarkably, OM rescues the R712L-myosin working stroke. Using a flow chamber to interrogate a single molecule during buffer exchange, we found OM rescue to be reversible. Thus, the R712L mutation uncouples lever arm rotation from ATPase activity and this inhibition is rescued by OM.
Collapse
Affiliation(s)
- Aaron Snoberger
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - Jennifer L Atherton
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, United States
| | - Henry Shuman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, United States
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
37
|
Computational Tool for Ensemble Averaging of Single-Molecule Data. Biophys J 2020; 120:10-20. [PMID: 33248132 DOI: 10.1016/j.bpj.2020.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022] Open
Abstract
Molecular motors couple chemical transitions to conformational changes that perform mechanical work in a wide variety of biological processes. Disruption of this coupling can lead to diseases, and therefore there is a need to accurately measure mechanochemical coupling in motors in both health and disease. Optical tweezers with nanometer spatial and millisecond temporal resolution have provided valuable insights into these processes. However, fluctuations due to Brownian motion can make it difficult to precisely resolve these conformational changes. One powerful analysis technique that has improved our ability to accurately measure mechanochemical coupling in motor proteins is ensemble averaging of individual trajectories. Here, we present a user-friendly computational tool, Software for Precise Analysis of Single Molecules (SPASM), for generating ensemble averages of single-molecule data. This tool utilizes several conceptual advances, including optimized procedures for identifying single-molecule interactions and the implementation of a change-point algorithm, to more precisely resolve molecular transitions. Using both simulated and experimental data, we demonstrate that these advances allow for accurate determination of the mechanics and kinetics of the myosin working stroke with a smaller set of data. Importantly, we provide our open-source MATLAB-based program with a graphical user interface that enables others to readily apply these advances to the analysis of their own data.
Collapse
|
38
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
39
|
Lavine KJ, Greenberg MJ. Beyond genomics-technological advances improving the molecular characterization and precision treatment of heart failure. Heart Fail Rev 2020; 26:405-415. [PMID: 32885327 DOI: 10.1007/s10741-020-10021-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 01/04/2023]
Abstract
Dilated cardiomyopathy (DCM) is a major cause of heart failure and cardiovascular mortality. In the past 20 years, there has been an overwhelming focus on developing therapeutics that target common downstream disease pathways thought to be involved in all forms of heart failure independent of the initial etiology. While this strategy is effective at the population level, individual responses vary tremendously and only approximately one third of patients receive benefit from modern heart failure treatments. In this perspective, we propose that DCM should be considered as a collection of diseases with a common phenotype of left ventricular dilation and systolic dysfunction rather than a single disease entity, and that mechanism-based classification of disease subtypes will revolutionize our understanding and clinical approach towards DCM. We discuss how these efforts are central to realizing the potential of precision medicine and how they are empowered by the development of new tools that allow investigators to strategically employ genomic and transcriptomic information. Finally, we outline an investigational strategy to (1) define DCM at the patient level, (2) develop new tools to model and mechanistically dissect subtypes of human heart failure, and (3) harness these insights for the development of precision therapeutics.
Collapse
Affiliation(s)
- Kory J Lavine
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8086, St. Louis, MO, 63110, USA.
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8231, St. Louis, MO, 63110, USA.
| |
Collapse
|
40
|
Porter JR, Meller A, Zimmerman MI, Greenberg MJ, Bowman GR. Conformational distributions of isolated myosin motor domains encode their mechanochemical properties. eLife 2020; 9:e55132. [PMID: 32479265 PMCID: PMC7259954 DOI: 10.7554/elife.55132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 01/25/2023] Open
Abstract
Myosin motor domains perform an extraordinary diversity of biological functions despite sharing a common mechanochemical cycle. Motors are adapted to their function, in part, by tuning the thermodynamics and kinetics of steps in this cycle. However, it remains unclear how sequence encodes these differences, since biochemically distinct motors often have nearly indistinguishable crystal structures. We hypothesized that sequences produce distinct biochemical phenotypes by modulating the relative probabilities of an ensemble of conformations primed for different functional roles. To test this hypothesis, we modeled the distribution of conformations for 12 myosin motor domains by building Markov state models (MSMs) from an unprecedented two milliseconds of all-atom, explicit-solvent molecular dynamics simulations. Comparing motors reveals shifts in the balance between nucleotide-favorable and nucleotide-unfavorable P-loop conformations that predict experimentally measured duty ratios and ADP release rates better than sequence or individual structures. This result demonstrates the power of an ensemble perspective for interrogating sequence-function relationships.
Collapse
Affiliation(s)
- Justin R Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. LouisSt. LouisUnited States
- Center for the Science and Engineering of Living Systems, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
41
|
Study of the Expression Transition of Cardiac Myosin Using Polarization-Dependent SHG Microscopy. Biophys J 2020; 118:1058-1066. [PMID: 31995740 DOI: 10.1016/j.bpj.2019.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023] Open
Abstract
Detection of the transition between the two myosin isoforms α- and β-myosin in living cardiomyocytes is essential for understanding cardiac physiology and pathology. In this study, the differences in symmetry of polarization spectra obtained from α- and β-myosin in various mammalian ventricles and propylthiouracil-treated rats are explored through polarization-dependent second harmonic generation microscopy. Here, we report for the, to our knowledge, first time that α- and β-myosin, as protein crystals, possess different symmetries: the former has C6 symmetry, and the latter has C3v. A single-sarcomere line scan further demonstrated that the differences in polarization-spectrum symmetry between α- and β-myosin came from their head regions: the head and neck domains of α- and β-myosin account for the differences in symmetry. In addition, the dynamic transition of the polarization spectrum from C6 to C3v line profile was observed in a cell culture in which norepinephrine induced an α- to β-myosin transition.
Collapse
|
42
|
Vera CD, Johnson CA, Walklate J, Adhikari A, Svicevic M, Mijailovich SM, Combs AC, Langer SJ, Ruppel KM, Spudich JA, Geeves MA, Leinwand LA. Myosin motor domains carrying mutations implicated in early or late onset hypertrophic cardiomyopathy have similar properties. J Biol Chem 2019; 294:17451-17462. [PMID: 31582565 DOI: 10.1074/jbc.ra119.010563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Indexed: 02/01/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the β-cardiac myosin heavy chain gene (β-MyHC) are a major cause of HCM, but the specific mechanistic changes to myosin function that lead to this disease remain incompletely understood. Predicting the severity of any β-MyHC mutation is hindered by a lack of detailed examinations at the molecular level. Moreover, because HCM can take ≥20 years to develop, the severity of the mutations must be somewhat subtle. We hypothesized that mutations that result in early onset disease would have more severe changes in function than do later onset mutations. Here, we performed steady-state and transient kinetic analyses of myosins carrying one of seven missense mutations in the motor domain. Of these seven, four were previously identified in early onset cardiomyopathy screens. We used the parameters derived from these analyses to model the ATP-driven cross-bridge cycle. Contrary to our hypothesis, the results indicated no clear differences between early and late onset HCM mutations. Despite the lack of distinction between early and late onset HCM, the predicted occupancy of the force-holding actin·myosin·ADP complex at [Actin] = 3 K app along with the closely related duty ratio (the fraction of myosin in strongly attached force-holding states), and the measured ATPases all changed in parallel (in both sign and degree of change) compared with wildtype (WT) values. Six of the seven HCM mutations were clearly distinct from a set of previously characterized DCM mutations.
Collapse
Affiliation(s)
- Carlos D Vera
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Chloe A Johnson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Arjun Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | | | | | - Ariana C Combs
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Stephen J Langer
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Leslie A Leinwand
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
43
|
Tang W, Unrath WC, Desetty R, Yengo CM. Dilated cardiomyopathy mutation in the converter domain of human cardiac myosin alters motor activity and response to omecamtiv mecarbil. J Biol Chem 2019; 294:17314-17325. [PMID: 31578282 DOI: 10.1074/jbc.ra119.010217] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated a dilated cardiomyopathy (DCM) mutation (F764L) in human β-cardiac myosin by determining its motor properties in the presence and absence of the heart failure drug omecamtive mecarbil (OM). The mutation is located in the converter domain, a key region of communication between the catalytic motor and lever arm in myosins, and is nearby but not directly in the OM-binding site. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing the F764L mutation, and compared it to WT with in vitro motility as well as steady-state and transient kinetics measurements. In the absence of OM we demonstrate that the F764L mutation does not significantly change maximum actin-activated ATPase activity but slows actin sliding velocity (15%) and the actomyosin ADP release rate constant (25%). The transient kinetic analysis without OM demonstrates that F764L has a similar duty ratio as WT in unloaded conditions. OM is known to enhance force generation in cardiac muscle while it inhibits the myosin power stroke and enhances actin-attachment duration. We found that OM has a reduced impact on F764L ATPase and sliding velocity compared with WT. Specifically, the EC50 for OM induced inhibition of in vitro motility was 3-fold weaker in F764L. Also, OM reduces maximum actin-activated ATPase 2-fold in F764L, compared with 4-fold with WT. Overall, our results suggest that F764L attenuates the impact of OM on actin-attachment duration and/or the power stroke. Our work highlights the importance of mutation-specific considerations when pursuing small molecule therapies for cardiomyopathies.
Collapse
Affiliation(s)
- Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - William C Unrath
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
44
|
Woody MS, Winkelmann DA, Capitanio M, Ostap EM, Goldman YE. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife 2019; 8:49266. [PMID: 31526481 PMCID: PMC6748826 DOI: 10.7554/elife.49266] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Key steps of cardiac mechanochemistry, including the force-generating working stroke and the release of phosphate (Pi), occur rapidly after myosin-actin attachment. An ultra-high-speed optical trap enabled direct observation of the timing and amplitude of the working stroke, which can occur within <200 μs of actin binding by β-cardiac myosin. The initial actomyosin state can sustain loads of at least 4.5 pN and proceeds directly to the stroke or detaches before releasing ATP hydrolysis products. The rates of these processes depend on the force. The time between binding and stroke is unaffected by 10 mM Pi which, along with other findings, indicates the stroke precedes phosphate release. After Pi release, Pi can rebind enabling reversal of the working stroke. Detecting these rapid events under physiological loads provides definitive indication of the dynamics by which actomyosin converts biochemical energy into mechanical work.
Collapse
Affiliation(s)
- Michael S Woody
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
45
|
Clippinger SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A 2019; 116:17831-17840. [PMID: 31427533 PMCID: PMC6731759 DOI: 10.1073/pnas.1910962116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a major indicator for heart transplant. The disease is frequently caused by mutations of sarcomeric proteins; however, it is not well understood how these molecular mutations lead to alterations in cellular organization and contractility. To address this critical gap in our knowledge, we studied the molecular and cellular consequences of a DCM mutation in troponin-T, ΔK210. We determined the molecular mechanism of ΔK210 and used computational modeling to predict that the mutation should reduce the force per sarcomere. In mutant cardiomyocytes, we found that ΔK210 not only reduces contractility but also causes cellular hypertrophy and impairs cardiomyocytes' ability to adapt to changes in substrate stiffness (e.g., heart tissue fibrosis that occurs with aging and disease). These results help link the molecular and cellular phenotypes and implicate alterations in mechanosensing as an important factor in the development of DCM.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
46
|
Peter AK, Rossi AC, Buvoli M, Ozeroff CD, Crocini C, Perry AR, Buvoli AE, Lee LA, Leinwand LA. Expression of Normally Repressed Myosin Heavy Chain 7b in the Mammalian Heart Induces Dilated Cardiomyopathy. J Am Heart Assoc 2019; 8:e013318. [PMID: 31364453 PMCID: PMC6761648 DOI: 10.1161/jaha.119.013318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background In mammals, muscle contraction is controlled by a family of 10 sarcomeric myosin motors. The expression of one of its members, MYH7b, is regulated by alternative splicing, and while the protein is restricted to specialized muscles such as extraocular muscles or muscle spindles, RNA that cannot encode protein is expressed in most skeletal muscles and in the heart. Remarkably, birds and snakes express MYH7b protein in both heart and skeletal muscles. This observation suggests that in the mammalian heart, the motor activity of MYH7b may only be needed during development since its expression is prevented in adult tissue, possibly because it could promote disease by unbalancing myocardial contractility. Methods and Results We have analyzed MYH7b null mice to determine the potential role of MYH7b during cardiac development and also generated transgenic mice with cardiac myocyte expression of MYH7b protein to measure its impact on cardiomyocyte function and contractility. We found that MYH7b null mice are born at expected Mendelian ratios and do not have a baseline cardiac phenotype as adults. In contrast, transgenic cardiac MYH7b protein expression induced early cardiac dilation in males with significantly increased left ventricular mass in both sexes. Cardiac dilation is progressive, leading to early cardiac dysfunction in males, but later dysfunction in females. Conclusions The data presented show that the expression of MYH7b protein in the mammalian heart has been inhibited during the evolution of mammals most likely to prevent the development of a severe cardiomyopathy that is sexually dimorphic.
Collapse
Affiliation(s)
- Angela K Peter
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Alberto C Rossi
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Christopher D Ozeroff
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Claudia Crocini
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Amy R Perry
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Ada E Buvoli
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Lindsey A Lee
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| |
Collapse
|
47
|
Kieu TT, Awinda PO, Tanner BCW. Omecamtiv Mecarbil Slows Myosin Kinetics in Skinned Rat Myocardium at Physiological Temperature. Biophys J 2019; 116:2149-2160. [PMID: 31103235 DOI: 10.1016/j.bpj.2019.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Heart failure is a life-threatening condition that occurs when the heart muscle becomes weakened and cannot adequately circulate blood and nutrients around the body. Omecamtiv mecarbil (OM) is a compound that has been developed to treat systolic heart failure via targeting the cardiac myosin heavy chain to increase myocardial contractility. Biophysical and biochemical studies have found that OM increases calcium (Ca2+) sensitivity of contraction by prolonging the myosin working stroke and increasing the actin-myosin cross-bridge duty ratio. Most in vitro studies probing the effects of OM on cross-bridge kinetics and muscle force production have been conducted at subphysiological temperature, even though temperature plays a critical role in enzyme activity and cross-bridge function. Herein, we used skinned, ventricular papillary muscle strips from rats to investigate the effects of [OM] on Ca2+-activated force production, cross-bridge kinetics, and myocardial viscoelasticity at physiological temperature (37°C). We find that OM only increases myocardial contractility at submaximal Ca2+ activation levels and not maximal Ca2+ activation levels. As [OM] increased, the kinetic rate constants for cross-bridge recruitment and detachment slowed for both submaximal and maximal Ca2+-activated conditions. These findings support a mechanism by which OM increases cardiac contractility at physiological temperature via increasing cross-bridge contributions to thin-filament activation as cross-bridge kinetics slow and the duration of cross-bridge attachment increases. Thus, force only increases at submaximal Ca2+ activation due to cooperative recruitment of neighboring cross-bridges, because thin-filament activation is not already saturated. In contrast, OM does not increase myocardial force production for maximal Ca2+-activated conditions at physiological temperature because cooperative activation of thin filaments may already be saturated.
Collapse
Affiliation(s)
- Thinh T Kieu
- Department of Integrative Physiology and Neuroscience
| | | | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience; Washington Center for Muscle Biology, Washington State University, Pullman, Washington.
| |
Collapse
|
48
|
Ramachandra CJ, Mai Ja KPM, Lin YH, Shim W, Boisvert WA, Hausenloy DJ. INDUCED PLURIPOTENT STEM CELLS FOR MODELLING ENERGETIC ALTERATIONS IN HYPERTROPHIC CARDIOMYOPATHY. CONDITIONING MEDICINE 2019; 2:142-151. [PMID: 32457935 PMCID: PMC7250397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most commonly inherited cardiac disorders that manifests with increased ventricular wall thickening, cardiomyocyte hypertrophy, disarrayed myofibers and interstitial fibrosis. The major pathophysiological features include, diastolic dysfunction, obstruction of the left ventricular outflow tract and cardiac arrhythmias. Mutations in genes that encode mostly for sarcomeric proteins have been associated with HCM but, despite the abundant research conducted to decipher the molecular mechanisms underlying the disease, it remains unclear as to how a primary defect in the sarcomere could lead to secondary phenotypes such as cellular hypertrophy. Mounting evidence suggests energy deficiency could be an important contributor of disease pathogenesis as well. Various animal models of HCM have been generated for gaining deeper insight into disease pathogenesis, however species variation between animals and humans, as well as the limited availability of human myocardial samples, has encouraged researchers to seek alternative 'humanized' models. Using induced pluripotent stem cells (iPSCs), human cardiomyocytes (CMs) have been generated from patients with HCM for investigating disease mechanisms. While these HCM-iPSC models demonstrate most of the phenotypic traits, it is important to ascertain if they recapitulate all pathophysiological features, especially that of energy deficiency. In this review we discuss the currently established HCM-iPSC models with emphasis on altered energetics.
Collapse
Affiliation(s)
- Chrishan J.A. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - K P Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Ying-Hsi Lin
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
| | - William A. Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| |
Collapse
|
49
|
Hypertrophic cardiomyopathy R403Q mutation in rabbit β-myosin reduces contractile function at the molecular and myofibrillar levels. Proc Natl Acad Sci U S A 2018; 115:11238-11243. [PMID: 30322937 DOI: 10.1073/pnas.1802967115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In 1990, the Seidmans showed that a single point mutation, R403Q, in the human β-myosin heavy chain (MHC) of heart muscle caused a particularly malignant form of familial hypertrophic cardiomyopathy (HCM) [Geisterfer-Lowrance AA, et al. (1990) Cell 62:999-1006.]. Since then, more than 300 mutations in the β-MHC have been reported, and yet there remains a poor understanding of how a single missense mutation in the MYH7 gene can lead to heart disease. Previous studies with a transgenic mouse model showed that the myosin phenotype depended on whether the mutation was in an α- or β-MHC backbone. This led to the generation of a transgenic rabbit model with the R403Q mutation in a β-MHC backbone. We find that the in vitro motility of heterodimeric R403Q myosin is markedly reduced, whereas the actin-activated ATPase activity of R403Q subfragment-1 is about the same as myosin from a nontransgenic littermate. Single myofibrils isolated from the ventricles of R403Q transgenic rabbits and analyzed by atomic force microscopy showed reduced rates of force development and relaxation, and achieved a significantly lower steady-state level of isometric force compared with nontransgenic myofibrils. Myofibrils isolated from the soleus gave similar results. The force-velocity relationship determined for R403Q ventricular myofibrils showed a decrease in the velocity of shortening under load, resulting in a diminished power output. We conclude that independent of whether experiments are performed with isolated molecules or with ordered molecules in the native thick filament of a myofibril, there is a loss-of-function induced by the R403Q mutation in β-cardiac myosin.
Collapse
|
50
|
Greenberg MJ, Daily NJ, Wang A, Conway MK, Wakatsuki T. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Front Cardiovasc Med 2018; 5:120. [PMID: 30283789 PMCID: PMC6156537 DOI: 10.3389/fcvm.2018.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Heart failure is the leading cause of death in the western world and as such, there is a great need for new therapies. Heart failure has a variable presentation in patients and a complex etiology; however, it is fundamentally a condition that affects the mechanics of cardiac contraction, preventing the heart from generating sufficient cardiac output under normal operating pressures. One of the major issues hindering the development of new therapies has been difficulties in developing appropriate in vitro model systems of human heart failure that recapitulate the essential changes in cardiac mechanics seen in the disease. Recent advances in stem cell technologies, genetic engineering, and tissue engineering have the potential to revolutionize our ability to model and study heart failure in vitro. Here, we review how these technologies are being applied to develop personalized models of heart failure and discover novel therapeutics.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Ann Wang
- InvivoSciences Inc., Madison, WI, United States
| | | | | |
Collapse
|