1
|
Falnikar A, Quintremil S, Zhao HJ, Cheng HY, Helmer P, Tsai JW, Vallee RB. The nucleoporin Nup153 is the anchor for Kif1a during basal nuclear migration in brain progenitor cells. Cell Rep 2024; 43:115008. [PMID: 39666457 DOI: 10.1016/j.celrep.2024.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Radial glial progenitors (RGPs) are highly elongated epithelial cells that give rise to most stem cells, neurons, and glia in the vertebrate cerebral cortex. During development, the RGP nuclei exhibit a striking pattern of cell-cycle-dependent oscillatory movements known as interkinetic nuclear migration (INM), which we previously found to be mediated during G1 by the kinesin Kif1a and during G2 by cytoplasmic dynein, recruited to the nuclear envelope by the nucleoporins RanBP2 and Nup133. We now identify Nup153 as a nucleoporin anchor for Kif1a, responsible for G1-specific basal nuclear migration, providing a complete model for the mechanisms underlying this basic but mysterious behavior, with broad implications for understanding brain development.
Collapse
Affiliation(s)
- Aditi Falnikar
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hung-Jun Zhao
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Haw-Yuan Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Kuwako KI, Suzuki S. Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System. Int J Mol Sci 2024; 25:11525. [PMID: 39519078 PMCID: PMC11545860 DOI: 10.3390/ijms252111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | | |
Collapse
|
3
|
Mercurio S, Gattoni G, Scarì G, Ascagni M, Barzaghi B, Elphick MR, Croce JC, Schubert M, Benito-Gutiérrez E, Pennati R. A feather star is born: embryonic development and nervous system organization in the crinoid Antedon mediterranea. Open Biol 2024; 14:240115. [PMID: 39165121 PMCID: PMC11336682 DOI: 10.1098/rsob.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Crinoids belong to the Echinodermata, marine invertebrates with a highly derived adult pentaradial body plan. As the sister group to all other extant echinoderms, crinoids occupy a key phylogenetic position to explore the evolutionary history of the whole phylum. However, their development remains understudied compared with that of other echinoderms. Therefore, the aim here was to establish the Mediterranean feather star (Antedon mediterranea) as an experimental system for developmental biology. We first set up a method for culturing embryos in vitro and defined a standardized staging system for this species. We then optimized protocols to characterize the morphological and molecular development of the main structures of the feather star body plan. Focusing on the nervous system, we showed that the larval apical organ includes serotonergic, GABAergic and glutamatergic neurons, which develop within a conserved anterior molecular signature. We described the composition of the early post-metamorphic nervous system and revealed that it has an anterior signature. These results further our knowledge on crinoid development and provide new techniques to investigate feather star embryogenesis. This will pave the way for the inclusion of crinoids in comparative studies addressing the origin of the echinoderm body plan and the evolutionary diversification of deuterostomes.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Maurice R. Elphick
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Elia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Bueno C, García-Bernal D, Martínez S, Blanquer M, Moraleda JM. The nuclei of human adult stem cells can move within the cell and generate cellular protrusions to contact other cells. Stem Cell Res Ther 2024; 15:32. [PMID: 38321563 PMCID: PMC10848534 DOI: 10.1186/s13287-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.
Collapse
Affiliation(s)
- Carlos Bueno
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain.
| | - David García-Bernal
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550, San Juan, Alicante, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, 28029, Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - Miguel Blanquer
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| | - José M Moraleda
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
5
|
Wimmer R, Baffet AD. The microtubule cytoskeleton of radial glial progenitor cells. Curr Opin Neurobiol 2023; 80:102709. [PMID: 37003105 DOI: 10.1016/j.conb.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.
Collapse
Affiliation(s)
- Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France. https://twitter.com/RyWim
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), France.
| |
Collapse
|
6
|
The cellular dynamics of neural tube formation. Biochem Soc Trans 2023; 51:343-352. [PMID: 36794768 PMCID: PMC9987952 DOI: 10.1042/bst20220871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The vertebrate brain and spinal cord arise from a common precursor, the neural tube, which forms very early during embryonic development. To shape the forming neural tube, changes in cellular architecture must be tightly co-ordinated in space and time. Live imaging of different animal models has provided valuable insights into the cellular dynamics driving neural tube formation. The most well-characterised morphogenetic processes underlying this transformation are convergent extension and apical constriction, which elongate and bend the neural plate. Recent work has focused on understanding how these two processes are spatiotemporally integrated from the tissue- to the subcellular scale. Various mechanisms of neural tube closure have also been visualised, yielding a growing understanding of how cellular movements, junctional remodelling and interactions with the extracellular matrix promote fusion and zippering of the neural tube. Additionally, live imaging has also now revealed a mechanical role for apoptosis in neural plate bending, and how cell intercalation forms the lumen of the secondary neural tube. Here, we highlight the latest research on the cellular dynamics underlying neural tube formation and provide some perspectives for the future.
Collapse
|
7
|
Napoli FR, Daly CM, Neal S, McCulloch KJ, Zaloga AR, Liu A, Koenig KM. Cephalopod retinal development shows vertebrate-like mechanisms of neurogenesis. Curr Biol 2022; 32:5045-5056.e3. [PMID: 36356573 PMCID: PMC9729453 DOI: 10.1016/j.cub.2022.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
Coleoid cephalopods, including squid, cuttlefish, and octopus, have large and complex nervous systems and high-acuity, camera-type eyes. These traits are comparable only to features that are independently evolved in the vertebrate lineage. The size of animal nervous systems and the diversity of their constituent cell types is a result of the tight regulation of cellular proliferation and differentiation in development. Changes in the process of development during evolution that result in a diversity of neural cell types and variable nervous system size are not well understood. Here, we have pioneered live-imaging techniques and performed functional interrogation to show that the squid Doryteuthis pealeii utilizes mechanisms during retinal neurogenesis that are hallmarks of vertebrate processes. We find that retinal progenitor cells in the squid undergo nuclear migration until they exit the cell cycle. We identify retinal organization corresponding to progenitor, post-mitotic, and differentiated cells. Finally, we find that Notch signaling may regulate both retinal cell cycle and cell fate. Given the convergent evolution of elaborate visual systems in cephalopods and vertebrates, these results reveal common mechanisms that underlie the growth of highly proliferative neurogenic primordia. This work highlights mechanisms that may alter ontogenetic allometry and contribute to the evolution of complexity and growth in animal nervous systems.
Collapse
Affiliation(s)
- Francesca R Napoli
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Neal
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kyle J McCulloch
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alexandra R Zaloga
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Cheng L, Cring MR, Wadkins DA, Kuehn MH. Absence of Connexin 43 Results in Smaller Retinas and Arrested, Depolarized Retinal Progenitor Cells in Human Retinal Organoids. Stem Cells 2022; 40:592-604. [PMID: 35263762 DOI: 10.1093/stmcls/sxac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 11/14/2022]
Abstract
The development of the vertebrate retina relies on complex regulatory mechanisms to achieve its characteristic layered morphology containing multiple neuronal cell types. While connexin 43 (CX43) is not expressed by mature retinal neurons, mutations in its gene GJA1 are associated with microphthalmia and low vision in patients. To delineate how lack of CX43 affects retinal development, GJA1 was disrupted in human induced pluripotent stem cells (hiPSCs) (GJA1-/-) using CRISPR/Cas9 editing, and these were subsequently differentiated into retinal organoids. GJA1-/- hiPSCs do not display defects in self-renewal and pluripotency, but the resulting organoids are smaller with a thinner neural retina and decreased abundance of many retinal cell types. CX43-deficient organoids express lower levels of the neural marker PAX6 and the retinal progenitor cell (RPC) markers PAX6, SIX3, and SIX6. Conversely, expression of the early neuroectoderm markers SOX1 and SOX2 remains high in GJA1-/- organoids throughout their development. The lack of CX43 results in an increased population of CHX10-positive RPCs that are smaller, disorganized, do not become polarized, and possess a limited ability to commit to retinal fate specification. Our data indicate that lack of CX43 causes a developmental arrest in RPCs that subsequently leads to pan-retinal defects and stunted ocular growth.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Matthew R Cring
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - David A Wadkins
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
9
|
Kristofova M, Ori A, Wang ZQ. Multifaceted Microcephaly-Related Gene MCPH1. Cells 2022; 11:cells11020275. [PMID: 35053391 PMCID: PMC8774270 DOI: 10.3390/cells11020275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
MCPH1, or BRIT1, is often mutated in human primary microcephaly type 1, a neurodevelopmental disorder characterized by a smaller brain size at birth, due to its dysfunction in regulating the proliferation and self-renewal of neuroprogenitor cells. In the last 20 years or so, genetic and cellular studies have identified MCPH1 as a multifaceted protein in various cellular functions, including DNA damage signaling and repair, the regulation of chromosome condensation, cell-cycle progression, centrosome activity and the metabolism. Yet, genetic and animal model studies have revealed an unpredicted essential function of MPCH1 in gonad development and tumorigenesis, although the underlying mechanism remains elusive. These studies have begun to shed light on the role of MPCH1 in controlling various pathobiological processes of the disorder. Here, we summarize the biological functions of MCPH1, and lessons learnt from cellular and mouse models of MCPH1.
Collapse
Affiliation(s)
- Martina Kristofova
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Bachstrasse 18k, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-656415; Fax: +49-3641-656335
| |
Collapse
|
10
|
Wilsch-Bräuninger M, Huttner WB. Primary Cilia and Centrosomes in Neocortex Development. Front Neurosci 2021; 15:755867. [PMID: 34744618 PMCID: PMC8566538 DOI: 10.3389/fnins.2021.755867] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
During mammalian brain development, neural stem and progenitor cells generate the neurons for the six-layered neocortex. The proliferative capacity of the different types of progenitor cells within the germinal zones of the developing neocortex is a major determinant for the number of neurons generated. Furthermore, the various modes of progenitor cell divisions, for which the orientation of the mitotic spindle of progenitor cells has a pivotal role, are a key parameter to ensure the appropriate size and proper cytoarchitecture of the neocortex. Here, we review the roles of primary cilia and centrosomes of progenitor cells in these processes during neocortical development. We specifically focus on the apical progenitor cells in the ventricular zone. In particular, we address the alternating, dual role of the mother centriole (i) as a component of one of the spindle poles during mitosis, and (ii) as the basal body of the primary cilium in interphase, which is pivotal for the fate of apical progenitor cells and their proliferative capacity. We also discuss the interactions of these organelles with the microtubule and actin cytoskeleton, and with junctional complexes. Centriolar appendages have a specific role in this interaction with the cell cortex and the plasma membrane. Another topic of this review is the specific molecular composition of the ciliary membrane and the membrane vesicle traffic to the primary cilium of apical progenitors, which underlie the ciliary signaling during neocortical development; this signaling itself, however, is not covered in depth here. We also discuss the recently emerging evidence regarding the composition and roles of primary cilia and centrosomes in basal progenitors, a class of progenitors thought to be of particular importance for neocortex expansion in development and evolution. While the tight interplay between primary cilia and centrosomes makes it difficult to allocate independent roles to either organelle, mutations in genes encoding ciliary and/or centrosome proteins indicate that both are necessary for the formation of a properly sized and functioning neocortex during development. Human neocortical malformations, like microcephaly, underpin the importance of primary cilia/centrosome-related processes in neocortical development and provide fundamental insight into the underlying mechanisms involved.
Collapse
Affiliation(s)
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
11
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Waldron PV, Maswood RN, Smith AJ, Ali RR, Pearson RA. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep 2021; 36:109461. [PMID: 34348137 PMCID: PMC8356022 DOI: 10.1016/j.celrep.2021.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/19/2019] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.
Collapse
Affiliation(s)
- Nozie D Aghaizu
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | - Martha R Robinson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Paul V Waldron
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea N Maswood
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Alexander J Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
12
|
Jiang M, Tang T, Liang X, Li J, Qiu Y, Liu S, Bian S, Xie Y, Fang F, Cang J. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Prolif 2021; 54:e13042. [PMID: 33955094 PMCID: PMC8168415 DOI: 10.1111/cpr.13042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The effects of general anaesthetics on fetal brain development remain elusive. Radial glial progenitors (RGPs) generate the majority of neurons in developing brains. Here, we evaluated the acute alterations in RGPs after maternal sevoflurane exposure. METHODS Pregnant mice were exposed to 2.5% sevoflurane for 6 hours on gestational day 14.5. Interkinetic nuclear migration (INM) of RGPs in the ventricular zone (VZ) of the fetal brain was evaluated by thymidine analogues labelling. Cell fate of RGP progeny was determined by immunostaining using various neural markers. The Morris water maze (MWM) was used to assess the neurocognitive behaviours of the offspring. RNA sequencing (RNA-Seq) was performed for the potential mechanism, and the potential mechanism validated by quantitative real-time PCR (qPCR), Western blot and rescue experiments. Furthermore, INM was examined in human embryonic stem cell (hESC)-derived 3D cerebral organoids. RESULTS Maternal sevoflurane exposure induced temporary abnormities in INM, and disturbed the cell cycle progression of RGPs in both rodents and cerebral organoids without cell fate alternation. RNA-Seq analysis, qPCR and Western blot showed that the Notch signalling pathway was a potential downstream target. Reactivation of Notch by Jag1 and NICD overexpression rescued the defects in INM. Young adult offspring showed no obvious cognitive impairments in MWM. CONCLUSIONS Maternal sevoflurane exposure during neurogenic period temporarily induced abnormal INM of RGPs by targeting the Notch signalling pathway without inducing long-term effects on RGP progeny cell fate or offspring cognitive behaviours. More importantly, the defects of INM in hESC-derived cerebral organoids provide a novel insight into the effects of general anaesthesia on human brain development.
Collapse
Affiliation(s)
- Ming Jiang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Tianxiang Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xinyue Liang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Juchen Li
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Yue Qiu
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Shiwen Liu
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Bian
- Institute for Regenerative MedicineSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchShanghai East HospitalTongji UniversityShanghaiChina
| | - Yunli Xie
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceFudan UniversityShanghaiChina
| | - Fang Fang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| | - Jing Cang
- Department of AnesthesiaZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Getachew D, Matsumoto A, Uchimura Y, Udagawa J, Mita N, Ogawa N, Moriyama S, Takami A, Otani H. Global pattern of interkinetic nuclear migration in tracheoesophageal epithelia of the mouse embryo: Interorgan and intraorgan regional differences. Congenit Anom (Kyoto) 2021; 61:82-96. [PMID: 33249638 DOI: 10.1111/cga.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
Interkinetic nuclear migration (INM) is an apicobasal (AB) polarity-based regulatory mechanism of proliferation/differentiation in epithelial stem/progenitor cells. We previously documented INM in the endoderm-derived tracheal/esophageal epithelia at embryonic day (E) 11.5 and suggested that INM is involved in the development of both organs. We here investigated interorgan (trachea vs esophagus) and intraorgan regional (ventral vs dorsal) differences in the INM mode in the tracheal and esophageal epithelia of the mouse embryo. We also analyzed convergent extension (CE) and planar cell movement (PCM) in the epithelia based on cell distribution. The pregnant C57BL/6J mice were intraperitoneally injected with 5-ethynyl-2'-deoxyuridine at E11.5 and E12.5 and were sacrificed 1, 4, 6, 8, and 12 hours later to obtain the embryos. The distribution of labeled cell nuclei along the AB axis was chronologically analyzed in the total, ventral, and dorsal sides of the epithelia. The percentage distribution of the nuclei population was represented by histogram and the chronological change was analyzed statistically using multidimensional scaling. The interorgan comparison of the INM mode during E11.5-E12.0, but not E12.5-E13.0, showed a significant difference. During E11.5-E12.0 the trachea, but not the esophagus, showed a significant difference between ventral and dorsal sides. During E12.5-E13.0 neither organ showed regional differences. CE appeared to occur in both organs during E11.5-E12.0 while PCM was unclear in both organs. These findings suggest a difference between the trachea and esophagus, and a regional difference in the trachea, not in the esophagus, in the INM mode, which may be related with the later differential organogenesis/histogenesis of these organs.
Collapse
Affiliation(s)
- Dereje Getachew
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yasuhiro Uchimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Nanako Mita
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Noriko Ogawa
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shigeru Moriyama
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akiyasu Takami
- Department of Mechanical Engineering, National Institute of Technology, Matsue College, Matsue, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
14
|
Jahan E, Rafiq AM, Matsumoto A, Jahan N, Otani H. Development of the smooth muscle layer in the ileum of mouse embryos. Anat Sci Int 2021; 96:97-105. [PMID: 32856276 DOI: 10.1007/s12565-020-00565-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
The smooth muscle layer (SML) comprises a significant portion of the intestines and other tubular organs. Whereas epithelial development has recently been extensively studied, SML development has drawn relatively less attention. Previous morphological reports revealed that the inner circular layer (IC) differentiates earlier than the outer longitudinal layer (OL), but detailed development of the SML, including chronological changes in the cell layer number, precise cell orientation, and regional differences in relation to the mesentery, has not been reported. We here observed the development of the SML in the C57BL/6J mouse ileum near the ileocecal junction at embryonic day (E) 13.5, 15.5, and 17.5. By histo-morphometric analyses, in IC, smooth muscle cells (SMCs) were oval-shaped and irregularly arranged in 3-4 layers at E13.5, then adopted an elongated spindle shape and decreased to two cell layers at E15.5 and E17.5. The IC SMC nuclear angle was not vertical, but oriented at 60-80° against the mid-axis of the intestinal lumen. The single SMC layer in OL was observed at E17.5, and the SMC nuclear angle was parallel to the luminal mid-axis. No clear regional difference against the mesentery was observed. Collectively, the findings suggest that development and differentiation of the ileal SML is not simple but regulated in a complex manner and possibly related to the macroscopic organogenesis.
Collapse
Affiliation(s)
- Esrat Jahan
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Ashiq Mahmood Rafiq
- Center for the Promotion of Project Research, Organization for Research and Academic Information, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Nusrat Jahan
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
15
|
Getachew D, Kaneda R, Saeki Y, Matsumoto A, Otani H. Morphologic changes in the cytoskeleton and adhesion apparatus during the conversion from pseudostratified single columnar to stratified squamous epithelium in the developing mouse esophagus. Congenit Anom (Kyoto) 2021; 61:14-24. [PMID: 32776381 DOI: 10.1111/cga.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
The apico-basal (AB) polarity of epithelial cells is maintained by organized arrays of the cytoskeleton and adhesion apparatus. We previously reported that mouse embryonic esophageal epithelium exhibits interkinetic nuclear migration (INM), an AB-polarity-based regulatory mechanism of stem-cell proliferation, and suggested that the pseudostratified single columnar epithelium, a hallmark of INM, is converted to stratified squamous epithelium via rearrangement of the cytoskeleton and cell-adhesion apparatus. Here, we chronologically examined morphological changes in the cytoskeleton and adhesion apparatus in the mouse esophageal epithelium at embryonic day (E) 11.5, E13.5, E14.5, and E15.5, during which epithelial conversion has been suggested to occur. We used phalloidin to examine the apical terminal web (ATW), immunofluorescent anti-zonula occludens protein (ZO-1) antibody to reveal ZO-1, and anti-gamma tubulin antibody to detect primary cilia (PC). At E11.5, a thick ATW, apically oriented ZO-1 and apical PC were observed, indicating a pseudostratified single columnar structure. At E13.5 and E14.5, the phalloidin-staining, ZO-1, and PC distribution patterns were not apically localized, and the epithelial cells appeared to have lost the AB polarity, suggesting conversion of the epithelial structure and cessation of INM. At E15.5, light and transmission electron microscope observations revealed the ATW, ZO-1, PC, and tight junction which were localized into two-1ayers: the apical and subapical layers of the epithelium. These findings suggest that dynamic remodeling of the cytoskeleton and adhesion apparatus is involved in the conversion from pseudostratified single columnar to stratified squamous morphology and is closely related with temporal perturbation of the AB-polarity and cessation of INM.
Collapse
Affiliation(s)
- Dereje Getachew
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ryo Kaneda
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
16
|
Wang J, Li T, Wang JL, Xu Z, Meng W, Wu QF. Talpid3-Mediated Centrosome Integrity Restrains Neural Progenitor Delamination to Sustain Neurogenesis by Stabilizing Adherens Junctions. Cell Rep 2020; 33:108495. [DOI: 10.1016/j.celrep.2020.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/03/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
|
17
|
Fairchild CLA, Cheema SK, Wong J, Hino K, Simó S, La Torre A. Let-7 regulates cell cycle dynamics in the developing cerebral cortex and retina. Sci Rep 2019; 9:15336. [PMID: 31653921 PMCID: PMC6814839 DOI: 10.1038/s41598-019-51703-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
In the neural progenitors of the developing central nervous system (CNS), cell proliferation is tightly controlled and coordinated with cell fate decisions. Progenitors divide rapidly during early development and their cell cycle lengthens progressively as development advances to eventually give rise to a tissue of the correct size and cellular composition. However, our understanding of the molecules linking cell cycle progression to developmental time is incomplete. Here, we show that the microRNA (miRNA) let-7 accumulates in neural progenitors over time throughout the developing CNS. Intriguingly, we find that the level and activity of let-7 oscillate as neural progenitors progress through the cell cycle by in situ hybridization and fluorescent miRNA sensor analyses. We also show that let-7 mediates cell cycle dynamics: increasing the level of let-7 promotes cell cycle exit and lengthens the S/G2 phase of the cell cycle, while let-7 knock down shortens the cell cycle in neural progenitors. Together, our findings suggest that let-7 may link cell proliferation to developmental time and regulate the progressive cell cycle lengthening that occurs during development.
Collapse
Affiliation(s)
- Corinne L A Fairchild
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
18
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
19
|
Franco M, Carmena A. Eph signaling controls mitotic spindle orientation and cell proliferation in neuroepithelial cells. J Cell Biol 2019; 218:1200-1217. [PMID: 30808706 PMCID: PMC6446852 DOI: 10.1083/jcb.201807157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, Franco and Carmena uncover a function for Eph signaling as a novel extrinsic mechanism controlling mitotic spindle alignment in Drosophila neuroepithelial cells through aPKC activity–dependent myosin II regulation. Additionally, Eph loss leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Mitotic spindle orientation must be tightly regulated during development and adult tissue homeostasis. It determines cell-fate specification and tissue architecture during asymmetric and symmetric cell division, respectively. Here, we uncover a novel role for Ephrin–Eph intercellular signaling in controlling mitotic spindle alignment in Drosophila optic lobe neuroepithelial cells through aPKC activity–dependent myosin II regulation. We show that conserved core components of the mitotic spindle orientation machinery, including Discs Large1, Mud/NuMA, and Canoe/Afadin, mislocalize in dividing Eph mutant neuroepithelial cells and produce spindle alignment defects in these cells when they are down-regulated. In addition, the loss of Eph leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Hence, Eph signaling is a novel extrinsic mechanism that regulates both spindle orientation and cell proliferation in the Drosophila optic lobe neuroepithelium. Similar mechanisms could operate in other Drosophila and vertebrate epithelia.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| | - Ana Carmena
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
20
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
21
|
Ren J, Tang CZ, Li XD, Niu ZB, Zhang BY, Zhang T, Gao MJ, Ran XZ, Su YP, Wang FC. Identification of G2/M phase transition by sequential nuclear and cytoplasmic changes and molecular markers in mice intestinal epithelial cells. Cell Cycle 2018; 17:780-791. [PMID: 29338545 DOI: 10.1080/15384101.2018.1426416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Although the regulatory network of G2/M phase transition has been intensively studied in mammalian cell lines, the identification of morphological and molecular markers to identify G2/M phase transition in vivo remains elusive. In this study, we found no obvious morphological changes between the S phase and G2 phase in mice intestinal epithelial cells. The G2 phase could be identified by Brdu incorporation resistance, marginal and scattered foci of histone H3 phosphorylated at Ser10 (pHH3), and relatively intact Golgi ribbon. Prophase starts with nuclear transformation in situ, which was identified by a series of prophase markers including nuclear translocation of cyclinB1, fragmentation of the Golgi complex, and a significant increase in pHH3. The nucleus started to move upwards in the late prophase and finally rounded up at the apical surface. Then, metaphase was initiated as the level of pHH3 peaked. During anaphase and telophase, pHH3 sharply decreased, while Ki67 was obviously bound to chromosomes, and PCNA was distributed throughout the whole cell. Based on the aforementioned markers and Brdu pulse labeling, it was estimated to take about one hour for most crypt cells to go through the G2 phase and about two hours to go through the G2-M phase. It took much longer for crypt base columnar (CBC) stem cells to undergo G2-prophase than rapid transit amplifying cells. In summary, a series of sequentially presenting markers could be used to indicate the progress of G2/M events in intestinal epithelial cells and other epithelial systems in vivo.
Collapse
Affiliation(s)
- Jiong Ren
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Cai-Zhi Tang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Xu-Dong Li
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Zhi-Bin Niu
- b Batallion 2 of Student Brigade , Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Bo-Yang Zhang
- b Batallion 2 of Student Brigade , Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Tao Zhang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Mei-Jiao Gao
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Xin-Ze Ran
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Yong-Ping Su
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Feng-Chao Wang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| |
Collapse
|
22
|
Kaneda R, Saeki Y, Getachew D, Matsumoto A, Furuya M, Ogawa N, Motoya T, Rafiq AM, Jahan E, Udagawa J, Hashimoto R, Otani H. Interkinetic nuclear migration in the tracheal and esophageal epithelia of the mouse embryo: Possible implications for tracheo-esophageal anomalies. Congenit Anom (Kyoto) 2018; 58:62-70. [PMID: 28782137 DOI: 10.1111/cga.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023]
Abstract
Interkinetic nuclear migration (INM) is a cell polarity-based phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium in synchrony with the cell cycle. INM is suggested to be at least partially cytoskeleton-dependent and to regulate not only the proliferation/differentiation of stem/progenitor cells but also the localized/overall size and shape of organs/tissues. INM occurs in all three of the germ-layer derived epithelia, including the endoderm-derived gut. However, INM has not been documented in the esophagus and respiratory tube arising from the anterior foregut. Esophageal atresia with or without trachea-esophageal fistula (EA/TEF) is a relatively common developmental defect. Transcription factors and signaling molecules have been implicated in EA/TEF, but the etiology of EA/TEF-which has been suggested to involve cell polarity-related mechanisms-remains highly controversial. In the present study, we first examined whether INM exists in the trachea and esophagus of mouse embryos at embryonic day 11.5 (E11.5), just after separation of the two tubes from the anterior foregut. By labeling the DNA-synthesizing stem cell nuclei with 5-ethynyl-2'-deoxyuridine, a nucleotide analogue, and statistically analyzing chronological changes in the distribution pattern of the labeled nuclei by using multidimensional scaling, we showed the existence of INM in both the esophagus and trachea, with differences in the INM magnitude and cycle pattern. We further showed morphological changes from the INM-based pseudostratified single layer to the stratified multilayer in the esophageal epithelium in association with a temporal loss/perturbation of AB polarity, suggesting a possible relation with the pathogenesis of EA/TEF.
Collapse
Affiliation(s)
- Ryo Kaneda
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Dereje Getachew
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Motohide Furuya
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Noriko Ogawa
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Tomoyuki Motoya
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ashiq M Rafiq
- Center for the Promotion of Project Research, Organization for Research, Shimane University, Matsue, Japan
| | - Esrat Jahan
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ryuju Hashimoto
- Department of Clinical Nursing, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
23
|
Watanabe Y, Kawaue T, Miyata T. Differentiating cells mechanically limit progenitor cells’ interkinetic nuclear migration to secure apical cytogenesis. Development 2018; 145:dev.162883. [DOI: 10.1242/dev.162883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
Many proliferative epithelia are pseudostratified due to cell cycle–dependent interkinetic nuclear migration (IKNM, basal during G1 and apical during G2). Although most epithelia, including early embryonic neuroepithelia (≤100 µm thick), undergo IKNM over the entire apicobasal extent, more apicobasally elongated (300 µm) neural progenitor cells (also called “radial glia”) in the mid-embryonic mouse cerebral wall move their nuclei only within its apical (100 µm) compartment, leaving the remaining basal part nucleus-free (fiber-like). How this IKNM range (i.e., the thickness of a pseudostratified “ventricular zone” [VZ]) is determined remains unknown. Here, we report external fencing of IKNM and VZ by differentiating cells. When a tight stack of multipolar cells just basal to VZ was “drilled” via acute neuron-directed expression of diphtheria toxin, IKNM of apicobasally connected progenitor cells continued far basally (200 µm). The unfencing-induced, basally overshot nuclei stay in S phase too long and do not move apically, suggesting that external limitation of IKNM is necessary for progenitors to undergo normal cytogenetic behaviors. Thus, physical collaboration between progenitors and differentiating cells including neurons underlies brain development.
Collapse
Affiliation(s)
- Yuto Watanabe
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| |
Collapse
|
24
|
Oliveira IB, Groh KJ, Schönenberger R, Barroso C, Thomas KV, Suter MJF. Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:164-174. [PMID: 28843204 DOI: 10.1016/j.aquatox.2017.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Antifouling (AF) systems provide the most cost-effective protection against biofouling. Several AF biocides have, however, caused deleterious effects in the environment. Subsequently, new compounds have emerged that claim to be more environment-friendly, but studies on their toxicity and environmental risk are necessary in order to ensure safety. This work aimed to assess the toxicity of three emerging AF biocides, tralopyril, triphenylborane pyridine (TPBP) and capsaicin, towards non-target freshwater organisms representing three trophic levels: algae (Chlamydomonas reinhardtii), crustacean (Daphnia magna) and fish (Danio rerio). From the three tested biocides, tralopyril had the strongest inhibitory effect on C. reinhardtii growth, effective quantum yield and adenosine triphosphate (ATP) content. TPBP caused sub-lethal effects at high concentrations (100 and 250μgL-1), and capsaicin had no significant effects on algae. In the D. magna acute immobilisation test, the most toxic compound was TPBP. However, tralopyril has a short half-life and quickly degrades in water. With exposure solution renewals, tralopyril's toxicity was similar to TPBP. Capsaicin did not cause any effects on daphnids. In the zebrafish embryo toxicity test (zFET) the most toxic compound was tralopyril with a 120h - LC50 of 5μgL-1. TPBP's 120h - LC50 was 447.5μgL-1. Capsaicin did not cause mortality in zebrafish up to 1mgL-1. Sub-lethal effects on the proteome of zebrafish embryos were analysed for tralopyril and TPBP. Both general stress-related and compound-specific protein changes were observed. Five proteins involved in energy metabolism, eye structure and cell differentiation were commonly regulated by both compounds. Tralopyril specifically induced the upregulation of 6 proteins implicated in energy metabolism, cytoskeleton, cell division and mRNA splicing whilst TPBP lead to the upregulation of 3 proteins involved in cytoskeleton, cell growth and protein folding. An ecological risk characterization was performed for a hypothetical freshwater marina. This analysis identified capsaicin as an environment-friendly compound while tralopyril and TPBP seem to pose a risk to freshwater ecosystems. Noneless, more studies on the characterization of the toxicity, behaviour and fate of these AF biocides in the environment are necessary since this information directly affects the outcome of the risk assessment.
Collapse
Affiliation(s)
- Isabel B Oliveira
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | - Ksenia J Groh
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - Rene Schönenberger
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlos Barroso
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway; Queensland Alliance for Environmental Health Sciences(QAEHS), University of Queensland, 39 Kessels Road, Coopers Plains, 4108 Queensland, Australia
| | - Marc J-F Suter
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH-Swiss Federal Institute of Technology, 8093 Zürich, Switzerland
| |
Collapse
|
25
|
Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse. Proc Natl Acad Sci U S A 2017; 114:E4271-E4280. [PMID: 28484004 DOI: 10.1073/pnas.1619442114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.
Collapse
|
26
|
Nagasaka A, Shinoda T, Kawaue T, Suzuki M, Nagayama K, Matsumoto T, Ueno N, Kawaguchi A, Miyata T. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels. Front Cell Dev Biol 2016; 4:139. [PMID: 27933293 PMCID: PMC5122735 DOI: 10.3389/fcell.2016.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle-dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface. These movements are collectively referred to as interkinetic nuclear migration, and such epithelia are called "pseudostratified." The embryonic mammalian cerebral cortical neuroepithelium is a good model for highly pseudostratified epithelia, and we previously found differences between mice and ferrets in both horizontal cellular density (greater in ferrets) and nuclear/somal movements (slower during G2 and faster during G1 in ferrets). These differences suggest that neuroepithelial cells alter their nucleokinetic behavior in response to physical factors that they encounter, which may form the basis for evolutionary transitions toward more abundant brain-cell production from mice to ferrets and primates. To address how mouse and ferret neuroepithelia may differ physically in a quantitative manner, we used atomic force microscopy to determine that the vertical stiffness of their apical surface is greater in ferrets (Young's modulus = 1700 Pa) than in mice (1400 Pa). We systematically analyzed factors underlying the apical-surface stiffness through experiments to pharmacologically inhibit actomyosin or microtubules and to examine recoiling behaviors of the apical surface upon laser ablation and also through electron microscopy to observe adherens junction. We found that although both actomyosin and microtubules are partly responsible for the apical-surface stiffness, the mouse<ferret relationship in the apical-surface stiffness was maintained even in the presence of inhibitors. We also found that the stiffness of single, dissociated neuroepithelial cells is actually greater in mice (720 Pa) than in ferrets (450 Pa). Adherens junction was ultrastructurally comparable between mice and ferrets. These results show that the horizontally denser packing of neuroepithelial cell processes is a major contributor to the increased tissue-level apical stiffness in ferrets, and suggest that tissue-level mechanical properties may be achieved by balancing cellular densification and the physical properties of single cells.
Collapse
Affiliation(s)
- Arata Nagasaka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Tomoyasu Shinoda
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Makoto Suzuki
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology Okazaki, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Intelligent Systems Engineering, Ibaraki University Hitachi, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology Nagoya, Japan
| | - Naoto Ueno
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
27
|
De La Hoz EC, Winter MR, Apostolopoulou M, Temple S, Cohen AR. Measuring Process Dynamics and Nuclear Migration for Clones of Neural Progenitor Cells. COMPUTER VISION - ECCV ... : ... EUROPEAN CONFERENCE ON COMPUTER VISION : PROCEEDINGS. EUROPEAN CONFERENCE ON COMPUTER VISION 2016; 9913:291-305. [PMID: 27878138 DOI: 10.1007/978-3-319-46604-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural stem and progenitor cells (NPCs) generate processes that extend from the cell body in a dynamic manner. The NPC nucleus migrates along these processes with patterns believed to be tightly coupled to mechanisms of cell cycle regulation and cell fate determination. Here, we describe a new segmentation and tracking approach that allows NPC processes and nuclei to be reliably tracked across multiple rounds of cell division in phase-contrast microscopy images. Results are presented for mouse adult and embryonic NPCs from hundreds of clones, or lineage trees, containing tens of thousands of cells and millions of segmentations. New visualization approaches allow the NPC nuclear and process features to be effectively visualized for an entire clone. Significant differences in process and nuclear dynamics were found among type A and type C adult NPCs, and also between embryonic NPCs cultured from the anterior and posterior cerebral cortex.
Collapse
Affiliation(s)
| | - Mark R Winter
- Drexel University, Dept. of Electrical & Computer Eng., Philadelphia, PA, USA
| | | | | | - Andrew R Cohen
- Drexel University, Dept. of Electrical & Computer Eng., Philadelphia, PA, USA
| |
Collapse
|
28
|
Chen XP, Wang TT, Wu XZ, Wang DW, Chao YS. An in vivo study in mice: mother's gestational exposure to organophosphorus pesticide retards the division and migration process of neural progenitors in the fetal developing brain. Toxicol Res (Camb) 2016; 5:1359-1370. [PMID: 30090440 PMCID: PMC6062264 DOI: 10.1039/c5tx00282f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 06/11/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Widely utilized pesticides such as chlorpyrifos (CPF) can cause cognitive abnormalities, neurotransmitter disruptions and brain cytoarchitecture deficits in adulthood due to exposure in the prenatal period, but the mechanism underlying the development and maintenance of such neurotoxicity in embryonic neurogenesis remains largely unclear. Using embryonic neocortex slices, we investigated mitosis population constituents and characteristic interkinetic nuclear migration (INM) to evaluate the CPF effects on the proliferation process of neural progenitors. Methods: Gestational days (GD) 14 and GD 7.5-11.5 ICR dams were exposed to 5 mg kg-1 of CPF to investigate immediate toxicity and sustained toxicity. Proliferating nuclei were labeled with 50 mg kg-1 of Brdu at 1, 3, 6 and 9 hours before samples were collected. The mitoses count and Brdu positive nuclei (BPN) location were measured and analyzed in standard sections of the embryonic dorsolateral cortex. Results: CPF reduced the mitoses count in the primary progenitors but not in the secondary progenitors which are time sustained. CPF retarded BPN migration with a 6-9 μm delay of the relative location in the immediate groups and a 3-6 μm delay in the sustained ones. CPF had no or little effects on the global mitoses count and BPN count. Conclusion: Prenatal CPF exposure disrupts the proliferation process of primary progenitors in the embryonic dorsolateral cortex immediately and with sustained effects, which may contribute to explain the toxicity mechanism in early neurogenesis.
Collapse
Affiliation(s)
- Xiao-Ping Chen
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Ting-Ting Wang
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Xiu-Zhong Wu
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Da-Wei Wang
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Yong-Sheng Chao
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| |
Collapse
|
29
|
Wilsch-Bräuninger M, Florio M, Huttner WB. Neocortex expansion in development and evolution — from cell biology to single genes. Curr Opin Neurobiol 2016; 39:122-32. [DOI: 10.1016/j.conb.2016.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/15/2016] [Indexed: 02/06/2023]
|
30
|
Sánchez-Farías N, Candal E. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks. Front Neuroanat 2016; 10:65. [PMID: 27378863 PMCID: PMC4913098 DOI: 10.3389/fnana.2016.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the radial glia (RG) state.
Collapse
Affiliation(s)
- Nuria Sánchez-Farías
- Grupo BRAINSHARK, Departamento de Bioloxía Celular e Ecoloxía, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Bioloxía Celular e Ecoloxía, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
31
|
Razafsky D, Ward C, Potter C, Zhu W, Xue Y, Kefalov VJ, Fong LG, Young SG, Hodzic D. Lamin B1 and lamin B2 are long-lived proteins with distinct functions in retinal development. Mol Biol Cell 2016; 27:1928-37. [PMID: 27075175 PMCID: PMC4907726 DOI: 10.1091/mbc.e16-03-0143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/11/2022] Open
Abstract
Lamin B1 and lamin B2 are essential building blocks of the nuclear lamina, a filamentous meshwork lining the nucleoplasmic side of the inner nuclear membrane. Deficiencies in lamin B1 and lamin B2 impair neurodevelopment, but distinct functions for the two proteins in the development and homeostasis of the CNS have been elusive. Here we show that embryonic depletion of lamin B1 in retinal progenitors and postmitotic neurons affects nuclear integrity, leads to the collapse of the laminB2 meshwork, impairs neuronal survival, and markedly reduces the cellularity of adult retinas. In stark contrast, a deficiency of lamin B2 in the embryonic retina has no obvious effect on lamin B1 localization or nuclear integrity in embryonic retinas, suggesting that lamin B1, but not lamin B2, is strictly required for nucleokinesis during embryonic neurogenesis. However, the absence of lamin B2 prevents proper lamination of adult retinal neurons, impairs synaptogenesis, and reduces cone photoreceptor survival. We also show that lamin B1 and lamin B2 are extremely long-lived proteins in rod and cone photoreceptors. OF interest, a complete absence of both proteins during postnatal life has little or no effect on the survival and function of cone photoreceptors.
Collapse
Affiliation(s)
- David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Candace Ward
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Chloe Potter
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Wanqiu Zhu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Yunlu Xue
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Didier Hodzic
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
32
|
Belle M, Parray A, Belle M, Chédotal A, Nguyen-Ba-Charvet KT. PlexinA2 and Sema6A are required for retinal progenitor cell migration. Dev Growth Differ 2016; 58:492-502. [PMID: 27301906 DOI: 10.1111/dgd.12298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
In the vertebrate retina six types of neurons and one glial cell type are generated from multipotent retinal progenitor cells (RPCs) whose proliferation and differentiation are regulated by intrinsic and extrinsic factors. RPCs proliferate undergoing interkinetic nuclear migration within the neuroblastic layer, with their nuclei moving up and down along the apico-basal axis. Moreover, they only differentiate and therefore exit the cell cycle at the apical side of the neuroblastic layer. Sema6A and its receptors PlexinA4 and PlexinA2 control lamina stratification of the inner plexiform layer in the mouse retina. Nevertheless, their function in earlier developmental stages is still unknown. Here, we analyzed the embryonic retina of PlexinA2 and Sema6A knockout mice. Using time-lapse videomicroscopy we provide evidence that Sema6A/PlexinA2 signaling participates to interkinetic nuclear migration of RPCs around birth. When disrupted, RPCs migration is blocked at the apical side of the neuroblastic layer. This is the first evidence supporting a role for transmembrane molecules in the regulation of interkinetic nuclear migration in the mouse retina.
Collapse
Affiliation(s)
- Morgane Belle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Aijaz Parray
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Martin Belle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Kim Tuyen Nguyen-Ba-Charvet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| |
Collapse
|
33
|
Ghosh S, Hui SP. Regeneration of Zebrafish CNS: Adult Neurogenesis. Neural Plast 2016; 2016:5815439. [PMID: 27382491 PMCID: PMC4921647 DOI: 10.1155/2016/5815439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.
Collapse
Affiliation(s)
- Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subhra Prakash Hui
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
34
|
Motoya T, Ogawa N, Nitta T, Rafiq AM, Jahan E, Furuya M, Matsumoto A, Udagawa J, Otani H. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract. Congenit Anom (Kyoto) 2016; 56:127-34. [PMID: 26710751 DOI: 10.1111/cga.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
Abstract
Interkinetic nuclear migration (INM) is a phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium, which is characterized by the presence of apical primary cilia, in synchrony with the cell cycle in a manner of apical mitosis. INM is suggested to regulate not only stem/progenitor cell proliferation/differentiation but also organ size and shape. INM has been reported in epithelia of both ectoderm and endoderm origin. We examined whether INM exists in the mesoderm-derived ureteric epithelium. At embryonic day (E) 11.5, E12.5 and E13.5, C57BL/6J mouse dams were injected with 5-bromo-2'-deoxyuridine (BrdU) and embryos were killed 1, 2, 4, 6, 8, 10 and 12 h later. We immunostained transverse sections of the ureter for BrdU, and measured the position of BrdU (+) nuclei in the ureteric epithelia along the apico-basal axis at each time point. We analyzed the distribution patterns of BrdU (+) nuclei in histograms using the multidimensional scaling. Changes in the nucleus distribution patterns suggested nucleus movement characteristic of INM in the ureteric epithelia, and the mode of INM varied throughout the ureter development. While apical primary cilia are related with INM by providing a centrosome for the apical mitosis, congenital anomalies of the kidney and urinary tract (CAKUT) include syndromes linked to primary ciliary dysfunction affecting epithelial tubular organs such as kidney, ureter, and brain. The present study showed that INM exists in the ureteric epithelium and suggests that INM may be related with the CAKUT etiology via primary ciliary protein function.
Collapse
Affiliation(s)
- Tomoyuki Motoya
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Noriko Ogawa
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Tetsuya Nitta
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Ashiq Mahmood Rafiq
- Center for the Promotion of Project Research, Organization for Research, Shimane University, Matsue, Shimane, Japan
| | - Esrat Jahan
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Motohide Furuya
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
35
|
Dantas TJ, Carabalona A, Hu DJK, Vallee RB. Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development. Cytoskeleton (Hoboken) 2016; 73:566-576. [PMID: 26994401 DOI: 10.1002/cm.21293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/21/2022]
Abstract
Over the past two decades, substantial progress has been made in visualizing and understanding neuronal cell migration and morphogenesis during brain development. Distinct mechanisms have evolved to support migration of the various cell types that compose the developing neocortex. A specific subset of molecular motors, so far consisting of cytoplasmic dynein 1, Kif1a and myosin II, are responsible for cytoskeletal and nuclear transport in these cells. This review focuses on the emerging roles for each of these motor proteins in the migratory mechanisms of neocortical cell types. We discuss how migration can be cell cycle regulated and how coordination of motor activity is required to ensure migratory direction. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University, New York, NY.
| | - Aurelie Carabalona
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Daniel Jun Kit Hu
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY.
| |
Collapse
|
36
|
Otani H, Udagawa J, Naito K. Statistical analyses in trials for the comprehensive understanding of organogenesis and histogenesis in humans and mice. J Biochem 2016; 159:553-61. [PMID: 26935132 DOI: 10.1093/jb/mvw020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/07/2016] [Indexed: 01/19/2023] Open
Abstract
Statistical analyses based on the quantitative data from real multicellular organisms are useful as inductive-type studies to analyse complex morphogenetic events in addition to deductive-type analyses using mathematical models. Here, we introduce several of our trials for the statistical analysis of organogenesis and histogenesis of human and mouse embryos and foetuses. Multidimensional scaling has been applied to prove the existence and examine the mode of interkinetic nuclear migration, a regulatory mechanism of stem cell proliferation/differentiation in epithelial tubular tissues. Several statistical methods were used on morphometric data from human foetuses to establish the multidimensional standard growth curve and to describe the relation among the developing organs and body parts. Although the results are still limited, we show that these analyses are not only useful to understand the normal and abnormal morphogenesis in humans and mice but also to provide clues that could correlate aspects of prenatal developmental events with postnatal diseases.
Collapse
Affiliation(s)
- Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan; Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan;
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; and
| | - Kanta Naito
- Department of Mathematics, Shimane University, Matsue 690-8504, Japan
| |
Collapse
|
37
|
Carabalona A, Hu DJK, Vallee RB. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci 2016; 19:253-62. [PMID: 26752160 PMCID: PMC4731285 DOI: 10.1038/nn.4213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022]
Abstract
Brain neural stem cells (RGPs) undergo a mysterious form of cell cycle-entrained “interkinetic” nuclear migration (INM), driven apically by cytoplasmic dynein and basally by the kinesin KIF1A, which has recently been implicated in human brain developmental disease. To understand the consequences of altered basal INM and the roles of KIF1A in disease, we performed constitutive and conditional RNAi and expressed mutant KIF1A in E16-P7 rat RGPs and neurons. RGPs inhibited in basal INM still showed normal cell cycle progression, though neurogenic divisions were severely reduced. Postmitotic neuronal migration was independently disrupted at the multipolar stage, accompanied by premature ectopic expression of neuronal differentiation markers. Similar effects were unexpectedly observed throughout the layer of surrounding control cells, mimicked by Bdnf or Dcx RNAi, and rescued by BDNF application. These results identify novel, sequential, and independent roles for KIF1A and provide an important new approach for reversing the effects of human disease.
Collapse
Affiliation(s)
- Aurelie Carabalona
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Daniel Jun-Kit Hu
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
38
|
Pfeuty B. Neuronal specification exploits the inherent flexibility of cell-cycle gap phases. NEUROGENESIS 2015; 2:e1095694. [PMID: 27606329 PMCID: PMC4973608 DOI: 10.1080/23262133.2015.1095694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 09/14/2015] [Indexed: 12/26/2022]
Abstract
Starting from pluripotent stem cells that virtually proliferate indefinitely, the orderly emergence during organogenesis of lineage-restricted cell types exhibiting a decreased proliferative capacity concurrently with an increasing range of differentiation traits implies the occurrence of a stringent spatiotemporal coupling between cell-cycle progression and cell differentiation. A recent computational modeling study has explored in the context of neurogenesis whether and how the peculiar pattern of connections among the proneural Neurog2 factor, the Hes1 Notch effector and antagonistically-acting G1-phase regulators would be instrumental in this event. This study highlighted that the strong opposition to G1/S transit imposed by accumulating Neurog2 and CKI enables a sensitive control of G1-phase lengthening and terminal differentiation to occur concomitantly with late-G1 exit. Contrastingly, Hes1 promotes early-G1 cell-cycle arrest and its cell-autonomous oscillations combined with a lateral inhibition mechanism help maintain a labile proliferation state in dynamic balance with diverse cell-fate outputs, thereby, offering cells the choice to either keep self-renewing or differentiate into distinct cell types. These results, discussed in connection with Ascl1-dependent neural differentiation, suggest that developmental fate decisions exploit the inherent flexibility of cell-cycle gap phases to generate diversity by selecting subtly-differing patterns of connections among components of the cell-cycle machinery and differentiation pathways.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers Atomes et Molécules; CNRS; Université de Lille ; Villeneuve d'Ascq, France
| |
Collapse
|
39
|
Okamoto M, Shinoda T, Kawaue T, Nagasaka A, Miyata T. Ferret-mouse differences in interkinetic nuclear migration and cellular densification in the neocortical ventricular zone. Neurosci Res 2015; 86:88-95. [PMID: 24780233 DOI: 10.1016/j.neures.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 11/19/2022]
Abstract
The thick outer subventricular zone (OSVZ) is characteristic of the development of human neocortex. How this region originates from the ventricular zone (VZ) is largely unknown. Recently, we showed that over-proliferation-induced acute nuclear densification and thickening of the VZ in neocortical walls of mice, which lack an OSVZ, causes reactive delamination of undifferentiated progenitors and invasion by these cells of basal areas outside the VZ. In this study, we sought to determine how VZ cells behave in non-rodent animals that have an OSVZ. A comparison of mid-embryonic mice and ferrets revealed: (1) the VZ is thicker and more pseudostratified in ferrets. (2) The soma and nuclei of VZ cells were horizontally and apicobasally denser in ferrets. (3) Individual endfeet were also denser on the apical (ventricular) surface in ferrets. (4) In ferrets, apicalward nucleokinesis was less directional, whereas basalward nucleokinesis was more directional; consequently, the nuclear density in the periventricular space (within 16 μm of the apical surface) was smaller in ferrets than in mice, despite the nuclear densification seen basally in ferrets. These results suggest that species-specific differences in nucleokinesis strategies may have evolved in close association with the magnitudes and patterns of nuclear stratification in the VZ.
Collapse
|
40
|
Razafsky D, Hodzic D. Nuclear envelope: positioning nuclei and organizing synapses. Curr Opin Cell Biol 2015; 34:84-93. [PMID: 26079712 DOI: 10.1016/j.ceb.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about A-type lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins.
Collapse
Affiliation(s)
- David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Didier Hodzic
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
41
|
Baffet AD, Hu DJ, Vallee RB. Cdk1 Activates Pre-mitotic Nuclear Envelope Dynein Recruitment and Apical Nuclear Migration in Neural Stem Cells. Dev Cell 2015; 33:703-16. [PMID: 26051540 DOI: 10.1016/j.devcel.2015.04.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/20/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2 via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell-cycle control of this behavior are unknown. We now find that Cdk1 serves as a direct master controller for NE dynein recruitment in neural stem cells and HeLa cells. Cdk1 phosphorylates conserved sites within RanBP2 and activates BicD2 binding and early dynein recruitment. Late recruitment is triggered by a Cdk1-induced export of CENP-F from the nucleus. Forced NE targeting of BicD2 overrides Cdk1 inhibition, fully rescuing dynein recruitment and nuclear migration in neural stem cells. These results reveal how NE dynein recruitment is cell-cycle regulated and identify the trigger mechanism for apical nuclear migration in the brain.
Collapse
Affiliation(s)
- Alexandre D Baffet
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| | - Daniel J Hu
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
42
|
Mils V, Bosch S, Roy J, Bel-Vialar S, Belenguer P, Pituello F, Miquel MC. Mitochondrial reshaping accompanies neural differentiation in the developing spinal cord. PLoS One 2015; 10:e0128130. [PMID: 26020522 PMCID: PMC4447341 DOI: 10.1371/journal.pone.0128130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/22/2015] [Indexed: 11/19/2022] Open
Abstract
Mitochondria, long known as the cell powerhouses, also regulate redox signaling and arbitrate cell survival. The organelles are now appreciated to exert additional critical roles in cell state transition from a pluripotent to a differentiated state through balancing glycolytic and respiratory metabolism. These metabolic adaptations were recently shown to be concomitant with mitochondrial morphology changes and are thus possibly regulated by contingencies of mitochondrial dynamics. In this context, we examined, for the first time, mitochondrial network plasticity during the transition from proliferating neural progenitors to post-mitotic differentiating neurons. We found that mitochondria underwent morphological reshaping in the developing neural tube of chick and mouse embryos. In the proliferating population, mitochondria in the mitotic cells lying at the apical side were very small and round, while they appeared thick and short in interphase cells. In differentiating neurons, mitochondria were reorganized into a thin, dense network. This reshaping of the mitochondrial network was not specific of a subtype of progenitors or neurons, suggesting that this is a general event accompanying neurogenesis in the spinal cord. Our data shed new light on the various changes occurring in the mitochondrial network during neurogenesis and suggest that mitochondrial dynamics could play a role in the neurogenic process.
Collapse
Affiliation(s)
- Valérie Mils
- Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France
| | - Stéphanie Bosch
- Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France
| | - Julie Roy
- Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France
| | - Sophie Bel-Vialar
- Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France
| | - Pascale Belenguer
- Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France
| | - Fabienne Pituello
- Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France
| | - Marie-Christine Miquel
- Universités de Toulouse, Centre de Biologie du Développement, CNRS UMR5547, Université Paul Sabatier, Toulouse, France
- UPMC Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
- * E-mail:
| |
Collapse
|
43
|
Tylkowski MA, Yang K, Hoyer-Fender S, Stoykova A. Pax6 controls centriole maturation in cortical progenitors through Odf2. Cell Mol Life Sci 2015; 72:1795-809. [PMID: 25352170 PMCID: PMC11114037 DOI: 10.1007/s00018-014-1766-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
Abstract
Cortical glutamatergic neurons are generated by radial glial cells (RGCs), specified by the expression of transcription factor (TF) Pax6, in the germinative zones of the dorsal telencephalon. Here, we demonstrate that Pax6 regulates the structural assembly of the interphase centrosomes. In the cortex of the Pax6-deficient Small eye (Sey/Sey) mutant, we find a defect of the appendages of the mother centrioles, indicating incomplete centrosome maturation. Consequently, RGCs fail to generate primary cilia, and instead of staying in the germinative zone for renewal, RGCs detach from the ventricular surface thus affecting the interkinetic nuclear migration and they exit prematurely from mitosis. Mechanistically, we show that TF Pax6 directly regulates the activity of the Odf2 gene encoding for the appendage-specific protein Odf2 with a role for the assembly of mother centriole. Our findings demonstrate a molecular mechanism that explains important characteristics of the centrosome disassembly and malfunctioning in developing cortex lacking Pax6.
Collapse
Affiliation(s)
- Marco A. Tylkowski
- Research Group of Molecular Developmental Neurobiology, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Kefei Yang
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Anastassia Stoykova
- Research Group of Molecular Developmental Neurobiology, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| |
Collapse
|
44
|
Pulvers JN, Journiac N, Arai Y, Nardelli J. MCPH1: a window into brain development and evolution. Front Cell Neurosci 2015; 9:92. [PMID: 25870538 PMCID: PMC4376118 DOI: 10.3389/fncel.2015.00092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/28/2015] [Indexed: 12/21/2022] Open
Abstract
The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.
Collapse
Affiliation(s)
| | - Nathalie Journiac
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| | - Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Jeannette Nardelli
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| |
Collapse
|
45
|
Miyata T, Okamoto M, Shinoda T, Kawaguchi A. Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics. Front Cell Neurosci 2015; 8:473. [PMID: 25674051 PMCID: PMC4309187 DOI: 10.3389/fncel.2014.00473] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/31/2014] [Indexed: 01/26/2023] Open
Abstract
The neuroepithelium (NE) or ventricular zone (VZ), from which multiple types of brain cells arise, is pseudostratified. In the NE/VZ, neural progenitor cells are elongated along the apicobasal axis, and their nuclei assume different apicobasal positions. These nuclei move in a cell cycle-dependent manner, i.e., apicalward during G2 phase and basalward during G1 phase, a process called interkinetic nuclear migration (INM). This review will summarize and discuss several topics: the nature of the INM exhibited by neural progenitor cells, the mechanical difficulties associated with INM in the developing cerebral cortex, the community-level mechanisms underlying collective and efficient INM, the impact on overall brain formation when NE/VZ is overcrowded due to loss of INM, and whether and how neural progenitor INM varies among mammalian species. These discussions will be based on recent findings obtained in live, three-dimensional specimens using quantitative and mechanical approaches. Experiments in which overcrowding was induced in mouse neocortical NE/VZ, as well as comparisons of neocortical INM between mice and ferrets, have revealed that the behavior of NE/VZ cells can be affected by cellular densification. A consideration of the physical aspects in the NE/VZ and the mechanical difficulties associated with high-degree pseudostratification (PS) is important for achieving a better understanding of neocortical development and evolution.
Collapse
Affiliation(s)
- Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Aichi, Japan
| | - Mayumi Okamoto
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Aichi, Japan
| | - Tomoyasu Shinoda
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Aichi, Japan
| | - Ayano Kawaguchi
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Aichi, Japan
| |
Collapse
|
46
|
Iwashita M, Kataoka N, Toida K, Kosodo Y. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Development 2014; 141:3793-8. [PMID: 25249464 DOI: 10.1242/dev.109637] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues.
Collapse
Affiliation(s)
- Misato Iwashita
- Department of Anatomy, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Noriyuki Kataoka
- Department of Medical Engineering, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yoichi Kosodo
- Department of Anatomy, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
47
|
Agius E, Bel-Vialar S, Bonnet F, Pituello F. Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell Tissue Res 2014; 359:201-13. [PMID: 25260908 DOI: 10.1007/s00441-014-1998-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
Abstract
Deciphering the core machinery of the cell cycle and cell division has been primarily the focus of cell biologists, while developmental biologists have identified the signaling pathways and transcriptional programs controlling cell fate choices. As a result, until recently, the interplay between these two fundamental aspects of biology have remained largely unexplored. Increasing data show that the cell cycle and regulators of the core cell cycle machinery are important players in cell fate decisions during neurogenesis. Here, we summarize recent data describing how cell cycle dynamics affect the switch between proliferation and differentiation, with an emphasis on the roles played by the cell cycle regulators, the CDC25 phosphatases.
Collapse
Affiliation(s)
- Eric Agius
- Université Toulouse 3; Centre de Biologie du Développement (CBD), 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
48
|
Chavali PL, Pütz M, Gergely F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130468. [PMID: 25047622 PMCID: PMC4113112 DOI: 10.1098/rstb.2013.0468] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The centrosome, a key microtubule organizing centre, is composed of centrioles, embedded in a protein-rich matrix. Centrosomes control the internal spatial organization of somatic cells, and as such contribute to cell division, cell polarity and migration. Upon exiting the cell cycle, most cell types in the human body convert their centrioles into basal bodies, which drive the assembly of primary cilia, involved in sensing and signal transduction at the cell surface. Centrosomal genes are targeted by mutations in numerous human developmental disorders, ranging from diseases exclusively affecting brain development, through global growth failure syndromes to diverse pathologies associated with ciliary malfunction. Despite our much-improved understanding of centrosome function in cellular processes, we know remarkably little of its role in the organismal context, especially in mammals. In this review, we examine how centrosome dysfunction impacts on complex physiological processes and speculate on the challenges we face when applying knowledge generated from in vitro and in vivo model systems to human development.
Collapse
Affiliation(s)
- Pavithra L Chavali
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Monika Pütz
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
49
|
Progenitor genealogy in the developing cerebral cortex. Cell Tissue Res 2014; 359:17-32. [PMID: 25141969 DOI: 10.1007/s00441-014-1979-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
The mammalian cerebral cortex is characterized by a complex histological organization that reflects the spatio-temporal stratifications of related stem and neural progenitor cells, which are responsible for the generation of distinct glial and neuronal subtypes during development. Some work has been done to shed light on the existing filiations between these progenitors as well as their respective contribution to cortical neurogenesis. The aim of the present review is to summarize the current views of progenitor hierarchy and relationship in the developing cortex and to further discuss future research directions that would help us to understand the molecular and cellular regulating mechanisms involved in cerebral corticogenesis.
Collapse
|
50
|
Ortinau C, Neil J. The neuroanatomy of prematurity: Normal brain development and the impact of preterm birth. Clin Anat 2014; 28:168-83. [DOI: 10.1002/ca.22430] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Cynthia Ortinau
- Department of Pediatric Newborn Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston, Massachusetts USA
| | - Jeffrey Neil
- Departments of Neurology and Radiology; Boston Children's Hospital, Harvard Medical School; Boston, Massachusetts USA
| |
Collapse
|