1
|
Zhang X, Liu J, Zuo C, Peng X, Xie J, Shu Y, Ao D, Zhang Y, Ye Q, Cai J. Role of SIK1 in tumors: Emerging players and therapeutic potentials (Review). Oncol Rep 2024; 52:169. [PMID: 39422046 DOI: 10.3892/or.2024.8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Salt‑induced kinase 1 (SIK1) is a serine/threonine protein kinase that is a member of the AMP‑activated protein kinase family. SIK is catalytically activated through its phosphorylation by the upstream kinase LKB1. SIK1 has been reported to be associated with numerous types of cancer. The present review summarizes the structure, regulatory factors and inhibitors of SIK1, and also describes how SIK1 is a signal regulatory factor that fulfills connecting roles in various signal regulatory pathways. Furthermore, the anti‑inflammatory effects of SIK1 during the early stage of tumor occurrence and its different regulatory effects following tumor occurrence, are summarized, and through collating the tumor signal regulatory mechanisms in which SIK1 participates, it has been demonstrated that SIK1 acts as a necessary node in cancer signal transduction. In conclusion, SIK1 is discussed independent of the SIKs family, its research results and recent progress in oncology are summarized in detail with a focus on SIK1, and its potential as a therapeutic target is highlighted, underscoring the need for SIK1‑targeted regulatory strategies in future cancer therapy.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jing Liu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Chenyang Zuo
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jinyuan Xie
- Department of Joint Surgery and Sports Medicine, Jingmen Central Hospital, Jingmen, Hubei 448000, P.R. China
| | - Ya Shu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Dongxu Ao
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yang Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingqing Ye
- Department of Breast Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jun Cai
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
2
|
Liu Z, He M, Yu Z, Ma L, Wang X, Ning F. TIFA enhances glycolysis through E2F1 and promotes the progression of glioma. Cell Signal 2024; 125:111498. [PMID: 39481822 DOI: 10.1016/j.cellsig.2024.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE TRAF interacting protein with forkhead associated domain (TIFA) influence progression of many cancers. However, its role in glioma remains to be explored. This study investigated the function of TIFA in glioma. METHODS The TIFA expression in glioma and patient outcomes were analyzed using online database. Gene set enrichment analysis (GSEA) revealed related mechanisms of TIFA in glioma. TIFA's effects on glioma glycolysis and growth were assessed using in vitro and in vivo experiments. Moreover, luciferase reporter and ChIP were employed to explore the interactions among E2F1, GLUT1, HK2, and LDHA. The subcutaneous xenograft assay further elaborated the effects of TIFA in glioma. RESULTS We found overexpressed TIFA in glioma. Moreover, the high TIFA expression was associated with poor prognosis of glioma. Furthermore, GSEA indicated that overexpressed TIFA promoted E2F1 and glycolysis. Knockdown of TIFA decreased glioma development in cell and mice. TIFA knockdown down-regulated the expression of E2F1, GLUT1, HK2, and LDHA. CONCLUSIONS The study provides evidence that TIFA regulates E2F1 expression in glioma cells and promotes the proliferation, migration, and glycolysis. TIFA might be an advantageous therapeutic strategy against glioma.
Collapse
Affiliation(s)
- Zhibing Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China; Department of Oncology, Qilu Hospital of Shandong University, Jinan 256600, Shandong, China
| | - Miaolong He
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zeshun Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Longbo Ma
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Xiuwen Wang
- Department of Oncology, Qilu Hospital of Shandong University, Jinan 256600, Shandong, China.
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| |
Collapse
|
3
|
Masaeli F, Omoomi S, Shafiee F. DNA fragmentation factor 40-based therapeutic approaches for cancer: a review article. Med Oncol 2024; 41:264. [PMID: 39397131 DOI: 10.1007/s12032-024-02511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
DNA Fragmentation Factor (DFF) is a heterodimer protein involved in DNA fragmentation during apoptosis, which acts as a trigger downstream of caspase-3 activation. DFF40 catalytically active homo-oligomers break down chromosomal DNA. Previous scientific investigations have revealed a link between DFF40 expression changes and various cancers. DFF40 deletion or down-regulation has been observed in some cancers. Consequently, therapeutic strategies involving the DFF40 molecule compensating led to an increased rate of cancer cell apoptosis. In this review article, we aimed to introduce cancers with low expression of this protein first. The second part of this paper focuses on studies that utilized exogenous DFF40 protein produced by recombinant DNA technology and surveyed during in vitro and in vivo tests. Finally, compensation for diminished expression of the mentioned protein via gene therapy-based techniques to make up for this apoptotic molecule's low expression is the topic of the last part of this review article.
Collapse
Affiliation(s)
- Faezeh Masaeli
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Saba Omoomi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran.
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Jia P, Che J, Xie X, Han Q, Ma Y, Guo Y, Zheng Y. The role of ZEB1 in mediating the protective effects of metformin on skeletal muscle atrophy. J Pharmacol Sci 2024; 156:57-68. [PMID: 39179335 DOI: 10.1016/j.jphs.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024] Open
Abstract
Metformin is an important antidiabetic drug that has the potential to reduce skeletal muscle atrophy and promote the differentiation of muscle cells. However, the exact molecular mechanism underlying these functions remains unclear. Previous studies revealed that the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1), which participates in tumor progression, inhibits muscle atrophy. Therefore, we hypothesized that the protective effect of metformin might be related to ZEB1. We investigated the positive effect of metformin on IL-1β-induced skeletal muscle atrophy by regulating ZEB1 in vitro and in vivo. Compared with the normal cell differentiation group, the metformin-treated group presented increased myotube diameters and reduced expression levels of atrophy-marker proteins. Moreover, muscle cell differentiation was hindered, when we artificially interfered with ZEB1 expression in mouse skeletal myoblast (C2C12) cells via ZEB1-specific small interfering RNA (si-ZEB1). In response to inflammatory stimulation, metformin treatment increased the expression levels of ZEB1 and three differentiation proteins, MHC, MyoD, and myogenin, whereas si-ZEB1 partially counteracted these effects. Moreover, marked atrophy was induced in a mouse model via the administration of lipopolysaccharide (LPS) to the skeletal muscles of the lower limbs. Over a 4-week period of intragastric administration, metformin treatment ameliorated muscle atrophy and increased the expression levels of ZEB1. Metformin treatment partially alleviated muscle atrophy and stimulated differentiation. Overall, our findings may provide a better understanding of the mechanism underlying the effects of metformin treatment on skeletal muscle atrophy and suggest the potential of metformin as a therapeutic drug.
Collapse
Affiliation(s)
- Peiyu Jia
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Ji Che
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Xiaoting Xie
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qi Han
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Yantao Ma
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Yong Guo
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Yongjun Zheng
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
6
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Do KK, Wang F, Sun X, Zhang Y, Liang W, Liu JY, Jiang DY, Lu X, Wang W, Zhang L, Dean DC, Liu Y. Conditional deletion of Zeb1 in Csf1r + cells reduces inflammatory response of the cornea to alkali burn. iScience 2024; 27:109694. [PMID: 38660397 PMCID: PMC11039400 DOI: 10.1016/j.isci.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
ZEB1 is an essential factor in embryonic development. In adults, it is often highly expressed in malignant tumors with low expression in normal tissues. The major biological function of ZEB1 in developing embryos and progressing cancers is to transdifferentiate cells from an epithelial to mesenchymal phenotype; but what roles ZEB1 plays in normal adult tissues are largely unknown. We previously reported that the reduction of Zeb1 in monoallelic global knockout (Zeb1+/-) mice reduced corneal inflammation-associated neovascularization following alkali burn. To uncover the cellular mechanism underlying the Zeb1 regulation of corneal inflammation, we functionally deleted Zeb1 alleles in Csf1r+ myeloid cells using a conditional knockout (cKO) strategy and found that Zeb1 cKO reduced leukocytes in the cornea after alkali burn. The reduction of immune cells was due to their increased apoptotic rate and linked to a Zeb1-downregulated apoptotic pathway. We conclude that Zeb1 facilitates corneal inflammatory response by maintaining Csf1r+ cell viability.
Collapse
Affiliation(s)
- Khoi K. Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Xiaolei Sun
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA
| | - Wei Liang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - John Y. Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel Y. Jiang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - Douglas C. Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Sun Y, Guo G, Zhang Y, Chen X, Lu Y, Hong R, Xiong J, Li J, Hu X, Wang S, Liu Y, Zhang Z, Yang X, Nan Y, Huang Q. IKBKE promotes the ZEB2-mediated EMT process by phosphorylating HMGA1a in glioblastoma. Cell Signal 2024; 116:111062. [PMID: 38242271 DOI: 10.1016/j.cellsig.2024.111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jinbiao Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xue Hu
- Department of Clinical Nutrition, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China
| | - Shuaishuai Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315000, China
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
9
|
Ali NejadKasbakhi N, Vavrincová D, Čepcová D. In vitro effect of 1-methyltryptophan isomers on epithelial-mesenchymal transition transcription factors in tubular epithelial cells after ischemia-reperfusion injury. ARCHIVES OF RAZI INSTITUTE 2024; 79:307-314. [PMID: 39463718 PMCID: PMC11512173 DOI: 10.32592/ari.2024.79.2.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2024]
Abstract
The compound 1-methyltryptophan (1-MT) has been shown to act protectively in renal ischemia-reperfusion injury. Toll-like receptor 4 signaling is also a regular process of epithelial-mesenchymal transition (EMT) that can after ischemia-reperfusion injury (IRI) result in an increase in renal fibrosis. EMT is associated with specific transcription factors: Snai1, Snai2, Zeb1, and Twist. 1-MT could regulate EMT and act as an antifibrotic agent. This study aimed to investigate the effect of 1-MT on EMT transcription factors in tubular epithelial cells that underwent 30 min. Renal tubular epithelial cells (TECs) were isolated from Lewis rats using a standard protocol with Fe2O3 magnetic separation and selective media as previously mentioned. Cells were cultivated and divided into 4 groups, namely C-TECs: control cells, IRI-TECs: IRI-induced TECs, D-IRI-TECs: IRI-induced TECs treated with 1-methyl-D-tryptophan, and L-IRI-TECs: IRI-induced TECs treated with 1-methyl-L-tryptophan. IRI was induced in all groups for 30 min by mineral oil (except for C-TECs) followed by 48-hour reperfusion. RNA and proteins were isolated from harvested cells. Using a semi-quantitative polymerase chain reaction, we assessed the relative mRNA expression of EMT transcription factors Snai1, Snai2, Zeb1, and Twist. Hereby, we showed that the treatment of ischemia-induced TECs with both 1-MT isomers lowered the expression of EMT transcription factors Snai1 and Zeb1 which were increased by ischemia and reperfusion of TECs. This could act favorably in renal IRI decreasing EMT and renal fibrosis, therefore showing the potential of 1-MT as a part of therapy in renal transplantation aimed at renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- N Ali NejadKasbakhi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
| | - D Vavrincová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
| | - D Čepcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic
| |
Collapse
|
10
|
Hou C, Wu X, Shi R, Xing X, Tian S, Eléouët M, Qiao C, Ma J, Xu G. Subtle structural alteration in indisulam switches the molecular mechanisms for the inhibitory effect on the migration of gastric cancer cells. Biomed Pharmacother 2024; 172:116259. [PMID: 38359488 DOI: 10.1016/j.biopha.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Gastric cancer is a highly metastatic malignant tumor with high morbidity and mortality globally. Recent studies reported that sulfonamide derivatives such as indisulam exhibited inhibitory effects on the viability and migration of cancer cells. However, multiple clinical trials revealed that indisulam did not significantly prevent cancer progression due to metastasis and drug resistance. Therefore, it is necessary to discover new potent derivatives to explore alternative therapeutic strategies. Here, we synthesize multiple indisulam derivatives and examine their inhibitory effects on the viability and migration of gastric cancer cells. Among them, compounds SR-3-65 and WXM-1-170 exhibit better inhibitory effects on the migration of gastric cancer cells than indisulam. Mechanistically, we discover that they could attenuate the PI3K/AKT/GSK-3β/β-catenin signaling pathway and lead to the suppression of epithelial-to-mesenchymal transition (EMT)-related transcription factors. The influence of SR-3-65 on the migration of gastric cancer cells is blocked by the PI3K inhibitor LY294002 while SR-3-65 and WXM-1-170 reverse the effect of PI3K activator 740 Y-P on the migration of gastric cancer cells. Molecular docking and molecular dynamics simulation further confirm that PI3K is the target of SR-3-65. Our study unveils a novel mechanism by which SR-3-65 and WXM-1-170 inhibit the migration of gastric cancer cells. Together with the previous discovery, we reveal that subtle structural change in indisulam results in a striking switch on the molecular targets and their associated signaling pathways for the inhibition of the migration of gastric cancer cells. These findings might provide informative insights for the development of targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Changxu Hou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaomei Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoqi Xing
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu, 215123, China
| | - Chunhua Qiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
11
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Wu H, Chen Y, Lin H, Xu Y, Guo Z, Li Z. The clinical significance of SNAIL, TWIST, and E-Cadherin expression in gastric mesentery tumor deposits of advanced gastric cancer. INDIAN J PATHOL MICR 2024; 67:21-28. [PMID: 38358184 DOI: 10.4103/ijpm.ijpm_659_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Objective To explore the relationships among the epithelial to mesenchymal transition (EMT)-related factors (SNAIL, TWIST, and E-Cadherin) and clinicopathological parameters and gastric mesangial tumor deposits (TDs) in advanced gastric cancer (AGC) patients and their value in gastric cancer prognosis judgment. Materials and Methods The data of 190 patients who underwent radical resection of ACG were analyzed retrospectively, including 75 cases of TDs (+) and 115 cases of TDs (-). The expression of EMT-related transforming factors Snail, Twist, and E-cadherin in the primary tumor, paracancerous normal tissues, and TDs was detected by immunohistochemistry. Results SNAIL and TWIST were overexpressed in primary tumors and TDs, whereas E-Cadherin was down-expressed in primary tumors. SNAIL was correlated significantly with tumor differentiation, lymph node metastases, and TDs (P < 0.05); TWIST was correlated strongly with tumor location, lymph node metastases, and TDs (P < 0.05); E-Cadherin was correlated closely with tumor differentiation and lymph node metastases (P < 0.05). Kaplan-Meier curves showed that SNAIL expression was correlated with DFS (P < 0.05), and TWIST expression was correlated with OS (P < 0.05). Tumor differentiation, lymph node metastasis, and TWIST expression were prognostic-independent risk factors of AGC patients (P < 0.05). Conclusion The occurrence and development of gastric cancer and the formation of TDs may be related to EMT, analyzing the expression of EMT-related transforming proteins may be helpful to judge the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Pathology, Teaching Hospital of Putian First Hospital of Fujian Medical University, Putian; The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - Yanping Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Huimei Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanchang Xu
- Gastrointestinal Surgery Unit 1, Teaching Hospital of Putian First Hospital of Fujian Medical University, Putian; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Zipei Guo
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhixiong Li
- Gastrointestinal Surgery Unit 1, Teaching Hospital of Putian First Hospital of Fujian Medical University, Putian; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Tangsiri M, Hheidari A, Liaghat M, Razlansari M, Ebrahimi N, Akbari A, Varnosfaderani SMN, Maleki-Sheikhabadi F, Norouzi A, Bakhtiyari M, Zalpoor H, Nabi-Afjadi M, Rahdar A. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT). Biomed Pharmacother 2024; 170:115973. [PMID: 38064969 DOI: 10.1016/j.biopha.2023.115973] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The resistance of cancer cells to chemotherapy, also known as chemo-resistance, poses a significant obstacle to cancer treatment and can ultimately result in patient mortality. Epithelial-mesenchymal transition (EMT) is one of the many factors and processes responsible for chemo-resistance. Studies have shown that targeting EMT can help overcome chemo-resistance, and nanotechnology and nanomedicine have emerged as promising approaches to achieve this goal. This article discusses the potential of nanotechnology in inhibiting EMT and proposes a viable strategy to combat chemo-resistance in various solid tumors, including breast cancer, lung cancer, pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, and hepatocellular carcinoma. While nanotechnology has shown promising results in targeting EMT, further research is necessary to explore its full potential in overcoming chemo-resistance and discovering more effective methods in the future.
Collapse
Affiliation(s)
- Mona Tangsiri
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahtab Razlansari
- Faculty of Mathematics and Natural Sciences, Tübingen University, Tübingen 72076, Germany
| | - Narges Ebrahimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Norouzi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| |
Collapse
|
14
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
15
|
Martinez-Campanario MC, Cortés M, Moreno-Lanceta A, Han L, Ninfali C, Domínguez V, Andrés-Manzano MJ, Farràs M, Esteve-Codina A, Enrich C, Díaz-Crespo FJ, Pintado B, Escolà-Gil JC, García de Frutos P, Andrés V, Melgar-Lesmes P, Postigo A. Atherosclerotic plaque development in mice is enhanced by myeloid ZEB1 downregulation. Nat Commun 2023; 14:8316. [PMID: 38097578 PMCID: PMC10721632 DOI: 10.1038/s41467-023-43896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Accumulation of lipid-laden macrophages within the arterial neointima is a critical step in atherosclerotic plaque formation. Here, we show that reduced levels of the cellular plasticity factor ZEB1 in macrophages increase atherosclerotic plaque formation and the chance of cardiovascular events. Compared to control counterparts (Zeb1WT/ApoeKO), male mice with Zeb1 ablation in their myeloid cells (Zeb1∆M/ApoeKO) have larger atherosclerotic plaques and higher lipid accumulation in their macrophages due to delayed lipid traffic and deficient cholesterol efflux. Zeb1∆M/ApoeKO mice display more pronounced systemic metabolic alterations than Zeb1WT/ApoeKO mice, with higher serum levels of low-density lipoproteins and inflammatory cytokines and larger ectopic fat deposits. Higher lipid accumulation in Zeb1∆M macrophages is reverted by the exogenous expression of Zeb1 through macrophage-targeted nanoparticles. In vivo administration of these nanoparticles reduces atherosclerotic plaque formation in Zeb1∆M/ApoeKO mice. Finally, low ZEB1 expression in human endarterectomies is associated with plaque rupture and cardiovascular events. These results set ZEB1 in macrophages as a potential target in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- M C Martinez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Alazne Moreno-Lanceta
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
| | - Lu Han
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Verónica Domínguez
- Transgenesis Facility, National Center of Biotechnology (CNB) and Center for Molecular Biology Severo Ochoa (UAM-CBMSO), Spanish National Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - María J Andrés-Manzano
- Group of Molecular and Genetic Cardiovascular Pathophysiology, Spanish National Center for Cardiovascular Research (CNIC), 28029, Madrid, Spain
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
| | - Marta Farràs
- Department of Biochemistry and Molecular Biology, Institute of Biomedical Research Sant Pau, University Autonomous of Barcelona, 08041, Barcelona, Spain
- Center for Biomedical Research Network in Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute, 28029, Madrid, Spain
| | | | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
- Group of signal transduction, intracellular compartments and cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Francisco J Díaz-Crespo
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Belén Pintado
- Transgenesis Facility, National Center of Biotechnology (CNB) and Center for Molecular Biology Severo Ochoa (UAM-CBMSO), Spanish National Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Joan C Escolà-Gil
- Department of Biochemistry and Molecular Biology, Institute of Biomedical Research Sant Pau, University Autonomous of Barcelona, 08041, Barcelona, Spain
- Center for Biomedical Research Network in Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute, 28029, Madrid, Spain
| | - Pablo García de Frutos
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
- Department Of Cell Death and Proliferation, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Group of Hemotherapy and Hemostasis, IDIBAPS, 08036, Barcelona, Spain
| | - Vicente Andrés
- Group of Molecular and Genetic Cardiovascular Pathophysiology, Spanish National Center for Cardiovascular Research (CNIC), 28029, Madrid, Spain
- Center for Biomedical, Research Network in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029, Madrid, Spain
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, University of Barcelona School of Medicine, 08036, Barcelona, Spain
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, 08036, Barcelona, Spain
- Center for Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III Health Institute, 28029, Madrid, Spain
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
- Center for Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III Health Institute, 28029, Madrid, Spain.
- Molecular Targets Program, Division of Oncology, Department of Medicine, J.G. Brown Cancer Center, Louisville, KY, 40202, USA.
- ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Fernandez-De-Los-Reyes I, Gomez-Dorronsoro M, Monreal-Santesteban I, Fernandez-Fernandez A, Fraga M, Azcue P, Alonso L, Fernandez-Marlasca B, Suarez J, Cordoba-Iturriagagoitia A, Guerrero-Setas D. ZEB1 hypermethylation is associated with better prognosis in patients with colon cancer. Clin Epigenetics 2023; 15:193. [PMID: 38093305 PMCID: PMC10720242 DOI: 10.1186/s13148-023-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is a heterogeneous disease that is categorized into four Consensus Molecular Subtypes (CMS) according to gene expression. Patients with loco-regional CC (stages II/III) lack prognostic factors, making it essential to analyze new molecular markers that can delineate more aggressive tumors. Aberrant methylation of genes that are essential in crucial mechanisms such as epithelial mesenchymal transition (EMT) contributes to tumor progression in CC. We evaluate the presence of hyper- and hypomethylation in subrogate IHC markers used for CMS classification (CDX2, FRMD6, HTR2B, ZEB1) of 144 stage II/III patients and CC cell lines by pyrosequencing. ZEB1 expression was also studied in control and shRNA-silenced CC cell lines and in paired normal tissue/tumors by quantitative PCR. The pattern of ZEB1 staining was also analyzed in methylated/unmethylated tumors by immunohistochemistry. RESULTS We describe for the first time the hypermethylation of ZEB1 gene and the hypomethylation of the FRMD6 gene in 32.6% and 50.9% of tumors, respectively. Additionally, we confirm the ZEB1 re-expression by epigenetic drugs in methylated cell lines. ZEB1 hypermethylation was more frequent in CMS1 patients and, more importantly, was a good prognostic factor related to disease-free survival (p = 0.015) and overall survival (p = 0.006) in our patient series, independently of other significant clinical parameters such as patient age, stage, lymph node involvement, and blood vessel and perineural invasion. CONCLUSIONS Aberrant methylation is present in the subrogate genes used for CMS classification. Our results are the first evidence that ZEB1 is hypermethylated in CC and that this alteration is an independent factor of good prognosis.
Collapse
Affiliation(s)
- Irene Fernandez-De-Los-Reyes
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Marisa Gomez-Dorronsoro
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Oncogenetic and Hereditary Cancer Group, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Iñaki Monreal-Santesteban
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Agustín Fernandez-Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Mario Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Pablo Azcue
- Department of Health Science, Public University of Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Laura Alonso
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | | | - Javier Suarez
- Department of Surgery, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Alicia Cordoba-Iturriagagoitia
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Guerrero-Setas
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain.
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
17
|
Fang K, Gong M, Liu D, Liang S, Li Y, Sang W, Zhu R. FOXM1/KIF20A axis promotes clear cell renal cell carcinoma progression via regulating EMT signaling and affects immunotherapy response. Heliyon 2023; 9:e22734. [PMID: 38125441 PMCID: PMC10730723 DOI: 10.1016/j.heliyon.2023.e22734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Background The correlation between FOXM1 and KIF20A has not been revealed in clear cell renal cell carcinoma (ccRCC). Methods Public data was downloaded from The Cancer Genome Atlas (TCGA) database. R software was utilized for the execution of bioinformatic analysis. The expression levels of specific molecules (mRNA and protein) were detected using real-time quantitative PCR (qRT-PCR) and Western blot assays. The capacity of cell growth was assessed by employing CCK8 and colony formation assay. Cell invasion and migration ability were assessed using transwell assay. Results In our study, we illustrated the association between FOXM1 and KIF20A. Our results indicated that both FOXM1 and KIF20A were associated with poor prognosis and clinical performance. The malignant characteristics of ccRCC cells can be significantly suppressed by inhibiting FOXM1 and KIF20A, as demonstrated by in vitro experiments. Moreover, we found that FOXM1 can upregulate KIF20A. Then, EMT signaling was identified as the underlying pathway FOXM1 and KIF20A are involved. WB results indicated that FOXM1/KIF20A axis can activate EMT signaling. Moreover, we noticed that FOXM1 and KIF20A can affect the immunotherapy response and immune microenvironment of ccRCC patients. Conclusions Our results identified the role of the FOXM1/KIF20A axis in ccRCC progression and immunotherapy, making it the underlying target for ccRCC.
Collapse
Affiliation(s)
- Kai Fang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Min Gong
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dong Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shengjie Liang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Weicong Sang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
18
|
Cortés M, Brischetto A, Martinez-Campanario MC, Ninfali C, Domínguez V, Fernández S, Celis R, Esteve-Codina A, Lozano JJ, Sidorova J, Garrabou G, Siegert AM, Enrich C, Pintado B, Morales-Ruiz M, Castro P, Cañete JD, Postigo A. Inflammatory macrophages reprogram to immunosuppression by reducing mitochondrial translation. Nat Commun 2023; 14:7471. [PMID: 37978290 PMCID: PMC10656499 DOI: 10.1038/s41467-023-42277-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
Acute inflammation can either resolve through immunosuppression or persist, leading to chronic inflammation. These transitions are driven by distinct molecular and metabolic reprogramming of immune cells. The anti-diabetic drug Metformin inhibits acute and chronic inflammation through mechanisms still not fully understood. Here, we report that the anti-inflammatory and reactive-oxygen-species-inhibiting effects of Metformin depend on the expression of the plasticity factor ZEB1 in macrophages. Using mice lacking Zeb1 in their myeloid cells and human patient samples, we show that ZEB1 plays a dual role, being essential in both initiating and resolving inflammation by inducing macrophages to transition into an immunosuppressed state. ZEB1 mediates these diverging effects in inflammation and immunosuppression by modulating mitochondrial content through activation of autophagy and inhibition of mitochondrial protein translation. During the transition from inflammation to immunosuppression, Metformin mimics the metabolic reprogramming of myeloid cells induced by ZEB1. Mechanistically, in immunosuppression, ZEB1 inhibits amino acid uptake, leading to downregulation of mTORC1 signalling and a decrease in mitochondrial translation in macrophages. These results identify ZEB1 as a driver of myeloid cell metabolic plasticity, suggesting that targeting its expression and function could serve as a strategy to modulate dysregulated inflammation and immunosuppression.
Collapse
Affiliation(s)
- Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
| | - Agnese Brischetto
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - M C Martinez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Verónica Domínguez
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Sara Fernández
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Raquel Celis
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | | | - Juan J Lozano
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Julia Sidorova
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Gloria Garrabou
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB1 0QQ, UK
| | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Belén Pintado
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Manuel Morales-Ruiz
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
- Department of Biochemistry and Molecular Genetics, Hospital Clínic of Barcelona and IDIBAPS, 08036, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Juan D Cañete
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain.
- Molecular Targets Program, Division of Oncology, Department of Medicine, J.G. Brown Cancer Center, Louisville, KY, 40202, USA.
- ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
19
|
Ninfali C, Cortés M, Martínez-Campanario MC, Domínguez V, Han L, Tobías E, Esteve-Codina A, Enrich C, Pintado B, Garrabou G, Postigo A. The adaptive antioxidant response during fasting-induced muscle atrophy is oppositely regulated by ZEB1 and ZEB2. Proc Natl Acad Sci U S A 2023; 120:e2301120120. [PMID: 37948583 PMCID: PMC10655555 DOI: 10.1073/pnas.2301120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023] Open
Abstract
Reactive oxygen species (ROS) serve important homeostatic functions but must be constantly neutralized by an adaptive antioxidant response to prevent supraphysiological levels of ROS from causing oxidative damage to cellular components. Here, we report that the cellular plasticity transcription factors ZEB1 and ZEB2 modulate in opposing directions the adaptive antioxidant response to fasting in skeletal muscle. Using transgenic mice in which Zeb1 or Zeb2 were specifically deleted in skeletal myofibers, we show that in fasted mice, the deletion of Zeb1, but not Zeb2, increased ROS production and that the adaptive antioxidant response to fasting essentially requires ZEB1 and is inhibited by ZEB2. ZEB1 expression increased in fasted muscles and protected them from atrophy; conversely, ZEB2 expression in muscles decreased during fasting and exacerbated muscle atrophy. In fasted muscles, ZEB1 reduces mitochondrial damage and increases mitochondrial respiratory activity; meanwhile, ZEB2 did the opposite. Treatment of fasting mice with Zeb1-deficient myofibers with the antioxidant triterpenoid 1[2-cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl] trifluoro-ethylamide (CDDO-TFEA) completely reversed their altered phenotype to that observed in fasted control mice. These results set ZEB factors as potential therapeutic targets to modulate the adaptive antioxidant response in physiopathological conditions and diseases caused by redox imbalance.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - M. C. Martínez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Verónica Domínguez
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC-CBMSO), Transgenesis Facility, High Research Council (CSIC) and Autonomous University of Madrid, Cantoblanco, Madrid28049, Spain
| | - Lu Han
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Ester Tobías
- Group of Muscle Research and Mitochondrial Function, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), University of Barcelona School of Medicine, Hospital Clínic of Barcelona, and Rare Diseases Networking Biomedical Research Center (CIBERer), Barcelona08036, Spain
| | | | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine, and Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Belén Pintado
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC-CBMSO), Transgenesis Facility, High Research Council (CSIC) and Autonomous University of Madrid, Cantoblanco, Madrid28049, Spain
| | - Gloria Garrabou
- Group of Muscle Research and Mitochondrial Function, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), University of Barcelona School of Medicine, Hospital Clínic of Barcelona, and Rare Diseases Networking Biomedical Research Center (CIBERer), Barcelona08036, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
- Molecular Targets Program, Department of Medicine, James Graham Brown Cancer Center, Louisville, KY40202
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona08010, Spain
| |
Collapse
|
20
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Zhang Z, Wang X, Kim M, He D, Wang C, Fong KW, Liu X. Downregulation of EZH2 inhibits epithelial-mesenchymal transition in enzalutamide-resistant prostate cancer. Prostate 2023; 83:1458-1469. [PMID: 37475584 DOI: 10.1002/pros.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Androgen signaling inhibitors (ASI) have been approved for treatment of metastatic castration-resistant prostate cancer (mCRPC). However, the limited success of ASI in clinic justifies an urgent need to identify new targets and develop novel approaches for treatment. EZH2 significantly increases in prostate cancer (PCa). Little is understood, however, regarding the roles of EZH2 in Enzalutamide-resistant (EnzR) mCRPC. METHODS We firstly investigated the levels of EZH2 and the altered pathways in public database which was comprised with primary and metastatic PCa patient tumors. To elucidate the roles of EZH2 in mCRPC, we manipulated EZH2 in EnzR PCa cell lines to examine epithelial-mesenchymal transition (EMT). To dissect the underlying mechanisms, we measured the transcription levels of EMT-associated transcription factors (TFs). RESULTS We found that EZH2 was highly expressed in mCRPC than that of primary PCa tumors and that EnzR PCa cells gained more EMT characteristics than those of enzalutamide-sensitive counterparts. Further, loss of EZH2-induced inhibition of EMT is independent of polycomb repressive complex 2 (PRC2). Mechanistically, downregulation of EZH2 inhibits transcription of EMT-associated TFs by repressing formation of H3K4me3 to the promotor regions of the TFs. CONCLUSION We identified the novel roles of EZH2 in EnzR mCRPC. EnzR PCa gains more EMT properties than that of enzalutamide-sensitive PCa. Loss of EZH2-assocaited inhibition of EMT is PRC2 independent. Downregulation of EZH2 suppresses EMT by impairing formation of H3K4me3 at the promotor regions, thus repressing expression of EMT-associated TFs.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Miyeong Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ka Wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Ninfali C, Siles L, Esteve-Codina A, Postigo A. The mesodermal and myogenic specification of hESCs depend on ZEB1 and are inhibited by ZEB2. Cell Rep 2023; 42:113222. [PMID: 37819755 DOI: 10.1016/j.celrep.2023.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | | | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain; Molecular Targets Program, J.G. Brown Center, Louisville University Healthcare Campus, Louisville, KY 40202, USA; ICREA, 08010 Barcelona, Spain.
| |
Collapse
|
23
|
Sánchez-Tilló E, Pedrosa L, Vila I, Chen Y, Győrffy B, Sánchez-Moral L, Siles L, Lozano JJ, Esteve-Codina A, Darling DS, Cuatrecasas M, Castells A, Maurel J, Postigo A. The EMT factor ZEB1 paradoxically inhibits EMT in BRAF-mutant carcinomas. JCI Insight 2023; 8:e164629. [PMID: 37870961 PMCID: PMC10619495 DOI: 10.1172/jci.insight.164629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
Despite being in the same pathway, mutations of KRAS and BRAF in colorectal carcinomas (CRCs) determine distinct progression courses. ZEB1 induces an epithelial-to-mesenchymal transition (EMT) and is associated with worse progression in most carcinomas. Using samples from patients with CRC, mouse models of KrasG12D and BrafV600E CRC, and a Zeb1-deficient mouse, we show that ZEB1 had opposite functions in KRAS- and BRAF-mutant CRCs. In KrasG12D CRCs, ZEB1 was correlated with a worse prognosis and a higher number of larger and undifferentiated (mesenchymal or EMT-like) tumors. Surprisingly, in BrafV600E CRC, ZEB1 was associated with better prognosis; fewer, smaller, and more differentiated (reduced EMT) primary tumors; and fewer metastases. ZEB1 was positively correlated in KRAS-mutant CRC cells and negatively in BRAF-mutant CRC cells with gene signatures for EMT, cell proliferation and survival, and ERK signaling. On a mechanistic level, ZEB1 knockdown in KRAS-mutant CRC cells increased apoptosis and reduced clonogenicity and anchorage-independent growth; the reverse occurred in BRAFV600E CRC cells. ZEB1 is associated with better prognosis and reduced EMT signature in patients harboring BRAF CRCs. These data suggest that ZEB1 can function as a tumor suppressor in BRAF-mutant CRCs, highlighting the importance of considering the KRAS/BRAF mutational background of CRCs in therapeutic strategies targeting ZEB1/EMT.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Group of Gastrointestinal and Pancreatic Oncology, Department of Liver, Digestive System and Metabolism, IDIBAPS, Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
| | - Leire Pedrosa
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, and Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Ingrid Vila
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yongxu Chen
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Balázs Győrffy
- Cancer Biomarker Research Group, Research Centre for Natural Sciences (TKK), and Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lidia Sánchez-Moral
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan J. Lozano
- Bioinformatics Platform, CIBEREHD, ISCIII, Barcelona, Spain
| | - Anna Esteve-Codina
- National Centre for Genomic Analysis (CNAG) Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Medicine and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Immunology, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Miriam Cuatrecasas
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Group of Molecular Pathology of Inflammatory Conditions and Solid Tumours, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
- Department of Pathology, Hospital Clínic and University of Barcelona School of Medicine, Barcelona, Spain
| | - Antoni Castells
- Group of Gastrointestinal and Pancreatic Oncology, Department of Liver, Digestive System and Metabolism, IDIBAPS, Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic and University of Barcelona School of Medicine, Barcelona, Spain
| | - Joan Maurel
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, and Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Department of Oncology and Hematology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Network in Gastrointestinal and Liver Diseases (CIBEREHD), Carlos III National Health Institute (ISCIII), Barcelona, Spain
- Molecular Targets Program, Department of Medicine, J.G. Brown Cancer Center, Louisville, Kentucky, USA
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Clarkson-Paredes C, Karl MT, Popratiloff A, Miller RH. A unique cell population expressing the Epithelial-Mesenchymal Transition-transcription factor Snail moderates microglial and astrocyte injury responses. PNAS NEXUS 2023; 2:pgad334. [PMID: 37901440 PMCID: PMC10612478 DOI: 10.1093/pnasnexus/pgad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Insults to the central nervous system (CNS) elicit common glial responses including microglial activation evidenced by functional, morphological, and phenotypic changes, as well as astrocyte reactions including hypertrophy, altered process orientation, and changes in gene expression and function. However, the cellular and molecular mechanisms that initiate and modulate such glial response are less well-defined. Here we show that an adult cortical lesion generates a population of ultrastructurally unique microglial-like cells that express Epithelial-Mesenchymal Transcription factors including Snail. Knockdown of Snail with antisense oligonucleotides results in a postinjury increase in activated microglial cells, elevation in astrocyte reactivity with increased expression of C3 and phagocytosis, disruption of astrocyte junctions and neurovascular structure, increases in neuronal cell death, and reduction in cortical synapses. These changes were associated with alterations in pro-inflammatory cytokine expression. By contrast, overexpression of Snail through microglia-targeted an adeno-associated virus (AAV) improved many of the injury characteristics. Together, our results suggest that the coordination of glial responses to CNS injury is partly mediated by epithelial-mesenchymal transition-factors (EMT-Fsl).
Collapse
Affiliation(s)
- Cheryl Clarkson-Paredes
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Molly T Karl
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| | - Anastas Popratiloff
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| |
Collapse
|
25
|
Zhang Y, Wang X, Duan X, Du T, Chen X. The synergistic effect of EMT regulators and m6A modification on prognosis-related immunological signatures for ovarian cancer. Sci Rep 2023; 13:14872. [PMID: 37684273 PMCID: PMC10491820 DOI: 10.1038/s41598-023-41554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Recently, there has been growing interest among researchers in exploring the effects of epithelial-mesenchymal transformation (EMT) or N6-Methyladenosine (m6A) modification regulators on tumor development. However, the synergistic efficiency of these regulators in relation to ovarian cancer development remains unclear. This study aims to explore the transcription patterns of main regulators, including 19 EMT and 22 m6A, in ovarian cancer samples from TCGA datasets and normal samples from GTEx datasets. After conducting a LASSO regression analysis, ten prognostic signatures were identified, namely KIAA1429, WTAP, SNAI1, AXL, IGF2BP1, ELAVL1, CBLL1, CDH2, NANOG and ALKBH5. These signatures were found to have a comprehensive effect on immune infiltrating signatures and the final prognostic outcome. Next, utilizing the ssGSEA algorithm and conducting overall survival analyses, we have identified the key prognosis-related immunological signatures in ovarian cancer to be ALKBH5, WTAP, ELAVL1, and CDH2 as the regulators. The characteristic immune response and related genetic expression have revealed a significant correlation between the alteration of m6A regulators and EMT regulators, indicating a synergistic effect between these two factors in the development of ovarian cancer. In summary, our research offers a novel perspective and strategy to enhance the occurrence, progression, and prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Yanna Zhang
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Xun Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaogang Duan
- Chengdu Eighth People's Hospital/Geriatric Hospital of Chengdu Medical College, Chengdu, 610000, Sichuan, People's Republic of China
| | - Ting Du
- Noncoding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Xiancheng Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
26
|
Li Z, Lu T, Chen Z, Yu X, Wang L, Shen G, Huang H, Li Z, Ren Y, Guo W, Hu Y. HOXA11 promotes lymphatic metastasis of gastric cancer via transcriptional activation of TGFβ1. iScience 2023; 26:107346. [PMID: 37539033 PMCID: PMC10393827 DOI: 10.1016/j.isci.2023.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Most gastric cancer (GC) patients with early stage often have no lymph node (LN) metastases, while LN metastases appear in the advanced stage. However, there are some patients who present with early stage LN metastases and no LN metastases in the advanced stage. To explore the deeper molecular mechanisms involved, we collected clinical samples from early and advanced stage GC with and without LN metastases, as well as metastatic lymph nodes. Herein, we identified a key target, HOXA11, that was upregulated in GC tissues and closely associated with lymphatic metastases. HOXA11 transcriptionally regulates TGFβ1 expression and activates the TGFβ1/Smad2 pathway, which not only promotes EMT development but also induces VEGF-C secretion and lymphangiogenesis. These findings provide a plausible mechanism for HOXA11-modulated tumor in lymphatic metastasis and suggest that HOXA11 may represent a potential therapeutic target for clinical intervention in LN-metastatic gastric cancer.
Collapse
Affiliation(s)
- Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Tailiang Lu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xiang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
27
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
28
|
Furukawa T, Mimami K, Nagata T, Yamamoto M, Sato M, Tanimoto A. Approach to Functions of BHLHE41/DEC2 in Non-Small Lung Cancer Development. Int J Mol Sci 2023; 24:11731. [PMID: 37511489 PMCID: PMC10380948 DOI: 10.3390/ijms241411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The circadian rhythm-related genes BHLHE40/DEC1 and BHLHE41/DEC2 have various functions under different cell and tissue conditions. BHLHE41/DEC2 has been reported to be both a cancer-suppressive and an oncogenic gene during cancer development. The effects of BHLHE41/DEC2 on differentiation have been examined using Bhlhe41/Dec2 knockout mice and/or in vitro differentiation models, and research has been conducted using genetic analysis of tumor cells, in vitro analysis of cancer cell lines, and immunohistochemical studies of the clinical samples. We summarize some of these studies, detail several problems, and consider possible reasons for contradictory results and the needs for further research.
Collapse
Affiliation(s)
- Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kentaro Mimami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan
| | - Toshiyuki Nagata
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masatasu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masami Sato
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
29
|
Poryazova E, Serteva D, Markov D, Chonov V, Markov G. Expression of Snail and Twist compared with clinical and pathological parameters in patients with gastric cancer. Folia Med (Plovdiv) 2023; 65:393-398. [PMID: 38351814 DOI: 10.3897/folmed.65.e84132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is a process of change in the cellular phenotype from epithelial to mesenchymal morphology. The changes at the cellular level can explain the great heterogeneity and plasticity in the different histological subtypes of gastric carcinomas, which causes difficulties in therapy. In it, epithelial cells reduce intercellular adhesion, which is crucial in the process of invasion and metastasis of gastric carcinomas. Inhibition of cell adhesion molecules such as E-cadherin is known to be influenced by a number of transcription factors, such as Snail and Twist.
Collapse
|
30
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
- Dexter Hoi Long Leung
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
31
|
Zhang Y, Do KK, Wang F, Lu X, Liu JY, Li C, Ceresa BP, Zhang L, Dean DC, Liu Y. Zeb1 facilitates corneal epithelial wound healing by maintaining corneal epithelial cell viability and mobility. Commun Biol 2023; 6:434. [PMID: 37081200 PMCID: PMC10119281 DOI: 10.1038/s42003-023-04831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The cornea is the outmost ocular tissue and plays an important role in protecting the eye from environmental insults. Corneal epithelial wounding provokes pain and fear and contributes to the most ocular trauma emergency assessments worldwide. ZEB1 is an essential transcription factor in development; but its roles in adult tissues are not clear. We identify Zeb1 is an intrinsic factor that facilitates corneal epithelial wound healing. In this study, we demonstrate that monoallelic deletion of Zeb1 significantly expedites corneal cell death and inhibits corneal epithelial EMT-related cell migration upon an epithelial debridement. We provide evidence that Zeb1-regulation of corneal epithelial wound healing is through the repression of genes required for Tnfa-induced epithelial cell death and the induction of genes beneficial for epithelial cell migration. We suggest utilizing TNF-α antagonists would reduce TNF/TNFR1-induced cell death in the corneal epithelium and inflammation in the corneal stroma to help corneal wound healing.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, 78229, USA
| | - Khoi K Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, 250021, Jinan, China
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John Y Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Chi Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, China
| | - Douglas C Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
32
|
Meng L, Hu YT, Xu AM. F-box and leucine-rich repeat 6 promotes gastric cancer progression via the promotion of epithelial-mesenchymal transition. World J Gastrointest Oncol 2023; 15:490-503. [PMID: 37009323 PMCID: PMC10052668 DOI: 10.4251/wjgo.v15.i3.490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/06/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND F-box and leucine-rich repeat 6 (FBXL6) have reportedly been associated with several cancer types. However, the role and mechanisms of FBXL6 in gastric cancer (GC) require further elucidation.
AIM To investigate the effect of FBXL6 in GC tissues and cells and the underlying mechanisms.
METHODS TCGA and GEO database analysis was performed to evaluate the expression of FBXL6 in GC tissues and adjacent normal tissues. Reverse transcription-quantitative polymerase chain reaction, immunofluorescence, and western blotting were used to detect the expression of FBXL6 in GC tissue and cell lines. Cell clone formation, 5-ethynyl-2’-deoxyuridine (EdU) assays, CCK-8, transwell migration assay, and wound healing assays were performed to evaluate the malignant biological behavior in GC cell lines after transfection with FBXL6-shRNA and the overexpression of FBXL6 plasmids. Furthermore, in vivo tumor assays were performed to prove whether FBXL6 promoted cell proliferation in vivo.
RESULTS FBXL6 expression was upregulated more in tumor tissues than in adjacent normal tissues and positively associated with clinicopathological characteristics. The outcomes of CCK-8, clone formation, and Edu assays demonstrated that FBXL6 knockdown inhibited cell proliferation, whereas upregulation of FBXL6 promoted proliferation in GC cells. Additionally, the transwell migration assay revealed that FBXL6 knockdown suppressed migration and invasion, whereas the overexpression of FBXL6 showed the opposite results. Through the subcutaneous tumor implantation assay, it was evident that the knockdown of FBXL6 inhibited GC graft tumor growth in vivo. Western blotting showed that the effects of FBXL6 on the expression of the proteins associated with the epithelial-mesenchymal transition-associated proteins in GC cells.
CONCLUSION Silencing of FBXL6 inactivated the EMT pathway to suppress GC malignancy in vitro. FBXL6 can potentially be used for the diagnosis and targeted therapy of patients with GC.
Collapse
Affiliation(s)
- Lei Meng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yu-Ting Hu
- Department of Immunology, College of Basic Medicine, Anhui Medical University, Hefei 230022, Anhui Province, China
| | - A-Man Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
33
|
Furukawa T, Tabata S, Minami K, Yamamoto M, Kawahara K, Tanimoto A. Metabolic reprograming of cancer as a therapeutic target. Biochim Biophys Acta Gen Subj 2023; 1867:130301. [PMID: 36572257 DOI: 10.1016/j.bbagen.2022.130301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.
Collapse
Affiliation(s)
- Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Sho Tabata
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Minami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
34
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif 2023:e13423. [PMID: 36808651 DOI: 10.1111/cpr.13423] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
35
|
Winningham AH, Camper SA. Pituitary Stem Cell Regulation by Zeb2 and BMP Signaling. Endocrinology 2023; 164:bqad016. [PMID: 36683433 PMCID: PMC10091485 DOI: 10.1210/endocr/bqad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is important for many developing organs, and for wound healing, fibrosis, and cancer. Pituitary stem cells undergo an EMT-like process as they migrate and initiate differentiation, but little is known about the input of signaling pathways or the genetic hierarchy of the transcriptional cascade. Prop1 mutant stem cells fail to undergo changes in cellular morphology, migration, and transition to the Pou1f1 lineage. We used Prop1 mutant mice to identify the changes in gene expression that are affiliated with EMT-like processes. BMP and TGF-β family gene expression was reduced in Prop1 mutants and Elf5, a transcription factor that characteristically suppresses EMT, had elevated expression. Genes involved in cell-cell contact such as cadherins and claudins were elevated in Prop1 mutants. To establish the genetic hierarchy of control, we manipulated gene expression in pituitary stem cell colonies. We determined that the EMT inducer, Zeb2, is necessary for robust BMP signaling and repression of Elf5. We demonstrated that inhibition of BMP signaling affects expression of target genes in the Id family, but it does not affect expression of other EMT genes. Zeb2 is necessary for expression of the SHH effector gene Gli2. However, knock down of Gli2 has little effect on the EMT-related genes, suggesting that it acts through a separate pathway. Thus, we have established the genetic hierarchy involved in the transition of pituitary stem cells to differentiation.
Collapse
Affiliation(s)
- Amanda H Winningham
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA
| |
Collapse
|
36
|
Prognostic impact of tumor microenvironment-related markers in patients with adenocarcinoma of the lung. Int J Clin Oncol 2023; 28:229-239. [PMID: 36376711 PMCID: PMC9889427 DOI: 10.1007/s10147-022-02271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are a prominent component in the tumor microenvironment (TME), which plays an important role in lung carcinogenesis. Here, we investigated microenvironmental markers expressed by CAFs, including α-smooth muscle actin, CD10, podoplanin, fibroblast-specific protein 1, platelet-derived growth factor α and β, fibroblast-associated protein, tenascin-C, zinc finger E-box binding homeobox 1 (ZEB1), and twist-related protein 1 expression levels. We evaluated samples from 257 patients with lung adenocarcinoma (LAD) to assess the associations of CAF-related protein expression patterns with prognosis. LAD cases were stratified using cluster analysis. To determine the utility of prognostic markers in LAD, univariate and multivariate analyses were performed. LAD cases were classified into subgroups 1 and 2. Subgroup 2 was shown to be significantly correlated with disease-free and overall survival using univariate and multivariate analyses in this group. Upregulation of podoplanin was identified as a single prognostic marker in this study by univariate and multivariate analyses. In addition, ZEB1 overexpression was correlated with disease-free survival. Our current results suggested that the specific CAF phenotype (e.g., the expression pattern of CAF-related proteins) could predict outcomes in patients with LAD. In addition, podoplanin upregulation may predict outcomes in these patients.
Collapse
|
37
|
Chen D, Zhang Y, Meng L, Lu L, Meng G. circRNA DENND1B inhibits tumorigenicity of clear cell renal cell carcinoma via miR-122-5p/TIMP2 axis. Open Med (Wars) 2022; 17:2085-2097. [PMID: 36578555 PMCID: PMC9761921 DOI: 10.1515/med-2022-0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancers. However, circ_DENND1B has not been studied yet. GSE100186 dataset was used for the level analysis of circ_DENND1B. The quantitative real-time PCR was used to verify the expression of circ_DENND1B, microRNA-122-5p (miR-122-5p) and tissue inhibitor of metalloproteinases-2 (TIMP2) in ccRCC tissues and cells. Cell proliferation, migration, invasion and apoptosis were detected by colony formation assay, thymidine analog 5-ethynyl-2'-deoxyuridine assay, 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide, transwell and flow cytometry. The binding of miR-122-5p to circ_DENND1B/TIMP2 was investigated by dual-luciferase reporter assay. Finally, the role of circ_DENND1B in ccRCC was detected by tumorigenesis experiment in mice. circ_DENND1B was downregulated in ccRCC and circ_DENND1B overexpression suppressed the malignant behaviors of ccRCC cells. circ_DENND1B acted as a sponge of miR-122-5p. miR-122-5p upregulation reversed the effects of circ_DENND1B on cell proliferation, migration, invasion and apoptosis. TIMP2 was a target of miR-122-5p. Overexpression of circ_DENND1B regulated TIMP2 level by inhibiting miR-122-5p expression in ccRCC cells. circ_DENND1B overexpression inhibited the tumor growth of ccRCC in vivo. circ_DENND1B inhibited ccRCC cell progression by promoting TIMP2 expression by sponging miR-122-5p, suggesting that circ_DENND1B might be an effective therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Deqiang Chen
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| | - Yanchun Zhang
- Department of Rehabilitation, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061001, China
| | - Liang Meng
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| | - Li Lu
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| | - Gaopei Meng
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| |
Collapse
|
38
|
Jung M, Ghamrawi S, Du EY, Gooding JJ, Kavallaris M. Advances in 3D Bioprinting for Cancer Biology and Precision Medicine: From Matrix Design to Application. Adv Healthc Mater 2022; 11:e2200690. [PMID: 35866252 DOI: 10.1002/adhm.202200690] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/08/2022] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment is highly complex owing to its heterogeneous composition and dynamic nature. This makes tumors difficult to replicate using traditional 2D cell culture models that are frequently used for studying tumor biology and drug screening. This often leads to poor translation of results between in vitro and in vivo and is reflected in the extremely low success rates of new candidate drugs delivered to the clinic. Therefore, there has been intense interest in developing 3D tumor models in the laboratory that are representative of the in vivo tumor microenvironment and patient samples. 3D bioprinting is an emerging technology that enables the biofabrication of structures with the virtue of providing accurate control over distribution of cells, biological molecules, and matrix scaffolding. This technology has the potential to bridge the gap between in vitro and in vivo by closely recapitulating the tumor microenvironment. Here, a brief overview of the tumor microenvironment is provided and key considerations in biofabrication of tumor models are discussed. Bioprinting techniques and choice of bioinks for both natural and synthetic polymers are also outlined. Lastly, current bioprinted tumor models are reviewed and the perspectives of how clinical applications can greatly benefit from 3D bioprinting technologies are offered.
Collapse
Affiliation(s)
- MoonSun Jung
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sarah Ghamrawi
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Eric Y Du
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Zhang Y, Duan Y, Wu C, Peng W, Chen W, Wang L, Deng Z. MiR-200c regulates invasion, proliferation and EMT of anaplastic thyroid cancer cells by targeting parathyroid hormone like hormone. Growth Factors 2022; 40:175-185. [PMID: 36067091 DOI: 10.1080/08977194.2022.2108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study aimed to explore the specific effect of miR-200c in anaplastic thyroid cancer (ATC). Hth74 and ARO cell lines were used. Proliferation, invasion, and colony formation activities of Hth74 and ARO cell lines affected by miR-200c were studied. Expression of epithelial-to-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, Slug, and Snail) in the Hth74 and ARO cell lines were validated by western blot and qRT-PCR. In addition, the regulation of the parathyroid hormone-like hormone (PTHLH) by miR-200c was assessed. Overexpression of miR-200c inhibited the invasion, proliferation, and colony formation of the ATC cell lines, whereas its downregulation achieved the opposite results. PTHLH was found to be regulated negatively by miR-200c through a miR-200c binding site within the 3'-UTR of PTHLH. miR-200c repressed the proliferation, invasion, and EMT process of cells in ATC cell lines by targeting PTHLH post-transcriptionally, which indicates that miR-200c may be a potential target for the treatment of ATC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, PR China
| | - Yuanyuan Duan
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Chenguang Wu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, PR China
| | - Wen Peng
- Department of Public Health Nutrition, Medical School, Qinghai University, Xining, PR China
| | - Wenyu Chen
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, PR China
| | - Li Wang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, PR China
| | - Zhaoqun Deng
- Laboratory Center, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
40
|
Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J, Shi Y, Jiang L. The lipid transporter HDLBP promotes hepatocellular carcinoma metastasis through BRAF-dependent epithelial-mesenchymal transition. Cancer Lett 2022; 549:215921. [PMID: 36122630 DOI: 10.1016/j.canlet.2022.215921] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Tumor metastasis is a major cause of cancer mortality. However, little is known regarding the regulation of abnormal cholesterol metabolism in hepatocellular carcinoma (HCC) metastasis. Here, we show that the expression of high-density lipoprotein binding protein (HDLBP), a lipid transporter, is clinically correlated with tumor metastasis in HCC patients. Moreover, HDLBP was required for cholesterol-induced HCC metastasis. We revealed that knockdown and overexpression of HDLBP significantly inhibited and enhanced, respectively, the metastasis, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro and in vivo. Mechanistically, coimmunoprecipitation and mass spectrometry screening uncovered BRAF as a protein target of HDLBP. HDLBP was found to promote EMT signaling in a BRAF-dependent manner. Furthermore, HDLBP interacts with BRAF and inhibits its ubiquitinated degradation by abrogating BRAF-ITCH interactions. Notably, further studies suggest that dabrafenib exhibited a greater metastasis-suppressive effect in HDLBP knockout HCC than isolated treatment. Overall, our findings imply that cholesterol-induced HDLBP contributes to the metastasis and invasion of HCC through BRAF-dependent EMT signaling and that HDLBP may be applied as a biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Lv
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jian Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lvnan Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yujun Shi
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Li Jiang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
41
|
Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200244. [PMID: 35644929 PMCID: PMC9376856 DOI: 10.1002/advs.202200244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Indexed: 05/04/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children resulting in substantial morbidity and mortality. A deeper understanding of the NB tumor microenvironment (TME) remains an area of active research but there is a lack of reliable and biomimetic experimental models. This study utilizes a 3D bioprinting approach, in combination with NB spheroids, to create an in vitro vascular model of NB for exploring the tumor function within an endothelialized microenvironment. A gelatin methacryloyl (gelMA) bioink is used to create multi-channel cubic tumor analogues with high printing fidelity and mechanical tunability. Human-derived NB spheroids and human umbilical vein endothelial cells (HUVECs) are incorporated into the biomanufactured gelMA and cocultured under static versus dynamic conditions, demonstrating high levels of survival and growth. Quantification of NB-EC integration and tumor cell migration suggested an increased aggressive behavior of NB when cultured in bioprinted endothelialized models, when cocultured with HUVECs, and also as a result of dynamic culture. This model also allowed for the assessment of metabolic, cytokine, and gene expression profiles of NB spheroids under varying TME conditions. These results establish a high throughput research enabling platform to study the TME-mediated cellular-molecular mechanisms of tumor growth, aggression, and response to therapy.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Jenny Shim
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Rui Liu
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Riya Mehta
- Department of BiologyEmory UniversityAtlantaGA30322USA
| | - Andrew Mingee
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Chunhui Xu
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Kelly C. Goldsmith
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
42
|
Wang H, Luo Y, Chu Z, Ni T, Ou S, Dai X, Zhang X, Liu Y. Poria Acid, Triterpenoids Extracted from Poria cocos, Inhibits the Invasion and Metastasis of Gastric Cancer Cells. Molecules 2022; 27:molecules27113629. [PMID: 35684565 PMCID: PMC9182142 DOI: 10.3390/molecules27113629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Poria cocos (P. cocos) is an important medicinal fungus in traditional Chinese medicine. Poria acid (PA), a triterpenoid compound, is an effective component of traditional Chinese medicine P. cocos. This experiment investigated the anti-gastric cancer biological activity of PA in vitro. Methods: The effect of PA on the viability of gastric cancer cells was detected by the thiazolyl blue (MTT) assay. Cell adhesion assays were used to detect changes in the adhesion of cells treated after PA (0, 20, 40, and 80 µmol/L). The ability of cell invasion and migration were detected by Transwell assays and wound healing assays. A high-content imaging system was used to dynamically record the motility of the gastric cancer cells after PA (0, 20, 40, and 80 µmol/L) treatment. Western blotting was used to detect the expression of epithelial–mesenchymal transformation (EMT), invasion and migration related proteins. Results: The MTT assay showed that the proliferation of gastric cancer cells was significantly inhibited after PA treatment. Cell adhesion experiments showed that the adhesion of gastric cancer cells was significantly decreased after PA treatment. Compared with the control group, the wound healing area of the gastric cancer cells treated with different concentrations of PA decreased. The Transwell assay showed that the number of gastric cancer cells passing through the cell membrane were significantly reduced after PA treatment. In addition, after PA treatment, the cells’ movement distance and average movement speed were significantly lower than those of the control group. Finally, PA can significantly alter the expression of EMT-related proteins E-cadherin, N-cadherin, and Vimentin and decreased the expressions of metastasis-related proteins matrix metalloproteinase (MMP) 2, MMP-9 and tissue inhibition of matrix metalloproteinase (TIMP)1 in the gastric cancer cells. Conclusions: Triterpenoids from P. cocos have significant biological activity against gastric cancer, and the mechanism may be involved in the process of epithelial–mesenchymal transformation.
Collapse
Affiliation(s)
- Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (Z.C.); (T.N.); (S.O.)
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China;
- Correspondence: (H.W.); (X.Z.); (Y.L.)
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (Z.C.); (T.N.); (S.O.)
| | - Zewen Chu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (Z.C.); (T.N.); (S.O.)
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China;
| | - Tengyang Ni
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (Z.C.); (T.N.); (S.O.)
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China;
| | - Shiya Ou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (Z.C.); (T.N.); (S.O.)
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China;
| | - Xiaojun Dai
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China;
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Xiaochun Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (Z.C.); (T.N.); (S.O.)
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China;
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou 225001, China
- Correspondence: (H.W.); (X.Z.); (Y.L.)
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (Z.C.); (T.N.); (S.O.)
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China;
- Correspondence: (H.W.); (X.Z.); (Y.L.)
| |
Collapse
|
43
|
Hamidi AA, Taghehchian N, Basirat Z, Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer. Biomark Res 2022; 10:40. [PMID: 35659780 PMCID: PMC9167543 DOI: 10.1186/s40364-022-00382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer (TC) is one of the most frequent endocrine malignancies that is more common among females. Tumor recurrence is one of the most important clinical manifestations in differentiated TC which is associated with different factors including age, tumor size, and histological features. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are also involved in TC progression and metastasis. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration that affects the initiation and transformation of early-stage tumors into invasive malignancies. A combination of transcription factors, growth factors, signaling pathways, and epigenetic regulations affect the thyroid cell migration and EMT process. MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways. Various miRNAs are involved in the signaling pathways associated with TC metastasis which can be used as diagnostic and therapeutic biomarkers. Since, the miRNAs are sensitive, specific, and non-invasive, they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. In the present review, we have summarized all of the miRNAs which have been significantly involved in thyroid tumor cells migration and invasion. We also categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion. This review paves the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in aggressive and metastatic TC patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Singh R, Singh UP, Agrawal V, Garg M. Epithelial-to-mesenchymal transition based diagnostic and prognostic signature markers in non-muscle invasive and muscle invasive bladder cancer patients. Mol Biol Rep 2022; 49:7541-7556. [PMID: 35593896 DOI: 10.1007/s11033-022-07563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Diagnostic and prognostic significance of epithelial-to-mesenchymal transition (EMT) associated biomarkers are evaluated in a cohort of NMIBC (non-muscle invasive bladder cancer) and MIBC (muscle invasive bladder cancer) patients. METHODS AND RESULTS Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) staining were carried out in 100 tumor specimens (59 NMIBC and 41 MIBC). The expressions of the epithelial marker, mesenchymal markers and EMT-activating transcription factors (EMT-ATFs) were determined at transcriptome and protein level followed by their statistical associations with clinicohistopathological variables of the patients. Transcriptomic expression analysis showed statistical relevance of tumor stage with increased Twist and Zeb-1; tumor type with reduced E-cadherin and increased Snail; and smoking/tobacco chewing status (S/TC) of patients with increased N-cadherin and Snail in NMIBC patients. Tumor grade with reduced message E-cadherin, gain of N-cadherin, Snail, Twist and Zeb-1; patients' age with reduced E-cadherin and Twist gain; and tumor type with increased message N-cadherin exhibited associations in MIBC patients. Protein expression analysis identified statistical relevance of tumor grade with nuclear gain of Snail and Twist; and nuclear gain of Slug with S/TC status of NMIBC patients. Novel gain of membranous Vimentin deduced association with patients' age in MIBC patients. Survival analysis identified novel Vimentin as the positive predictor of short progression free survival (PFS) and short overall survival (OS) in MIBC patients. Study established altered EMT profile as the independent negative predictor of short recurrence free survival (RFS) in NMIBC patients and positive predictor of short PFS and OS in MIBC patients. CONCLUSIONS EMT associated biomarkers could provide diagnostic and prognostic risk stratification and hence could be of importance in the clinical management of bladder cancer patients.
Collapse
Affiliation(s)
- R Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - U P Singh
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - V Agrawal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - M Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
45
|
Hegde M, Daimary UD, Kumar A, Chinnathambi A, Alharbi SA, Shakibaei M, Kunnumakkara AB. STAT3/HIF1A and EMT specific transcription factors regulated genes: Novel predictors of breast cancer metastasis. Gene X 2022; 818:146245. [PMID: 35074419 DOI: 10.1016/j.gene.2022.146245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Metastasis, the fatal hallmark of breast cancer (BC), is a serious hurdle for therapy. Current prognostic approaches are not sufficient to predict the metastasis risk for BC patients. Therefore, in the present study, we analyzed gene expression data from GSE139038 and TCGA database to develop predictive markers for BC metastasis. Initially, the data from GSE139038 which contained 65 samples consisting of 41 breast tumor tissues, 18 paired morphologically normal tissues and 6 from non-malignant breast tissues were analyzed for differentially expressed genes (DEGs). DEGs were obtained from three different comparisons: paired morphologically normal (MN) versus tumor samples (C), apparently normal (AN) versus tumor samples (C), and paired morphologically normal (MN) versus apparently normal samples (AN). Multiple bioinformatic methods were employed to evaluate metastasis, EMT and triple negative breast cancer (TNBC) specific genes. Further, regulation of gene expression, clinicopathological factors and DNA methylation patterns of DEGs in BC were validated with TCGA datasets. Our bioinformatic analysis showed that 40 genes were upregulated and 294 were found to be downregulated between AN vs C; 124 were upregulated and 760 genes were downregulated between MN vs C; 4 were upregulated and 13 were downregulated between MN vs AN. Analysis using TCGA dataset revealed 18 genes were significantly altered in nodal positive BC patients compared to nodal negative BC patients. Our study showed novel candidate genes as predictive markers for BC metastasis which can also be used for therapeutic targets for BC treatment.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
46
|
Detroja TS, Gil-Henn H, Samson AO. Text-Mining Approach to Identify Hub Genes of Cancer Metastasis and Potential Drug Repurposing to Target Them. J Clin Med 2022; 11:jcm11082130. [PMID: 35456223 PMCID: PMC9029557 DOI: 10.3390/jcm11082130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/11/2022] Open
Abstract
Metastasis accounts for the majority of cancer-related deaths. Despite decades of research, the prevention and suppression of metastasis remain an elusive goal, and to date, only a few metastasis-related genes have been targeted therapeutically. Thus, there is a strong need to find potential genes involved in key driver traits of metastasis and their available drugs. In this study, we identified genes associated with metastasis and repurposable drugs that potentially target them. First, we use text mining of PubMed citations to identify candidate genes associated with metastatic processes, such as invadopodia, motility, movement, metastasis, invasion, wound healing, EMT (epithelial to mesenchymal transition), and podosome. Next, we annotated the top genes involved in each process as a driver, tumor suppressor, or oncogene. Then, a total of 185 unique cancer genes involved in metastasis-related processes were used for hub gene analysis using bioinformatics tools. Notably, a total of 77 hub genes were identified. Further, we used virtual screening data of druggable candidate hub genes involved in metastasis and identified potential drugs that can be repurposed as anti-metastatic drugs. Remarkably, we found a total of 50 approved drugs that have the potential to be repurposed against 19 hub genes involved in metastasis-related processes. These 50 drugs were also found to be validated in different cancer cell lines, such as dasatinib, captopril, leflunomide, and dextromethorphan targeting SRC, MMP2, PTK2B, and RAC1 hub genes, respectively. These repurposed drugs potentially target metastasis, provide pharmacodynamic insight, and offer a window of opportunity for the development of much-needed antimetastatic drugs.
Collapse
Affiliation(s)
- Trishna Saha Detroja
- Cell Migration and Invasion Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Drug Discovery Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel;
- Correspondence: (T.S.D.); (H.G.-H.)
| | - Hava Gil-Henn
- Cell Migration and Invasion Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Correspondence: (T.S.D.); (H.G.-H.)
| | - Abraham O. Samson
- Drug Discovery Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel;
| |
Collapse
|
47
|
Lu Z, Yuan S, Ruan L, Tu Z, Liu H. Partitioning defective 6 homolog alpha (PARD6A) promotes epithelial–mesenchymal transition via integrin β1-ILK-SNAIL1 pathway in ovarian cancer. Cell Death Dis 2022; 13:304. [PMID: 35379775 PMCID: PMC8980072 DOI: 10.1038/s41419-022-04756-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Partitioning-defective protein 6 (Par6) family proteins have been demonstrated to be closely associated with the occurrence and development of cancers. It is well accepted that dysregulation of epithelial–mesenchymal transition (EMT) greatly contributes to carcinogenesis and metastases of ovarian cancer. So far, the roles of Par6 in EMT of ovarian cancer are not clear. Functional experiments were carried out to study the roles of PARD6A in EMT of ovarian cancer in vitro and in vivo, and EMT pathways potentially affected by PARD6A expression were screened. We found that PARD6A was significantly highly expressed in tissues of ovarian cancer patients in III-IV stages, poorly differentiated or with lymphatic metastases versus I-II stages, moderately or well differentiated, or without lymphatic metastases, respectively. PARD6A knockdown suppressed EMT of SKOV3 and A2780 cells in vitro and ovarian cancer metastasis in vivo, while overexpression of PARD6A promoted EMT in HO8910 and OVCAR8 cells. It was indicated that PARD6A affected EMT of ovarian cancer cells through SNAIL1 signaling pathway and subsequently modulated the expression of VIMENTIN and E-cadherin, which was further confirmed by knockdown and overexpression of SNAIL1 experiments. PARD6A was also demonstrated to regulate expression of SNAIL1 by modulating integrin β1 and ILK proteins, specifically it was shown that the transcription of SNAIL1 was regulated by ILK in this study. In addition, expression of ILK in ovarian cancer tissues was demonstrated to be correlated with tumor stages and lymphatic metastases clinically. In this study, we identified a novel role of PARD6A as an inducer of cell migration and invasion, which is likely to play an important role in metastasis of ovarian cancer. The molecular pathways of EMT mediated by PARD6A-Integrin β1-ILK-SNAIL1 and finally implemented by E-cadherin and VIMENTIN may provide a novel strategy for drug development for ovarian cancer therapy in the near future.
Collapse
|
48
|
Zeb1 Regulation of Wound Healing-Induced Inflammation in Alkali-Damaged Corneas. iScience 2022; 25:104038. [PMID: 35340433 PMCID: PMC8941209 DOI: 10.1016/j.isci.2022.104038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The cornea is an avascular tissue for vision clarity. Alkali burn could cause severe traumatic damage on the cornea with inflammation and neovascularization (NV), leading to vision reduction and blindness. Mechanisms underlying corneal inflammation and NV are not as clear. We previously reported that Zeb1 is an important factor in corneal NV, and we sought to clarify whether it is also involved in regulation of corneal inflammation. We analyzed the alkali burn-induced corneal inflammation and wound healing in both Zeb1+/+ and Zeb1−/+ littermates through a multidisciplinary approach. We provide evidence that Zeb1 forms a positive regulatory loop with Tgfb to regulate early corneal inflammation by maintenance of immune cell viability and mobility and later wound healing by activation of both Nf-κb and Tgfb-related Stat3 signaling pathways. We believe that ZEB1 is a potential therapeutic target, and inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition. Traumatic wound induces inflammation in the cornea, resulting in vision reduction Zeb1 is a key factor to retain immune cell viability, mobility, and cytokine expression Zeb1 regulates cytokine gene expression through both Nf-κb and Stat3 pathways Inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition
Collapse
|
49
|
Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci 2022; 23:ijms23031353. [PMID: 35163279 PMCID: PMC8836096 DOI: 10.3390/ijms23031353] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a devastating type of brain tumor, and current therapeutic treatments, including surgery, chemotherapy, and radiation, are palliative at best. The design of effective and targeted chemotherapeutic strategies for the treatment of GBM require a thorough analysis of specific signaling pathways to identify those serving as drivers of GBM progression and invasion. The Wnt/β-catenin and PI3K/Akt/mTOR (PAM) signaling pathways are key regulators of important biological functions that include cell proliferation, epithelial–mesenchymal transition (EMT), metabolism, and angiogenesis. Targeting specific regulatory components of the Wnt/β-catenin and PAM pathways has the potential to disrupt critical brain tumor cell functions to achieve critical advancements in alternative GBM treatment strategies to enhance the survival rate of GBM patients. In this review, we emphasize the importance of the Wnt/β-catenin and PAM pathways for GBM invasion into brain tissue and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Zahra Talaie
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Fatemeh Jusheghani
- Department of Biotechnology, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Correspondence:
| |
Collapse
|
50
|
Zhang X, Tanwar VS, Jose CC, Lee HW, Cuddapah S. Transcriptional repression of E-cadherin in nickel-exposed lung epithelial cells mediated by loss of Sp1 binding at the promoter. Mol Carcinog 2022; 61:99-110. [PMID: 34727382 PMCID: PMC8665052 DOI: 10.1002/mc.23364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
E-cadherin plays a central role in the stability of epithelial tissues by facilitating cell-cell adhesion. Loss of E-cadherin expression is a hallmark of epithelial-mesenchymal transition (EMT), a major event in the pathogenesis of several lung diseases. Our earlier studies showed that nickel, a ubiquitous environmental toxicant, induced EMT by persistently downregulating E-cadherin expression in human lung epithelial cells and that the EMT remained irreversible postexposure. However, the molecular basis of persistent E-cadherin downregulation by nickel exposure is not understood. Here, our studies show that the binding of transcription factor Sp1 to the promoter of E-cadherin encoding gene, CDH1, is essential for its expression. Nickel exposure caused a loss of Sp1 binding at the CDH1 promoter, resulting in its downregulation and EMT induction. Loss of Sp1 binding at the CDH1 promoter was associated with an increase in the binding of ZEB1 adjacent to the Sp1 binding site. ZEB1, an EMT master regulator persistently upregulated by nickel exposure, is a negative regulator of CDH1. CRISPR-Cas9-mediated knockout of ZEB1 restored Sp1 binding at the CDH1 promoter. Furthermore, ZEB1 knockout rescued E-cadherin expression and re-established the epithelial phenotype. Since EMT is associated with a number of nickel-exposure-associated chronic inflammatory lung diseases including asthma, fibrosis and cancer and metastasis, our findings provide new insights into the mechanisms associated with nickel pathogenesis.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Vinay Singh Tanwar
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| |
Collapse
|