1
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Joeris T, Gomez-Casado C, Holmkvist P, Tavernier SJ, Silva-Sanchez A, Klotz L, Randall TD, Mowat AM, Kotarsky K, Malissen B, Agace WW. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3 +CD8 + T regs. Sci Immunol 2021; 6:6/60/eabd3774. [PMID: 34088744 DOI: 10.1126/sciimmunol.abd3774] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Although CD8+ T cell tolerance to tissue-specific antigen (TSA) is essential for host homeostasis, the mechanisms underlying peripheral cross-tolerance and whether they may differ between tissue sites remain to be fully elucidated. Here, we demonstrate that peripheral cross-tolerance to intestinal epithelial cell (IEC)-derived antigen involves the generation and suppressive function of FoxP3+CD8+ T cells. FoxP3+CD8+ Treg generation was dependent on intestinal cDC1, whose absence led to a break of tolerance and epithelial destruction. Mechanistically, intestinal cDC1-derived PD-L1, TGFβ, and retinoic acid contributed to the generation of gut-tropic CCR9+CD103+FoxP3+CD8+ Tregs Last, CD103-deficient CD8+ T cells lacked tolerogenic activity in vivo, indicating a role for CD103 in FoxP3+CD8+ Treg function. Our results describe a role for FoxP3+CD8+ Tregs in cross-tolerance in the intestine for which development requires intestinal cDC1.
Collapse
Affiliation(s)
- Thorsten Joeris
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, Kgs. Lyngby 2800, Denmark, Denmark.,Immunology Section, Lund University, Lund 221 84, Sweden
| | | | | | - Simon J Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent 9000, Belgium.,VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, 9000 Ghent, Belgium
| | - Aaron Silva-Sanchez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luisa Klotz
- University Hospital Münster, Department of Neurology with Institute of Translational Neurology, Münster 48149, Germany
| | - Troy D Randall
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Allan M Mowat
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland
| | - Knut Kotarsky
- Immunology Section, Lund University, Lund 221 84, Sweden
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - William W Agace
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, Kgs. Lyngby 2800, Denmark, Denmark. .,Immunology Section, Lund University, Lund 221 84, Sweden
| |
Collapse
|
3
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
4
|
Husain I, Luo X. Apoptotic Donor Cells in Transplantation. Front Immunol 2021; 12:626840. [PMID: 33717145 PMCID: PMC7947657 DOI: 10.3389/fimmu.2021.626840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Despite significant advances in prevention and treatment of transplant rejection with immunosuppressive medications, we continue to face challenges of long-term graft survival, detrimental medication side effects to both the recipient and transplanted organ together with risks for opportunistic infections. Transplantation tolerance has so far only been achieved through hematopoietic chimerism, which carries with it a serious and life-threatening risk of graft versus host disease, along with variability in persistence of chimerism and uncertainty of sustained tolerance. More recently, numerous in vitro and in vivo studies have explored the therapeutic potential of silent clearance of apoptotic cells which have been well known to aid in maintaining peripheral tolerance to self. Apoptotic cells from a donor not only have the ability of down regulating the immune response, but also are a way of providing donor antigens to recipient antigen-presenting-cells that can then promote donor-specific peripheral tolerance. Herein, we review both laboratory and clinical evidence that support the utility of apoptotic cell-based therapies in prevention and treatment of graft versus host disease and transplant rejection along with induction of donor-specific tolerance in solid organ transplantation. We have highlighted the potential limitations and challenges of this apoptotic donor cell-based therapy together with ongoing advancements and attempts made to overcome them.
Collapse
Affiliation(s)
- Irma Husain
- Department of Medicine, Duke University, Durham, NC, United States
| | - Xunrong Luo
- Department of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Yang P, Zhang X, Lin Z, Wang Q, Guo D, Zhang P, Yang L, Zhang H, Ding R, Tao K, Li X, Dou K. Adoptive transfer of polarized M2c macrophages ameliorates acute rejection in rat liver transplantation. Am J Transl Res 2020; 12:2614-2626. [PMID: 32655794 PMCID: PMC7344085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Hepatic macrophages play pivotal roles in tolerance induction after liver transplantation (LT). However, macrophages possess functional heterogeneities, and the protective role of M2c macrophages, a macrophage subtype characterized by the surface marker CD163 that secretes interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1), in acute rejection following LT, has not been addressed. The aim of this study was to determine whether polarized macrophages of the M2c subtype could improve outcomes after LT for rats, including survival rate, liver function, and inflammatory infiltration. In our study, the numbers of CD163-positive cells were found to be increased in tolerant liver grafts. Immediately following the surgery, M2c macrophages induced from rat bone marrow-derived cells were infused into recipients; this significantly improved survival rate and liver function. The expression levels of IL-10 and TGF-β1 were markedly increased in these rats compared to those in the control group. Furthermore, CD8+ T-cell infiltration was reduced, whereas the numbers of apoptotic cells increased, in rats treated with M2c. To explore the mechanisms of the protective role of M2c, the numbers of major histocompatibility complex (MHC) class II positive cells were found to be decreased and the expression of N-acetylglucosaminyltransferase V (MGAT5) was up-regulated in M2c infusion groups. Together, these findings demonstrate that polarization of macrophages towards the M2c phenotype ameliorated acute rejection in a rat LT model and may provide a novel and effective therapeutic approach for AR after transplantation.
Collapse
Affiliation(s)
- Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Dongnan Guo
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Pengcheng Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
6
|
Xu X, Bian L, Shen M, Li X, Zhu J, Chen S, Xiao L, Zhang Q, Chen H, Xu K, Yang T. Multipeptide-coupled nanoparticles induce tolerance in 'humanised' HLA-transgenic mice and inhibit diabetogenic CD8 + T cell responses in type 1 diabetes. Diabetologia 2017; 60:2418-2431. [PMID: 28887632 DOI: 10.1007/s00125-017-4419-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Induction of antigen-specific immunological tolerance may provide an attractive immunotherapy in the NOD mouse model but the conditions that lead to the successful translation to human type 1 diabetes are limited. In this study, we covalently linked 500 nm carboxylated polystyrene beads (PSB) with a mixture of immunodominant HLA-A*02:01-restricted epitopes (peptides-PSB) that may have high clinical relevance in humans as they promote immune tolerance; we then investigated the effect of the nanoparticle-peptide complexes on T cell tolerance. METHODS PSB-coupled mixtures of HLA-A*02:01-restricted epitopes were administered to HHD II mice via intravenous injection. The effects on delaying the course of the disease were verified in NOD.β2m null HHD mice. The diabetogenic HLA-A*02:01-restricted cytotoxic lymphocyte (CTL) responses to treatment with peptides-PSB were validated in individuals with type 1 diabetes. RESULTS We showed that peptides-PSB could induce antigen-specific tolerance in HHD II mice. The protective immunological mechanisms were mediated through the function of CD4+CD25+ regulatory T cells, suppressive T cell activation and T cell anergy. Furthermore, the peptides-PSB induced an activation and accumulation of regulatory T cells and CD11c+ dendritic cells through a rapid production of CD169+ macrophage-derived C-C motif chemokine 22 (CCL22). Peptides-PSB also prevented diabetes in 'humanised' NOD.β2m null HHD mice and suppressed pathogenic CTL responses in people with type 1 diabetes. CONCLUSIONS/INTERPRETATION Our findings demonstrate for the first time the potential for using multipeptide-PSB complexes to induce T cell tolerance and halt the autoimmune process. These findings represent a promising platform for an antigen-specific tolerance strategy in type 1 diabetes and highlight a mechanism through which metallophilic macrophages mediate the early cell-cell interactions required for peptides-PSB-induced immune tolerance.
Collapse
Affiliation(s)
- Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lingling Bian
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
- Department of Endocrinology, Yancheng City No.1 People's Hospital, Yancheng, Jiangsu Province, People's Republic of China
| | - Min Shen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xin Li
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jing Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shuang Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lei Xiao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qingqing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Heng Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kuanfeng Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Li P, He K, Li J, Liu Z, Gong J. The role of Kupffer cells in hepatic diseases. Mol Immunol 2017; 85:222-229. [PMID: 28314211 DOI: 10.1016/j.molimm.2017.02.018] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KCs) constitute 80-90% of the tissue macrophages present in the body. Essential to innate and adaptive immunity, KCs are responsible for the swift containment and clearance of exogenous particulates and immunoreactive materials which are perceived as foreign and harmful to the body. Similar to other macrophages, KCs also sense endogenous molecular signals that may result from perturbed homeostasis of the host. KCs have been implicated in host defense and the pathogenesis of various hepatic diseases, including endotoxin tolerance, liver transplantation, nonalcoholic fatty liver disease, and alcoholic liver disease. In this review, we summarized some novel findings associated with the role of KCs in hepatic diseases, such as the origin and mechanisms KCs polarization, molecular basis for caspase-1 activation called "non-canonical inflammasome pathway" involving the cleavage of Gsdmd by caspase-11, the important role of microRNA in liver transplantation, and so on. A better understanding of KCs biological characteristics and immunologic function in liver homeostasis and pathology may pave the way to investigate new diagnostic and therapeutic approaches for hepatic diseases.
Collapse
Affiliation(s)
- Peizhi Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun He
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Abstract
The onslaught of foreign antigens carried by spermatozoa into the epididymis, an organ that has not demonstrated immune privilege, a decade or more after the establishment of central immune tolerance presents a unique biological challenge. Historically, the physical confinement of spermatozoa to the epididymal tubule enforced by a tightly interwoven wall of epithelial cells was considered sufficient enough to prevent cross talk between gametes and the immune system and, ultimately, autoimmune destruction. The discovery of an intricate arrangement of mononuclear phagocytes (MPs) comprising dendritic cells and macrophages in the murine epididymis suggests that we may have underestimated the existence of a sophisticated mucosal immune system in the posttesticular environment. This review consolidates our current knowledge of the physiology of MPs in the steady state epididymis and speculates on possible interactions between auto-antigenic spermatozoa, pathogens and the immune system by drawing on what is known about the immune system in the intestinal mucosa. Ultimately, further investigation will provide valuable information regarding the origins of pathologies arising as a result of autoimmune or inflammatory responses in the epididymis, including epididymitis and infertility.
Collapse
Affiliation(s)
- Nicolas Da Silva
- Massachusetts General Hospital and Harvard Medical School, Division of Nephrology, Center for Systems Biology, Boston, Massachusetts, USA
| | | |
Collapse
|
9
|
The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc Natl Acad Sci U S A 2015; 112:10774-9. [PMID: 26261340 DOI: 10.1073/pnas.1504276112] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Efficient apoptotic cell clearance and induction of immunologic tolerance is a critical mechanism preventing autoimmunity and associated pathology. Our laboratory has reported that apoptotic cells induce tolerance by a mechanism dependent on the tryptophan catabolizing enzyme indoleamine 2,3 dioxygenase 1 (IDO1) in splenic macrophages (MΦ). The metabolic-stress sensing protein kinase GCN2 is a primary downstream effector of IDO1; thus, we tested its role in apoptotic cell-driven immune suppression. In vitro, expression of IDO1 in MΦs significantly enhanced apoptotic cell-driven IL-10 and suppressed IL-12 production in a GCN2-dependent mechanism. Suppression of IL-12 protein production was due to attenuation of IL-12 mRNA association with polyribosomes inhibiting translation while IL-10 mRNA association with polyribosomes was not affected. In vivo, apoptotic cell challenge drove a rapid, GCN2-dependent stress response in splenic MΦs with increased IL-10 and TGF-β production, whereas myeloid-specific deletion of GCN2 abrogated regulatory cytokine production with provocation of inflammatory T-cell responses to apoptotic cell antigens and failure of long-tolerance induction. Consistent with a role in prevention of apoptotic cell driven autoreactivity, myeloid deletion of GCN2 in lupus-prone mice resulted in increased immune cell activation, humoral autoimmunity, renal pathology, and mortality. In contrast, activation of GCN2 with an agonist significantly reduced anti-DNA autoantibodies and protected mice from disease. Thus, this study implicates a key role for GCN2 signals in regulating the tolerogenic response to apoptotic cells and limiting autoimmunity.
Collapse
|
10
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
11
|
Smith TB, Cortez-Retamozo V, Grigoryeva LS, Hill E, Pittet MJ, Da Silva N. Mononuclear phagocytes rapidly clear apoptotic epithelial cells in the proximal epididymis. Andrology 2014; 2:755-62. [PMID: 25082073 DOI: 10.1111/j.2047-2927.2014.00251.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/16/2014] [Accepted: 07/01/2014] [Indexed: 12/01/2022]
Abstract
We have shown previously that a network of mononuclear phagocytes (MPs) expressing macrophage and dendritic cell markers such as CD11c, F4/80 and CX3CR1, lines the base of the epididymal tubule. However, in the initial segment (IS) and only in that particular segment, epididymal MPs establish extremely close interactions with the epithelium by projecting slender dendrites between most epithelial cells. We undertook the present study to determine how epididymal phagocytes respond to the transient wave of apoptosis initiated by unilateral efferent duct ligation (EDL) in the epididymal epithelium. We show profound morphological and phenotypical changes restricted to the MPs populating the proximal epididymis following EDL. Within 48 h, a large subset of IS epithelial cells had entered an apoptotic state, visualized by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and CD11c(+) and CX3CR1(+) MPs readily engulfed TUNEL-positive cells and other debris. Despite the high levels of apoptosis and the rapid clearance of apoptotic cells occurring after EDL, the epithelium preserved its overall architecture and maintained tight junctions of the blood-epididymis barrier (BEB). The discovery of a functional population of MPs in the epididymal epithelium responsible for maintaining the integrity of the BEB raises further questions regarding the role of these cells in clearing defective epithelial cells in the steady-state epididymis, as well as pathogens and abnormal spermatozoa in the lumen.
Collapse
Affiliation(s)
- T B Smith
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bryant J, Lerret NM, Wang JJ, Kang HK, Tasch J, Zhang Z, Luo X. Preemptive donor apoptotic cell infusions induce IFN-γ-producing myeloid-derived suppressor cells for cardiac allograft protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:6092-101. [PMID: 24808363 PMCID: PMC4082999 DOI: 10.4049/jimmunol.1302771] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that preemptive infusion of apoptotic donor splenocytes treated with the chemical cross-linker ethylcarbodiimide (ECDI-SPs) induces long-term allograft survival in full MHC-mismatched models of allogeneic islet and cardiac transplantation. The role of myeloid-derived suppressor cells (MDSCs) in the graft protection provided by ECDI-SPs is unclear. In this study, we demonstrate that infusions of ECDI-SPs increase two populations of CD11b(+) cells in the spleen that phenotypically resemble monocytic-like (CD11b(+)Ly6C(high)) and granulocytic-like (CD11b(+)Gr1(high)) MDSCs. Both populations suppress T cell proliferation in vitro and traffic to the cardiac allografts in vivo to mediate their protection via inhibition of local CD8 T cell accumulation and potentially also via induction and homing of regulatory T cells. Importantly, repeated treatments with ECDI-SPs induce the CD11b(+)Gr1(high) cells to produce a high level of IFN-γ and to exhibit an enhanced responsiveness to IFN-γ by expressing higher levels of downstream effector molecules ido and nos2. Consequently, neutralization of IFN-γ completely abolishes the suppressive capacity of this population. We conclude that donor ECDI-SPs induce the expansion of two populations of MDSCs important for allograft protection mediated in part by intrinsic IFN-γ-dependent mechanisms. This form of preemptive donor apoptotic cell infusions has significant potential for the therapeutic manipulation of MDSCs for transplant tolerance induction.
Collapse
Affiliation(s)
- Jane Bryant
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Nadine M Lerret
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Hee-Kap Kang
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - James Tasch
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Zheng Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
13
|
Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci U S A 2014; 111:4215-20. [PMID: 24591636 DOI: 10.1073/pnas.1320924111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tolerance to apoptotic cells is essential to prevent inflammatory pathology. Though innate responses are critical for immune suppression, our understanding of early innate immunity driven by apoptosis is lacking. Herein we report apoptotic cells induce expression of the chemokine CCL22 in splenic metallophillic macrophages, which is critical for tolerance. Systemic challenge with apoptotic cells induced rapid production of CCL22 in CD169(+) (metallophillic) macrophages, resulting in accumulation and activation of FoxP3(+) Tregs and CD11c(+) dendritic cells, an effect that could be inhibited by antagonizing CCL22-driven chemotaxis. This mechanism was essential for suppression after apoptotic cell challenge, because neutralizing CCL22 or its receptor, reducing Treg numbers, or blocking effector mechanisms abrogated splenic TGF-β and IL-10 induction; this promoted a shift to proinflammatory cytokines associated with a failure to suppress T cells. Similarly, CCR4 inhibition blocked long-term, apoptotic cell-induced tolerance to allografts. Finally, CCR4 inhibition resulted in a systemic breakdown of tolerance to self after apoptotic cell injection with rapid increases in anti-dsDNA IgG and immune complex deposition. Thus, the data demonstrate CCL22-dependent chemotaxis is a key early innate response required for apoptotic cell-induced suppression, implicating a previously unknown mechanism of macrophage-dependent coordination of early events leading to stable tolerance.
Collapse
|
14
|
Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity 2014; 39:806-18. [PMID: 24238338 PMCID: PMC3912742 DOI: 10.1016/j.immuni.2013.10.010] [Citation(s) in RCA: 679] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023]
Abstract
The spleen is the main filter for blood-borne pathogens and antigens, as well as a key organ for iron metabolism and erythrocyte homeostasis. Also, immune and hematopoietic functions have been recently unveiled for the mouse spleen, suggesting additional roles for this secondary lymphoid organ. Here we discuss the integration of the spleen in the regulation of immune responses locally and in the whole body and present the relevance of findings for our understanding of inflammatory and degenerative diseases and their treatments. We consider whether equivalent activities in humans are known, as well as initial therapeutic attempts to target the spleen for modulating innate and adaptive immunity.
Collapse
Affiliation(s)
- Vincenzo Bronte
- Verona University Hospital and Department of Pathology, 37134 Verona, Italy.
| | | |
Collapse
|
15
|
|