1
|
WalyEldeen AA, Sabet S, Anis SE, Stein T, Ibrahim AM. FBLN2 is associated with basal cell markers Krt14 and ITGB1 in mouse mammary epithelial cells and has a preferential expression in molecular subtypes of human breast cancer. Breast Cancer Res Treat 2024; 208:673-686. [PMID: 39110274 PMCID: PMC11522194 DOI: 10.1007/s10549-024-07447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Fibulin-2 (FBLN2) is a secreted extracellular matrix (ECM) glycoprotein and has been identified in the mouse mammary gland, in cap cells of terminal end buds (TEBs) during puberty, and around myoepithelial cells during early pregnancy. It is required for basement membrane (BM) integrity in mammary epithelium, and its loss has been associated with human breast cancer invasion. Herein, we attempted to confirm the relevance of FBLN2 to myoepithelial phenotype in mammary epithelium and to assess its expression in molecular subtypes of human breast cancer. METHODS The relationship between FBLN2 expression and epithelial markers was investigated in pubertal mouse mammary glands and the EpH4 mouse mammary epithelial cell line using immunohistochemistry, immunocytochemistry, and immunoblotting. Human breast cancer mRNA data from the METABRIC and TCGA datasets from Bioportal were analyzed to assess the association of Fbln2 expression with epithelial markers, and with molecular subtypes. Survival curves were generated using data from the METABRIC dataset and the KM databases. RESULTS FBLN2 knockdown in mouse mammary epithelial cells was associated with a reduction in KRT14 and an increase in KRT18. Further, TGFβ3 treatment resulted in the upregulation of FBLN2 in vitro. Meta-analyses of human breast cancer datasets from Bioportal showed a higher expression of Fbln2 mRNA in claudin-low, LumA, and normal-like breast cancers compared to LumB, Her2 +, and Basal-like subgroups. Fbln2 mRNA levels were positively associated with mesenchymal markers, myoepithelial markers, and markers of epithelial-mesenchymal transition. Higher expression of Fbln2 mRNA was associated with better prognosis in less advanced breast cancer and this pattern was reversed in more advanced lesions. CONCLUSION With further validation, these observations may offer a molecular prognostic tool for human breast cancer for more personalized therapeutic approaches.
Collapse
Affiliation(s)
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shady E Anis
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163, Berlin, Germany
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ayman M Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt.
| |
Collapse
|
2
|
Lengyel M, Molnár Á, Nagy T, Jdeed S, Garai I, Horváth Z, Uray IP. Zymogen granule protein 16B (ZG16B) is a druggable epigenetic target to modulate the mammary extracellular matrix. Cancer Sci 2024. [PMID: 39489500 DOI: 10.1111/cas.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
High tissue density of the mammary gland is considered a pro-tumorigenic factor, hence suppressing the stimuli that induce matrix buildup carries the potential for cancer interception. We found that in non-malignant mammary epithelial cells the combination of the chemopreventive agents bexarotene (Bex) and carvedilol (Carv) suppresses the zymogen granule protein 16B (ZG16B, PAUF) through an interaction of ARID1A with a proximal enhancer. Bex + Carv also reduced ZG16B levels in vivo in normal breast tissue and MDA-MB231 tumor xenografts. The relevance of ZG16B is underscored by ongoing clinical trials targeting ZG16B in pancreatic cancers, but its role in breast cancer development is unclear. In immortalized mammary epithelial cells, secreted recombinant ZG16B stimulated mitogenic kinase phosphorylation, detachment and mesenchymal characteristics, and promoted proliferation, motility and clonogenic growth. Highly concerted induction of specific laminin, collagen and integrin isoforms indicated a shift in matrix properties toward increased density and cell-matrix interactions. Exogenous ZG16B alone blocked Bex + Carv-mediated control of cell growth and migration, and antagonized Bex + Carv-induced gene programs regulating cell adhesion and migration. In breast cancer cells ZG16B induced colony formation and anchorage-independent growth, and stimulated migration in a PI3K/Akt-dependent manner. In contrast, Bex + Carv inhibited colony formation, reduced Ki67 levels, ZG16B expression and glucose uptake in MDA-MB231 xenografts. These data establish ZG16B as a druggable pro-tumorigenic target in breast cell transformation and suggest a key role of the matrisome network in rexinoid-dependent antitumor activity.
Collapse
Affiliation(s)
- Máté Lengyel
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- The Molecular Cell and Immune Biology Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Ádám Molnár
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Nagy
- Department of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Sham Jdeed
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- The Molecular Cell and Immune Biology Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Ildikó Garai
- Department of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Horváth
- Center of Oncoradiology, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
| | - Iván P Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- The Molecular Cell and Immune Biology Doctoral School, University of Debrecen, Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Shokrollahi B, Lee HJ, Baek YC, Jin S, Jang GS, Moon SJ, Um KH, Jang SS, Park MS. Transcriptomic Analysis of Newborn Hanwoo Calves: Effects of Maternal Overnutrition during Mid- to Late Pregnancy on Subcutaneous Adipose Tissue and Liver. Genes (Basel) 2024; 15:704. [PMID: 38927640 PMCID: PMC11202606 DOI: 10.3390/genes15060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the transcriptomic responses of subcutaneous adipose tissue (SAT) and liver in newborn Hanwoo calves subjected to maternal overnutrition during mid- to late gestation. Eight Hanwoo cows were randomly assigned to control and treatment groups. The treatment group received a diet of 4.5 kg of concentrate and 6.5 kg of rice straw daily, resulting in intake levels of 8.42 kg DMI, 5.69 kg TDN, and 0.93 kg CP-higher than the control group (6.07 kg DMI, 4.07 kg TDN, and 0.65 kg CP), with respective NEm values of 9.56 Mcal and 6.68 Mcal. Following birth, newly born calves were euthanized humanely as per ethical guidelines, and SAT and liver samples from newborn calves were collected for RNA extraction and analysis. RNA sequencing identified 192 genes that were differentially expressed in the SAT (17 downregulated and 175 upregulated); notably, HSPA6 emerged as the most significantly upregulated gene in the SAT and as the singular upregulated gene in the liver (adj-p value < 0.05). Additionally, differential gene expression analysis highlighted extensive changes across genes associated with adipogenesis, fibrogenesis, and stress response. The functional enrichment pathway and protein-protein interaction (PPI) unraveled the intricate networks and biological processes impacted by overnutrition, including extracellular matrix organization, cell surface receptor signaling, and the PI3K-Akt signaling pathway. These findings underscore maternal overnutrition's substantial influence on developmental pathways, suggesting profound cellular modifications with potential lasting effects on health and productivity. Despite the robust insights that are provided, the study's limitations (sample size) underscore the necessity for further research.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| | - Hyun-Jeong Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Youl Chang Baek
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| | - Gi-Suk Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| | - Sung Jin Moon
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| | - Kyung-Hwan Um
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| | - Myung Sun Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (B.S.); (Y.C.B.); (S.J.); (G.-S.J.); (S.J.M.); (K.-H.U.)
| |
Collapse
|
4
|
Mohamedi Y, Fontanil T, Vega JA, Cobo T, Cal S, Obaya ÁJ. Lung Inflammatory Phenotype in Mice Deficient in Fibulin-2 and ADAMTS-12. Int J Mol Sci 2024; 25:2024. [PMID: 38396702 PMCID: PMC10888546 DOI: 10.3390/ijms25042024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Interaction between extracellular matrix (ECM) components plays an important role in the regulation of cellular behavior and hence in tissue function. Consequently, characterization of new interactions within ECM opens the possibility of studying not only the functional but also the pathological consequences derived from those interactions. We have previously described the interaction between fibulin2 and ADAMTS-12 in vitro and the effects of that interaction using cellular models of cancer. Now, we generate a mouse deficient in both ECM components and evaluate functional consequences of their absence using different cancer and inflammation murine models. The main findings indicate that mice deficient in both fibulin2 and ADAMTS12 markedly increase the development of lung tumors following intraperitoneal urethane injections. Moreover, inflammatory phenotype is exacerbated in the lung after LPS treatment as can be inferred from the accumulation of active immune cells in lung parenchyma. Overall, our results suggest that protective effects in cancer or inflammation shown by fibulin2 and ADAMTS12 as interactive partners in vitro are also shown in a more realistic in vivo context.
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia—Área Metropolinana, Santiago de Chile 7500912, Chile
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología (IAO), 33006 Oviedo, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
| |
Collapse
|
5
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
6
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Li S, Jiang H, Xing W, Wang S, Zhang Y, Li Y, Mao C, Zeng D, Lan P, Tang D, Zhan J, Li L, Xu X, Fei J. A Clinical Diagnostic Study: Fibulin-2 is a Novel Promising Biomarker for Predicting Infection. Infect Dis Ther 2022; 11:1057-1073. [PMID: 35303288 PMCID: PMC8931586 DOI: 10.1007/s40121-022-00622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Infection remains a major cause of morbidity and mortality in hospital. As uncontrolled early infection may develop into systemic infection and eventually progress to sepsis, it is important to address infection at an early stage. Furthermore, early detection and prompt diagnosis of infection are the basis of clinical intervention. However, as a result of the interference of complex aetiologies, including fever and trauma, problems regarding the sensitivity and specificity of current diagnostic indices remain, such as for C-reactive protein (CRP), procalcitonin (PCT), white blood cells (WBC), neutrophil ratio (NEU%), interleukin-6 (IL-6) and D-dimer. As a result, there is an urgent need to develop new biomarkers to diagnose infection. Methods From January to October 2021, consecutive patients in the emergency department (ED) were recruited to investigate the feasibility of fibulin-2 as a diagnostic indicator of early infection. Fibulin-2 concentrations in plasma were determined with enzyme-linked immunosorbent assay (ELISA). The performance of fibulin-2 for predicting infection was analysed by receiver operating characteristic (ROC) curves. Results We found that the plasma fibulin-2 level was elevated in patients with infection compared with those without infection. ROC curve analysis showed that the area under the curve (AUC) for fibulin-2 was 0.712. For all patients included, the diagnostic ability of fibulin-2 (AUC 0.712) performed as well as CRP (AUC 0.667) and PCT (AUC 0.632), and better than WBC (AUC 0.620), NEU% (AUC 0.619), IL-6 (AUC 0.561) and D-dimer (AUC 0.630). In patients with fever, fibulin-2 performed as well as PCT and better than the other biomarkers in infection diagnosis. In particular, fibulin-2 performed better than all these biomarkers in patients with trauma. Conclusion Fibulin-2 is a novel promising diagnostic biomarker for predicting infection. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00622-y.
Collapse
Affiliation(s)
- Shidan Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Hao Jiang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Shaochuan Wang
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yao Zhang
- Department of Epidemiology, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Youbin Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Chengyi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Delian Zeng
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Ping Lan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Dongqin Tang
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jijie Zhan
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
8
|
Fibulin 2 Is Hypermethylated and Suppresses Tumor Cell Proliferation through Inhibition of Cell Adhesion and Extracellular Matrix Genes in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms222111834. [PMID: 34769264 PMCID: PMC8584407 DOI: 10.3390/ijms222111834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Fibulins (FBLNs), interacting with cell adhesion receptors and extracellular matrix (ECM) components, play multiple roles in ECM structures and tissue functions. Abnormal expression of FBLN2, one of the fibulin family members, contributes to tumor initiation and development. However, the function of FBLN2 in human non-small cell lung cancer (NSCLC) has not yet been elucidated. In this study, we found that FBLN2 was downregulated in 9 out of 11 lung cancer cell lines compared to normal bronchial epithelial cells, which was associated with DNA hypermethylation. Primary lung squamous cell carcinoma expressed significantly more FBLN2 protein compared to adenocarcinoma (p = 0.047). Ectopic expression of FBLN2 led to decreased cell proliferation, migration and invasion, accompanied by inactivated MAPK/ERK and AKT/mTOR pathways, while FBLN2 siRNA knockdown resulted in an opposite biological behaviour in NSCLC cells. Additionally, overexpression of FBLN2 led to dysregulation of cell adhesion molecules, ECM markers and a panel of lysate/exosome-derived-microRNAs, which are involved in cell adhesion and ECM remodelling. Taken together, our data indicate that FBLN2 is methylated and exerts a tumor suppressor function through modulation of MAPK/ERK and AKT pathways and regulation of cell adhesion and ECM genes. Moreover, FBLN2 might be a potential biomarker for the sub-classification of NSCLC.
Collapse
|
9
|
Ibrahim AM, Bilsland A, Rickelt S, Morris JS, Stein T. A matrisome RNA signature from early-pregnancy mouse mammary fibroblasts predicts distant metastasis-free breast cancer survival in humans. Breast Cancer Res 2021; 23:90. [PMID: 34565423 PMCID: PMC8474794 DOI: 10.1186/s13058-021-01470-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During pregnancy, the mouse mammary ductal epithelium branches and grows into the surrounding stroma, requiring extensive extracellular matrix (ECM) and tissue remodelling. It therefore shows parallels to cancer invasion. We hypothesised that similar molecular mechanisms may be utilised in both processes, and that assessment of the stromal changes during pregnancy-associated branching may depict the stromal involvement during human breast cancer progression. METHODS Immunohistochemistry (IHC) was employed to assess the alterations within the mouse mammary gland extracellular matrix during early pregnancy when lateral branching of the primary ductal epithelium is initiated. Primary mouse mammary fibroblasts from three-day pregnant and age-matched non-pregnant control mice, respectively, were 3D co-cultured with mammary epithelial cells to assess differences in their abilities to induce branching morphogenesis in vitro. Transcriptome analysis was performed to identify the underlying molecular changes. A signature of the human orthologues of the differentially expressed matrisome RNAs was analysed by Kaplan-Meier and multi-variate analysis in two large breast cancer RNA datasets (Gene expression-based Outcome for Breast cancer Online (GOBO) und Kaplan-Meier Plotter), respectively, to test for similarities in expression between early-pregnancy mouse mammary gland development and breast cancer progression. RESULTS The ECM surrounding the primary ductal network showed significant differences in collagen and basement membrane protein distribution early during pregnancy. Pregnancy-associated fibroblasts (PAFs) significantly enhanced branching initiation compared to age-matched control fibroblast. A combined signature of 64 differentially expressed RNAs, encoding matrisome proteins, was a strong prognostic indicator of distant metastasis-free survival (DMFS) independent of other clinical parameters. The prognostic power could be significantly strengthened by using only a subset of 18 RNAs (LogRank P ≤ 1.00e-13; Hazard ratio (HR) = 2.42 (1.8-3.26); p = 5.61e-09). The prognostic power was confirmed in a second breast cancer dataset, as well as in datasets from ovarian and lung cancer patients. CONCLUSIONS Our results describe for the first time the early stromal changes that accompany pregnancy-associated branching morphogenesis in mice, specify the early pregnancy-associated molecular alterations in mouse mammary fibroblasts, and identify a matrisome signature as a strong prognostic indicator of human breast cancer progression, with particular strength in oestrogen receptor (ER)-negative breast cancers.
Collapse
Affiliation(s)
- Ayman M Ibrahim
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ, UK.,Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.,Aswan Heart Centre, Aswan, 200, Egypt
| | - Alan Bilsland
- Glasgow Experimental Cancer Medicines Centre, Institute of Cancer Science, College of MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Joanna S Morris
- School of Veterinary Medicine, College of MVLS, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ, UK. .,School of Medicine, College of MVLS, University of Glasgow, Glasgow, G12 8QQ, UK. .,Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
10
|
Zhu N, Swietlik EM, Welch CL, Pauciulo MW, Hagen JJ, Zhou X, Guo Y, Karten J, Pandya D, Tilly T, Lutz KA, Martin JM, Treacy CM, Rosenzweig EB, Krishnan U, Coleman AW, Gonzaga-Jauregui C, Lawrie A, Trembath RC, Wilkins MR, Morrell NW, Shen Y, Gräf S, Nichols WC, Chung WK. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med 2021; 13:80. [PMID: 33971972 PMCID: PMC8112021 DOI: 10.1186/s13073-021-00891-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined. METHODS To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource - Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD. RESULTS Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e-5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development. CONCLUSIONS Rare variant analysis of a large international consortium identified two new candidate genes-FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jacob J Hagen
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xueya Zhou
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yicheng Guo
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Tilly
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Katie A Lutz
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer M Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
| | - Carmen M Treacy
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Erika B Rosenzweig
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Usha Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Anna W Coleman
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Martin R Wilkins
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
12
|
An Investigation of Fibulin-2 in Hypertrophic Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21197176. [PMID: 33003281 PMCID: PMC7583916 DOI: 10.3390/ijms21197176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart muscle disease, with a prevalence of at least 1 in 500 in the general population. The disease is pleiotropic and is characterized by an increased stiffness of the myocardium, partly due to changes in the extracellular matrix (ECM), with elevated levels of interstitial fibrosis. Myocardial fibrosis is linked to impaired diastolic function and possibly phenotypic heterogeneity of HCM. The ECM consists of a very large number of proteins, which actively interact with each other as well as with myocardial cells. The role of other multiple components of the ECM in HCM has not been defined. Fibulin-2 is a glycoprotein component of the ECM, which plays an important role during embryogenesis of the heart; however, its role in adult myocardium has not been adequately studied. We here describe, for the first time, abnormal expression of fibulin-2 in the myocardium in patients with HCM as compared to normal controls. This abnormal expression was localized in the cytoplasm of myocardial cells and in the interstitial fibroblasts. In addition, fibulin-2 levels, measured by ELISA, were significantly elevated in the serum of patients with HCM as compared to normal controls.
Collapse
|
13
|
Kim AD, Lake BB, Chen S, Wu Y, Guo J, Parvez RK, Tran T, Thornton ME, Grubbs B, McMahon JA, Zhang K, McMahon AP. Cellular Recruitment by Podocyte-Derived Pro-migratory Factors in Assembly of the Human Renal Filter. iScience 2019; 20:402-414. [PMID: 31622881 PMCID: PMC6817668 DOI: 10.1016/j.isci.2019.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of kidney disease-causing genes and pathology resulting from systemic diseases highlight the importance of the kidney's filtering system, the renal corpuscles. To elucidate the developmental processes that establish the renal corpuscle, we performed single-nucleus droplet-based sequencing of the human fetal kidney. This enabled the identification of nephron, interstitial, and vascular cell types that together generate the renal corpuscles. Trajectory analysis identified transient developmental gene expression, predicting precursors or mature podocytes express FBLN2, BMP4, or NTN4, in conjunction with recruitment, differentiation, and modeling of vascular and mesangial cell types into a functional filter. In vitro studies provide evidence that these factors exhibit angiogenic or mesangial recruiting and inductive properties consistent with a key organizing role for podocyte precursors in kidney development. Together these studies define a spatiotemporal developmental program for the primary filtration unit of the human kidney and provide novel insights into cell interactions regulating co-assembly of constituent cell types.
Collapse
Affiliation(s)
- Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Blue B Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Song Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Ma J, Lwigale P. Transformation of the Transcriptomic Profile of Mouse Periocular Mesenchyme During Formation of the Embryonic Cornea. Invest Ophthalmol Vis Sci 2019; 60:661-676. [PMID: 30786278 PMCID: PMC6383728 DOI: 10.1167/iovs.18-26018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Defects in neural crest development are a major contributing factor in corneal dysgenesis, but little is known about the genetic landscape during corneal development. The purpose of this study was to provide a detailed transcriptome profile and evaluate changes in gene expression during mouse corneal development. Methods RNA sequencing was used to uncover the transcriptomic profile of periocular mesenchyme (pNC) isolated at embryonic day (E) 10.5 and corneas isolated at E14.5 and E16.5. The spatiotemporal expression of several differentially expressed genes was validated by in situ hybridization. Results Analysis of the whole-transcriptome profile between pNC and embryonic corneas identified 3815 unique differentially expressed genes. Pathway analysis revealed an enrichment of differentially expressed genes involved in signal transduction (retinoic acid, transforming growth factor-β, and Wnt pathways) and transcriptional regulation. Conclusions Our analyses, for the first time, identify a large number of differentially expressed genes during progressive stages of mouse corneal development. Our data provide a comprehensive transcriptomic profile of the developing cornea. Combined, these data serve as a valuable resource for the identification of novel regulatory networks crucial for the advancement of studies in congenital defects, stem cell therapy, bioengineering, and adult corneal diseases.
Collapse
Affiliation(s)
- Justin Ma
- BioSciences Department, Rice University, Houston, Texas, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, Texas, United States
| |
Collapse
|
15
|
Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci Rep 2018; 8:14139. [PMID: 30237579 PMCID: PMC6148073 DOI: 10.1038/s41598-018-32507-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
Fibulin-2 (FBLN2) is a secreted extracellular matrix glycoprotein which has been associated with tissue development and remodelling. In the mouse mammary gland, FBLN2 can be detected during ductal morphogenesis in cap cells and myoepithelial cells at puberty and early pregnancy, respectively. In an attempt to assign its function, we knocked down Fbln2 in the mouse mammary epithelial cell line EpH4. FBLN2 reduction led to an increase in the size of spheroidal structures when compared to scrambled control shRNA-transduced cells plated on Matrigel matrix. This phenotype was associated with a disruption of the collagen IV sheath around the epithelial spheroids and downregulation of integrin β1, suggesting a role for FBLN2 in stabilizing the basement membrane (BM). In contrast to mice, in normal adult human breast tissue, FBLN2 was detected in ductal stroma, and in the interlobular stroma, but was not detectable within the lobular regions. In tissue sections of 65 breast cancers FBLN2 staining was lost around malignant cells with retained staining in the neighbouring histologically normal tissue margins. These results are consistent with a role of FBLN2 in mammary epithelial BM stability, and that its down-regulation in breast cancer is associated with loss of the BM and early invasion.
Collapse
|
16
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
17
|
Raghunathan V, Eaton JS, Christian BJ, Morgan JT, Ver Hoeve JN, Yang CYC, Gong H, Rasmussen CA, Miller PE, Russell P, Nork TM, Murphy CJ. Biomechanical, ultrastructural, and electrophysiological characterization of the non-human primate experimental glaucoma model. Sci Rep 2017; 7:14329. [PMID: 29085025 PMCID: PMC5662689 DOI: 10.1038/s41598-017-14720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 11/08/2022] Open
Abstract
Laser-induced experimental glaucoma (ExGl) in non-human primates (NHPs) is a common animal model for ocular drug development. While many features of human hypertensive glaucoma are replicated in this model, structural and functional changes in the unlasered portions of trabecular meshwork (TM) of laser-treated primate eyes are understudied. We studied NHPs with ExGl of several years duration. As expected, ExGl eyes exhibited selective reductions of the retinal nerve fiber layer that correlate with electrophysiologic measures documenting a link between morphologic and elctrophysiologic endpoints. Softening of unlasered TM in ExGl eyes compared to untreated controls was observed. The degree of TM softening was consistent, regardless of pre-mortem clinical findings including severity of IOP elevation, retinal nerve fiber layer thinning, or electrodiagnostic findings. Importantly, this softening is contrary to TM stiffening reported in glaucomatous human eyes. Furthermore, microscopic analysis of unlasered TM from eyes with ExGl demonstrated TM thinning with collapse of Schlemm's canal; and proteomic analysis confirmed downregulation of metabolic and structural proteins. These data demonstrate unexpected and compensatory changes involving the TM in the NHP model of ExGl. The data suggest that compensatory mechanisms exist in normal animals and respond to elevated IOP through softening of the meshwork to increase outflow.
Collapse
Affiliation(s)
- VijayKrishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- The Ocular Surface Institute, Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, 77204, United States of America
| | - J Seth Eaton
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
| | - Brian J Christian
- Covance Laboratories, Inc., Madison, Wisconsin, 53704, United States of America
| | - Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
| | - James N Ver Hoeve
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53792, United States of America
| | - Chen-Yuan Charlie Yang
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
- Department of Ophthalmology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
| | - Haiyan Gong
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
- Department of Ophthalmology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
| | - Carol A Rasmussen
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53792, United States of America
| | - Paul E Miller
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, 53706, United States of America
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
| | - T Michael Nork
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America.
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53792, United States of America.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America.
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America.
- Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Sacramento, California, 95817, United States of America.
| |
Collapse
|
18
|
Rutledge EA, Benazet JD, McMahon AP. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development 2017; 144:3177-3188. [PMID: 28705898 DOI: 10.1242/dev.149112] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Branching morphogenesis creates arborized epithelial networks. In the mammalian kidney, an epithelial progenitor pool at ureteric branch tips (UBTs) creates the urine-transporting collecting system. Using region-specific mouse reporter strains, we performed an RNA-seq screen, identifying tip- and stalk-enriched gene sets in the developing collecting duct system. Detailed in situ hybridization studies of tip-enriched predictions identified UBT-enriched gene sets conserved between the mouse and human kidney. Comparative spatial analysis of their UBT niche expression highlighted distinct patterns of gene expression revealing novel molecular heterogeneity within the UBT progenitor population. To identify kidney-specific and shared programs of branching morphogenesis, comparative expression studies on the developing mouse lung were combined with in silico analysis of the developing mouse salivary gland. These studies highlight a shared gene set with multi-organ tip enrichment and a gene set specific to UBTs. This comprehensive analysis extends our current understanding of the ureteric branch tip niche.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Denis Benazet
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Tan H, Zhang J, Fu D, Zhu Y. Loss of fibulin-2 expression is involved in the inhibition of breast cancer invasion and forms a new barrier in addition to the basement membrane. Oncol Lett 2017; 14:2663-2668. [PMID: 28928811 PMCID: PMC5588154 DOI: 10.3892/ol.2017.6539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/13/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that fibulin-2 may facilitate cancer cell invasion and metastasis during tumor progression. In the present study, immunohistochemical analyses of fibulin-2 and collagen IV expression in 35 patients with breast cancer were performed to define their localization and association with breast cancer tissue. Fibulin-2 was revealed to be expressed in all tissues surrounding the breast ducts and blood vessels in normal breast tissue, while its expression was not integrated in invasive ductal carcinoma or terminal duct-lobular unit. In malignant breast tissue, collagen IV was integrated around the duct, while fibulin-2 was expressed around collagen IV and was incomplete. These results demonstrated that fibulin-2 was associated with breast cancer invasion. Fibulin-2 expression decreased prior to basement membrane (BM) degradation, indicating that fibulin-2 forms an additional barrier around the BM. Therefore, it was proposed that fibulin-2 composes the general BM, which differs from the traditional BM. These results provide insight into extracellular matrix components and the involvement of fibulin-2 in tumor invasion and metastasis. Fibulin-2 was involved in the process of breast cancer development. It performed an important role in prevention of cancer cell penetration and metastasis.
Collapse
Affiliation(s)
- Haosheng Tan
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaxin Zhang
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Deyuan Fu
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yuxiang Zhu
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
20
|
Xian Y, Wu M, Liu Y, Hao J, Wu Y, Liao X, Li G. Increased Sat2 expression is associated with busulfan-induced testicular Sertoli cell injury. Toxicol In Vitro 2017; 43:47-57. [PMID: 28578006 DOI: 10.1016/j.tiv.2017.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
Abstract
Busulfan is a chemotherapeutic agent used to treat chronic myelogenous leukemia and other myeloproliferative disorders. Increasing evidence has demonstrated that busulfan may induce testicular dysfunction by targeting genes that are expressed in the testis. Here, we showed that spermidine/spermine N1-acetyltransferase 2 (Sat2) was present in testicular Sertoli cells, and its expression was significantly increased by busulfan treatment. To investigate the implications of Sat2 upregulation for cell growth and function, a Sat2-overexpressing TM4 Sertoli cell model was established. Increased Sat2 expression led to inhibited cell proliferation and arrested cell cycle. Based on iTRAQ proteomics analysis, we revealed that Sat2 overexpression is detrimental to cell cycle progression and cell communication, and notably, Sat2 may disturb protein metabolic processes by altering translation regulation and protein complex subunit organization. In summary, the present study provides evidence that Sat2 upregulation induces alterations in the growth and function of Sertoli cells. In testis tissue subjected to busulfan, increased expression of Sat2 can cause cellular injury and subsequent organ damage, which could lead to male infertility. Therefore, Sat2 may be a novel molecular target for treating busulfan-induced testicular toxicity.
Collapse
Affiliation(s)
- Yi Xian
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yaping Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jie Hao
- The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yu Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Liao
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
21
|
Abstract
The mouse mammary gland is widely used as a model for human breast cancer and has greatly added to our understanding of the molecular mechanisms involved in breast cancer development and progression. To fully appreciate the validity and limitations of the mouse model, it is essential to be aware of the similarities and also the differences that exist between the mouse mammary gland and the human breast. This introduction therefore describes the parallels and contrasts in mouse mammary gland and human breast morphogenesis from an early embryonic phase through to puberty, adulthood, pregnancy, parturition, and lactation, and finally the regressive stage of involution.
Collapse
Affiliation(s)
- Sara McNally
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Wilson GJ, Hewit KD, Pallas KJ, Cairney CJ, Lee KM, Hansell CA, Stein T, Graham GJ. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development 2017; 144:74-82. [PMID: 27888192 PMCID: PMC5278629 DOI: 10.1242/dev.139733] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/07/2016] [Indexed: 02/01/2023]
Abstract
Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2-/- mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes.
Collapse
Affiliation(s)
- Gillian J Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Kay D Hewit
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Kenneth J Pallas
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Claire J Cairney
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kit M Lee
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Christopher A Hansell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Torsten Stein
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| |
Collapse
|
23
|
Morris JS, Stein T. Pubertal Ductal Morphogenesis: Isolation and Transcriptome Analysis of the Terminal End Bud. Methods Mol Biol 2017; 1501:131-148. [PMID: 27796950 DOI: 10.1007/978-1-4939-6475-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The terminal end bud (TEB) is the growing part of the ductal mammary epithelium during puberty, enabling the formation of a primary epithelial network. These highly proliferative bulbous end structures that drive the ductal expansion into the mammary fat pad comprise an outer cap cell layer, containing the progenitor cells of the ductal myoepithelium, and the body cells, which form the luminal epithelium. As TEB make up only a very small part of the whole mammary tissue, TEB-associated factors can be easily missed when whole-tissue sections are being analyzed. Here we describe a method to enzymatically separate TEB and ducts, respectively, from the surrounding stroma of pubertal mice in order to perform transcriptomic or proteomic analysis on the isolated structures and identify potential novel regulators of epithelial outgrowth, or to allow further cell culturing. This approach has previously allowed us to identify novel TEB-associated proteins, including several axonal guidance proteins. We further include protocols for the culturing of isolated TEB, processing of mammary tissue into paraffin and immunohistochemical/fluorescent staining for verification, and localization of protein expression in the mammary tissue at different developmental time points.
Collapse
Affiliation(s)
- Joanna S Morris
- School of Veterinary Medicine, College of MVLS, University of Glasgow, Glasgow, UK
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8 QQ, UK.
| |
Collapse
|
24
|
3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:432645. [PMID: 26688810 PMCID: PMC4672115 DOI: 10.1155/2015/432645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disease which is due to the lack of β cells. The ideal therapy to cure the disease is pancreas transplantation, but its application is confined to a limited number of people due to the shortage of organ and the need for life-long immunosuppression. Regenerative medicine methods such as a tissue engineered pancreas seem to provide a useful method. In order to construct a microenvironment similar to the native pancreas that is suitable for not only cell growth but also cellular function exertion, a decellularized mouse pancreas was used as a natural 3D scaffold in this experiment. MIN-6 β cells were planted in the bioscaffold. The cell engraftment was verified by HE staining and SEM. Immunostaining procedures were performed to confirm the normal function of the engrafted cells. qRT-PCR demonstrated that insulin gene expression of the recellularized pancreas was upregulated compared with conventional plate-cultured cells. In vivo experiment was also accomplished to further evaluate the function of the recellularized bioscaffold and the result was inspiring. And beyond doubt this will bring new hope for type 1 diabetic patients.
Collapse
|