1
|
Marciano CL, de Almeida AP, Bezerra FC, Giannesi GC, Cabral H, Teixeira de Moraes Polizeli MDL, Ruller R, Masui DC. Enhanced saccharification levels of corn starch using as a strategy a novel amylolytic complex (AmyHb) from the thermophilic fungus Humicola brevis var. thermoidea in association with commercial enzyme. 3 Biotech 2024; 14:198. [PMID: 39131173 PMCID: PMC11310185 DOI: 10.1007/s13205-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Amylases represent a versatile group of catalysts that are used for the saccharification of starch because they can hydrolyze the glycosidic bonds of starch molecules to release glucose, maltose, and short-chain oligosaccharides. The amylolytic complex of the thermophilic filamentous fungus Humicola brevis var. thermoidea (AmyHb) was produced, biochemically characterized, and compared with the commercial amylase Termamyl. In addition, the biotechnological application of AmyHb in starch saccharification was investigated. The highest production was achieved using a wheat bran medium at 50 °C for 5-6 days in solid-state fermentation (849.6 ± 18.2 U·g-1) without the addition of inducers. Optimum amylolytic activity occurred at pH 5.0 at 60 °C, and stability was maintained between pH 5.0 and 6.0, with thermal stability at 50-60 °C, especially in the presence of Ca2+. These results were superior to those found with Termamyl. Both enzymes were strongly inhibited by Hg2+, Cu2+, and Ag+; however, AmyHb displayed increased activity in the presence of Mn2+ and Na+. In addition, AmyHb showed greater tolerance to a wide range of ethanol concentrations. AmyHb appears to be a complex consisting of glucoamylase and α-amylase, based on its substrate specificity and TLC. The hydrolysis tests on cornstarch flour showed that the cocktail of AmyHb50% + Termamyl50% significantly increased the release of glucose and total reducing sugars (36.6%) when compared to the enzymes alone. AmyHb exhibited promising physicochemical properties and good performance with commercial amylase; therefore, this complex is a biotechnological alternative candidate for the bioprocessing of starch sources.
Collapse
Affiliation(s)
- Camila Langer Marciano
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | - Aline Pereira de Almeida
- Faculdade de Medicina de Ribeirão Preto, FMRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14049-900 Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
| | - Fabiane Cruz Bezerra
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Giovana Cristina Giannesi
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | | | - Roberto Ruller
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, São José do Rio Preto, SP CEP: 15054-000 Brazil
- Centro de Ciências Naturais e Humanas - CCNH, Universidade Federal do ABC - UFABC, Santo André, SP CEP: 09210-170 Brazil
| | - Douglas Chodi Masui
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| |
Collapse
|
2
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Han D, Yang Y, Guo Z, Chen K, Dai S, Zhu Y, Wang Y, Yu Z, Wang K, Liu P, Rong C, Yu Y. Metagenomics profiling of the microbial community and functional differences in solid-state fermentation vinegar starter (seed Pei) from different Chinese regions. Front Microbiol 2024; 15:1389737. [PMID: 38756727 PMCID: PMC11096547 DOI: 10.3389/fmicb.2024.1389737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The starter used in solid-state fermentation (SSF) vinegar, known as seed Pei is a microbial inoculant from the previous batch that is utilized during the acetic acid fermentation stage. The seed Pei, which has a notable impact on vinegar fermentation and flavor, is under-researched with comparative studies on microorganisms. Methods Herein metagenomics was employed to reveal the microbes and their potential metabolic functions of four seed Pei from three regions in China. Results The predominant microbial taxa in all four starters were bacteria, followed by viruses, eukaryotes, and archaea, with Lactobacillus sp. or Acetobacter sp. as main functional taxa. The seed Pei used in Shanxi aged vinegar (SAV) and Sichuan bran vinegar (SBV) exhibited a higher similarity in microbial composition and distribution of functional genes, while those used in two Zhenjiang aromatic vinegar (ZAV) differed significantly. Redundancy analysis (RDA) of physicochemical factors and microbial communities indicated that moisture content, pH, and reducing sugar content are significant factors influencing microbial distribution. Moreover, seven metagenome-assembled genomes (MAGs) that could potentially represent novel species were identified. Conclusions There are distinctions in the microbiome and functional genes among different seed Pei. The vinegar starters were rich in genes related to carbohydrate metabolism. This research provides a new perspective on formulating vinegar fermentation starters and developing commercial fermentation agents for vinegar production.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ken Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
4
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Wang L, Chen S, Li C, Gu Z, Kong H, Ban X, Li Z. Enhancement of β-Cyclodextrin Production Using a Glycogen Debranching Enzyme from Saccharolobus solfataricus STB09. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6491-6499. [PMID: 38500439 DOI: 10.1021/acs.jafc.3c09922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Efficient production of cyclodextrins (CDs) has always been challenging. CDs are primarily produced from starch via cyclodextrin glycosyltransferase (CGTase), which acts on α-1,4 glucosidic bonds; however, α-1,6 glucosidic bonds in starch suppress the enzymatic production of CDs. In this study, a glycogen debranching enzyme from Saccharolobus solfataricus STB09 (SsGDE) was utilized to promote the production of β-CD by hydrolyzing α-1,6 glucosidic bonds. The addition of SsGDE (750 U/g of starch) at the liquefaction stage remarkably improved the β-CD yield, with a 43.9% increase. Further mechanism exploration revealed that SsGDE addition could hydrolyze specific branches with less generation of byproducts, thereby promoting CD production. The chain segments of a degree of polymerization ≥13 produced by SsGDE debranching could also be utilized by β-CGTase to convert into CDs. Overall, these findings proposed a new approach of combining SsGDE with β-CGTase to enhance the CD yield.
Collapse
Affiliation(s)
- Luxiao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Shuangdi Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| |
Collapse
|
6
|
Shad M, Sajjad M, Gardner QA, Ahmad S, Akhtar MW. Structural engineering and truncation of α-amylase from the hyperthermophilic archaeon Methanocaldococcus jannaschii. Int J Biol Macromol 2024; 256:128387. [PMID: 38000593 DOI: 10.1016/j.ijbiomac.2023.128387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Alpha amylases catalyse the hydrolysis of α-1, 4-glycosidic bonds in starch, yielding glucose, maltose, dextrin, and short oligosaccharides, vital to various industrial processes. Structural and functional insights on α-amylase from Methanocaldococcus jannaschii were computationally explored to evaluate a catalytic domain and its fusion with a small ubiquitin-like modifier (SUMO). The recombinant proteins' production, characterization, ligand binding studies, and structural analysis of the cloned amylase native full gene (MjAFG), catalytic domain (MjAD) and fusion enzymes (S-MjAD) were thoroughly analysed in this comparative study. The MjAD and S-MjAD showed 2-fold and 2.5-fold higher specific activities (μmol min-1 mg -1) than MjAFG at 95 °C at pH 6.0. Molecular modelling and MD simulation results showed that the removal of the extra loop (178 residues) at the C-terminal of the catalytic domain exposed the binding and catalytic residues near its active site, which was buried in the MjAFG enzyme. The temperature ramping and secondary structure analysis of MjAFG, MjAD and S-MjAD through CD spectrometry showed no notable alterations in the secondary structures but verified the correct folding of MjA variants. The chimeric fusion of amylases with thermostable α-glucosidases makes it a potential candidate for the starch degrading processes.
Collapse
Affiliation(s)
- Mohsin Shad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Qurratulann Afza Gardner
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Saira Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
7
|
Wang Y, Svensson B, Henrissat B, Møller MS. Functional Roles of N-Terminal Domains in Pullulanase from Human Gut Lactobacillus acidophilus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18898-18908. [PMID: 38053504 DOI: 10.1021/acs.jafc.3c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Pullulanases are multidomain α-glucan debranching enzymes with one or more N-terminal domains (NTDs) including carbohydrate-binding modules (CBMs) and domains of unknown function (DUFs). To elucidate the roles of NTDs in Lactobacillus acidophilus NCFM pullulanase (LaPul), two truncated variants, Δ41-LaPul (lacking CBM41) and Δ(41+DUFs)-LaPul (lacking CBM41 and two DUFs), were produced recombinantly. LaPul recognized 1.3- and 2.2-fold more enzyme attack-sites on starch granules compared to Δ41-LaPul and Δ(41+DUFs)-LaPul, respectively, as measured by interfacial kinetics. Δ41-LaPul displayed markedly lower affinity for starch granules and β-cyclodextrin (10- and >21-fold, respectively) in comparison to LaPul, showing substrate binding mainly stems from CBM41. Δ(41+DUFs)-LaPul exhibited a 12 °C lower melting temperature than LaPul and Δ41-LaPul, indicating that the DUFs are critical for LaPul stability. Notably, Δ41-LaPul exhibited a 14-fold higher turnover number (kcat) and 9-fold higher Michaelis constant (KM) compared to LaPul, while Δ(41+DUFs)-LaPul's values were close to those of LaPul, possibly due to the exposure of aromatic by truncation.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bernard Henrissat
- Enzyme Discovery, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Chang H, Bai J, Zhang H, Huang R, Chu H, Wang Q, Liu H, Cheng J, Jiang H. Origin and evolution of the main starch biosynthetic enzymes. Synth Syst Biotechnol 2023; 8:462-468. [PMID: 37692203 PMCID: PMC10485787 DOI: 10.1016/j.synbio.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 09/12/2023] Open
Abstract
Starch, a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications. Despite the starch biosynthetic pathway's main enzymes have been characterized, their origin and evolution remained a subject of debate. In this study, we conducted the comprehensive phylogenetic and structural analysis of three types of starch biosynthetic enzymes: starch synthase (SS), starch branching enzyme (SBE) and isoamylase-type debranching enzyme (ISA) from 51,151 annotated genomes. Our findings provide valuable insights into the possible scenario for the origin and evolution of the starch biosynthetic pathway. Initially, the ancestor of SBE can be traced back to an unidentified bacterium that existed before the formation of the last eukaryotic common ancestor (LECA) via horizontal gene transfer (HGT). This transfer event likely provided the eukaryote ancestor with the ability to synthesize glycogen. Furthermore, during the emergence of Archaeplastida, one clade of SS was transferred from Deltaproteobacteria by HGT, while ISA and the other clade of SS originated from Chlamydiae through endosymbiosis gene transfer (EGT). Both these transfer events collectively contributed to the establishment of the original starch biosynthetic pathway. Subsequently, after the divergence of Viridiplantae from Rhodophyta, all three enzymes underwent multiple duplications and N-terminus extension domain modifications, resulting in the formation of functionally specialized isoforms and ultimately leading to the complete starch biosynthetic pathway. By shedding light on the evolutionary origins of key enzymes involved in the starch biosynthetic pathway, this study provides important insights into the evolutionary events of plants.
Collapse
Affiliation(s)
- Hong Chang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jie Bai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hejian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Rong Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Huanyu Chu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hao Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
9
|
Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. BoGH13A Sus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci 2023; 80:232. [PMID: 37500984 PMCID: PMC10540511 DOI: 10.1007/s00018-023-04812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/29/2023]
Abstract
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Matthieu Boulinguiez
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | | | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Lemont, IL, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Tian Y, Kong H, Ban X, Li C, Gu Z, Li Z. Distribution of Aromatic Amino Acid Residues in Substrate-Binding Regions Modulates Substrate Specificity of Microbial Debranching Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463425 DOI: 10.1021/acs.jafc.3c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Debranching enzymes (DBEs) directly hydrolyze α-1,6-glucosidic linkages in glycogen, starch, and related polysaccharides, making them important in the starch processing industry. However, the ambiguous substrate specificity usually restricts synergistic catalysis with other amylases for improving starch utilization. Herein, a glycogen-debranching enzyme from Saccharolobus solfataricus (SsGDE) and two isoamylases from Pseudomonas amyloderamosa (PaISO) and Chlamydomonas reinhardtii (CrISO) were used to investigate the molecular mechanism of substrate specificity. Along with the structure-based computational analysis, the aromatic residues in the substrate-binding region of DBEs played an important role in binding substrates. The aromatic residues in SsGDE appeared clustered, contributing to a small substrate-binding region. In contrast, the aromatic residues in isoamylase were distributed dispersedly, forming a large active site. The distinct characteristics of substrate-binding regions in SsGDE and isoamylase might explain their substrate preferences for maltodextrin and amylopectin, respectively. By modulating the substrate-binding region of SsGDE, variants Y323F and V375F were obtained with significantly enhanced activities, and the activities of Y323F and V375F increased by 30 and 60% for amylopectin, and 20 and 23% for DE4 maltodextrin, respectively. This study revealed the molecular mechanisms underlying the substrate specificity for SsGDE and isoamylases, providing a route for engineering enzymes to achieve higher catalytic performance.
Collapse
Affiliation(s)
- Yixiong Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| |
Collapse
|
11
|
Xi S, Ban X, Kong H, Li C, Gu Z, Li Z. Conserved residues Glu and Phe at substrate binding groove of α-1,6-glucanases modulate branch of the product. Food Chem 2023; 412:135510. [PMID: 36731233 DOI: 10.1016/j.foodchem.2023.135510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Understanding what amino acids in α-1,6-glucanases target α-1,6 glycosidic bonds of polysaccharides is timely and important for generating products with branch structure. With this objective, we investigated 330 sequences from seven subfamilies to excavate amino acids for recognition or catalysis of α-1,6 glycosidic bonds. Computational analysis identified two amino acids, E343 and W521, trigger α-1,6 glycosidic bond specificity of enzymes. To explore the effect of E343 and W521 on the product structure, several engineered mutants were studied in our research. Product structural analysis showed that the ratio of amylose and amylopectin is obviously different. The catalytic mechanism revealed that the bulky aromatic side chain is a trigger that controls the ratio of branch glucans. The E148 acts as a proton donor to regulate the generation of branched structures in the product during transglycosidation of the glucan branching enzyme (GBE).
Collapse
Affiliation(s)
- Shixia Xi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Bax HHM, van der Maarel MJEC, Jurak E. Alpha-1,4-transglycosylation Activity of GH57 Glycogen Branching Enzymes Is Higher in the Absence of a Flexible Loop with a Conserved Tyrosine Residue. Polymers (Basel) 2023; 15:2777. [PMID: 37447423 DOI: 10.3390/polym15132777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Starch-like polymers can be created through the use of enzymatic modification with glycogen branching enzymes (GBEs). GBEs are categorized in the glycoside hydrolase (GH) family 13 and 57. Both GH13 and GH57 GBEs exhibit branching and hydrolytic activity. While GH13 GBEs are also capable of α-1,4-transglycosylation, it is yet unknown whether GH57 share this capability. Among the four crystal structures of GH57 GBEs that have been solved, a flexible loop with a conserved tyrosine was identified to play a role in the branching activity. However, it remains unclear whether this flexible loop is also involved in α-1,4-transglycosylation activity. We hypothesize that GH57 GBEs with the flexible loop and tyrosine are also capable of α-1,4-transglycosylation, similar to GH13 GBEs. The aim of the present study was to characterize the activity of GH57 GBEs to investigate a possible α-1,4-transglycosylation activity. Three GH57 GBEs were selected, one from Thermococcus kodakarensis with the flexible loop and two beta-strands; one from Thermotoga maritima, missing the flexible loop and beta-strands; and one from Meiothermus sp., missing the flexible loop but with the two beta-strands. The analysis of chain length distribution over time of modified maltooctadecaose, revealed, for the first time, that all three GH57 GBEs can generate chains longer than the substrate itself, showing that α-1,4-transglycosylation activity is generally present in GH57 GBEs.
Collapse
Affiliation(s)
- Hilda Hubertha Maria Bax
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Edita Jurak
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
13
|
Improved Stability and Hydrolysates of Hyperthermophilic GH57 Type II Pullulanase from the Deep-Sea Archaeon Thermococcus siculi HJ21 by Truncation. Catalysts 2023. [DOI: 10.3390/catal13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Pullulanase (EC 3.2.1.41) belongs to the amylase family and is often used alone or in combination with other amylases in the industrial production of starch-based products. This enzyme is often required in industrial production because of its better stability. We here truncated the pullulanase gene from the deep-sea hydrothermal anaerobic archaeon Thermococcus siculi HJ21 and obtained Pul-HJΔ782, which is a member of the α-amylase family GH57. The results revealed that the optimum temperature for Pul-HJΔ782 was 100 °C, and its thermostability at 100 °C improved after truncation. Less than 15% of its enzyme activity was lost after 1 h of incubation at 100 °C, and 57% activity remained after 5 h of treatment. Truncation significantly improved the overall pH tolerance range of Pul-HJΔ782, and its stability in the pH range 4–8 was over 80% relative activity from an average of 60%. The sequence and structural model of Pul-HJΔ782 was analyzed, and its instability index was reduced significantly. Furthermore, the hydrolysates of the truncated and wild-type pullulanase were analyzed, and the enzymatic digestion efficiency of the truncated Pul-HJΔ782 was higher.
Collapse
|
14
|
Wangpaiboon K, Charoenwongpaiboon T, Klaewkla M, Field RA, Panpetch P. Cassava pullulanase and its synergistic debranching action with isoamylase 3 in starch catabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1114215. [PMID: 36778707 PMCID: PMC9911869 DOI: 10.3389/fpls.2023.1114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Pullulanase (EC 3.2.1.41, PUL), a debranching enzyme belonging to glycoside hydrolase family 13 subfamily 13, catalyses the cleavage of α-1,6 linkages of pullulan and β-limit dextrin. The present work studied PUL from cassava Manihot esculenta Crantz (MePUL) tubers, an important economic crop. The Mepul gene was successfully cloned and expressed in E. coli and rMePUL was biochemically characterised. MePUL was present as monomer and homodimer, as judged by apparent mass of ~ 84 - 197 kDa by gel permeation chromatography analysis. Optimal pH and temperature were at pH 6.0 and 50 °C, and enzyme activity was enhanced by the addition of Ca2+ ions. Pullulan is the most favourable substrate for rMePUL, followed by β-limit dextrin. Additionally, maltooligosaccharides were potential allosteric modulators of rMePUL. Interestingly, short-chain maltooligosaccharides (DP 2 - 4) were significantly revealed at a higher level when rMePUL was mixed with cassava isoamylase 3 (rMeISA3), compared to that of each single enzyme reaction. This suggests that MePUL and MeISA3 debranch β-limit dextrin in a synergistic manner, which represents a major starch catabolising process in dicots. Additionally, subcellular localisation suggested the involvement of MePUL in starch catabolism, which normally takes place in plastids.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Methus Klaewkla
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Pawinee Panpetch
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
In-Depth Characterization of Debranching Type I Pullulanase from Priestia koreensis HL12 as Potential Biocatalyst for Starch Saccharification and Modification. Catalysts 2022. [DOI: 10.3390/catal12091014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pullulanase is an effective starch debranching enzyme widely used in starch saccharification and modification. In this work, the biochemical characteristics and potential application of a new type I pullulanase from Priestia koreensis HL12 (HL12Pul) were evaluated and reported for the first time. Through in-depth evolutionary analysis, HL12Pul was classified as type I pullulanase belonging to glycoside hydrolase family 13, subfamily 14 (GH13_14). HL12Pul comprises multi-domains architecture, including two carbohydrate-binding domains, CBM68 and CBM48, at the N-terminus, the TIM barrel structure of glycoside hydrolase family 13 (GH13) and C-domain. Based on sequence analysis and experimental cleavage profile, HL12Pul specifically hydrolyzes only α-1,6 glycosidic linkage-rich substrates. The enzyme optimally works at 40 °C, pH 6.0, with the maximum specific activity of 181.14 ± 3.55 U/mg protein and catalytic efficiency (kcat/Km) of 49.39 mL/mg·s toward pullulan. In addition, HL12Pul worked in synergy with raw starch-degrading α-amylase, promoting raw cassava starch hydrolysis and increasing the sugar yield by 2.9-fold in comparison to the α-amylase alone in a short reaction time. Furthermore, HL12Pul effectively produces type III-resistant starch (RSIII) from cassava starch with a production yield of 70%. These indicate that HL12Pul has the potential as a biocatalyst for starch saccharification and modification.
Collapse
|
16
|
Zeng J, He C, Guo J, Yuan L. Improvement of the Catalytic Activity of Thermoacidophilic Pullulan Hydrolase Type III by Error-Prone PCR Technology. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Structural basis for proteolytic processing of Aspergillus sojae α-glucosidase L with strong transglucosylation activity. J Struct Biol 2022; 214:107874. [DOI: 10.1016/j.jsb.2022.107874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
|
18
|
Characterization of a novel type of glycogen-degrading amylopullulanase from Lactobacillus crispatus. Appl Microbiol Biotechnol 2022; 106:4053-4064. [PMID: 35612627 DOI: 10.1007/s00253-022-11975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Glycogen is one of the major carbohydrates utilized by the human vaginal microbiota, which is commonly dominated by Lactobacillus, especially L. crispatus. An in silico analysis predicted that a type I pullulanase was involved in glycogen degradation in L. crispatus. The biochemical and genetic properties of the pullulanase still need to be determined. Here, we de novo identified the glycogen (Glg)-utilization enzyme (named GlgU) from L. crispatus through a biochemical assay. GlgU was optimally active at acidic pH, approximately 4.0 ~ 4.5, and was able to hydrolyze glycogen into low-molecular-weight malto-oligosaccharides. Actually, GlgU was a type II pullulanase (amylopullulanase) with just one catalytic domain that possessed substrate specificity toward both α-1,4 and α-1,6-glucosidic bonds. Phylogenetically, GlgU was obviously divergent from the known amylases and pullulanases (including amylopullulanases) in lactobacilli. In addition, we confirmed the catalytic activity of glgU in a nonglycogen-utilizing lactobacilli strain, demonstrating the essential role of glgU in glycogen metabolism. Overall, this study characterized a novel type of amylopullulanases, contributing to the knowledge of the glycogen utilization mechanism of the dominant species of human vaginal microbiota. KEY POINTS: • GlgU was a type II pullulanase, not a type I pullulanase predicted before. • GlgU was able to completely hydrolyze glycogen into malto-oligosaccharides. • GlgU played a key role in the metabolism of extracellular glycogen.
Collapse
|
19
|
Cerqueira FM, Photenhauer AL, Doden HL, Brown AN, Abdel-Hamid AM, Moraïs S, Bayer EA, Wawrzak Z, Cann I, Ridlon JM, Hopkins JB, Koropatkin NM. Sas20 is a highly flexible starch-binding protein in the Ruminococcus bromii cell-surface amylosome. J Biol Chem 2022; 298:101896. [PMID: 35378131 PMCID: PMC9112005 DOI: 10.1016/j.jbc.2022.101896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/08/2023] Open
Abstract
Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal β-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 μM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.
Collapse
Affiliation(s)
- Filipe M Cerqueira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Heidi L Doden
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Aric N Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ahmed M Abdel-Hamid
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sarah Moraïs
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Edward A Bayer
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zdzislaw Wawrzak
- Northwestern University, Synchrotron Research Center, Life Science Collaborative Access Team, Lemont, Illinois, USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Illinois Institute of Technology, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
20
|
Jafari F, Kiani-Ghaleh F, Eftekhari S, Razzaghshoar Razlighi M, Nazari N, Hajirajabi M, Masoomi Sarvestani F, Sharafieh G. Cloning, overexpression, and structural characterization of a novel archaeal thermostable neopullulanase from Desulfurococcus mucosus DSM 2162. Prep Biochem Biotechnol 2022; 52:1190-1201. [PMID: 35234088 DOI: 10.1080/10826068.2022.2033996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The main purpose of the present study is to introduce the biochemical characteristics of the industrial valuable thermostable pullulan degrading enzyme from Desulfurococcus mucosus DSM2162. Recombinant protein was purified by a combination of thermal treatment and affinity chromatography, with a yield of 15.94% and 7.69-fold purity. Purified enzyme showed the molecular mass of 55,787 Da with optimum activity at 70 °C and a broad range of pH (5.0-9.0) with kcat of 2150 min-1 and Km of 6.55 mg.mL-1, when using starch as substrate. The enzyme activity assay on various polysaccharide substrates revealed the substrate preference of pullulan > amylopectin > β cyclodextrin > starch > glycogen; therefore, it classified as a neopullulanase. The neopullulanase structural analysis by spectrofluorometer, FT-IR, and circular dichroism spectroscopy indicated the corporation of α-helix (47.3%) and β-sheet (31.6%) in its secondary structure. The melting temperature and specific heat capacity calculations using differential scanning calorimetry confirmed its extreme thermal stability. Further, salt-elevated concentrations resulted in oligomeric state dominancy without any significant influence on the starch-degrading ability. The newly cloned archaeal neopullulanase was with broad activity on polysaccharide substrates, with thermal and salt stability. Thus, the Desulfurococcus mucosus DSM2162 neopullulanase can be introduced as a good candidate to be used in carbohydrate industry.
Collapse
Affiliation(s)
- Farzaneh Jafari
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Farid Kiani-Ghaleh
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Shahrzad Eftekhari
- Medical Laboratory Sciences Department, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Nazanin Nazari
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hajirajabi
- Department of Microbiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fatima Masoomi Sarvestani
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golnoosh Sharafieh
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Abstract
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III). Generally, these enzymes hydrolyse the α-1,6 glucosidic bonds (and α-1,4 for certain enzyme groups) of substrates and form reducing sugars such as glucose, maltose, maltotriose, panose or isopanose. This review covers two main aspects: (i) bibliometric analysis of publications and patents related to pullulan-degrading enzymes and (ii) biological aspects of free and immobilised pullulan-degrading enzymes and protein engineering. The collective data suggest that most publications involved researchers within the same institution or country in the past and current practice. Multi-national interaction shall be improved, especially in tapping the enzymes from unculturable prokaryotes. While the understanding of pullulanases may reach a certain extend of saturation, the discovery of pullulan hydrolases is still limited. In this report, we suggest readers consider using the next-generation sequencing technique to fill the gaps of finding more new sequences encoding pullulan-degrading enzymes to expand the knowledge body of this topic.
Collapse
|
22
|
Conchou L, Martin J, Gonçalves IR, Galisson F, Violot S, Guillière F, Aghajari N, Ballut L. The Candida glabrata glycogen branching enzyme structure reveals unique features of branching enzymes of the Saccharomycetaceae phylum. Glycobiology 2021; 32:343-355. [PMID: 34939121 DOI: 10.1093/glycob/cwab110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Branching enzymes (BE) are responsible for the formation of branching points at the 1,6 position in glycogen and starch, by catalyzing the cleavage of α-1,4-linkages and the subsequent transfer by introducing α-1,6-linked glucose branched points. BEs are found in the large GH13 family, eukaryotic BEs being mainly classified in the GH13_8 subfamily, GH13_9 grouping almost exclusively prokaryotic enzymes. With the aim of contributing to the understanding of the mode of recognition and action of the enzymes belonging to GH13_8, and to the understanding of features distinguishing these enzymes from those belonging to subfamily 13_9 we solved the crystal structure of the glycogen branching enzyme (GBE) from the yeast Candida glabrata, CgGBE, in ligand free forms and in complex with a maltotriose. The structures revealed the presence of a domain already observed in Homo sapiens and Oryza sativa BEs and that we named α-helical N-terminal domain, in addition to the three conserved domains found in BE. We confirmed by phylogenetic analysis that this α-helical N-terminal domain is always present in the GH13_8 enzymes suggesting that it could actually present a signature for this subfamily. We identified two binding sites (BS) in the α-helical N-terminal domain and in the carbohydrate binding module 48 (CBM48), respectively, which show a unique structural organization only present in the Saccharomycotina phylum. Our structural and phylogenetic investigation provides new insight into the structural characterization of GH13_8 GBE revealing unique structural features only present in the Saccharomycotina phylum thereby conferring original properties to this group of enzymes.
Collapse
Affiliation(s)
- Léa Conchou
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Isabelle R Gonçalves
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS Université de Lyon, Villeurbanne 69622, France
| | - Frédéric Galisson
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Florence Guillière
- Institut des Sciences Analytiques, UMR 5280 CNRS Université de Lyon, Villeurbanne, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
23
|
Dong Z, Yang S, Dong X, Yang Y, Yan X, Su J, Tang C, Yao L, Kan Y. Characteristics, Protein Engineering, Heterologous Production, and Industrial Applications of Microbial Isoamylases. STARCH-STARKE 2021. [DOI: 10.1002/star.202100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Shuangshuang Yang
- College of Physical Education Nanyang Normal University Nanyang 473061 China
| | - Xiaoxiao Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Yongna Yang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Xueting Yan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Jiejie Su
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology Henan Key Laboratory of Insect Biology in Funiu Mountain Nanyang Normal University Nanyang Henan 473061 China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐North Nanyang Normal University Nanyang 473061 China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology Henan Key Laboratory of Insect Biology in Funiu Mountain Nanyang Normal University Nanyang Henan 473061 China
| |
Collapse
|
24
|
Li YX, Rao YZ, Qi YL, Qu YN, Chen YT, Jiao JY, Shu WS, Jiang H, Hedlund BP, Hua ZS, Li WJ. Deciphering Symbiotic Interactions of " Candidatus Aenigmarchaeota" with Inferred Horizontal Gene Transfers and Co-occurrence Networks. mSystems 2021; 6:e0060621. [PMID: 34313464 PMCID: PMC8407114 DOI: 10.1128/msystems.00606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
"Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota") represents one of the earliest proposed evolutionary branches within the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, their ecological roles and potential host-symbiont interactions are still poorly understood. Here, eight metagenome-assembled genomes (MAGs) were reconstructed from hot spring ecosystems, and further in-depth comparative and evolutionary genomic analyses were conducted on these MAGs and other genomes downloaded from public databases. Although with limited metabolic capacities, we reported that "Ca. Aenigmarchaeota" in thermal environments harbor more genes related to carbohydrate metabolism than "Ca. Aenigmarchaeota" in nonthermal environments. Evolutionary analyses suggested that members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota contribute substantially to the niche expansion of "Ca. Aenigmarchaeota" via horizontal gene transfer (HGT), especially genes related to virus defense and stress responses. Based on co-occurrence network results and recent genetic exchanges among community members, we conjectured that "Ca. Aenigmarchaeota" may be symbionts associated with one MAG affiliated with the genus Pyrobaculum, though host specificity might be wide and variable across different "Ca. Aenigmarchaeota" organisms. This study provides significant insight into possible DPANN-host interactions and ecological roles of "Ca. Aenigmarchaeota." IMPORTANCE Recent advances in sequencing technology promoted the blowout discovery of super tiny microbes in the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, the unculturable properties of the majority of microbes impeded our investigation of their behavior and symbiotic lifestyle in the corresponding community. By integrating horizontal gene transfer (HGT) detection and co-occurrence network analysis on "Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota"), we made one of the first attempts to infer their putative interaction partners and further decipher the potential functional and genetic interactions between the symbionts. We revealed that HGTs contributed by members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota conferred "Ca. Aenigmarchaeota" with the ability to survive under different environmental stresses, such as virus infection, high temperature, and oxidative stress. This study demonstrates that the interaction partners might be inferable by applying informatics analyses on metagenomic sequencing data.
Collapse
Affiliation(s)
- Yu-Xian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ling Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ya-Ting Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China
| |
Collapse
|
25
|
Cockburn DW, Kibler R, Brown HA, Duvall R, Moraïs S, Bayer E, Koropatkin NM. Structure and substrate recognition by the Ruminococcus bromii amylosome pullulanases. J Struct Biol 2021; 213:107765. [PMID: 34186214 DOI: 10.1016/j.jsb.2021.107765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023]
Abstract
Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 63-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 63-α-D glucosyl-maltotriose captured β-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ryan Kibler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Rebecca Duvall
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sarah Moraïs
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Edward Bayer
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
26
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
27
|
Han X, Lei X, Yang X, Shen J, Zheng L, Jin C, Cao Y, Yao J. A Metagenomic Insight Into the Hindgut Microbiota and Their Metabolites for Dairy Goats Fed Different Rumen Degradable Starch. Front Microbiol 2021; 12:651631. [PMID: 34163442 PMCID: PMC8216219 DOI: 10.3389/fmicb.2021.651631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
High starch diets have been proven to increase the risk of hindgut acidosis in high-yielding dairy animals. As an effective measurement of dietary carbohydrate for ruminants, studies on rumen degradable starch (RDS) and the effects on the gut microbiota diversity of carbohydrate-active enzymes (CAZymes), and Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology functional categories are helpful to understand the mechanisms between gut microbiota and carbohydrate metabolism in dairy goats. A total of 18 lactating goats (45.8 ± 1.54 kg) were randomly divided equally into three dietary treatments with low dietary RDS concentrations of 20.52% (LRDS), medium RDS of 22.15% (MRDS), and high RDS of 24.88% (HRDS) on a DM basis for 5 weeks. Compared with the LRDS and MRDS groups, HRDS increased acetate molar proportion in the cecum. For the HRDS group, the abundance of family Ruminococcaceae and genus Ruminococcaceae UCG-010 were significantly increased in the cecum. For the LRDS group, the butyrate molar proportion and the abundance of butyrate producer family Bacteroidale_S24-7, family Lachnospiraceae, and genus Bacteroidale_S24-7_group were significantly increased in the cecum. Based on the BugBase phenotypic prediction, the microbial oxidative stress tolerant and decreased potentially pathogenic in the LRDS group were increased in the cecum compared with the HRDS group. A metagenomic study on cecal bacteria revealed that dietary RDS level could affect carbohydrate metabolism by increasing the glycoside hydrolase 95 (GH95) family and cellulase enzyme (EC 3.2.1.4) in the HRDS group; increasing the GH13_20 family and isoamylase enzyme (EC 3.2.1.68) in the LRDS group. PROBIO probiotics database showed the relative gene abundance of cecal probiotics significantly decreased in the HRDS group. Furthermore, goats fed the HRDS diet had a lower protein expression of Muc2, and greater expression RNA of interleukin-1β and secretory immunoglobulin A in cecal mucosa than did goats fed the LRDS diet. Combined with the information from previous results from rumen, dietary RDS level altered the degradation position of carbohydrates in the gastrointestinal (GI) tract and increased the relative abundance of gene encoded enzymes degrading cellulose in the HRDS group in the cecum of dairy goats. This study revealed that the HRDS diet could bring disturbances to the microbial communities network containing taxa of the Lachnospiraceae and Ruminococcaceae and damage the mucus layer and inflammation in the cecum of dairy goats.
Collapse
Affiliation(s)
- Xiaoying Han
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinjian Lei
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuexin Yang
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jing Shen
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lixin Zheng
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjia Jin
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangchun Cao
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
Jaafar NR, Ahmad RA, Nawawi NN, Abd Rahman NH, Shamsul Annuar NA, Rahman RA, Illias RM. Synergistic action of cyclodextrin glucanotransferase and maltogenic amylase improves the bioconversion of starch to malto-oligosaccharides. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Lago MC, Dos Santos FC, Bueno PSA, de Oliveira MAS, Barbosa-Tessmann IP. The glucoamylase from Aspergillus wentii: Purification and characterization. J Basic Microbiol 2021; 61:443-458. [PMID: 33783000 DOI: 10.1002/jobm.202000595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 11/10/2022]
Abstract
This study describes for the first time the purification and characterization of a glucoamylase from Aspergillus wentii (strain PG18), a species of the Aspergillus genus Cremei section. Maximum enzyme production (∼3.5 U/ml) was obtained in submerged culture (72 h) with starch as the carbon source, at 25°C, and with orbital agitation (100 rpm). The enzyme was purified with one-step molecular exclusion chromatography. The 86 kDa purified enzyme hydrolyzed starch in a zymogram and had activity against p-nitrophenyl α- d-glucopyranoside. The optimal enzyme pH and temperature were 5.0 and 60°C (at pH 5.0), respectively. The Tm of the purified enzyme was 60°C, at pH 7.0. The purified glucoamylase had a KM for starch of 1.4 mg/ml and a Vmax of 0.057 mg/min of hydrolyzed starch. Molybdenum activated the purified enzyme, and sodium dodecyl sulfate inhibited it. A thin layer chromatography analysis revealed glucose as the enzyme's main starch hydrolysis product. An enzyme's peptide sequence was obtained by mass spectrometry and used to retrieve a glucoamylase within the annotated genome of A. wentii v1.0. An in silico structural model revealed a N-terminal glycosyl hydrolases family 15 (GH15) domain, which is ligated by a linker to a C-terminal carbohydrate-binding module (CBM) from the CBM20 family.
Collapse
Affiliation(s)
- Munira C Lago
- Department of Biochemistry, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Fabiane C Dos Santos
- Department of Biochemistry, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Paulo S A Bueno
- Department of Biochemistry, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Marco A S de Oliveira
- Department of Biochemistry, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
30
|
Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and Recent Trends in Microbial α-Amylase: a Review. Appl Biochem Biotechnol 2021; 193:2649-2698. [PMID: 33715051 DOI: 10.1007/s12010-021-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
α-Amylases are the oldest and versatile starch hydrolysing enzymes which can replace chemical hydrolysis of starch in industries. It cleaves the α-(1,4)-D-glucosidic linkage of starch and other related polysaccharides to yield simple sugars like glucose, maltose and limit dextrin. α-Amylase covers about 30% shares of the total enzyme market. On account of their superior features, α-amylase is the most widely used among all the existing amylases for hydrolysis of polysaccharides. Endo-acting α-amylase of glycoside hydrolase family 13 is an extensively used biocatalyst and has various biotechnological applications like in starch processing, detergent, textile, paper and pharmaceutical industries. Apart from these, it has some novel applications including polymeric material for drug delivery, bioremediating agent, biodemulsifier and biofilm inhibitor. The present review will accomplish the research gap by providing the unexplored aspects of microbial α-amylase. It will allow the readers to know about the works that have already been done and the latest trends in this field. The manuscript has covered the latest immobilization techniques and the site-directed mutagenesis approaches which are readily being performed to confer the desirable property in wild-type α-amylases. Furthermore, it will state the inadequacies and the numerous obstacles coming in the way of its production during upstream and downstream steps and will also suggest some measures to obtain stable and industrial-grade α-amylase.
Collapse
Affiliation(s)
- Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Esmil Beliya
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.,Department of Botany, Govt. College, Bichhua, Chhindwara, MP, 480111, India
| | - Shubhra Tiwari
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.
| |
Collapse
|
31
|
Xu P, Zhang SY, Luo ZG, Zong MH, Li XX, Lou WY. Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World J Microbiol Biotechnol 2021; 37:43. [PMID: 33547538 DOI: 10.1007/s11274-021-03010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, β-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.
Collapse
Affiliation(s)
- Pei Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Shi-Yu Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Zhi-Gang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiao-Xi Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
32
|
Briggs JA, Grondin JM, Brumer H. Communal living: glycan utilization by the human gut microbiota. Environ Microbiol 2020; 23:15-35. [PMID: 33185970 DOI: 10.1111/1462-2920.15317] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Our lower gastrointestinal tract plays host to a vast consortium of microbes, known as the human gut microbiota (HGM). The HGM thrives on a complex and diverse range of glycan structures from both dietary and host sources, the breakdown of which requires the concerted action of cohorts of carbohydrate-active enzymes (CAZymes), carbohydrate-binding proteins, and transporters. The glycan utilization profile of individual taxa, whether 'specialist' or 'generalist', is dictated by the number and functional diversity of these glycan utilization systems. Furthermore, taxa in the HGM may either compete or cooperate in glycan deconstruction, thereby creating a complex ecological web spanning diverse nutrient niches. As a result, our diet plays a central role in shaping the composition of the HGM. This review presents an overview of our current understanding of glycan utilization by the HGM on three levels: (i) molecular mechanisms of individual glycan deconstruction and uptake by key bacteria, (ii) glycan-mediated microbial interactions, and (iii) community-scale effects of dietary changes. Despite significant recent advancements, there remains much to be discovered regarding complex glycan metabolism in the HGM and its potential to affect positive health outcomes.
Collapse
Affiliation(s)
- Jonathon A Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Julie M Grondin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
33
|
Tetlow IJ, Bertoft E. A Review of Starch Biosynthesis in Relation to the Building Block-Backbone Model. Int J Mol Sci 2020; 21:E7011. [PMID: 32977627 PMCID: PMC7582286 DOI: 10.3390/ijms21197011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023] Open
Abstract
Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.
Collapse
Affiliation(s)
- Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
34
|
Metastasis of Uveal Melanoma with Monosomy-3 Is Associated with a Less Glycogenetic Gene Expression Profile and the Dysregulation of Glycogen Storage. Cancers (Basel) 2020; 12:cancers12082101. [PMID: 32751097 PMCID: PMC7463985 DOI: 10.3390/cancers12082101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
Collapse
|
35
|
Ding F, Ishiwata A, Zhou S, Zhong X, Ito Y. Unified Strategy toward Stereocontrolled Assembly of Various Glucans Based on Bimodal Glycosyl Donors. J Org Chem 2020; 85:5536-5558. [PMID: 32212661 DOI: 10.1021/acs.joc.0c00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymers of glucose, the most abundant and one of the biologically important natural products, named glucans are widely present in fungi, bacteria, mammals, and plants with various anomeric configurations and glycosidic linkages. Because of their structural diversity, the unified strategy for the assembly of pure glucans is yet to be developed. Herein, we describe a general strategy that is applicable to construction of all types of glucans by exploiting a bimodal glycosyl donor equipped with C2-o-TsNHbenzyl ether (TAB), which enables stereocontrolled synthesis of both α- and β-glycosides by switching reaction conditions.
Collapse
Affiliation(s)
- Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.,Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ishiwata
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
36
|
Zhang SY, Guo ZW, Wu XL, Ou XY, Zong MH, Lou WY. Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. J Biotechnol 2020; 313:39-47. [DOI: 10.1016/j.jbiotec.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
|
37
|
Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs. Trends Microbiol 2020; 28:95-108. [DOI: 10.1016/j.tim.2019.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
|
38
|
Improvement of the Thermostability and Activity of Pullulanase from Anoxybacillus sp. WB42. Appl Biochem Biotechnol 2020; 191:942-954. [DOI: 10.1007/s12010-020-03249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
|
39
|
Andersen S, Svensson B, Møller MS. Roles of the N-terminal domain and remote substrate binding subsites in activity of the debranching barley limit dextrinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140294. [DOI: 10.1016/j.bbapap.2019.140294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/15/2019] [Accepted: 10/10/2019] [Indexed: 11/28/2022]
|
40
|
Plaza-Vinuesa L, Hernandez-Hernandez O, Moreno FJ, de Las Rivas B, Muñoz R. Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microb Cell Fact 2019; 18:183. [PMID: 31655584 PMCID: PMC6815381 DOI: 10.1186/s12934-019-1237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background α-Amylases specifically catalyse the hydrolysis of the internal α-1, 4-glucosidic linkages of starch. Glycoside hydrolase (GH) family 13 is the main α-amylase family in the carbohydrate-active database. Lactobacillus plantarum WCFS1 possesses eleven proteins included in GH13 family. Among these, proteins annotated as maltose-forming α-amylase (Lp_0179) and maltogenic α-amylase (Lp_2757) were included. Results In this study, Lp_0179 and Lp_2757 L. plantarum α-amylases were structurally and biochemically characterized. Lp_2757 displayed structural features typical of GH13_20 subfamily which were absent in Lp_0179. Genes encoding Lp_0179 (Amy2) and Lp_2757 were cloned and overexpressed in Escherichia coli BL21(DE3). Purified proteins showed high hydrolytic activity on pNP-α-D-maltopyranoside, being the catalytic efficiency of Lp_0179 remarkably higher. In relation to the hydrolysis of starch-related carbohydrates, Lp_0179 only hydrolysed maltopentaose and dextrin, demonstrating that is an exotype glucan hydrolase. However, Lp_2757 was also able to hydrolyze cyclodextrins and other non-cyclic oligo- and polysaccharides, revealing a great preference towards α-1,4-linkages typical of maltogenic amylases. Conclusions The substrate range as well as the biochemical properties exhibited by Lp_2757 maltogenic α-amylase suggest that this enzyme could be a very promising enzyme for the hydrolysis of α-1,4 glycosidic linkages present in a broad number of starch-carbohydrates, as well as for the investigation of an hypothetical transglucosylation activity under appropriate reaction conditions.
Collapse
Affiliation(s)
- Laura Plaza-Vinuesa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
41
|
Dong Z, Tang C, Lu Y, Yao L, Kan Y. Microbial Oligo‐α‐1,6‐Glucosidase: Current Developments and Future Perspectives. STARCH-STARKE 2019. [DOI: 10.1002/star.201900172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Yunfeng Lu
- School of Life Science and TechnologyNanyang Normal University Nanyang 473061 P. R. China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| |
Collapse
|
42
|
Saka N, Malle D, Iwamoto H, Takahashi N, Mizutani K, Mikami B. Relationship between the induced-fit loop and the activity of Klebsiella pneumoniae pullulanase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:792-803. [DOI: 10.1107/s2059798319010660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022]
Abstract
Klebsiella pneumoniae pullulanase (KPP) belongs to glycoside hydrolase family 13 subfamily 13 (GH13_13) and is the only enzyme that is reported to perform an induced-fit motion of the active-site loop (residues 706–710). Comparison of pullulanase structures indicated that only KPP has Leu680 present behind the loop, in contrast to the glycine found in other GH13_13 members. Analysis of the structure and activity of recombinant pullulanase from K. pneumoniae ATCC 9621 (rKPP) and its mutant (rKPP-G680L) indicated that the side chain of residue 680 is important for the induced-fit motion of the loop 706–710 and alters the binding affinity of the substrate.
Collapse
|
43
|
Vu VV, Hangasky JA, Detomasi TC, Henry SJW, Ngo ST, Span EA, Marletta MA. Substrate selectivity in starch polysaccharide monooxygenases. J Biol Chem 2019; 294:12157-12166. [PMID: 31235519 DOI: 10.1074/jbc.ra119.009509] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/21/2019] [Indexed: 11/06/2022] Open
Abstract
Degradation of polysaccharides is central to numerous biological and industrial processes. Starch-active polysaccharide monooxygenases (AA13 PMOs) oxidatively degrade starch and can potentially be used with industrial amylases to convert starch into a fermentable carbohydrate. The oxidative activities of the starch-active PMOs from the fungi Neurospora crassa and Myceliophthora thermophila, NcAA13 and MtAA13, respectively, on three different starch substrates are reported here. Using high-performance anion-exchange chromatography coupled with pulsed amperometry detection, we observed that both enzymes have significantly higher oxidative activity on amylose than on amylopectin and cornstarch. Analysis of the product distribution revealed that NcAA13 and MtAA13 more frequently oxidize glycosidic linkages separated by multiples of a helical turn consisting of six glucose units on the same amylose helix. Docking studies identified important residues that are involved in amylose binding and suggest that the shallow groove that spans the active-site surface of AA13 PMOs favors the binding of helical amylose substrates over nonhelical substrates. Truncations of NcAA13 that removed its native carbohydrate-binding module resulted in diminished binding to amylose, but truncated NcAA13 still favored amylose oxidation over other starch substrates. These findings establish that AA13 PMOs preferentially bind and oxidize the helical starch substrate amylose. Moreover, the product distributions of these two enzymes suggest a unique interaction with starch substrates.
Collapse
Affiliation(s)
- Van V Vu
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam.
| | - John A Hangasky
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - Tyler C Detomasi
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Skylar J W Henry
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Elise A Span
- Biophysics Graduate Group, University of California, Berkeley, California 94720
| | - Michael A Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720; Department of Chemistry, University of California, Berkeley, California 94720; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
44
|
Chen A, Xu T, Ge Y, Wang L, Tang W, Li S. Hydrogen-bond-based protein engineering for the acidic adaptation of Bacillus acidopullulyticus pullulanase. Enzyme Microb Technol 2019; 124:79-83. [DOI: 10.1016/j.enzmictec.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
45
|
Seung D, Smith AM. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:771-784. [PMID: 30452691 DOI: 10.1093/jxb/ery412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/06/2018] [Indexed: 05/13/2023]
Abstract
Starch, the major storage carbohydrate in plants, is synthesized in plastids as semi-crystalline, insoluble granules. Many organs and cell types accumulate starch at some point during their development and maturation. The biosynthesis of the starch polymers, amylopectin and amylose, is relatively well understood and mostly conserved between organs and species. However, we are only beginning to understand the mechanism by which starch granules are initiated, and the factors that control the number of granules per plastid and the size/shape of granules. Here, we review recent progress in understanding starch granule initiation and morphogenesis. In Arabidopsis, granule initiation requires several newly discovered proteins with specific locations within the chloroplast, and also on the availability of maltooligosaccharides which act as primers for initiation. We also describe progress in understanding granule biogenesis in the endosperm of cereal grains-within which there is large interspecies variation in granule initiation patterns and morphology. Investigating whether this diversity results from differences between species in the functions of known proteins, and/or from the presence of novel, unidentified proteins, is a promising area of future research. Expanding our knowledge in these areas will lead to new strategies for improving the quality of cereal crops by modifying starch granule size and shape in vivo.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
46
|
Tappiban P, Smith DR, Triwitayakorn K, Bao J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Wilkens C, Svensson B, Møller MS. Functional Roles of Starch Binding Domains and Surface Binding Sites in Enzymes Involved in Starch Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1652. [PMID: 30483298 PMCID: PMC6243121 DOI: 10.3389/fpls.2018.01652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 05/07/2023]
Abstract
Biosynthesis of starch is catalyzed by a cascade of enzymes. The activity of a large number of these enzymes depends on interaction with polymeric substrates via carbohydrate binding sites, which are situated outside of the catalytic site and its immediate surroundings including the substrate-binding crevice. Such secondary binding sites can belong to distinct starch binding domains (SBDs), classified as carbohydrate binding modules (CBMs), or be surface binding sites (SBSs) exposed on the surface of catalytic domains. Currently in the Carbohydrate-Active enZYmes (CAZy) database SBDs are found in 13 CBM families. Four of these families; CBM20, CBM45, CBM48, and CBM53 are represented in enzymes involved in starch biosynthesis, namely starch synthases, branching enzymes, isoamylases, glucan, water dikinases, and α-glucan phosphatases. A critical role of the SBD in activity has not been demonstrated for any of these enzymes. Among the well-characterized SBDs important for starch biosynthesis are three CBM53s of Arabidopsis thaliana starch synthase III, which have modest affinity. SBSs, which are overall less widespread than SBDs, have been reported in some branching enzymes, isoamylases, synthases, phosphatases, and phosphorylases active in starch biosynthesis. SBSs appear to exert roles similar to CBMs. SBSs, however, have also been shown to modulate specificity for example by discriminating the length of chains transferred by branching enzymes. Notably, the difference in rate of occurrence between SBDs and SBSs may be due to lack of awareness of SBSs. Thus, SBSs as opposed to CBMs are not recognized at the protein sequence level, which hampers their identification. Moreover, only a few SBSs in enzymes involved in starch biosynthesis have been functionally characterized, typically by structure-guided site-directed mutagenesis. The glucan phosphatase Like SEX4 2 from A. thaliana has two SBSs with weak affinity for β-cyclodextrin, amylose and amylopectin, which were indicated by mutational analysis to be more important than the active site for initial substrate recognition. The present review provides an update on occurrence of functional SBDs and SBSs in enzymes involved in starch biosynthesis.
Collapse
Affiliation(s)
- Casper Wilkens
- Enzyme Technology, Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
48
|
Goren A, Ashlock D, Tetlow IJ. Starch formation inside plastids of higher plants. PROTOPLASMA 2018; 255:1855-1876. [PMID: 29774409 DOI: 10.1007/s00709-018-1259-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 05/09/2023]
Abstract
Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.
Collapse
Affiliation(s)
- Asena Goren
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel Ashlock
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
49
|
Evolution of a Vegetarian Vibrio: Metabolic Specialization of Vibrio breoganii to Macroalgal Substrates. J Bacteriol 2018; 200:JB.00020-18. [PMID: 29632094 DOI: 10.1128/jb.00020-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
While most Vibrionaceae are considered generalists that thrive on diverse substrates, including animal-derived material, we show that Vibrio breoganii has specialized for the consumption of marine macroalga-derived substrates. Genomic and physiological comparisons of V. breoganii with other Vibrionaceae isolates revealed the ability to degrade alginate, laminarin, and additional glycans present in algal cell walls. Moreover, the widely conserved ability to hydrolyze animal-derived polymers, including chitin and glycogen, was lost, along with the ability to efficiently grow on a variety of amino acids. Ecological data showing associations with particulate algal material but not zooplankton further support this shift in niche preference, and the loss of motility appears to reflect a sessile macroalga-associated lifestyle. Together, these findings indicate that algal polysaccharides have become a major source of carbon and energy in V. breoganii, and these ecophysiological adaptations may facilitate transient commensal associations with marine invertebrates that feed on algae.IMPORTANCE Vibrios are often considered animal specialists or generalists. Here, we show that Vibrio breoganii has undergone massive genomic changes to become specialized on algal carbohydrates. Accompanying genomic changes include massive gene import and loss. These vibrios may help us better understand how algal biomass is degraded in the environment and may serve as a blueprint on how to optimize the conversion of algae to biofuels.
Collapse
|
50
|
Zhang K, Su L, Wu J. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl Microbiol Biotechnol 2018; 102:5089-5103. [DOI: 10.1007/s00253-018-8965-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
|