1
|
Xiu W, Zhang Y, Tang D, Lee SH, Zeng R, Ye T, Li H, Lu Y, Qin C, Yang Y, Yan X, Wang X, Hu X, Chu M, Sun Z, Xu W. Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00999-7. [PMID: 39373858 DOI: 10.1007/s13402-024-00999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
PURPOSE Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug. METHOD The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance. RESULTS ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC. CONCLUSIONS These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.
Collapse
Affiliation(s)
- Wenhao Xiu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yujia Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Dongfang Tang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Rui Zeng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tingjie Ye
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanlin Lu
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changtai Qin
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuxi Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaofeng Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoling Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xudong Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Maoquan Chu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhumei Sun
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Zhu W, Wu C, Liu Z, Zhao S, Huang J. OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) modulates the stemness feature, chemoresistance, and epithelial-mesenchymal transition of colon cancer via regulating GINS complex subunit 1 (GINS1) expression. Cell Commun Signal 2024; 22:420. [PMID: 39210373 PMCID: PMC11361113 DOI: 10.1186/s12964-024-01789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Colon cancer is one of the most prevalent tumors in the digestive tract, and its stemness feature significantly contribute to chemoresistance, promote the epithelial-mesenchymal transition (EMT) process, and ultimately lead to tumor metastasis. Therefore, it is imperative for researchers to elucidate the molecular mechanisms underlying the enhancement of stemness feature, chemoresistance, and EMT in colon cancer. METHODS Sphere-formation and western blotting assays were conducted to assess the stemness feature. Edu, flow cytometry, and cell viability assays were employed to evaluate the chemoresistance. Immunofluorescence and western blotting assays were utilized to detect EMT. Immunoprecipitation, ubiquitination, agarose gel electrophoresis, chromatin immunoprecipitation followed by quantitative PCR (chip-qPCR), and dual luciferase reporter gene assays were employed for mechanistic investigations. RESULTS We demonstrated a markedly higher expression level of OTUB2 in colon cancer tissues compared to adjacent tissues. Furthermore, elevated OTUB2 expression was closely associated with poor prognosis and distant tumor metastasis. Functional experiments revealed that knockdown of OTUB2 attenuated stemness feature of colon cancer, enhanced its sensitivity to oxaliplatin, inhibited its EMT process, ultimately reduced the ability of tumor metastasis. Conversely, overexpression of OTUB2 exerted opposite effects. Mechanistically, we identified OTUB2 as a deubiquitinase for SP1 protein which bound specifically to SP1 protein, thereby inhibiting K48 ubiquitination of SP1 protein. The SP1 protein functioned as a transcription factor for the GINS1, exerting its regulatory effect by binding to the 1822-1830 region of the GINS1 promoter and enhancing its transcriptional activity. Ultimately, alterations in GINS1 expression directly regulated stemness feature, chemosensitivity, and EMT progression in colon cancer. CONCLUSION Collectively, the OTUB2/SP1/GINS1 axis played a pivotal role in driving stemness feature, chemoresistance, and EMT in colon cancer. These results shed new light on understanding chemoresistance and metastasis mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - ShiMin Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
3
|
Simon‐Molas H, Del Prete R, Kabanova A. Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Mol Oncol 2024; 18:1777-1794. [PMID: 38115544 PMCID: PMC11223612 DOI: 10.1002/1878-0261.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Glucose catabolism, one of the essential pathways sustaining cellular bioenergetics, has been widely studied in the context of tumors. Nevertheless, the function of various branches of glucose metabolism that stem from 'classical' glycolysis have only been partially explored. This review focuses on discussing general mechanisms and pathological implications of glycolysis and its branching pathways in the biology of B cell malignancies. We summarize here what is known regarding pentose phosphate, hexosamine, serine biosynthesis, and glycogen synthesis pathways in this group of tumors. Despite most findings have been based on malignant B cells themselves, we also discuss the role of glucose metabolism in the tumor microenvironment, with a focus on T cells. Understanding the contribution of glycolysis branching pathways and how they are hijacked in B cell malignancies will help to dissect the role they have in sustaining the dissemination and proliferation of tumor B cells and regulating immune responses within these tumors. Ultimately, this should lead to deciphering associated vulnerabilities and improve current therapeutic schedules.
Collapse
Affiliation(s)
- Helga Simon‐Molas
- Departments of Experimental Immunology and HematologyAmsterdam UMC location University of AmsterdamThe Netherlands
- Cancer ImmunologyCancer Center AmsterdamThe Netherlands
| | | | - Anna Kabanova
- Fondazione Toscana Life Sciences FoundationSienaItaly
| |
Collapse
|
4
|
Dzedulionytė K, Fuxreiter N, Schreiber-Brynzak E, Žukauskaitė A, Šačkus A, Pichler V, Arbačiauskienė E. Pyrazole-based lamellarin O analogues: synthesis, biological evaluation and structure-activity relationships. RSC Adv 2023; 13:7897-7912. [PMID: 36909769 PMCID: PMC9999251 DOI: 10.1039/d3ra00972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
A library of pyrazole-based lamellarin O analogues was synthesized from easily accessible 3(5)-aryl-1H-pyrazole-5(3)-carboxylates which were subsequently modified by bromination, N-alkylation and Pd-catalysed Suzuki cross-coupling reactions. Synthesized ethyl and methyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were evaluated for their physicochemical property profiles and in vitro cytotoxicity against three human colorectal cancer cell lines HCT116, HT29, and SW480. The most active compounds inhibited cell proliferation in a low micromolar range. Selected ethyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were further investigated for their mode of action. Results of combined viability staining via Calcein AM/Hoechst/PI and fluorescence-activated cell sorting data indicated that cell death was triggered in a non-necrotic manner mediated by mainly G2/M-phase arrest.
Collapse
Affiliation(s)
- Karolina Dzedulionytė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| | - Nina Fuxreiter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Ekaterina Schreiber-Brynzak
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University Šlechtitelů 27 CZ-78371 Olomouc Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
- Institute of Synthetic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology K. Baršausko g. 59 LT-51423 Kaunas Lithuania
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| |
Collapse
|
5
|
Dey S, Das A, Hossain MF. Galiellalactone: a review on synthetic strategies and tactics. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
7
|
(–)-Xanthatin as a Killer of Human Breast Cancer MCF-7 Mammosphere Cells: A Comparative Study with Salinomycin. Curr Issues Mol Biol 2022; 44:3849-3858. [PMID: 36135176 PMCID: PMC9497939 DOI: 10.3390/cimb44090264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Experimental evidence accumulated by our research group and others strongly suggests that (–)-xanthatin, a xanthanolide sesquiterpene lactone, exhibits anti-proliferative effects on human breast cancer cells (in vitro) as well as anti-tumor effects in experimental animals (in vivo). In cancer biology, it is now critically important for anti-cancer agents to selectively target cancer stem cells (CSCs) in order to overcome cancer therapeutic resistance and recurrence. However, it has not yet been established whether (–)-xanthatin abrogates the formation of breast CSCs. In the present study, we utilized chemically synthesized pure (–)-xanthatin and a culture system to obtain mammospheres from human breast cancer MCF-7 cells, which are a CSC-enriched population. We herein demonstrated for the first time that (–)-xanthatin exhibited the ability to kill mammospheres, similar to salinomycin, an established selective killer of CSCs. A possible anti-proliferative mechanism toward mammospheres by (–)-xanthatin is discussed.
Collapse
|
8
|
Find new channel for overcoming chemoresistance in cancers: Role of stem cells-derived exosomal microRNAs. Int J Biol Macromol 2022; 219:530-537. [PMID: 35948201 DOI: 10.1016/j.ijbiomac.2022.07.253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
|
9
|
Barreto IV, Pessoa FMCDP, Machado CB, Pantoja LDC, Ribeiro RM, Lopes GS, Amaral de Moraes ME, de Moraes Filho MO, de Souza LEB, Burbano RMR, Khayat AS, Moreira-Nunes CA. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front Oncol 2022; 12:931050. [PMID: 35814466 PMCID: PMC9270022 DOI: 10.3389/fonc.2022.931050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | | | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Ceará State University, Northeast Biotechnology Network (RENORBIO), Fortaleza, Brazil
- *Correspondence: Caroline Aquino Moreira-Nunes,
| |
Collapse
|
10
|
Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10061308. [PMID: 35740330 PMCID: PMC9220281 DOI: 10.3390/biomedicines10061308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. The current standard approach in GBM is surgery, followed by treatment with radiation and temozolomide (TMZ); however, GBM is highly resistant to current therapies, and the standard of care has not been revised over the last two decades, indicating an unmet need for new therapies. GBM stem cells (GSCs) are a major cause of chemoresistance due to their ability to confer heterogeneity and tumorigenic capacity. To improve patient outcomes and survival, it is necessary to understand the properties and mechanisms underlying GSC chemoresistance. In this review, we describe the current knowledge on various resistance mechanisms of GBM to therapeutic agents, with a special focus on TMZ, and summarize the recent findings on the intrinsic and extrinsic mechanisms of chemoresistance in GSCs. We also discuss novel therapeutic strategies, including molecular targeting, autophagy inhibition, oncolytic viral therapy, drug repositioning, and targeting of GSC niches, to eliminate GSCs, from basic research findings to ongoing clinical trials. Although the development of effective therapies for GBM is still challenging, this review provides a better understanding of GSCs and offers future directions for successful GBM therapy.
Collapse
|
11
|
Chen YY, Liang JJ, Wang DL, Chen JB, Cao JP, Wang Y, Sun CD. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:6309-6329. [PMID: 35089821 DOI: 10.1080/10408398.2022.2030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a leading cause of death, second only to heart disease, cancer has always been one of the burning topics in medical research. When targeting multiple signal pathways in tumorigenesis chemoprevention, using natural or synthetic anti-cancer drugs is a vital strategy to reduce cancer damage. However, toxic effects, multidrug resistance (MDR) as well as cancer stem cells (CSCs) all prominently limited the clinical application of conventional anticancer drugs. With low side effects, strong biological activity, unique mechanism, and wide range of targets, natural products derived from plants are considered significant sources for new drug development. Nobiletin is one of the most attractive compounds, a unique flavonoid primarily isolated from the peel of citrus fruits. Numerous studies in vitro and in vivo have suggested that nobiletin and its derivatives possess the eminent potential to become effective cancer chemoprevention agents through various cellular and molecular levels. This article aims to comprehensively review the anticancer efficacy and specific mechanisms of nobiletin, enhancing our understanding of its chemoprevention properties and providing the latest research findings. At the end of this review, we also give some discussion and future perspectives regarding the challenges and opportunities in nobiletin efficient exploitation.
Collapse
Affiliation(s)
- Yun-Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Deng-Liang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Yoon S, Kim HS. Drug Repositioning With an Anticancer Effect: Contributions to Reduced Cancer Incidence in Susceptible Individuals. In Vivo 2021; 35:3039-3044. [PMID: 34697135 DOI: 10.21873/invivo.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022]
Abstract
Certain diseases and age groups are associated with a higher incidence of cancer. Cancer prevention can be achieved using repositioned drugs that have anticancer ability, thereby reducing the incidence of cancer in susceptible individuals. This implies that the selection of repositioned drugs can have dual benefits: controlling pre-existing diseases and facilitating cancer prevention. This report outlines the rationale underlying drug repositioning for medications with an anticancer effect and discusses its advantages. We discuss repositioned drugs with anticancer effects that may contribute to cancer prevention in susceptible individuals and the general population with temporary, treatable conditions. The discussion of drug repositioning in this review should facilitate the initiation of clinical trials and lead to therapeutic application of such drugs to reduce the incidence of cancer in susceptible individuals.
Collapse
Affiliation(s)
- Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Zhang SX, Liu W, Ai B, Sun LL, Chen ZS, Lin LZ. Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Pat Anticancer Drug Discov 2021; 17:26-41. [PMID: 34587888 DOI: 10.2174/1574892816666210929165729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs. OBJECTIVE Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy. CONCLUSION The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients. .
Collapse
Affiliation(s)
- Sheng-Xiong Zhang
- Guangdong Province Work Injury Rehabilitation Hospital, Guangzhou, 510440. China
| | - Wei Liu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006. China
| | - Bo Ai
- Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Ling-Ling Sun
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, New York. United States
| | - Li-Zhu Lin
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| |
Collapse
|
14
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
15
|
Liu CC, Wu CL, Lin MX, Sze CI, Gean PW. Disulfiram Sensitizes a Therapeutic-Resistant Glioblastoma to the TGF-β Receptor Inhibitor. Int J Mol Sci 2021; 22:ijms221910496. [PMID: 34638842 PMCID: PMC8508702 DOI: 10.3390/ijms221910496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Despite neurosurgery following radiation and chemotherapy, residual glioblastoma (GBM) cells develop therapeutic resistance (TR) leading to recurrence. The GBM heterogeneity confers TR. Therefore, an effective strategy must target cancer stem cells (CSCs) and other malignant cancer cells. TGF-β and mesenchymal transition are the indicators for poor prognoses. The activity of aldehyde dehydrogenases (ALDHs) is a functional CSC marker. However, the interplay between TGF-β and ALDHs remains unclear. We developed radiation-resistant and radiation-temozolomide-resistant GBM models to investigate the underlying mechanisms conferring TR. Galunisertib is a drug targeting TGF-β receptors. Disulfiram (DSF) is an anti-alcoholism drug which functions by inhibiting ALDHs. The anti-tumor effects of combining DSF and Galunisertib were evaluated by in vitro cell grow, wound healing, Transwell assays, and in vivo orthotopic GBM model. Mesenchymal-like phenotype was facilitated by TGF-β in TR GBM. Additionally, TR activated ALDHs. DSF inhibited TR-induced cell migration and tumor sphere formation. However, DSF did not affect the tumor growth in vivo. Spectacularly, DSF sensitized TR GBM to Galunisertib both in vitro and in vivo. ALDH activity positively correlated with TGF-β-induced mesenchymal properties in TR GBM. CSCs and mesenchymal-like GBM cells targeted together by combining DSF and Galunisertib may be a good therapeutic strategy for recurrent GBM patients.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
| | - Cheng-Lin Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan
| | - Meng-Xuan Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
| | - Chun-I Sze
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Correspondence: (C.-I.S.); (P.-W.G.)
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan 701, Taiwan
- Correspondence: (C.-I.S.); (P.-W.G.)
| |
Collapse
|
16
|
Cristina Mendonça Nogueira T, Vinicius Nora de Souza M. New FDA oncology small molecule drugs approvals in 2020: Mechanism of action and clinical applications. Bioorg Med Chem 2021; 46:116340. [PMID: 34416511 DOI: 10.1016/j.bmc.2021.116340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022]
Abstract
In 2020, fifty-three new drugs, including forty small-molecules (thirty-six new chemical entities and four new diagnostic agents) and thirteen biologic drugs were approved by the U.S. Food and Drug Administration (FDA). This year, small-molecules continue to play a role in innovative treatments representing around 75% of all drugs accepted by FDA. The dominant therapeutic area was oncology, accounting for twenty-three new approvals, including thirteen new chemical entities, four new diagnostic agents, and thirteen biologic drugs. Recognizing the importance of small-molecules on cancer treatment, this review aims to provide an overview regarding the clinical applications and mechanism of action of the thirteen new small-molecules (excluding new diagnostic agents) approved by FDA in 2020.
Collapse
Affiliation(s)
- Thais Cristina Mendonça Nogueira
- Instituto de Tecnologia em Fármacos-Far Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041- 250 Brazil
| | - Marcus Vinicius Nora de Souza
- Instituto de Tecnologia em Fármacos-Far Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041- 250 Brazil.
| |
Collapse
|
17
|
Salgado MTSF, Lopes AC, Fernandes E Silva E, Cardoso JQ, Vidal RS, Cavalcante-Silva LHA, Carvalho DCM, Machado KDS, Rodrigues-Mascarenhas S, Rumjanek VM, Votto APDS. Relation between ABCB1 overexpression and COX2 and ALOX5 genes in human erythroleukemia cell lines. Prostaglandins Other Lipid Mediat 2021; 155:106553. [PMID: 33975019 DOI: 10.1016/j.prostaglandins.2021.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to characterize the relationship between the COX2 and ALOX5 genes, as well as their link with the multidrug resistance (MDR) phenotype in sensitive (K562) and MDR (K562-Lucena and FEPS) erythroleukemia cells. For this, the inhibitors of 5-LOX (zileuton) and COX-2 (acetylsalicylic acid-ASA) and cells with the silenced ABCB1 gene were used. The treatment with ASA caused an increase in the gene expression of COX2 and ABCB1 in both MDR cell lines, and a decrease in the expression of ALOX5 in the FEPS cells. Silencing the ABCB1 gene induced a decrease in COX2 expression and an increase in the ALOX5 gene. Treatment with zileuton did not alter the expression of COX2 and ABCB1. Cytometry data showed that there was an increase in ABCB1 protein expression after exposure to ASA. In addition, the increased activity of ABCB1 in the K562-Lucena cell line indicates that ASA may be a substrate for this efflux pump, corroborating the molecular docking that showed that ASA can bind to ABCB1. Regardless of the genetic alteration in COX2 and ABCB1, the direct relationship between these genes and the inverse relationship with ALOX5 remained in the MDR cell lines. We assume that ABCB1 can play a regulatory role in COX2 and ALOX5 during the transformation of the parental cell line K562, explaining the increased gene expression of COX2 and decreased ALOX5 in the MDR cell lines.
Collapse
MESH Headings
- Humans
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Arachidonate 5-Lipoxygenase/metabolism
- Arachidonate 5-Lipoxygenase/genetics
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/metabolism
- Hydroxyurea/pharmacology
- Hydroxyurea/analogs & derivatives
- Cell Line, Tumor
- K562 Cells
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
Collapse
Affiliation(s)
| | - Alessandra Costa Lopes
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Escola de Química e Alimentos, EQA, FURG, RS, Brazil
| | | | | | | | | | | | | | | | | | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil.
| |
Collapse
|
18
|
Zhan Y, Qiu Y, Wang H, Wang Z, Xu J, Fan G, Xu J, Li W, Cao Y, Le VM, Ly HT, Yuan Z, Xu K, Yin P. Bufalin reverses multidrug resistance by regulating stemness through the CD133/nuclear factor-κB/MDR1 pathway in colorectal cancer. Cancer Sci 2020; 111:1619-1630. [PMID: 32058643 PMCID: PMC7226280 DOI: 10.1111/cas.14345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that MDR could be induced by the high stemness of cancer cells. In a previous study, we found bufalin could reverse MDR and inhibit cancer cell stemness in colorectal cancer, but the relationship between them was unclear. Here we identified overexpressing CD133 increases levels of Akt/nuclear factor‐κB signaling mediators and MDR1, while increasing cell chemoresistance. Furthermore, bufalin reverses colorectal cancer MDR by regulating cancer cell stemness through the CD133/nuclear factor‐κB/MDR1 pathway in vitro and in vivo. Taken together, our results suggest that bufalin could be developed as a novel 2‐pronged drug that targets CD133 and MDR1 to eradicate MDR cells and could ultimately be combined with conventional chemotherapeutic agents to improve treatment outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Yueping Zhan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Van-Minh Le
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Hai-Trieu Ly
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ke Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Targeting CD133 reverses drug-resistance via the AKT/NF-κB/MDR1 pathway in colorectal cancer. Br J Cancer 2020; 122:1342-1353. [PMID: 32203206 PMCID: PMC7188877 DOI: 10.1038/s41416-020-0783-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent studies have shown that multidrug resistance may be induced by the high stemness of cancer cells. Following prolonged chemotherapy, MDR protein 1 (MDR1) and CD133 increase in CRC, but the relationship between them is unclear. METHODS The relationship between MDR and CSC properties in CRC was determined via CCK-8 assay, apoptosis assay, DOX uptake and retention, immunohistochemistry, immunofluorescence and flow cytometry. The correlations between their expression levels were evaluated using Spearman's rank statistical test and the Mann-Whitney test. Furthermore, the effect of CD133 on the repression of the AKT/NF-κB/MDR1 signalling pathway was investigated in vitro and in vivo. RESULTS We found that CD133 increased with the emergence of drug-resistance phenotypes, and the high expression of MDR1/P-gp was consistently accompanied by positive expression of CD133 as demonstrated by the analysis of patient samples. Up- or downregulation of CD133 could regulate MDR via AKT/NF-κB/MDR1 signalling in CRC. A rescue experiment showed that the AKT/NF-κB signalling pathway is the main mechanism by which CD133 regulates MDR1/P-gp expression in CRC. CONCLUSIONS Taken together, our results suggest that targeting CD133 reverses drug resistance via the AKT/NF-κB/MDR1 pathway and that this pathway might serve as a potential therapeutic target to reverse MDR in CRC.
Collapse
|
20
|
Zhao Z, Ji M, Wang Q, He N, Li Y. Ca 2+ signaling modulation using cancer cell membrane coated chitosan nanoparticles to combat multidrug resistance of cancer. Carbohydr Polym 2020; 238:116073. [PMID: 32299562 DOI: 10.1016/j.carbpol.2020.116073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Off-target drug delivery, together with multidrug resistance (MDR), are two keys obstacles that account for the disappointing outcome in clinical chemotherapy of cancer. To solve these dilemmas, Herein, we constructed cancer cell membrane (CCM) modified silica (CS) nanoparticles (CCM/CS) to co-deliver Ca2+ channel siRNA with doxorubicin (DOX) to construct a platform (CCM/CS/R-D) for the efficient therapy of cervical cancer. It was demonstrated that the optimal CCM/CS/R-D was spherical nanoparticles with size at 122.39 ± 4.69 nm and the surface charge of -27.76 ± 3.12 mV. In addition, the CCM/CS/R-D showed acid responsive drug release while high stability under physiological conditions with negligible hemolysis. The CCM/CS/R-D showed CCM mediated cellular uptake and efficient endosomal escape as well as siRNA transfection potential (comparable to that of PEI 25 K) on MDR cervical cancer cells (HeLa/DOX). Most importantly, the MDR of cancer cells was conquered through modulation of T-type Ca2+ (Cav) channels. It was observed that the Cav channel siRNA could negatively regulate the level of cytosolic Ca2+ concentration which triggered G0/G1 phase cell cycle arrest and elevated intracellular drug retention in HeLa/DOX cells without significantly affect the expression of P-glycolprotein (P-gp). The in vitro and in vivo experiments revealed that CCM/CS/R-D exerted greatly enhanced tumor targetability and therapeutic effect on HeLa/DOX, which was superior than CS/R-D or mono delivery system (CCM/CS/R or CCM/CS/D).
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Qianqing Wang
- Gynaecological Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
21
|
Jimenez PC, Wilke DV, Branco PC, Bauermeister A, Rezende‐Teixeira P, Gaudêncio SP, Costa‐Lotufo LV. Enriching cancer pharmacology with drugs of marine origin. Br J Pharmacol 2020; 177:3-27. [PMID: 31621891 PMCID: PMC6976878 DOI: 10.1111/bph.14876] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Marine natural products have proven, over the last half-century, to be effective biological modulators. These molecules have revealed new targets for cancer therapy as well as dissimilar modes of action within typical classes of drugs. In this scenario, innovation from marine-based pharmaceuticals has helped advance cancer chemotherapy in many aspects, as most of these are designated as first-in-class drugs. Here, by examining the path from discovery to development of clinically approved drugs of marine origin for cancer treatment-cytarabine (Cytosar-U®), trabectedin (Yondelis®), eribulin (Halaven®), brentuximab vedotin (Adcetris®), and plitidepsin (Aplidin®)- together with those in late clinical trial phases-lurbinectedin, plinabulin, marizomib, and plocabulin-the present review offers a critical analysis of the contributions given by these new compounds to cancer pharmacotherapy.
Collapse
Affiliation(s)
- Paula C. Jimenez
- Departamento de Ciências do MarUniversidade Federal de São PauloSantosSPBrasil
| | - Diego V. Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Faculdade de MedicinaUniversidade Federal do CearáFortalezaCEBrasil
| | - Paola C. Branco
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Paula Rezende‐Teixeira
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Susana P. Gaudêncio
- UCIBIO, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, Faculty of Science and TechnologyNOVA University of LisbonCaparicaPortugal
| | - Leticia V. Costa‐Lotufo
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| |
Collapse
|
22
|
Yang L, Li D, Tang P, Zuo Y. Curcumin increases the sensitivity of K562/DOX cells to doxorubicin by targeting S100 calcium-binding protein A8 and P-glycoprotein. Oncol Lett 2019; 19:83-92. [PMID: 31897118 PMCID: PMC6924120 DOI: 10.3892/ol.2019.11083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
The development of multidrug resistance (MDR) has seriously impeded the efficacy of drug treatment of chronic myeloid leukemia (CML). Recent studies have indicated that S100 calcium-binding protein A8 (S100A8) is associated with the occurrence and development of MDR. Traditional Chinese medicine may provide drugs with the potential to be used as multidrug resistance reversal agents with low toxicity and multi-target characteristics. The present study selected K562/DOX cells, a CML drug-resistant cell line, as a research model, and aimed to examine whether curcumin was able to reverse the resistance to doxorubicin (DOX), and elucidate the underlying molecular mechanisms. An MTT cytotoxicity assay indicated that curcumin at 0.5–2 µM reversed DOX resistance with a reversal index of 1.3–9.3. Western blot analysis revealed that curcumin treatment caused a downregulation of the expression of P-glycoprotein (P-gp) and S100A8 in a dose- and time-dependent manner. To study the internal association between S100A8 and P-gp, and the S100A8 role in drug resistance reversal, an RNA knockdown assay was conducted; however, S100A8 did not regulate the expression of P-gp or vice versa. After inhibiting the expression of S100A8 with specific small interfering RNA (si-S100A8), the sensitivity of K562/DOX cells to DOX was enhanced. In addition, si-S100A8 did not increase the intracellular accumulation of DOX, but increased the intracellular free calcium ion content, and the expression and activity of apoptosis-associated proteins, thereby inducing apoptosis. In conclusion, the present study suggested that inhibition of S100A8 expression increased DOX-induced apoptosis, and curcumin acted independently on S100A8 and P-gp to exert its drug resistance reversal effects
Collapse
Affiliation(s)
- Liu Yang
- Center for Post-doctoral Research, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Clinical Biochemistry, School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Duo Li
- College of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Peiyan Tang
- College of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yunfei Zuo
- Center for Post-doctoral Research, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Clinical Biochemistry, School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
23
|
Su QH, Xu XQ, Wang JF, Luan JW, Ren X, Huang HY, Bian SS. Anticancer Effects of Constituents of Herbs Targeting Osteosarcoma. Chin J Integr Med 2019; 25:948-955. [PMID: 31161441 DOI: 10.1007/s11655-019-2941-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 01/04/2023]
Abstract
Osteosarcoma is a rare primary malignancy of bone that is prone to early metastasis. Resection surgery and chemotherapeutic regimens are current standard treatments for osteosarcoma. However, the long-term survival rate of patients with osteosarcoma is low due to a high risk of metastasis. Hence, a new approach is urgently needed to improve the treatment of osteosarcoma. Compared with chemotherapy, natural active constituents isolated from herbs exhibit less adverse effects and better anti-tumor effects. This study aimed to summarize the anticancer effects of constituents of herbs on the progression and metastasis of osteosarcoma cells. It showed that many constituents of herbs inhibited osteosarcoma by targeting proliferation, matrix metalloproteinases, integrin and cadherin, and angiogenesis. The findings might be beneficial for the development of new drugs and treatment strategies.
Collapse
Affiliation(s)
- Qing-Hong Su
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiao-Qun Xu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jun-Fu Wang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jun-Wen Luan
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xia Ren
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Hai-Yan Huang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Si-Shan Bian
- Department of Orthopaedics, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
24
|
Li Y, Luo J, Lin MT, Zhi P, Guo WW, Han M, You J, Gao JQ. Co-Delivery of Metformin Enhances the Antimultidrug Resistant Tumor Effect of Doxorubicin by Improving Hypoxic Tumor Microenvironment. Mol Pharm 2019; 16:2966-2979. [PMID: 31095914 DOI: 10.1021/acs.molpharmaceut.9b00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is a first-line chemo drug for cancer therapy, yet it fails to treat multi-drug-resistant tumors. Hypoxia is a major causative factor leading to chemotherapy failure. Particularly, hypoxia up-regulates its responsive transcription factor-hypoxia-inducible factors (HIF)-to induce the overexpression of drug resistant genes. Metformin (MET) is recently found to cooperate with DOX against multiple tumors. As a mitochondrial inhibitor, MET could suppress tumor oxygen consumption, and thereby modulate the hypoxic tumor microenvironment. In this study, we used cationic liposomes to codeliver both DOX and MET for treating multi-drug-resistant breast cancer cells-MCF7/ADR. Faster release of MET enhanced the cytotoxicity of DOX through attenuating hypoxic stress both in vivo and in vitro. MET diminished the cellular oxygen consumption and inhibited HIF1α and P-glycoprotein (Pgp) expression in vitro. In addition, the dual-drug-loaded liposomes increased tumor targeting and intratumoral blood oxygen saturation, which suggested that the tumor reoxygenation effect of MET facilitated the exertion of its synergistic activity with DOX against MCF7/ADR xenografts. In general, our study represents a feasible strategy to boost the therapeutic effect in treating multi-drug-resistant cancer by improving the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jing Luo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Meng-Ting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Pei Zhi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wang-Wei Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|
25
|
Mele L, la Noce M, Paino F, Regad T, Wagner S, Liccardo D, Papaccio G, Lombardi A, Caraglia M, Tirino V, Desiderio V, Papaccio F. Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:160. [PMID: 30987650 PMCID: PMC6466760 DOI: 10.1186/s13046-019-1164-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/01/2019] [Indexed: 02/21/2023]
Abstract
Background Glucose-6-phospate dehydrogenase (G6PD) is the limiting enzyme of the pentose phosphate pathway (PPP) correlated to cancer progression and drug resistance. We previously showed that G6PD inhibition leads to Endoplasmic Reticulum (ER) stress often associated to autophagy deregulation. The latter can be induced by target-based agents such as Lapatinib, an anti-HER2 tyrosine kinase inhibitor (TKI) largely used in breast cancer treatment. Methods Here we investigate whether G6PD inhibition causes autophagy alteration, which can potentiate Lapatinib effect on cancer cells. Immunofluorescence and flow cytometry for LC3B and lysosomes tracker were used to study autophagy in cells treated with lapatinib and/or G6PD inhibitors (polydatin). Immunoblots for LC3B and p62 were performed to confirm autophagy flux analyses together with puncta and colocalization studies. We generated a cell line overexpressing G6PD and performed synergism studies on cell growth inhibition induced by Lapatinib and Polydatin using the median effect by Chou-Talay. Synergism studies were additionally validated with apoptosis analysis by annexin V/PI staining in the presence or absence of autophagy blockers. Results We found that the inhibition of G6PD induced endoplasmic reticulum stress, which was responsible for the deregulation of autophagy flux. Indeed, G6PD blockade caused a consistent increase of autophagosomes formation independently from mTOR status. Cells engineered to overexpress G6PD became resilient to autophagy and resistant to lapatinib. On the other hand, G6PD inhibition synergistically increased lapatinib-induced cytotoxic effect on cancer cells, while autophagy blockade abolished this effect. Finally, in silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients. Conclusions These results point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophagy could be used to reinforce TKI efficacy in cancer treatment.
Collapse
Affiliation(s)
- Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy
| | - Marcella la Noce
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy
| | - Francesca Paino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Tarik Regad
- Department Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Sarah Wagner
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Davide Liccardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy.
| | - Angela Lombardi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy
| | - Michele Caraglia
- Department Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Molecular Oncology Laboratory, Biogem Scarl, Ariano Irpino, Avellino, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy.
| | - Federica Papaccio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni, 5, 80138 Napoli, Naples, Italy
| |
Collapse
|
26
|
Luty M, Piwowarczyk K, Łabędź-Masłowska A, Wróbel T, Szczygieł M, Catapano J, Drabik G, Ryszawy D, Kędracka-Krok S, Madeja Z, Siedlar M, Elas M, Czyż J. Fenofibrate Augments the Sensitivity of Drug-Resistant Prostate Cancer Cells to Docetaxel. Cancers (Basel) 2019; 11:cancers11010077. [PMID: 30641904 PMCID: PMC6356694 DOI: 10.3390/cancers11010077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Metronomic agents reduce the effective doses and adverse effects of cytostatics in cancer chemotherapy. Therefore, they can enhance the treatment efficiency of drug-resistant cancers. Cytostatic and anti-angiogenic effects of fenofibrate (FF) suggest that it can be used for the metronomic chemotherapy of drug-resistant prostate tumors. To estimate the effect of FF on the drug-resistance of prostate cancer cells, we compared the reactions of naïve and drug-resistant cells to the combined treatment with docetaxel (DCX)/mitoxantrone (MTX) and FF. FF sensitized drug-resistant DU145 and PC3 cells to DCX and MTX, as illustrated by their reduced viability and invasive potential observed in the presence of DCX/MTX and FF. The synergy of the cytostatic activities of both agents was accompanied by the inactivation of P-gp-dependent efflux, dysfunction of the microtubular system, and induction of polyploidy in DCX-resistant cells. Chemical inhibition of PPARα- and reactive oxygen species (ROS)-dependent pathways by GW6471 and N-acetyl-L-cysteine, respectively, had no effect on cell sensitivity to combined DCX/FF treatment. Instead, we observed the signs of adenosine triphosphate (ATP) deficit and autophagy in DCX/FF-treated drug-resistant cells. Furthermore, the cells that had been permanently propagated under DCX- and DCX/FF-induced stress did not acquire DCX/FF-resistance. Instead, relatively slow proliferation of DCX-resistant cells was efficiently inhibited by FF. Collectively, our observations show that FF reduces the effective doses of DCX by interfering with the drug resistance and energy metabolism of prostate cancer cells. Concomitantly, it impairs the chemotherapy-induced microevolution and expansion of DCX/FF-resistant cells. Therefore, FF can be applied as a metronomic agent to enhance the efficiency of palliative chemotherapy of prostate cancer.
Collapse
Affiliation(s)
- Marcin Luty
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Łabędź-Masłowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Tomasz Wróbel
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Małgorzata Szczygieł
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jessica Catapano
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Grażyna Drabik
- Department of Transplantology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka Str., 30-663 Kraków, Poland.
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków; and Proteomics and Mass Spectrometry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka Str., 30-663 Kraków, Poland.
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
27
|
Tan W, Zhong Z, Carney RP, Men Y, Li J, Pan T, Wang Y. Deciphering the metabolic role of AMPK in cancer multi-drug resistance. Semin Cancer Biol 2018; 56:56-71. [PMID: 30261277 DOI: 10.1016/j.semcancer.2018.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/02/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Multi-drug resistance (MDR) is a curious bottleneck in cancer research and chemotherapy, whereby some cells rapidly adapt to the tumor microenvironment via a myriad of heterogeneous metabolic activities. Despite being a major impediment to treatment, there is a silver lining: control over metabolic regulation could be an effective approach to overcome or correct resistance pathways. In this critical review, we comprehensively and carefully curated and analyzed large networks of previously identified proteins associated with metabolic adaptation in MDR. We employed data and text mining to study and categorize more than 600 studies in PubMed, with particular focus on AMPK, a central and fundamental modulator in the energy metabolism network that has been specifically implicated in cancer MDR pathways. We have identified one protein set of metabolic adaptations with 137 members closely related to cancer MDR processes, and a second protein set with 165 members derived from AMPK-based networks, with 28 proteins found at the intersection between the two sets. Furthermore, according to genomics analysis of the cancer genome atlas (TCGA) provisional data, the highest alteration frequency (80.0%) of the genes encoding the intersected proteins (28 proteins), ranked three cancer types with quite remarkable significance across 166 studies. The hierarchical relationships of the entire identified gene and protein networks indicate broad correlations in AMPK-mediated metabolic regulation pathways, which we use decipher and depict the metabolic roles of AMPK and demonstrate the potential of metabolic control for therapeutic intervention in MDR.
Collapse
Affiliation(s)
- Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu province 730000, China; Micro-Nano Innovations (MiNI) Laboratory, Biomedical Engineering, University of California, Davis, CA 95616, United States
| | - Zhangfeng Zhong
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60202, United States; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, 999078, China
| | - Randy P Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Yongfan Men
- Micro-Nano Innovations (MiNI) Laboratory, Biomedical Engineering, University of California, Davis, CA 95616, United States
| | - Jiannan Li
- Micro-Nano Innovations (MiNI) Laboratory, Biomedical Engineering, University of California, Davis, CA 95616, United States
| | - Tingrui Pan
- Micro-Nano Innovations (MiNI) Laboratory, Biomedical Engineering, University of California, Davis, CA 95616, United States.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
28
|
Falone S, Santini S, Cordone V, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Extremely Low-Frequency Magnetic Fields and Redox-Responsive Pathways Linked to Cancer Drug Resistance: Insights from Co-Exposure-Based In Vitro Studies. Front Public Health 2018. [PMID: 29527520 PMCID: PMC5829633 DOI: 10.3389/fpubh.2018.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as “possible carcinogenic.” Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems. In fact, improved protection against oxidative stress and redox-active xenobiotics is thought to provide critical proliferative and survival advantage in tumors. On this basis, an ever-growing research activity worldwide is attempting to establish whether tumor cells may develop multidrug resistance through the activation of essential cytoprotective networks in the presence of ELF fields, and how this might trigger relevant changes in tumor phenotype. This review builds a framework around how the activity of redox-responsive mediators may be controlled by co-exposure to ELF-MF and reactive oxygen species-generating agents in tumor and cancer cells, in order to clarify whether and how such potential molecular targets could help to minimize or neutralize the functional interaction between ELF-MF and malignancies.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marisa Cacchio
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology (IFT)-National Research Council (CNR), L'Aquila, Italy
| |
Collapse
|
29
|
Li Y, Wang M, Huang BW, Ping Y, You J, Gao JQ. Transcriptome-wide elucidation of liposomal formulations for anticancer drug delivery. Int J Nanomedicine 2017; 12:8557-8572. [PMID: 29238192 PMCID: PMC5716676 DOI: 10.2147/ijn.s148975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although widely used in chemotherapy, free doxorubicin (Dox) might enhance cell malignancy undesirably. Liposomal Dox (Doxlipo) has been clinically approved for the treatment of breast cancer due to reduced systematical toxicity and increased tumor targeting, yet the transcriptome-wide elucidation of the Doxlipo formulations remains elusive. To this end, we explored the impact of two Dox liposomal formulations, Doxlipo mainly containing hydrogenated soy phosphatidylcholine or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, on the transcriptional pattern of MCF-7 cells. The two types of Dox liposomal formulations with different drug release kinetics were investigated to reveal the relationship between the formulation and tumor malignancy. Interestingly, we found that liposomal formulation significantly altered the transcriptional pattern of a wide range of genes. Under equivalent dosage of Dox, free Dox substantially changed the expression of ANK1, ACTA2, GPR87, GDF15, FZD6, and WNT4 in MCF-7 cells. Notably, free Dox induced much higher expression of ABCB1 and significantly enhanced the cell migration behavior in comparison with HSPC Doxlipo under a similar level of cytotoxicity. Finally, siRNA targeting GPR87 was codelivered with cationic Doxlipo to reduce the expression of malignancy-related genes. Our study, for the first time, provides an overview of the influence of formulation on the malignancy at transcriptional level and reveals the relationship between cytotoxicity and cell malignancy from the formulation aspect, offering valuable reference for the future formulation design for anticancer drug delivery.
Collapse
Affiliation(s)
- Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Bu-Wei Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuan Ping
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
30
|
Yao D, Cui H, Zhou S, Guo L. Morin inhibited lung cancer cells viability, growth, and migration by suppressing miR-135b and inducing its target CCNG2. Tumour Biol 2017; 39:1010428317712443. [PMID: 28975847 DOI: 10.1177/1010428317712443] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is one of the most severe threats with the highest mortality rate to humans in the world. Recently, morin has been reported to have anti-tumor properties observed in several types of cancers. However, its mechanism is still unclear. We assessed the influences of morin on cell viability, colony formation, and migration ability of A549 and employed microRNA array to identify the microRNAs affected by morin. We found that morin-treated A549 cells showed statistically decreased cell viability, colony formation, and migration rate when comparing with the dimethyl sulfoxide-treated cells. Microarray results showed that with the treatment of morin, the expression level of miR-135b significantly reduced compared the control group, suggesting that morin may exert its anti-cancer property by suppressing the expression of miR-135b. In addition, we found a potential binding site of miR-135b within 3' untranslated region of CCNG2-encoding cyclin homolog cyclin-G2. We evidenced that miR-135b directly targets CCNG2, which could be a potential biomarker of lung cancer prognosis. Morin exerts its anti-tumor function via downregulating the expression of miR-135b that directly targets and represses CCNG2.
Collapse
Affiliation(s)
- Dongjie Yao
- 1 Department of Quality Control, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Hujun Cui
- 2 Department of Oncology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Shufen Zhou
- 3 Department of Gerontology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Ling Guo
- 4 Department of Pathology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
31
|
Interaction of Flavonoids from Woodwardia unigemmata with Bovine Serum Albumin (BSA): Application of Spectroscopic Techniques and Molecular Modeling Methods. Molecules 2017; 22:molecules22081317. [PMID: 28792461 PMCID: PMC6152408 DOI: 10.3390/molecules22081317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
Phytochemical investigation on the methanol extract of Woodwardia unigemmata resulted in the isolation of seven flavonoids, including one new flavonol acylglycoside (1). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis and comparison of literature data. The multidrug resistance (MDR) reversing activity was evaluated for the isolated compounds using doxorubicin-resistant K562/A02 cells model. Compound 6 showed comparable MDR reversing effect to verapamil. Furthermore, the interaction between compounds and bovine serum albumin (BSA) was investigated by spectroscopic methods, including steady-state fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular docking approach. The experimental results indicated that the seven flavonoids bind to BSA by static quenching mechanisms. The negative ΔH and ΔS values indicated that van der Waals interactions and hydrogen bonds contributed in the binding of compounds 2–6 to BSA. In the case of compounds 1 and 7 systems, the hydrophobic interactions play a major role. The binding of compounds to BSA causes slight changes in the secondary structure of BSA. There are two binding sites of compound 6 on BSA and site I is the main site according to the molecular docking studies and the site marker competitive binding assay.
Collapse
|
32
|
Peng Y, He G, Tang D, Xiong L, Wen Y, Miao X, Hong Z, Yao H, Chen C, Yan S, Lu L, Yang Y, Li Q, Deng X. Lovastatin Inhibits Cancer Stem Cells and Sensitizes to Chemo- and Photodynamic Therapy in Nasopharyngeal Carcinoma. J Cancer 2017; 8:1655-1664. [PMID: 28775785 PMCID: PMC5535721 DOI: 10.7150/jca.19100] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy occurring at high incidence in Southeast Asia and southern China. In spite of the good response to radio- and chemo-therapy at the early stage, resistance and recurrence develop in NPC patients in the advanced setting. Cancer stem cells (CSCs) play an important role in drug resistance and cancer recurrence. Here we report that lovastatin, a natural compound and a lipophilic statin that has already been used in the clinic to treat hypercholesterolemia, inhibited the CSC properties and induced apoptosis and cell cycle arrest in sphere-forming cells derived from the 5-8F and 6-10B NPC cell lines. Furthermore, lovastatin conferred enhanced sensitivity to the chemotherapeutic and photodynamic agents in NPC CSCs. Together our findings suggest that targeting CSCs by lovastatin in combination with routine chemotherapeutic drugs or photodynamic therapy might be a promising approach to the treatment of NPC.
Collapse
Affiliation(s)
- Yikun Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Guangchun He
- Medical College, Hunan Normal University, Changsha, Hunan, China
| | - Da Tang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hui Yao
- Medical College, Hunan Normal University, Changsha, Hunan, China
| | - Chao Chen
- Medical College, Hunan Normal University, Changsha, Hunan, China
| | - Shichao Yan
- Medical College, Hunan Normal University, Changsha, Hunan, China
| | - Lu Lu
- Medical College, Hunan Normal University, Changsha, Hunan, China
| | - Yingke Yang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiyun Deng
- Medical College, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|