1
|
Wu H, Che YN, Lan Q, He YX, Liu P, Chen MT, Dong L, Liu MN. The Multifaceted Roles of Hippo-YAP in Cardiovascular Diseases. Cardiovasc Toxicol 2024; 24:1410-1427. [PMID: 39365552 DOI: 10.1007/s12012-024-09926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The Hippo-yes-associated protein (YAP) signaling pathway plays a crucial role in cell proliferation, differentiation, and death. It is known to have impact on the progression and development of cardiovascular diseases (CVDs) as well as in the regeneration of cardiomyocytes (CMs). However, further research is needed to understand the molecular mechanisms by which the Hippo-YAP pathway affects the pathological processes of CVDs in order to evaluate its potential clinical applications. In this review, we have summarized the recent findings on the role of the Hippo-YAP pathway in CVDs such as myocardial infarction, heart failure, and cardiomyopathy, as well as its in CM development. This review calls attention to the potential roles of the Hippo-YAP pathway as a relevant target for the future treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yan-Nan Che
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Lan
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yi-Xiang He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ming-Tai Chen
- Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| | - Li Dong
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Meng-Nan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
3
|
Salmenov R, Mummery C, ter Huurne M. Cell cycle visualization tools to study cardiomyocyte proliferation in real-time. Open Biol 2024; 14:240167. [PMID: 39378987 PMCID: PMC11461051 DOI: 10.1098/rsob.240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiomyocytes in the adult human heart are quiescent and those lost following heart injury are not replaced by proliferating survivors. Considerable effort has been made to understand the mechanisms underlying cardiomyocyte cell cycle exit and re-entry, with view to discovering therapeutics that could stimulate cardiomyocyte proliferation and heart regeneration. The advent of large compound libraries and robotic liquid handling platforms has enabled the screening of thousands of conditions in a single experiment but success of these screens depends on the appropriateness and quality of the model used. Quantification of (human) cardiomyocyte proliferation in high throughput has remained problematic because conventional antibody-based staining is costly, technically challenging and does not discriminate between cardiomyocyte division and failure in karyokinesis or cytokinesis. Live cell imaging has provided alternatives that facilitate high-throughput screening but these have other limitations. Here, we (i) review the cell cycle features of cardiomyocytes, (ii) discuss various cell cycle fluorescent reporter systems, and (iii) speculate on what could improve their predictive value in the context of cardiomyocyte proliferation. Finally, we consider how these new methods can be used in combination with state-of-the-art three-dimensional human cardiac organoid platforms to identify pro-proliferative signalling pathways that could stimulate regeneration of the human heart.
Collapse
Affiliation(s)
- Rustem Salmenov
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Menno ter Huurne
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| |
Collapse
|
4
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
5
|
Huo Y, Wang W, Zhang J, Xu D, Bai F, Gui Y. Maternal androgen excess inhibits fetal cardiomyocytes proliferation through RB-mediated cell cycle arrest and induces cardiac hypertrophy in adulthood. J Endocrinol Invest 2024; 47:603-617. [PMID: 37642904 PMCID: PMC10904501 DOI: 10.1007/s40618-023-02178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Maternal hyperandrogenism during pregnancy is associated with adverse gestational outcomes and chronic non-communicable diseases in offspring. However, few studies are reported to demonstrate the association between maternal androgen excess and cardiac health in offspring. This study aimed to explore the relation between androgen exposure in utero and cardiac health of offspring in fetal and adult period. Its underlying mechanism is also illustrated in this research. METHODS Pregnant mice were injected with dihydrotestosterone (DHT) from gestational day (GD) 16.5 to GD18.5. On GD18.5, fetal heart tissue was collected for metabolite and morphological analysis. The hearts from adult offspring were also collected for morphological and qPCR analysis. H9c2 cells were treated with 75 μM androsterone. Immunofluorescence, flow cytometry, qPCR, and western blot were performed to observe cell proliferation and explore the underlying mechanism. RESULTS Intrauterine exposure to excessive androgen led to thinner ventricular wall, decreased number of cardiomyocytes in fetal offspring and caused cardiac hypertrophy, compromised cardiac function in adult offspring. The analysis of steroid hormone metabolites in fetal heart tissue by ultra performance liquid chromatography and tandem mass spectrometry showed that the content of androgen metabolite androsterone was significantly increased. Mechanistically, H9c2 cells treated with androsterone led to a significant decrease in phosphorylated retinoblastoma protein (pRB) and cell cycle-related protein including cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin D1 (CCND1) in cardiomyocytes. This resulted in cell cycle arrest at G1-S phase, which in turn inhibited cardiomyocyte proliferation. CONCLUSION Taken together, our results indicate that in utero exposure to DHT, its metabolite androsterone could directly decrease cardiomyocytes proliferation through cell cycle arrest, which has a life-long-lasting effect on cardiac health. Our study highlights the importance of monitoring sex hormones in women during pregnancy and the follow-up of cardiac function in offspring with high risk of intrauterine androgen exposure.
Collapse
Affiliation(s)
- Y Huo
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
| | - W Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510080, China
| | - J Zhang
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - D Xu
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
| | - F Bai
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
| | - Y Gui
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China.
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
6
|
Wang X, Wu H, Tang L, Fu W, He Y, Zeng C, Wang WE. The novel antibody fusion protein rhNRG1-HER3i promotes heart regeneration by enhancing NRG1-ERBB4 signaling pathway. J Mol Cell Cardiol 2024; 187:26-37. [PMID: 38150867 DOI: 10.1016/j.yjmcc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Stimulating cardiomyocyte proliferation in the adult heart has emerged as a promising strategy for cardiac regeneration following myocardial infarction (MI). The NRG1-ERBB4 signaling pathway has been implicated in the regulation of cardiomyocyte proliferation. However, the therapeutic potential of recombinant human NRG1 (rhNRG1) has been limited due to the low expression of ERBB4 in adult cardiomyocytes. Here, we investigated whether a fusion protein of rhNRG1 and an ERBB3 inhibitor (rhNRG1-HER3i) could enhance the affinity of NRG1 for ERBB4 and promote adult cardiomyocyte proliferation. In vitro and in vivo experiments were conducted using postnatal day 1 (P1), P7, and adult cardiomyocytes. Western blot analysis was performed to assess the expression and activity of ERBB4. Cardiomyocyte proliferation was evaluated using Ki67 and pH 3 immunostaining, while fibrosis was assessed using Masson staining. Our results indicate that rhNRG1-HER3i, but not rhNRG1, promoted P7 and adult cardiomyocyte proliferation. Furthermore, rhNRG1-HER3i improved cardiac function and reduced cardiac fibrosis in post-MI hearts. Administration of rhNRG1-HER3i inhibited ERBB3 phosphorylation while increasing ERBB4 phosphorylation in adult mouse hearts. Additionally, rhNRG1-HER3i enhanced angiogenesis following MI compared to rhNRG1. In conclusion, our findings suggest that rhNRG1-HER3i is a viable therapeutic approach for promoting adult cardiomyocyte proliferation and treating MI by enhancing NRG1-ERBB4 signaling pathway.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Hao Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China
| | - Luxun Tang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu 610083, China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Yanji He
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing 400042, China; Department of Cardiology, Chongqing General Hospital, Chongqing 401147, China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing 400722, China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou 350001, China.
| | - Wei Eric Wang
- School of Medicine, Chongqing University, Chongqing 400044, China; Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China.
| |
Collapse
|
7
|
Zheng S, Liu T, Chen M, Sun F, Fei Y, Chen Y, Tian X, Wu Z, Zhu Z, Zheng W, Wang Y, Wang W. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats. Front Pharmacol 2024; 14:1260674. [PMID: 38273822 PMCID: PMC10808748 DOI: 10.3389/fphar.2023.1260674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Acute myocardial infarction (AMI) is characterized by the loss of cardiomyocytes, which impairs cardiac function and eventually leads to heart failure. The induction of cardiomyocyte cell cycle activity provides a new treatment strategy for the repair of heart damage. Our previous study demonstrated that morroniside exerts cardioprotective effects. This study investigated the effects and underlying mechanisms of action of morroniside on cardiomyocyte cell cycle activity and cardiac repair following AMI. Methods: Neonatal rat cardiomyocytes (NRCMs) were isolated and exposed to oxygen-glucose deprivation (OGD) in vitro. A rat model of AMI was established by ligation of the left anterior descending coronary artery (LAD) in vivo. Immunofluorescence staining was performed to detect newly generated cardiomyocytes. Western blotting was performed to assess the expression of cell cycle-related proteins. Electrocardiography (ECG) was used to examine pathological Q waves. Masson's trichrome and wheat germ agglutinin (WGA) staining assessed myocardial fibrosis and hypertrophy. Results: The results showed that morroniside induced cardiomyocyte cell cycle activity and increased the levels of cell cycle proteins, including cyclin D1, CDK4, cyclin A2, and cyclin B1, both in vitro and in vivo. Moreover, morroniside reduced myocardial fibrosis and remodeling. Discussion: In conclusion, our study demonstrated that morroniside stimulates cardiomyocyte cell cycle activity and cardiac repair in adult rats, and that these effects may be related to the upregulation of cell cycle proteins.
Collapse
Affiliation(s)
- Songyang Zheng
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mengqi Chen
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yihuan Fei
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yanxi Chen
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Xin Tian
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zheng Wu
- Department of Functional Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zixin Zhu
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenrong Zheng
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yufeng Wang
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Experimental Animal Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
9
|
Chen XZ, Li XM, Xu SJ, Hu S, Wang T, Li RF, Liu CY, Xue JQ, Zhou LY, Wang YH, Li PF, Wang K. TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m 7G methylation of ATF5 mRNA. Cell Death Differ 2023:10.1038/s41418-023-01179-0. [PMID: 37286744 DOI: 10.1038/s41418-023-01179-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
The mitochondrial transmembrane (TMEM) protein family has several essential physiological functions. However, its roles in cardiomyocyte proliferation and cardiac regeneration remain unclear. Here, we detected that TMEM11 inhibits cardiomyocyte proliferation and cardiac regeneration in vitro. TMEM11 deletion enhanced cardiomyocyte proliferation and restored heart function after myocardial injury. In contrast, TMEM11-overexpression inhibited neonatal cardiomyocyte proliferation and regeneration in mouse hearts. TMEM11 directly interacted with METTL1 and enhanced m7G methylation of Atf5 mRNA, thereby increasing ATF5 expression. A TMEM11-dependent increase in ATF5 promoted the transcription of Inca1, an inhibitor of cyclin-dependent kinase interacting with cyclin A1, which suppressed cardiomyocyte proliferation. Hence, our findings revealed that TMEM11-mediated m7G methylation is involved in the regulation of cardiomyocyte proliferation, and targeting the TMEM11-METTL1-ATF5-INCA1 axis may serve as a novel therapeutic strategy for promoting cardiac repair and regeneration.
Collapse
Affiliation(s)
- Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Shi-Jun Xu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, China
| | - Shen Hu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, 100730, Beijing, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Rui-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jun-Qiang Xue
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yun-Hong Wang
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 100037, Beijing, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
10
|
Chaudhari U, Pohjolainen L, Ruskoaho H, Talman V. Genome-wide profiling of miRNA-gene regulatory networks in mouse postnatal heart development-implications for cardiac regeneration. Front Cardiovasc Med 2023; 10:1148618. [PMID: 37283582 PMCID: PMC10241105 DOI: 10.3389/fcvm.2023.1148618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Background After birth, mammalian cardiomyocytes substantially lose proliferative capacity with a concomitant switch from glycolytic to oxidative mitochondrial energy metabolism. Micro-RNAs (miRNAs) regulate gene expression and thus control various cellular processes. Their roles in the postnatal loss of cardiac regeneration are however still largely unclear. Here, we aimed to identify miRNA-gene regulatory networks in the neonatal heart to uncover role of miRNAs in regulation of cell cycle and metabolism. Methods and results We performed global miRNA expression profiling using total RNA extracted from mouse ventricular tissue samples collected on postnatal day 1 (P01), P04, P09, and P23. We used the miRWalk database to predict the potential target genes of differentially expressed miRNAs and our previously published mRNA transcriptomics data to identify verified target genes that showed a concomitant differential expression in the neonatal heart. We then analyzed the biological functions of the identified miRNA-gene regulatory networks using enriched Gene Ontology (GO) and KEGG pathway analyses. Altogether 46 miRNAs were differentially expressed in the distinct stages of neonatal heart development. For twenty miRNAs, up- or downregulation took place within the first 9 postnatal days thus correlating temporally with the loss of cardiac regeneration. Importantly, for several miRNAs, including miR-150-5p, miR-484, and miR-210-3p there are no previous reports about their role in cardiac development or disease. The miRNA-gene regulatory networks of upregulated miRNAs negatively regulated biological processes and KEGG pathways related to cell proliferation, while downregulated miRNAs positively regulated biological processes and KEGG pathways associated with activation of mitochondrial metabolism and developmental hypertrophic growth. Conclusion This study reports miRNAs and miRNA-gene regulatory networks with no previously described role in cardiac development or disease. These findings may help in elucidating regulatory mechanism of cardiac regeneration and in the development of regenerative therapies.
Collapse
|
11
|
Bak ST, Harvald EB, Ellman DG, Mathiesen SB, Chen T, Fang S, Andersen KS, Fenger CD, Burton M, Thomassen M, Andersen DC. Ploidy-stratified single cardiomyocyte transcriptomics map Zinc Finger E-Box Binding Homeobox 1 to underly cardiomyocyte proliferation before birth. Basic Res Cardiol 2023; 118:8. [PMID: 36862248 PMCID: PMC9981540 DOI: 10.1007/s00395-023-00979-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/31/2022] [Accepted: 01/21/2023] [Indexed: 03/03/2023]
Abstract
Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Ting Chen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Shu Fang
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Kristian Skriver Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | | - Mark Burton
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.
- Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
12
|
Wang T, Zhou LY, Li XM, Liu F, Liang L, Chen XZ, Ju J, Ponnusamy M, Wang K, Liu CY, Yan KW, Wang K. ABRO1 arrests cardiomyocyte proliferation and myocardial repair by suppressing PSPH. Mol Ther 2023; 31:847-865. [PMID: 36639869 PMCID: PMC10014284 DOI: 10.1016/j.ymthe.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Fang Liu
- Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Anatomy, Guilin Medical University, Guilin 541004, China
| | - Lin Liang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Kao-Wen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
13
|
Ji S, Tu W, Huang C, Chen Z, Ren X, He B, Ding X, Chen Y, Xie X. The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Mol Cells 2022; 45:923-934. [PMID: 36572561 PMCID: PMC9794550 DOI: 10.14348/molcells.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/28/2022] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Sijia Ji
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanzhi Tu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenwen Huang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziyang Chen
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Ren
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqing He
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Ding
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuelei Chen
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
14
|
Chang T, Liu C, Yang H, Lu K, Han Y, Zheng Y, Huang H, Wu Y, Song Y, Yu Q, Shen Z, Jiang T, Zhang Y. Fibrin-based cardiac patch containing neuregulin-1 for heart repair after myocardial infarction. Colloids Surf B Biointerfaces 2022; 220:112936. [DOI: 10.1016/j.colsurfb.2022.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
15
|
Wang X, Liang C, Li A, Cheng G, Long F, Khan R, Wang J, Zhang Y, Wu S, Wang Y, Qiu J, Mei C, Yang W, Zan L. RNA-Seq and lipidomics reveal different adipogenic processes between bovine perirenal and intramuscular adipocytes. Adipocyte 2022; 11:448-462. [PMID: 35941812 PMCID: PMC9367662 DOI: 10.1080/21623945.2022.2106051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipogenesis involves complex interactions between transcription and metabolic signalling. Exploration of the developmental characteristics of intramuscular adipocyte will provide targets for enhancing beef cattle marbling without increasing obesity. Few reports have compared bovine perirenal and intramuscular adipocyte transcriptomes using the combined analysis of transcriptomes and lipid metabolism to explore differences in adipogenic characteristics. We identified perirenal preadipocytes (PRA) and intramuscular preadipocytes (IMA) in Qinchuan cattle. We found that IMA were highly prolific in the early stages of adipogenesis, while PRA shows a stronger adipogenic ability in the terminal differentiation. Bovine perirenal and intramuscular adipocytes were detected through the combined analysis of the transcriptome and metabolome. More triglyceride was found to be upregulated in perirenal adipocytes; however, more types and amounts of unsaturated fatty acids were detected in intramuscular adipocytes, including eicosapentaenoic acid (20:5 n-3; EPA) and docosahexaenoic acid (22:6 n-3; DHA). Furthermore, differentially expressed genes in perirenal and intramuscular adipocytes were positively correlated with the eicosanoid, phosphatidylcholine (PC), phosphatidyl ethanolamine (PE), and sphingomyelin contents. Associated differential metabolic pathways included the glycerolipid and glycerophospholipid metabolisms. Our research findings provide a basis for the screening of key metabolic pathways or genes and metabolites involved in intramuscular fat production in cattle.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rajwali Khan
- Department of Livestock Management, the University of Agriculture, Peshawar, Pakistan
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- Longri Breeding Farm of Sichuan Province, Sichuan, Chengdu, China
| | - Sen Wu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Qinghai, Xining, China
| | - Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Zhang J, Zuo Z, Li J, Wang Y, Huang J, Xu L, Jin K, Lu H, Dai Y. In situ assessment of statins' effect on autophagic activity in zebrafish larvae cardiomyocytes. Front Cardiovasc Med 2022; 9:921829. [PMID: 36465443 PMCID: PMC9712203 DOI: 10.3389/fcvm.2022.921829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/28/2022] [Indexed: 01/04/2025] Open
Abstract
Improving the survival rate of cardiomyocytes is the key point to treat most of the heart diseases, and targeting autophagy is a potential advanced therapeutic approach. Monitoring autophagic activity in cardiomyocytes in situ will be useful for studying autophagy-related heart disease and screening autophagy-modulating drugs. Zebrafish, Danio rerio, has been proven as an animal model for studying heart diseases in situ. Taken the advantage of zebrafish, especially the imaging of intact animals, here we generated two stable transgenic zebrafish lines that specifically expressed EGFP-map1lc3b or mRFP-EGFP-map1lc3b in cardiomyocytes under the promoter of myosin light chain 7. We first used a few known autophagy-modulating drugs to confirm their usefulness. By quantifying the density of autophagosomes and autolysosomes, autophagy inducers and inhibitors showed their regulatory functions, which were consistent with previous studies. With the two lines, we then found a significant increase in the density of autophagosomes but not autolysosomes in zebrafish cardiomyocytes at the early developmental stages, indicating the involvement of autophagy in early heart development. To prove their applicability, we also tested five clinical statins by the two lines. And we found that statins did not change the density of autophagosomes but reduced the density of autolysosomes in cardiomyocytes, implying their regulation in autophagic flux. Our study provides novel animal models for monitoring autophagic activity in cardiomyocytes in situ, which could be used to study autophagy-related cardiomyopathy and drug screening.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxuan Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Jia Huang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lili Xu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kejia Jin
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
| |
Collapse
|
17
|
Femminò S, Bonelli F, Brizzi MF. Extracellular vesicles in cardiac repair and regeneration: Beyond stem-cell-based approaches. Front Cell Dev Biol 2022; 10:996887. [PMID: 36120584 PMCID: PMC9479097 DOI: 10.3389/fcell.2022.996887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The adult human heart poorly regenerate after injury due to the low self-renewal capability retained by adult cardiomyocytes. In the last two decades, several clinical studies have reported the ability of stem cells to induce cardiac regeneration. However, low cell integration and survival into the tissue has limited stem-cell-based clinical approaches. More recently, the release of paracrine mediators including extracellular vesicles (EV) has been recognized as the most relevant mechanism driving benefits upon cell-based therapy. In particular, EV have emerged as key mediators of cardiac repair after damage, in terms of reduction of apoptosis, resolution of inflammation and new blood vessel formation. Herein, mechanisms involved in cardiac damage and regeneration, and current applications of EV and their small non-coding RNAs (miRNAs) in regenerative medicine are discussed.
Collapse
|
18
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
19
|
Pei X, Wu Y, Yu H, Li Y, Zhou X, Lei Y, Lu W. Protective Role of lncRNA TTN-AS1 in Sepsis-Induced Myocardial Injury Via miR-29a/E2F2 Axis. Cardiovasc Drugs Ther 2022; 36:399-412. [PMID: 34519914 DOI: 10.1007/s10557-021-07244-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Approximately 50% of patients with sepsis encounter myocardial injury. The mortality of septic patients with cardiac dysfunction (approx. 70%) is much higher than that of patients with sepsis only (20%). A large number of studies have suggested that lncRNA TTN-AS1 promotes cell proliferation in a variety of diseases. This study delves into the function and mechanism of TTN-AS1 in sepsis-induced myocardial injury in vitro and in vivo. METHODS LPS was used to induce sepsis in rats and H9c2 cells. Cardiac function of rats was assessed by an ultrasound system. Myocardial injury was revealed by hematoxylin-eosin (H&E) staining. Gain and loss of function of TTN-AS1, miR-29a, and E2F2 was achieved in H9c2 cells before LPS treatment. The expression levels of inflammatory cytokines and cTnT were monitored by ELISA. The expression levels of cardiac enzymes as well as reactive oxygen species (ROS) activity and mitochondrial membrane potential (MMP) were measured using the colorimetric method. The expression levels of TTN-AS1, miR-29a, E2F2, and apoptosis-related proteins were measured by RT-qPCR and/or western blotting. The proliferation and apoptosis of H9c2 cells were separately detected by CCK-8 and flow cytometry. Luciferase reporter assay was used to verify the targeting relationships among TTN-AS1, miR-29a and E2F2, and RIP assay was further used to confirm the binding between miR-29a and E2F2. RESULTS TTN-AS1 was lowly expressed, while miR-29a was overexpressed in the cell and animal models of sepsis. Overexpression of TTN-AS1 or silencing of miR-29a reduced the expression levels of CK, CK-MB, LDH, TNF-B, IL-1B, and IL-6 in the supernatant of LPS-induced H9c2 cells, attenuated mitochondrial ROS activity, and enhanced MMP. Consistent results were observed in septic rats injected with OE-TTN-AS1. Knockdown of TTN-AS1 or overexpression of miR-29a increased LPS-induced inflammation and injury in H9c2 cells. TTN-AS1 regulated the expression of E2F2 by targeting miR-29a. Overexpression of miR-29a or inhibition of E2F2 abrogated the suppressive effect of TTN-AS1 overexpression on myocardial injury. CONCLUSION This study indicates TTN-AS1 attenuates sepsis-induced myocardial injury by regulating the miR-29a/E2F2 axis and sheds light on lncRNA-based treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xinghua Pei
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Yanhong Wu
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Haiming Yu
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Yuji Li
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Xu Zhou
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Yanjun Lei
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China
| | - Wu Lu
- Department of Critical Care Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, West Jiefang Road, Furong District, Hunan, 410005, Changsha, People's Republic of China.
| |
Collapse
|
20
|
Zhang X, Zai L, Tao Z, Wu D, Lin M, Wan J. miR-145-5p affects autophagy by targeting CaMKIIδ in atherosclerosis. Int J Cardiol 2022; 360:68-75. [PMID: 35597494 DOI: 10.1016/j.ijcard.2022.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive inflammatory disease involving many cells. miR-145-5p mediates the biological phenotypes of human aortic vascular smooth muscle cells (HAVSMCs) and influences the progression of AS, but the potential mechanism needs further study. METHODS Total RNA was extracted from patient plasma and arteries to determine the expression of miR-145-5p. The CaMKIIδ pathway and genes were predicted as the target of miR-145-5p by bioinformatics approaches. The interaction between miR-145-5p and CaMKIIδ was confirmed by RT-qPCR and Dual Luciferase Reporter Assay System. Western blot analysis, immunofluorescence staining, transmission electron microscopy (TEM) and protein tracing on HAVSMCs transduced with mCherry-GFP-LC3 lentiviral vectors to determine the mechanism by which miR-145-5p affects the atherosclerotic disease process. RESULTS The expression of miR-145-5p was downregulated in blood and arteries specimens of patients with coronary stenosis. Correspondingly, CaMKIIδ was upregulated and miR-145-5p was downregulated in hypoxic HAVSMCs. CaMKIIδ was predicted and confirmed as a downstream target of miR-145-5p. In addition, CaMKIIδ induced the upregulation of autophagy-related proteins by activating the AMPK/mTOR/ULK1 signalling pathway. Moreover, we confirmed that miR-145-5p inhibits CaMKIIδ expression by binding to a specific sequence in the CaMKIIδ 3' UTR and affects autophagy. Crucially, CaMKIIδ was promoted by the downregulation of miR-145-5p and then activating autophagy in HAVSMCs through the AMPK/mTOR/ULK1 signalling pathway to affect the AS progress. CONCLUSIONS miR-145-5p regulates CaMKIIδ, leading to altered autophagy in HAVSMCs. This alteration plays an important role in AS progression.
Collapse
Affiliation(s)
- Xinxin Zhang
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Ling Zai
- Wuhan Medical Emergency Center, No. 288 Machang Road, Wuhan, Hubei 430024, PR China
| | - Ziqi Tao
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Daiqian Wu
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Mingying Lin
- Hainan General Hospital of Hainan Medical University, No. 19 Xiuhua Road, Haikou, Hainan, PR China.
| | - Jing Wan
- Wuhan University Zhongnan Hospital, No. 169 Donghu Road, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
21
|
Yuan Q, Maas RGC, Brouwer ECJ, Pei J, Blok CS, Popovic MA, Paauw NJ, Bovenschen N, Hjortnaes J, Harakalova M, Doevendans PA, Sluijter JPG, van der Velden J, Buikema JW. Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. J Cardiovasc Dev Dis 2022; 9:jcdd9020043. [PMID: 35200697 PMCID: PMC8880351 DOI: 10.3390/jcdd9020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Contractility of the adult heart relates to the architectural degree of sarcomeres in individual cardiomyocytes (CMs) and appears to be inversely correlated with the ability to regenerate. In this study we utilized multiple imaging techniques to follow the sequence of sarcomere disassembly during mitosis resulting in cellular or nuclear division in a source of proliferating human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed that both mono- and binuclear hiPSC-CMs give rise to mononuclear daughter cells or binuclear progeny. Within this source of highly proliferative hiPSC-CMs, treated with the CHIR99021 small molecule, we found that Wnt and Hippo signaling was more present when compared to metabolic matured non-proliferative hiPSC-CMs and adult human heart tissue. Furthermore, we found that CHIR99021 increased the efficiency of non-viral vector incorporation in high-proliferative hiPSC-CMs, in which fluorescent transgene expression became present after the chromosomal segregation (M phase). This study provides a tool for gene manipulation studies in hiPSC-CMs and engineered cardiac tissue. Moreover, our data illustrate that there is a complex biology behind the cellular and nuclear division of mono- and binuclear CMs, with a shared-phenomenon of sarcomere disassembly during mitosis.
Collapse
Affiliation(s)
- Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ellen C. J. Brouwer
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jiayi Pei
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Snijders Blok
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marko A. Popovic
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Nanne J. Paauw
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Niels Bovenschen
- Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Heart & Lung Center, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Magdalena Harakalova
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jan W. Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
22
|
Yu HL, Hwang SPL. Zebrafish integrin a3b is required for cardiac contractility and cardiomyocyte proliferation. Biochem Biophys Res Commun 2022; 595:89-95. [PMID: 35121232 DOI: 10.1016/j.bbrc.2022.01.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
In cardiac muscle cells, heterodimeric integrin transmembrane receptors are known to serve as mechanotransducers, translating mechanical force to biochemical signaling. However, the roles of many individual integrins have still not been delineated. In this report, we demonstrate that Itga3b is localized to the sarcolemma of cardiomyocytes from 24 to 96 hpf. We further show that heterozygous and homozygous itga3b/bdf mutant embryos display a cardiomyopathy phenotype, with decreased cardiac contractility and reduced cardiomyocyte number. Correspondingly, proliferation of ventricular and atrial cardiomyoctyes and ventricular epicardial cells is decreased in itga3b mutant hearts. The contractile dysfunction of itga3b mutants can be attributed to cardiomyocyte sarcomeric disorganization, including thin myofilaments with blurred and shortened Z-discs. Together, our results reveal that Itga3b localizes to the myocardium sarcolemma, and it is required for cardiac contractility and cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Hsiang-Ling Yu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Sheng-Ping L Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
23
|
Accelerated Growth, Differentiation, and Ploidy with Reduced Proliferation of Right Ventricular Cardiomyocytes in Children with Congenital Heart Defect Tetralogy of Fallot. Cells 2022; 11:cells11010175. [PMID: 35011735 PMCID: PMC8750260 DOI: 10.3390/cells11010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
The myocardium of children with tetralogy of Fallot (TF) undergoes hemodynamic overload and hypoxemia immediately after birth. Comparative analysis of changes in the ploidy and morphology of the right ventricular cardiomyocytes in children with TF in the first years of life demonstrated their significant increase compared with the control group. In children with TF, there was a predominantly diffuse distribution of Connexin43-containing gap junctions over the cardiomyocytes sarcolemma, which redistributed into the intercalated discs as cardiomyocytes differentiation increased. The number of Ki67-positive cardiomyocytes varied greatly and amounted to 7.0–1025.5/106 cardiomyocytes and also were decreased with increased myocytes differentiation. Ultrastructural signs of immaturity and proliferative activity of cardiomyocytes in children with TF were demonstrated. The proportion of interstitial tissue did not differ significantly from the control group. The myocardium of children with TF under six months of age was most sensitive to hypoxemia, it was manifested by a delay in the intercalated discs and myofibril assembly and the appearance of ultrastructural signs of dystrophic changes in the cardiomyocytes. Thus, the acceleration of ontogenetic growth and differentiation of the cardiomyocytes, but not the reactivation of their proliferation, was an adaptation of the immature myocardium of children with TF to hemodynamic overload and hypoxemia.
Collapse
|
24
|
RRM2 Improves Cardiomyocyte Proliferation after Myocardial Ischemia Reperfusion Injury through the Hippo-YAP Pathway. DISEASE MARKERS 2021; 2021:5089872. [PMID: 34868394 PMCID: PMC8639268 DOI: 10.1155/2021/5089872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Objective Ribonucleotide reductase M2 (RRM2) as an enzyme that catalyzes the deoxyreduction of nucleosides to deoxyribonucleoside triphosphate (dNTP) has been extensively studied, and it plays a crucial role in regulating cell proliferation. However, its role in ischemia-reperfusion injury (I/RI) is still unclear. Methods SD rats were used as the research object to detect the expression of RRM2 in the myocardium by constructing an I/RI model. At the same time, primary SD neonatal rat cardiomyocytes were extracted, and hypoxia/reoxygenation (H/R) treatment simulated the I/RI model. Using transfection technology to overexpress RRM2 in cardiomyocytes, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to detect the expression of RRM2, Cell Counting Kit-8 (CCK-8) assay was used to detect cell viability, and immunofluorescence staining was used to detect Ki67 and EdU-positive cells. Western blot (WB) technology was used to detect YAP and its phosphorylation expression. Results qRT-PCR results indicated that the expression of RRM2 was inhibited in the model group, and cardiomyocytes overexpressing RRM2 can obviously promote the proliferation of primary cardiomyocytes and improve the damage of cardiac structure and function caused by I/R. At the same time, RRM2 can promote the increase of YAP protein expression and the increase of Cyclin D1 mRNA expression. Conclusion RRM2 expression was downregulated in myocardial tissue with I/R. After overexpression of RRM2, cardiomyocyte proliferation was upregulated and the Hippo-YAP signaling pathway was activated.
Collapse
|
25
|
Li Y, Wei T, Fan Y, Shan T, Sun J, Chen B, Wang Z, Gu L, Yang T, Liu L, Du C, Ma Y, Wang H, Sun R, Wei Y, Chen F, Guo X, Kong X, Wang L. Serine/Threonine-Protein Kinase 3 Facilitates Myocardial Repair After Cardiac Injury Possibly Through the Glycogen Synthase Kinase-3β/β-Catenin Pathway. J Am Heart Assoc 2021; 10:e022802. [PMID: 34726469 PMCID: PMC8751936 DOI: 10.1161/jaha.121.022802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The neonatal heart maintains its entire regeneration capacity within days after birth. Using quantitative phosphoproteomics technology, we identified that SGK3 (serine/threonine-protein kinase 3) in the neonatal heart is highly expressed and activated after myocardial infarction. This study aimed to uncover the function and related mechanisms of SGK3 on cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. Methods and Results The effect of SGK3 on proliferation and oxygen glucose deprivation/reoxygenation- induced apoptosis in isolated cardiomyocytes was evaluated using cardiomyocyte-specific SGK3 overexpression or knockdown adenovirus5 vector. In vivo, gain- and loss-of-function experiments using cardiomyocyte-specific adeno-associated virus 9 were performed to determine the effect of SGK3 in cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. In vitro, overexpression of SGK3 enhanced, whereas knockdown of SGK3 decreased, the cardiomyocyte proliferation ratio. In vivo, inhibiting the expression of SGK3 shortened the time window of cardiac regeneration after apical resection in neonatal mice, and overexpression of SGK3 significantly promoted myocardial repair and cardiac function recovery after ischemia/reperfusion injury in adult mice. Mechanistically, SGK3 promoted cardiomyocyte regeneration and myocardial repair after cardiac injury by inhibiting GSK-3β (glycogen synthase kinase-3β) activity and upregulating β-catenin expression. SGK3 also upregulated the expression of cell cycle promoting genes G1/S-specific cyclin-D1, c-myc (cellular-myelocytomatosis viral oncogene), and cdc20 (cell division cycle 20), but downregulated the expression of cell cycle negative regulators cyclin kinase inhibitor P 21 and cyclin kinase inhibitor P 27. Conclusions Our study reveals a key role of SGK3 on cardiac repair after apical resection or ischemia/reperfusion injury, which may reopen a novel therapeutic option for myocardial infarction.
Collapse
Affiliation(s)
- Ya‐Fei Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tian‐Wen Wei
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yi Fan
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of CardiologySchool of MedicineZhongda HospitalSoutheast UniversityNanjingChina
| | - Tian‐Kai Shan
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jia‐Teng Sun
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bing‐Rui Chen
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zi‐Mu Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ling‐Feng Gu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tong‐Tong Yang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Liu Liu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chong Du
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yao Ma
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Rui Sun
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yong‐Yue Wei
- Department of BiostatisticsSchool of Public HealthChina International Cooperation Center for Environment and Human HealthNanjingChina
| | - Feng Chen
- Department of BiostatisticsSchool of Public HealthChina International Cooperation Center for Environment and Human HealthNanjingChina
| | - Xue‐Jiang Guo
- State Key Laboratory of Reproductive MedicineDepartment of Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Xiang‐Qing Kong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lian‐Sheng Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
26
|
Khan A, Ramos-Gomes F, Markus A, Mietsch M, Hinkel R, Alves F. Label-free imaging of age-related cardiac structural changes in non-human primates using multiphoton nonlinear microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:7009-7023. [PMID: 34858695 PMCID: PMC8606147 DOI: 10.1364/boe.432102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Heart failure is one of the most common causes of morbidity and mortality. Both maturational abnormalities and age-associated cardiac pathologies contribute to heart failure. Imaging-based assessment to discern detailed cardiac structure at various maturational stages is imperative for understanding mechanisms behind cardiac growth and aging. Using multiphoton nonlinear optical microscopy (NLOM) based label-free imaging, we investigated cardiac structural composition in a human-relevant aging model, the common marmoset monkey (Callithrix jacchus). Animals were divided into three different age groups including neonatal, young adult and old. By devising a unique strategy for segregating collagen and myosin emitted second harmonic generation (SHG) signals, we performed a volumetric assessment of collagen and total scattering tissue (collagen + myosin). Aged marmoset hearts exhibited an increase in collagen and total scattering tissue volume at the sites of severe tissue remodelling indicating age-related cardiac fibrosis. Significantly low scattering tissue volume in neonatal marmoset hearts was attributed to a lack of binding between the myofibrils in maturing cardiac tissue. Comprehensive quantitative assessment of structural composition during maturation and aging of marmoset hearts revealed significant differences in myofibril length, alignment, curvature and angular distribution. In conclusion, label-free high-resolution NLOM facilitates visualization and quantification of subcellular structural features for understanding vital age-related morphological alterations in the marmoset heart.
Collapse
Affiliation(s)
- Amara Khan
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Andrea Markus
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Matthias Mietsch
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rabea Hinkel
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Frauke Alves
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| |
Collapse
|
27
|
Neininger AC, Dai X, Liu Q, Burnette DT. The Hippo pathway regulates density-dependent proliferation of iPSC-derived cardiac myocytes. Sci Rep 2021; 11:17759. [PMID: 34493746 PMCID: PMC8423799 DOI: 10.1038/s41598-021-97133-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Inducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell-cell contact-dependent manner, however, it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.
Collapse
Affiliation(s)
- Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Xiaozhaun Dai
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
28
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
29
|
Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537804. [PMID: 34413927 PMCID: PMC8369182 DOI: 10.1155/2021/5537804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn mice have the capability of proliferation and regeneration, but its mechanism, particularly its relation to m6A methylation, remains unknown. Methods. To systematically profile the mRNA m6A modification pattern in the heart tissues of mice at different developmental stages, we jointly performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of heart tissues of mice, respectively, aged 1 day old, 7 days old, and 28 days old. Results. We identified the linkages and association between differentially expressed mRNA transcripts and hyper or hypomethylated m6A peaks in C57BL/6J mice at different heart developmental stages. Results showed that the amount of m6A peaks and the level of m6A modification were the lowest in the heart of mice at 1 day old. By contrast, heart tissues from 7-day-old mice tended to possess the most m6A peaks and the highest global m6A level. However, the m6A characteristics of myocardial tissue changed little after 7 days old as compared to that of 1 day old. Specifically, we found 1269 downmethylated genes of 1434 methylated genes in 7-day-old mouse heart tissues as compared to those in 1-day-old mice. Hypermethylation of some specific genes may correlate with the heart's strong proliferative and regenerative capability at the first day after birth. In terms of m6A density, the tendency shifted from coding sequences (CDS) to 3′-untranslated regions (3′UTR) and stop codon with the progression of heart development. In addition, some genes demonstrated remarkable changes both in methylation and expression, like kiss1, plekha6, and megf6, which may play important roles in proliferation. Furthermore, signaling pathways highly related to proliferation such as “Wnt signaling pathway,” “ECM-receptor interaction,” and “cardiac chamber formation” were significantly enriched in 1-day-old methylated genes. Conclusions. Our results reveal a pattern that different m6A modifications are distributed in C57BL/6J heart tissue at different developmental stages, which provides new insights into a novel function of m6A methylation of mRNA in myocardial development and regeneration.
Collapse
|
30
|
Maldonado-Velez G, Firulli AB. Mechanisms Underlying Cardiomyocyte Development: Can We Exploit Them to Regenerate the Heart? Curr Cardiol Rep 2021; 23:81. [PMID: 34081213 DOI: 10.1007/s11886-021-01510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW It is well established that the adult mammalian cardiomyocytes retain a low capacity for cell cycle activity; however, it is insufficient to effectively respond to myocardial injury and facilitate cardiac regenerative repair. Lessons learned from species in which cardiomyocytes do allow for proliferative regeneration/repair have shed light into the mechanisms underlying cardiac regeneration post-injury. Importantly, many of these mechanisms are conserved across species, including mammals, and efforts to tap into these mechanisms effectively within the adult heart are currently of great interest. RECENT FINDINGS Targeting the endogenous gene regulatory networks (GRNs) shown to play roles in the cardiac regeneration of conducive species is seen as a strong approach, as delivery of a single or combination of genes has promise to effectively enhance cell cycle activity and CM proliferation in adult hearts post-myocardial infarction (MI). In situ re-induction of proliferative gene regulatory programs within existing, local, non-damaged cardiomyocytes helps overcome significant technical hurdles, such as successful engraftment of implanted cells or achieving complete cardiomyocyte differentiation from cell-based approaches. Although many obstacles currently exist and need to be overcome to successfully translate these approaches to clinical settings, the current efforts presented here show great promise.
Collapse
Affiliation(s)
- Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
31
|
Wang W, Hu YF, Pang M, Chang N, Yu C, Li Q, Xiong JW, Peng Y, Zhang R. BMP and Notch Signaling Pathways differentially regulate Cardiomyocyte Proliferation during Ventricle Regeneration. Int J Biol Sci 2021; 17:2157-2166. [PMID: 34239346 PMCID: PMC8241734 DOI: 10.7150/ijbs.59648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.
Collapse
Affiliation(s)
- Wenyuan Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ye-Fan Hu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Meijun Pang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yuanyuan Peng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Chen Y, Xu T, Li M, Li C, Ma Y, Chen G, Sun Y, Zheng H, Wu G, Liao W, Liao Y, Chen Y, Bin J. Inhibition of SENP2-mediated Akt deSUMOylation promotes cardiac regeneration via activating Akt pathway. Clin Sci (Lond) 2021; 135:811-828. [PMID: 33687053 DOI: 10.1042/cs20201408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Post-translational modification (PTM) by small ubiquitin-like modifier (SUMO) is a key regulator of cell proliferation and can be readily reversed by a family of SUMO-specific proteases (SENPs), making SUMOylation an ideal regulatory mechanism for developing novel therapeutic strategies for promoting a cardiac regenerative response. However, the role of SUMOylation in cardiac regeneration remains unknown. In the present study, we assessed whether targeting protein kinase B (Akt) SUMOylation can promote cardiac regeneration. Quantitative PCR and Western blotting results showed that small ubiquitin-like modifier-specific protease 2 (SENP2) is up-regulated during postnatal heart development. SENP2 deficiency promoted P7 and adult cardiomyocyte (CM) dedifferentiation and proliferation both in vitro and in vivo. Mice with SENP2 deficiency exhibited improved cardiac function after MI due to CM proliferation and angiogenesis. Mechanistically, the loss of SENP2 up-regulated Akt SUMOylation levels and increased Akt kinase activity, leading to a decrease in GSK3β levels and subsequently promoting CM proliferation and angiogenesis. In summary, inhibition of SENP2-mediated Akt deSUMOylation promotes CM differentiation and proliferation by activating the Akt pathway. Our results provide new insights into the role of SUMOylation in cardiac regeneration.
Collapse
Affiliation(s)
- Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yusheng Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangkai Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
33
|
Effect of Interventions in WNT Signaling on Healing of Cardiac Injury: A Systematic Review. Cells 2021; 10:cells10020207. [PMID: 33494313 PMCID: PMC7912185 DOI: 10.3390/cells10020207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
The wound healing that follows myocardial infarction is a complex process involving multiple mechanisms, such as inflammation, angiogenesis and fibrosis. In the last two decades, the involvement of WNT signaling has been extensively studied and effects on virtually all aspects of this wound healing have been reported. However, as often is the case in a newly emerging field, inconsistent and sometimes even contradictory findings have been reported. The aim of this systematic review is to provide a comprehensive overview of studies in which the effect of interventions in WNT signaling were investigated in in vivo models of cardiac injury. To this end, we used different search engines to perform a systematic search of the literature using the key words "WNT and myocardial and infarction". We categorized the interventions according to their place in the WNT signaling pathway (ligand, receptor, destruction complex or nuclear level). The most consistent improvements of the wound healing response were observed in studies in which the acylation of WNT proteins was inhibited by administering porcupine inhibitors, by inhibiting of the downstream glycogen synthase kinase-3β (GSK3β) and by intervening in the β-catenin-mediated gene transcription. Interestingly, in several of these studies, evidence was presented for activation of cardiomyocyte proliferation around the infarct area. These findings indicate that inhibition of WNT signaling can play a valuable role in the repair of cardiac injury, thereby improving cardiac function and preventing the development of heart failure.
Collapse
|
34
|
Li B, Wang Z, Yang F, Huang J, Hu X, Deng S, Tian M, Si X. miR‑449a‑5p suppresses CDK6 expression to inhibit cardiomyocyte proliferation. Mol Med Rep 2020; 23:14. [PMID: 33179102 PMCID: PMC7673318 DOI: 10.3892/mmr.2020.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
Induction of cardiomyocyte (CM) proliferation is a promising approach for cardiac regeneration following myocardial injury. MicroRNAs (miRs) have been reported to regulate CM proliferation. In particular, miR‑449a‑5p has been identified to be associated with CM proliferation in previous high throughput functional screening data. However, whether miR‑449a‑5p regulates CM proliferation has not been thoroughly investigated. This study aimed to explore whether miR‑449a‑5p modulates CM proliferation and to identify the molecular mechanism via which miR‑449a‑5p regulates CM proliferation. The current study demonstrated that miR‑449a‑5p expression levels were significantly increased during heart development. Furthermore, the results suggested that miR‑449a‑5p mimic inhibited CM proliferation <em>in vitro</em> as determined via immunofluorescence for ki67 and histone H3 phosphorylated at serine 10 (pH3), as well as the numbers of CMs. However, miR‑449a‑5p knockdown promoted CM proliferation. CDK6 was identified as a direct target gene of miR‑449a‑5p, and CDK6 mRNA and protein expression was suppressed by miR‑449a‑5p. Moreover, CDK6 gain‑of‑function increased CM proliferation. Overexpression of CDK6 also blocked the inhibitory effect of miR‑449a‑5p on CM proliferation, indicating that CDK6 was a functional target of miR‑449a‑5p in CM proliferation. In conclusion, miR‑449a‑5p inhibited CM proliferation by targeting CDK6, which provides a potential molecular target for preventing myocardial injury.
Collapse
Affiliation(s)
- Bing Li
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Zhi Wang
- Department of Emergency Medicine, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| | - Fan Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xingwei Hu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xiaoyun Si
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
35
|
Haas Bueno R, Recamonde-Mendoza M. Meta-analysis of Transcriptomic Data Reveals Pathophysiological Modules Involved with Atrial Fibrillation. Mol Diagn Ther 2020; 24:737-751. [PMID: 33095430 DOI: 10.1007/s40291-020-00497-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a complex disease and affects millions of people around the world. The biological mechanisms that are involved with AF are complex and still need to be fully elucidated. Therefore, we performed a meta-analysis of transcriptome data related to AF to explore these mechanisms aiming at more sensitive and reliable results. METHODS Ten public transcriptomic datasets were downloaded, analyzed for quality control, and individually pre-processed. Differential expression analysis was carried out for each dataset, and the results were meta-analytically aggregated using the rth ordered p value method. We analyzed the final list of differentially expressed genes through network analysis, namely topological and modularity analysis, and functional enrichment analysis. RESULTS The meta-analysis of transcriptomes resulted in 1197 differentially expressed genes, whose protein-protein interaction network presented 39 hubs-bottlenecks and four main identified functional modules. These modules were enriched for 39, 20, 64, and 10 biological pathways involved with the pathophysiology of AF, especially with the disease's structural and electrical remodeling processes. The stress of the endoplasmic reticulum, protein catabolism, oxidative stress, and inflammation are some of the enriched processes. Among hub-bottlenecks genes, which are highly connected and probably have a key role in regulating these processes, HSPA5, ANK2, CTNNB1, and MAPK1 were identified. CONCLUSION Our approach based on transcriptome meta-analysis revealed a set of key genes that demonstrated consistent overall changes in expression patterns associated with AF despite data heterogeneity related, among others, to type of tissue. Further experimental investigation of our findings may shed light on the pathophysiology of the disease and contribute to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Haas Bueno
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
Liu XM, Du SL, Miao R, Wang LF, Zhong JC. Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases. Heart Fail Rev 2020; 27:345-355. [PMID: 32648149 DOI: 10.1007/s10741-020-09992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and encompasses diverse diseases of the vasculature, myocardium, cardiac electrical circuit, and cardiac development. Forkhead box protein P1 (Foxp1) is a large multi-domain transcriptional regulator belonging to the Fox family with winged helix DNA-binding protein, which plays critical roles in cardiovascular homeostasis and disorders. The broad distribution of Foxp1 and alternative splicing isoforms implicate its distinct functions in diverse cardiac and vascular cells and tissue types. Foxp1 is essential for diverse biological processes and has been shown to regulate cellular proliferation, apoptosis, oxidative stress, fibrosis, angiogenesis, cardiovascular remodeling, and dysfunction. Notably, both loss-of-function and gain-of-function approaches have defined critical roles of Foxp1 in CVD. Genetic deletion of Foxp1 results in pathological cardiac remodeling, exacerbation of atherosclerotic lesion formation, prolonged occlusive thrombus formation, severe cardiac defects, and embryo death. In contrast, activation of Foxp1 performs a wide range of physiological effects, including cell growth, hypertrophy, differentiation, angiogenesis, and cardiac development. More importantly, Foxp1 exerts anti-inflammatory and anti-atherosclerotic effects in controlling coronary thrombus formation and myocardial infarction (MI). Thus, targeting for Foxp1 signaling has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of CVD, and an increased understanding of cardiovascular actions of the Foxp1 signaling will help to develop effective interventions. In this review, we focus on the diverse actions and underlying mechanisms of Foxp1 highlighting its roles in CVD, including heart failure, MI, atherosclerosis, congenital heart defects, and atrial fibrillation.
Collapse
Affiliation(s)
- Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Sheng-Li Du
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Le-Feng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
37
|
Chen X, Li Y, Luo J, Hou N. Molecular Mechanism of Hippo-YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Front Physiol 2020; 11:389. [PMID: 32390875 PMCID: PMC7191303 DOI: 10.3389/fphys.2020.00389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo-YAP1/TAZ pathway is a highly conserved central mechanism that controls organ size through the regulation of cell proliferation and other physical attributes of cells. The transcriptional factors Yes-associated protein 1 (YAP1) and PDZ-binding motif (TAZ) act as downstream effectors of the Hippo pathway, and their subcellular location and transcriptional activities are affected by multiple post-translational modifications (PTMs). Studies have conclusively demonstrated a pivotal role of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration. Targeted therapeutics for the YAP1/TAZ could be an effective treatment option for cardiac regeneration and disease. This review article provides an overview of the Hippo-YAP1/TAZ pathway and the increasing impact of PTMs in fine-tuning YAP1/TAZ activation; in addition, we discuss the potential contributions of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
van Gorp PRR, Trines SA, Pijnappels DA, de Vries AAF. Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2020; 7:43. [PMID: 32296716 PMCID: PMC7138102 DOI: 10.3389/fcvm.2020.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice with a large socioeconomic impact due to its associated morbidity, mortality, reduction in quality of life and health care costs. Currently, antiarrhythmic drug therapy is the first line of treatment for most symptomatic AF patients, despite its limited efficacy, the risk of inducing potentially life-threating ventricular tachyarrhythmias as well as other side effects. Alternative, in-hospital treatment modalities consisting of electrical cardioversion and invasive catheter ablation improve patients' symptoms, but often have to be repeated and are still associated with serious complications and only suitable for specific subgroups of AF patients. The development and progression of AF generally results from the interplay of multiple disease pathways and is accompanied by structural and functional (e.g., electrical) tissue remodeling. Rational development of novel treatment modalities for AF, with its many different etiologies, requires a comprehensive insight into the complex pathophysiological mechanisms. Monolayers of atrial cells represent a simplified surrogate of atrial tissue well-suited to investigate atrial arrhythmia mechanisms, since they can easily be used in a standardized, systematic and controllable manner to study the role of specific pathways and processes in the genesis, perpetuation and termination of atrial arrhythmias. In this review, we provide an overview of the currently available two- and three-dimensional multicellular in vitro systems for investigating the initiation, maintenance and termination of atrial arrhythmias and AF. This encompasses cultures of primary (animal-derived) atrial cardiomyocytes (CMs), pluripotent stem cell-derived atrial-like CMs and (conditionally) immortalized atrial CMs. The strengths and weaknesses of each of these model systems for studying atrial arrhythmias will be discussed as well as their implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Antoine A. F. de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
39
|
Broughton KM, Sussman MA. Cardiac tissue engineering therapeutic products to enhance myocardial contractility. J Muscle Res Cell Motil 2019; 41:363-373. [PMID: 31863324 DOI: 10.1007/s10974-019-09570-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Researchers continue to develop therapeutic products for the repair and replacement of myocardial tissue that demonstrates contractility equivalent to normal physiologic states. As clinical trials focused on pure adult stem cell populations undergo meta-analysis for preclinical through clinical design, the field of tissue engineering is emerging as a new clinical frontier to repair the myocardium and improve cardiac output. This review will first discuss the three primary tissue engineering product themes that are advancing in preclinical to clinical models: (1) cell-free scaffolds, (2) scaffold-free cellular, and (3) hybrid cell and scaffold products. The review will then focus on the products that have advanced from preclinical models to clinical trials. In advancing the cardiac regenerative medicine field, long-term gains towards discovering an optimal product to generate functional myocardial tissue and eliminate heart failure may be achieved.
Collapse
Affiliation(s)
- Kathleen M Broughton
- Department of Biology and Heart Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- Department of Biology and Heart Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
40
|
Blankesteijn WM. Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other Pathways. Mol Pharmacol 2019; 97:90-101. [PMID: 31757861 DOI: 10.1124/mol.119.118018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
Myocardial infarction is a frequent cardiovascular event and a major cause for cardiomyocyte loss. In adult mammals, cardiomyocytes are traditionally considered to be terminally differentiated cells, unable to proliferate. Therefore, the wound-healing response in the infarct area typically yields scar tissue rather than newly formed cardiomyocytes. In the last decade, several lines of evidence have challenged the lack of proliferative capacity of the differentiated cardiomyocyte: studies in zebrafish and neonatal mammals have convincingly demonstrated the regenerative capacity of cardiomyocytes. Moreover, multiple signaling pathways have been identified in these models that-when activated in adult mammalian cardiomyocytes-can reactivate the cell cycle in these cells. However, cardiomyocytes frequently exit the cell cycle before symmetric division into daughter cells, leading to polyploidy and multinucleation. Now that there is more insight into the reactivation of the cell cycle machinery, other prerequisites for successful symmetric division of cardiomyocytes, such as the control of sarcomere disassembly to allow cytokinesis, require more investigation. This review aims to discuss the signaling pathways involved in cardiomyocyte proliferation, with a specific focus on wingless/int-1 protein signaling. Comparing the conflicting results from in vitro and in vivo studies on this pathway illustrates that the interaction with other cells and structures around the infarct is likely to be essential to determine the outcome of these interventions. The extensive crosstalk with other pathways implicated in cardiomyocyte proliferation calls for the identification of nodal points in the cell signaling before cardiomyocyte proliferation can be moved forward toward clinical application as a cure of cardiac disease. SIGNIFICANCE STATEMENT: Evidence is mounting that proliferation of pre-existing cardiomyocytes can be stimulated to repair injury of the heart. In this review article, an overview is provided of the different signaling pathways implicated in cardiomyocyte proliferation with emphasis on wingless/int-1 protein signaling, crosstalk between the pathways, and controversial results obtained in vitro and in vivo.
Collapse
Affiliation(s)
- W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| |
Collapse
|
41
|
Kang MJ, Park SY, Han JS. MicroRNA-24-3p regulates neuronal differentiation by controlling hippocalcin expression. Cell Mol Life Sci 2019; 76:4569-4580. [PMID: 31486848 PMCID: PMC6841749 DOI: 10.1007/s00018-019-03290-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Hippocalcin (HPCA) is a neuron-specific calcium-binding protein predominantly expressed in the nervous system. In the present study, we demonstrate that HPCA regulates neuronal differentiation in SH-SY5Y cells. We observed that the expression level of HPCA was increased during neuronal differentiation. Depletion of HPCA inhibited both neurite outgrowth and synaptophysin (SYP) expression, whereas overexpression of HPCA enhanced neuronal differentiation. Interestingly, we also found that the expression of HPCA mRNA was modulated by miR-24-3p. Using a dual-luciferase assay, we showed that co-transfection of a plasmid containing the miR-24-3p binding site from the 3'-untranslated region (3'UTR) of the HPCA gene and an miR-24-3p mimic effectively reduced luminescence activity. This effect was abolished when miR-24-3p seed sequences in the 3'UTR of the HPCA gene were mutated. miR-24-3p expression was decreased during differentiation, suggesting that the decreased expression level of miR-24-3p might have upregulated mRNA expression of HPCA. As expected, upregulation of miR-24-3p by an miRNA mimic led to reduced HPCA expression, accompanied by diminished neuronal differentiation. In contrast, downregulation of miR-24-3p by an antisense inhibitor promoted neurite outgrowth as well as levels of SYP expression. Taken together, these results suggest that miR-24-3p is an important miRNA that regulates neuronal differentiation by controlling HPCA expression.
Collapse
Affiliation(s)
- Min-Jeong Kang
- Department of Biomedical Sciences, Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Shin-Young Park
- Biomedical Research Institute, Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
- Biomedical Research Institute, Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Abstract
In mammals, most cardiomyocytes (CMs) become polyploid (they have more than two complete sets of chromosomes). The purpose of this review is to evaluate assumptions about CM ploidy that are commonly discussed, even if not experimentally demonstrated, and to highlight key issues that are still to be resolved. Topics discussed here include (a) technical and conceptual difficulties in defining a polyploid CM, (b) the candidate role of reactive oxygen as a proximal trigger for the onset of polyploidy, (c) the relationship between polyploidization and other aspects of CM maturation, (d) recent insights related to the regenerative role of the subpopulation of CMs that are not polyploid, and (e) speculations as to why CMs become polyploid at all. New approaches to experimentally manipulate CM ploidy may resolve some of these long-standing and fundamental questions.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Regenerative Medicine and Cell Biology and Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA; .,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology and Anatomy, and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology and Department of Medicine Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| |
Collapse
|
43
|
Kumar N, Dougherty JA, Manring HR, Elmadbouh I, Mergaye M, Czirok A, Greta Isai D, Belevych AE, Yu L, Janssen PML, Fadda P, Gyorke S, Ackermann MA, Angelos MG, Khan M. Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Sci Rep 2019; 9:13188. [PMID: 31515494 PMCID: PMC6742647 DOI: 10.1038/s41598-019-49653-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ibrahim Elmadbouh
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paolo Fadda
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark G Angelos
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mahmood Khan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
44
|
Zhou N, Huang Q, Cheng W, Ge Y, Li D, Wang J. p27kip1 haploinsufficiency preserves myocardial function in the early stages of myocardial infarction via Atg5‑mediated autophagy flux restoration. Mol Med Rep 2019; 20:3840-3848. [PMID: 31485654 PMCID: PMC6755177 DOI: 10.3892/mmr.2019.10632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality in adults worldwide. Over the last two decades, gene therapy has been a hot topic in cardiology, and there has been a focus on cell cycle inhibitors and their protective effects on the myocardium post-MI. In our previous study, the haploinsufficiency of p27kip1 (p27) was demonstrated to improve cardiac function in mice post-MI by promoting angiogenesis and myocardium protection through the secretion of growth factors. Autophagy is an adaptive response of cells to environmental changes, such as nutrient deprivation, ischemia and hypoxia. The appropriate regulation of autophagy may improve myocardial function by preventing apoptosis of cardiomyocytes. In this study, we used immunoassays, transmission electron microscopy and cardiac ultrasound to confirm that p27 haploinsufficiency prevents myocardial apoptosis by restoring autophagy protein 5-mediated autophagy flux in the early stages of MI. The present study provides a novel method for studying MI or ischemic heart disease therapy.
Collapse
Affiliation(s)
- Ningtian Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Qiong Huang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Weili Cheng
- Department of Cardiology, Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
45
|
Broughton KM, Sussman MA. Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations. Trends Endocrinol Metab 2019; 30:557-567. [PMID: 31262545 PMCID: PMC6703820 DOI: 10.1016/j.tem.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Ability to promote completion of mitotic cycling of adult mammalian cardiomyocytes remains an intractable and vexing challenge, despite being one of the most sought after 'holy grails' of cardiovascular research. While some of the struggle is attributable to adult cardiomyocytes themselves that are notoriously post-mitotic, another contributory factor rests with difficulty in definitive tracking of adult cardiomyocyte cell cycle and lack of rigorous measures to track proliferation in situ. This review summarizes past, present, and future directions to promote adult mammalian cardiomyocyte cell cycle progression, proliferation, and renewal. Establishing relationship(s) between cardiomyocyte cell cycle progression and cellular biological properties is sorely needed to understand the mechanistic basis for cardiomyocyte cell cycle withdrawal to enhance cardiomyocyte cell cycle progression and mitosis.
Collapse
Affiliation(s)
- Kathleen M Broughton
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA.
| |
Collapse
|
46
|
Liu P, Choi JW, Lee MK, Choi YH, Nam TJ. Wound Healing Potential of Spirulina Protein on CCD-986sk Cells. Mar Drugs 2019; 17:md17020130. [PMID: 30813318 PMCID: PMC6409727 DOI: 10.3390/md17020130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Wound healing is a dynamic and complex process. The proliferation and migration of dermal fibroblasts are crucial for wound healing. Recent studies have indicated that the extracts from Spirulina platensis have a positive potential for wound healing. However, its underlying mechanism is not fully understood. Our previous study showed that spirulina crude protein (SPCP) promoted the viability of human dermal fibroblast cell line (CCD-986sk cells). In this study, we further investigated the wound healing effect and corresponding mechanisms of SPCP on CCD-986sk cells. Bromodeoxyuridine (BrdU) assay showed that SPCP promoted the proliferation of CCD-986sk cells. The wound healing assay showed that SPCP promoted the migration of CCD-986sk cells. Furthermore, cell cycle analysis demonstrated that SPCP promoted CCD-986sk cells to enter S and G2/M phases from G0/G1 phase. Western blot results showed that SPCP significantly upregulated the expression of cyclin D1, cyclin E, cyclin-dependent kinase 2 (Cdk2), cyclin-dependent kinase 4 (Cdk4), and cyclin-dependent kinase 6 (Cdk6), as well as inhibited the expression of CDK inhibitors p21 and p27 in CCD-986sk cells. In the meanwhile, SPCP promoted the phosphorylation and activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). However, the phosphorylation of Akt was significantly blocked by PI3K inhibitor (LY294002), which in turn reduced the SPCP-induced proliferation and migration of CCD-986sk cells. Therefore, the results presenting in this study suggested that SPCP can promote the proliferation and migration of CCD-986sk cells; the PI3K/Akt signaling pathway play a positive and important role in these processes.
Collapse
Affiliation(s)
- Ping Liu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
| | - Jeong-Wook Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Min-Kyeong Lee
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea.
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| |
Collapse
|
47
|
Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targetting CCND2 and E2F2. Clin Sci (Lond) 2019; 133:425-441. [PMID: 30679264 DOI: 10.1042/cs20181002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
MiRNAs regulate the cardiomyocyte (CM) cell cycle at the post-transcriptional level, affect cell proliferation, and intervene in harmed CM repair post-injury. The present study was undertaken to characterize the role of let-7i-5p in the processes of CM cell cycle and proliferation and to reveal the mechanisms thereof. In the present study, we used real-time qPCR (RT-qPCR) to determine the up-regulated let-7i-5p in CMs during the postnatal switch from proliferation to terminal differentiation and further validated the role of let-7i-5p by loss- and gain-of-function of let-7i-5p in CMs in vitro and in vivo We found that the overexpression of let-7i-5p inhibited CM proliferation, whereas the suppression of let-7i-5p significantly facilitated CM proliferation. E2F2 and CCND2 were identified as the targets of let-7i-5p, mediating its effect in regulating the cell cycle of CMs. Supperession of let-7i-5p promoted the recovery of heart function post-myocardial infarction by enhancing E2F2 and CCND2. Collectively, our results revealed that let-7i-5p is involved in the regulation of the CM cell cycle and further impacts proliferation, which may offer a new potential therapeutic strategy for cardiac repair after ischemic injury.
Collapse
|
48
|
Khan K, Gasbarrino K, Mahmoud I, Makhoul G, Yu B, Dufresne L, Daskalopoulou SS, Schwertani A, Cecere R. Bioactive scaffolds in stem-cell-based therapies for cardiac repair: protocol for a meta-analysis of randomized controlled preclinical trials in animal myocardial infarction models. Syst Rev 2018; 7:225. [PMID: 30518435 PMCID: PMC6280361 DOI: 10.1186/s13643-018-0845-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (MI) remains one of the leading causes of death worldwide with no curative therapy available. Stem cell therapies have been gaining interest as a means to repair the cardiac tissue after MI and prevent the onset of heart failure. Many in vivo reports suggest that the use of stem cells is promising, yet clinical trials suggest that the cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function and repair. To battle this limitation, the combination of using stem cells embedded in a bioactive scaffold that promotes cell retention is growing in interest. Yet, a systematic review of the literature on the use of stem cells embedded in bioactive scaffolds for cardiac repair has not yet been performed. In this protocol, we outline a systematic review and meta-analysis of preclinical trials in animal MI models that utilize stem cell-embedded scaffolds for cardiac repair and compare their effects to stem cell-treated animals without the use of a scaffold. METHODS/DESIGN We will search the following electronic databases: Cochrane Library, MEDLINE, Embase, PubMed, Scopus and Web of Science, and gray literature: Canadian Agency for Drugs and Technologies in Health and Google Scholar. We will only include randomly controlled preclinical trials that have directly investigated the effects of stem cells embedded in a scaffold for cardiac repair in an animal MI model. Two investigators will independently review each article included in the final analysis. The primary endpoint that will be investigated is left ventricular ejection fraction. Secondary endpoints will include infarct size, end systolic volume, end diastolic volume, fractional shortening and left ventricular wall thickness. Pooled analyses will be conducted using the DerSimonian-Laird random effects and Mantel-Haenszel fixed-effect models. Between-studies heterogeneity will be quantified and determined using the Tau2 and I2 statistics. Publication bias will be assessed using visual inspection of funnel plots and complemented by Begg's and Egger's statistical tests. Possible sources of heterogeneity will be assessed using subgroup-meta analysis and meta-regression. DISCUSSION To date, the use of scaffolds in myocardial repair has not yet been systematically reviewed. The results of this meta-analysis will aid in determining the efficacy of stem cell-embedded scaffolds for cardiac repair and help bring this therapy to the clinic.
Collapse
Affiliation(s)
- Kashif Khan
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Karina Gasbarrino
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, Montreal, Quebec Canada
| | - Ibtisam Mahmoud
- McConnell Resource Centre, McGill University Health Centre, Montreal, Quebec Canada
| | - Georges Makhoul
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Bin Yu
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Line Dufresne
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Stella S. Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, Montreal, Quebec Canada
| | - Adel Schwertani
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Renzo Cecere
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
- Glen Campus-The Royal Victoria Hospital, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec H4A 3J1 Canada
| |
Collapse
|
49
|
Sang L, Lu D, Zhang J, Du S, Zhao X. Mifepristone inhibits proliferation, migration and invasion of HUUA cells and promotes its apoptosis by regulation of FAK and PI3K/AKT signaling pathway. Onco Targets Ther 2018; 11:5441-5449. [PMID: 30233205 PMCID: PMC6129030 DOI: 10.2147/ott.s169947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose The aim was to investigate mifepristone effects on endometrial carcinoma and the related mechanism. Methods HHUA cells were treated with DMEM containing different concentrations of mifepristone. HHUA cells treated with 100 μmol/L mifepristone were named the Mifepristone group. HHUA cells co-transfected with pcDNA3.1-PI3K and pcDNA3.1-AKT overexpression vectors were treated with 100 μmol/L mifepristone and named the Mifepristone + PI3K/AKT group. mRNA expression was detected by quantitative reverse transcription PCR. Protein expression was performed by Western blot. Cell proliferation was conducted by MTT assay. Wound-healing assay was conducted. Transwell was used to detect cells migration and invasion. Apoptosis detection was performed by flow cytometry. Results Mifepristone inhibited HHUA cells proliferation in a dose-dependent manner. Compared with HHUA cells treated with 0 μmol/L mifepristone, HHUA cells treated by 50–100 μmol/L mifepristone had a lower wound-healing rate, a greater number of migrating and invasive cells (P<0.01), as well as a higher percentage of apoptotic cells and Caspase-3 expression (P<0.01). When HHUA cells were treated with 50–100 μmol/L of mifepristone, FAK, p-FAK, p-PI3K and p-AKT relative expression was all significantly lower than HHUA cells treated with 0 μmol/L of mifepristone (P<0.01). Compared with the Mifepristone group, HHUA cells of the Mifepristone + PI3K/AKT group had a lower cell growth inhibition rate and percentage of apoptotic cells (P<0.01). Conclusion Mifepristone inhibited HUUA cells proliferation, migration and invasion and promoted its apoptosis by regulation of FAK and PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lin Sang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Hefei City Affiliated to Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Dawei Lu
- Department of Obstetrics and Gynecology, The Second People's Hospital of Hefei City Affiliated to Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Jun Zhang
- Department of Obstetrics, Tai'an City Central Hospital, Tai'an City, Shandong Province, People's Republic of China
| | - Shihua Du
- Department of Obstetrics and Gynecology, The Second People's Hospital of Hefei City Affiliated to Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Xingbo Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan City, Shandong Province, People's Republic of China,
| |
Collapse
|
50
|
Park D, Lee HS, Kang JH, Kim SM, Gong JR, Cho KH. Attractor landscape analysis of the cardiac signaling network reveals mechanism-based therapeutic strategies for heart failure. J Mol Cell Biol 2018; 10:180-194. [PMID: 29579284 DOI: 10.1093/jmcb/mjy019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/19/2018] [Indexed: 01/03/2025] Open
Abstract
Apoptosis and hypertrophy of cardiomyocytes are the primary causes of heart failure (HF), a global leading cause of death, and are regulated through the complicated intracellular signaling network, limiting the development of effective treatments due to its complexity. To identify effective therapeutic strategies for HF at a system level, we develop a large-scale comprehensive mathematical model of the cardiac signaling network by integrating all available experimental evidence. Attractor landscape analysis of the network model identifies distinct sets of control nodes that effectively suppress apoptosis and hypertrophy of cardiomyocytes under ischemic or pressure overload-induced HF, the two major types of HF. Intriguingly, our system-level analysis suggests that intervention of these control nodes may increase the efficacy of clinical drugs for HF and, of most importance, different combinations of control nodes are suggested as potentially effective candidate drug targets depending on the types of HF. Our study provides a systematic way of developing mechanism-based therapeutic strategies for HF.
Collapse
Affiliation(s)
- Daebeom Park
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ho-Sung Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jun Hyuk Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Seon-Myeong Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeong-Ryeol Gong
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|