1
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
2
|
Konar E, Khatami SR, Pezeshki SP, Shafiei M, Hajjari MR. The effect of PRP and hyperosmolarity simultaneous use on expression profile alteration of miRNAs associated with cartilage differentiation in human adipose tissue-derived mesenchymal stem cells. Gene 2023; 859:147188. [PMID: 36632912 DOI: 10.1016/j.gene.2023.147188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSC) are a type of multipotent stem cell whose differentiation into cartilage cells has been considered in recent years. Platelet-rich plasma (PRP) may impair cartilage differentiation due to its richness in growth factors and hyperosmolarity due to its proximity to the required cartilage environment. OBJECTIVES The main purpose of this study was to treat human adipose tissue-derived MSCs concurrently with PRP and hyperosmolarity to investigate the expression profile of micro-RNA (miRNA) involved in the cartilage process differentiation. We examined the effect of PRP and the increase in osmolarity on the expression of miR-27, miR-101, miR-140, miR-145, miR-146, and miR-199. METHODS Mesenchymal stem cells were extracted from human adipose tissue and differentiated into chondrocytes and the effect of baseline cultures (diff), PRP (prp), hyperosmolarity (os), base plus hyperosmolarity (diff + os), PRP plus hyperosmolarity (prp + os) next to the control group were studied in cartilage differentiation using specific stains such as Alcian blue, hematoxylin and eosin, and collagen type 2 and 10 immunohistochemistry. In addition, the expression of miR-27, miR-140, miR-199, miR-146, miR-101, and miR-145 was evaluated using real-time PCR. CONCLUSION Human adipose tissue-derived MSCs with the ability to differentiate into adipocytes and osteocytes showed the properties of chondrocytes in all differentiation groups. Alkaline phosphatase (ALP) enzyme activity and calcium deposition were lower in the diff + os group than in other groups. Therefore, the diff + os group may be a more suitable environment for cartilage differentiation. Furthermore, 5% PRP concentration and hyperosmolarity showed a positive effect on miR-140, miR-199, miR-27, and, miR-146 and a negative effect on miR-101 and miR-145 on cartilage differentiation.
Collapse
Affiliation(s)
- E Konar
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - S R Khatami
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - S P Pezeshki
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Shafiei
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - M R Hajjari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Oieni J, Lolli A, D'Atri D, Kops N, Yayon A, van Osch GJVM, Machluf M. Nano-ghosts: Novel biomimetic nano-vesicles for the delivery of antisense oligonucleotides. J Control Release 2021; 333:28-40. [PMID: 33741386 DOI: 10.1016/j.jconrel.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Antisense oligonucleotides (ASOs) carry an enormous therapeutic potential in different research areas, however, the lack of appropriate carriers for their delivery to the target tissues is hampering their clinical translation. The present study investigates the application of novel biomimetic nano-vesicles, Nano-Ghosts (NGs), for the delivery of ASOs to human mesenchymal stem cells (MSCs), using a microRNA inhibitor (antimiR) against miR-221 as proof-of-concept. The integration of this approach with a hyaluronic acid-fibrin (HA-FB) hydrogel scaffold is also studied, thus expanding the potential of NGs applications in regenerative medicine. The study shows robust antimiR encapsulation in the NGs using electroporation and the NGs ability to be internalized in MSCs and to deliver their cargo while avoiding endo-lysosomal degradation. This leads to rapid and strong knock-down of miR-221 in hMSCs in vitro, both in 2D and 3D hydrogel culture conditions (>90% and > 80% silencing efficiency, respectively). Finally, in vivo studies performed with an osteochondral defect model demonstrate the NGs ability to effectively deliver antimiR to endogenous cells. Altogether, these results prove that the NGs can operate as stand-alone system or as integrated platform in combination with scaffolds for the delivery of ASOs for a wide range of applications in drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Jacopo Oieni
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Domenico D'Atri
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Avner Yayon
- Procore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 7414002, Israel
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, 3015GD, the Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628, the Netherlands
| | - Marcelle Machluf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
4
|
Vainieri ML, Lolli A, Kops N, D'Atri D, Eglin D, Yayon A, Alini M, Grad S, Sivasubramaniyan K, van Osch GJVM. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Acta Biomater 2020; 101:293-303. [PMID: 31726249 DOI: 10.1016/j.actbio.2019.11.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
Abstract
Biomaterials play a pivotal role in cell-free cartilage repair approaches, where cells must migrate through the scaffold, fill the defect, and then proliferate and differentiate facilitating tissue remodeling. Here we used multiple assays to test the influence of chemokines and growth factors on cell migration and cartilage repair in two different hyaluronan (HA)-based hydrogels. We first investigated bone marrow Mesenchymal Stromal Cells (BMSC) migration in vitro, in response to different concentrations of platelet-derived growth factor-BB (PDGF-BB), chemokine ligand 5 (CCL5/RANTES) and stromal cell-derived factor 1 (SDF-1), using a 3D spheroid-based assay. PDGF-BB was selected as most favourable chemotactic agent, and MSC migration was assessed in the context of physical impediment to cell recruitment by testing Fibrin-HA and HA-Tyramine hydrogels of different cross-linking densities. Supplementation of PDGF-BB stimulated progressive migration of MSC through the gels over time. We then investigated in situ cell migration into the hydrogels with and without PDGF-BB, using a cartilage-bone explant model implanted subcutaneously in athymic mice. In vivo studies show that when placed into an osteochondral defect, both hydrogels supported endogenous cell infiltration and provided an amenable microenvironment for cartilage production. These processes were best supported in Fibrin-HA hydrogel in the absence of PDGF-BB. This study used an advanced preclinical testing platform to select an appropriate microenvironment provided by implanted hydrogels, demonstrating that HA-based hydrogels can promote the initial and critical step of endogenous cell recruitment and circumvent some of the clinical challenges in cartilage tissue repair. STATEMENT OF SIGNIFICANCE: The challenge of articular cartilage repair arises from its complex structure and architecture, which confers the unique mechanical behavior of the extracellular matrix. The aim of our research is to identify biomaterials for implants that can support migration of endogenous stem and progenitor cell populations from cartilage and bone tissue, in order to permanently replace damaged cartilage with the original hyaline structure. Here, we present an in vitro 3D spheroid-based migration assay and an osteochondral defect model, which provide the opportunity to assess biomaterials and biomolecules, and to get stronger experimental evidence of the not well-characterized dynamic process of endogenous cells colonization in an osteochondral defect. Furthermore, the delicate step of early cell migration into biomaterials towards functional tissue engineering is reproduced. These tests can be used for pre-clinical testing of newly developed material designs in the field of scaffold engineering.
Collapse
Affiliation(s)
- M L Vainieri
- AO Research Institute Davos, Davos Platz, Switzerland; Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - A Lolli
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - N Kops
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - D D'Atri
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - A Yayon
- ProCore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 70400, Israel.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - S Grad
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - K Sivasubramaniyan
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - G J V M van Osch
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Kelly DC, Raftery RM, Curtin CM, O'Driscoll CM, O'Brien FJ. Scaffold-Based Delivery of Nucleic Acid Therapeutics for Enhanced Bone and Cartilage Repair. J Orthop Res 2019; 37:1671-1680. [PMID: 31042304 DOI: 10.1002/jor.24321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 02/04/2023]
Abstract
Recent advances in tissue engineering have made progress toward the development of biomaterials capable of the delivery of growth factors, such as bone morphogenetic proteins, in order to promote enhanced tissue repair. However, controlling the release of these growth factors on demand and within the desired localized area is a significant challenge and the associated high costs and side effects of uncontrolled delivery have proven increasingly problematic in clinical orthopedics. Gene therapy may be a valuable tool to avoid the limitations of local delivery of growth factors. Following a series of setbacks in the 1990s, the field of gene therapy is now seeing improvements in safety and efficacy resulting in substantial clinical progress and a resurgence in confidence. Biomaterial scaffold-mediated gene therapy provides a template for cell infiltration and tissue formation while promoting transfection of cells to engineer therapeutic proteins in a sustained but ultimately transient fashion. Additionally, scaffold-mediated delivery of RNA-based therapeutics can silence specific genes associated with orthopedic pathological states. This review will provide an overview of the current state-of-the-art in the field of gene-activated scaffolds and their use within orthopedic tissue engineering applications. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1671-1680, 2019.
Collapse
Affiliation(s)
- Domhnall C Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caitriona M O'Driscoll
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.,Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Trinity Centre of Bioengineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| |
Collapse
|
6
|
Lolli A, Sivasubramaniyan K, Vainieri ML, Oieni J, Kops N, Yayon A, van Osch GJVM. Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells. J Control Release 2019; 309:220-230. [PMID: 31369767 DOI: 10.1016/j.jconrel.2019.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/15/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
Abstract
Articular cartilage is frequently injured by trauma or osteoarthritis, with limited and inadequate treatment options. We investigated a new strategy based on hydrogel-mediated delivery of a locked nucleic acid microRNA inhibitor targeting miR-221 (antimiR-221) to guide in situ cartilage repair by endogenous cells. First, we showed that transfection of antimiR-221 into human bone marrow-derived mesenchymal stromal cells (hMSCs) blocked miR-221 expression and enhanced chondrogenesis in vitro. Next, we loaded a fibrin/hyaluronan (FB/HA) hydrogel with antimiR-221 in combination or not with lipofectamine carrier. FB/HA strongly retained functional antimiR-221 over 14 days of in vitro culture, and provided a supportive environment for cell transfection, as validated by flow cytometry and qRT-PCR analysis. Seeding of hMSCs on the surface of antimiR-221 loaded FB/HA led to invasion of the hydrogel and miR-221 knockdown in situ within 7 days. Overall, the use of lipofectamine enhanced the potency of the system, with increased antimiR-221 retention and miR-221 silencing in infiltrating cells. Finally, FB/HA hydrogels were used to fill defects in osteochondral biopsies that were implanted subcutaneously in mice. FB/HA loaded with antimiR-221/lipofectamine significantly enhanced cartilage repair by endogenous cells, demonstrating the feasibility of our approach and the need to achieve highly effective in situ transfection. Our study provides new evidence on the treatment of focal cartilage injuries using controlled biomaterial-mediated delivery of antimicroRNA for in situ guided regeneration.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Maria L Vainieri
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; AO Research Institute, Davos, Switzerland
| | - Jacopo Oieni
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Avner Yayon
- ProCore Ltd., Weizmann Science Park, Nes Ziona, Israel
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage - Why does hyaline cartilage fail to repair? Adv Drug Deliv Rev 2019; 146:289-305. [PMID: 30605736 DOI: 10.1016/j.addr.2018.12.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
Once damaged, articular cartilage has a limited potential to repair. Clinically, a repair tissue is formed, yet, it is often mechanically inferior fibrocartilage. The use of monolayer expanded versus naïve cells may explain one of the biggest discrepancies in mesenchymal stromal/stem cell (MSC) based cartilage regeneration. Namely, studies utilizing monolayer expanded MSCs, as indicated by numerous in vitro studies, report as a main limitation the induction of type X collagen and hypertrophy, a phenotype associated with endochondral bone formation. However, marrow stimulation and transfer studies report a mechanically inferior collagen I/II fibrocartilage as the main outcome. Therefore, this review will highlight the collagen species produced during the different therapeutic approaches. New developments in scaffold design and delivery of therapeutic molecules will be described. Potential future directions towards clinical translation will be discussed. New delivery mechanisms are being developed and they offer new hope in targeted therapeutic delivery.
Collapse
Affiliation(s)
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos Platz, Switzerland.
| | | |
Collapse
|
8
|
Lolli A, Colella F, De Bari C, van Osch GJVM. Targeting anti-chondrogenic factors for the stimulation of chondrogenesis: A new paradigm in cartilage repair. J Orthop Res 2019; 37:12-22. [PMID: 30175861 DOI: 10.1002/jor.24136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/09/2018] [Indexed: 02/04/2023]
Abstract
Trauma and age-related cartilage disorders represent a major global cause of morbidity, resulting in chronic pain and disability in patients. A lack of effective therapies, together with a rapidly aging population, creates an impressive clinical and economic burden on healthcare systems. In this scenario, experimental therapies based on transplantation or in situ stimulation of skeletal Mesenchymal Stem/progenitor Cells (MSCs) have raised great interest for cartilage repair. Nevertheless, the challenge of guiding MSC differentiation and preventing cartilage hypertrophy and calcification still needs to be overcome. While research has mostly focused on the stimulation of cartilage anabolism using growth factors, several issues remain unresolved prompting the field to search for novel solutions. Recently, inhibition of anti-chondrogenic regulators has emerged as an intriguing opportunity. Anti-chondrogenic regulators include extracellular proteins as well as intracellular transcription factors and microRNAs that act as potent inhibitors of pro-chondrogenic signals. Suppression of these inhibitors can enhance MSC chondrogenesis and production of cartilage matrix. We here review the current knowledge concerning different types of anti-chondrogenic regulators. We aim to highlight novel therapeutic targets for cartilage repair and discuss suitable tools for suppressing their anti-chondrogenic functions. Further effort is needed to unveil the therapeutic perspectives of this approach and pave the way for effective treatment of cartilage injuries in patients. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Fabio Colella
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands.,Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Meng F, Li Z, Zhang Z, Yang Z, Kang Y, Zhao X, Long D, Hu S, Gu M, He S, Wu P, Chang Z, He A, Liao W. MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics 2018; 8:2862-2883. [PMID: 29774080 PMCID: PMC5957014 DOI: 10.7150/thno.23547] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) plays a pivotal role in the repression of cartilage-specific gene expression in human chondrocytes. The aim of this study was to determine whether microRNA-193b-3p (miR-193b-3p) regulates the expression of HDAC3 during chondrogenesis and chondrocyte metabolism. Methods: miR-193b-3p expression was assessed in a human mesenchymal stem cell (hMSC) model of chondrogenesis, in interleukin-1β (IL-1β)-treated primary human chondrocytes (PHCs), and in non-degraded and degraded cartilage. hMSCs and PHCs were transfected with miR-193b-3p or its antisense inhibitor. A direct interaction between miR-193b-3p and its putative binding site in the 3'-untranslated region (3'-UTR) of HDAC3 mRNA was confirmed by performing luciferase reporter assays. Chondrocytes were transfected with miR-193b-3p before performing a chromatin immunoprecipitation assay with an anti-acetylated histone H3 antibody. To investigate miR-193b-3p-transfected PHCs in vivo, they were seeded in tricalcium phosphate-collagen-hyaluronate (TCP-COL-HA) scaffolds, which were then implanted in nude mice. In addition, plasma exosomal miR-193b-3p in samples from normal controls and patients with osteoarthritis (OA) were measured. Results: miR-193b-3p expression was elevated in chondrogenic and hypertrophic hMSCs, while expression was significantly reduced in degraded cartilage compared to non-degraded cartilage. In addition, miR-193b-3p suppressed the activity of reporter constructs containing the 3'-UTR of HDAC3, inhibited HDAC3 expression, and promoted histone H3 acetylation in the COL2A1, AGGRECAN, COMP, and SOX9 promoters. Treatment with the HDAC inhibitor trichostatin A (TSA) increased cartilage-specific gene expression and enhanced hMSCs chondrogenesis. TSA also increased AGGRECAN expression and decreased MMP13 expression in IL-1β-treated PHCs. Further, 8 weeks after implanting PHC-seeded TCP-COL-HA scaffolds subcutaneously in nude mice, we found that miR-193b overexpression strongly enhanced in vivo cartilage formation compared to that found under control conditions. We also found that patients with OA had lower plasma exosomal miR-193b levels than control subjects. Conclusions: These findings indicate that miR-193b-3p directly targets HDAC3, promotes H3 acetylation, and regulates hMSC chondrogenesis and metabolism in PHCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Aishan He
- Department of Joint Surgery, First Affiliated Hospital of SunYat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiming Liao
- Department of Joint Surgery, First Affiliated Hospital of SunYat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
10
|
Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 2018; 40:67-73. [PMID: 29625332 DOI: 10.1016/j.coph.2018.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Intra-articular (IA) injections directly deliver high concentrations of therapeutics to the joint space and are routinely used in various musculoskeletal conditions such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, current IA-injected drugs are rapidly cleared and do not significantly affect the course of joint disease. In this review, we highlight recent developments in IA therapy, with a special emphasis on current and emerging therapeutic carriers and their potential to deliver disease-modifying treatment modalities for arthritis. Recent IA approaches concentrate on platforms that are safe with efficient tissue penetration, and readily translatable for controlled and sustained delivery of therapeutic agents. Gene therapy delivered by viral or non-viral vectors and cell-based therapy for cartilage preservation and regeneration are being intensively explored.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA.
| | - Christine Tn Pham
- Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, Box 8045, Saint Louis, MO 63110, USA.
| |
Collapse
|
11
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
12
|
Cao Z, Huang S, Li J, Bai Y, Dou C, Liu C, Kang F, Gong X, Ding H, Hou T, Dong S. Long noncoding RNA expression profiles in chondrogenic and hypertrophic differentiation of mouse mesenchymal stem cells. Funct Integr Genomics 2017; 17:739-749. [PMID: 28735352 DOI: 10.1007/s10142-017-0569-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators for a variety of biological processes. Chondrogenic differentiation of mesenchymal stem cells (MSCs) is a crucial stage in chondrogenesis while chondrocyte hypertrophy is related to endochondral ossification and osteoarthritis. However, the effects of lncRNAs on chondrogenic and hypertrophic differentiation of mouse MSCs are unclear. To explore the potential mechanisms of lncRNAs during chondrogenesis and chondrocyte hypertrophy, microarray was performed to investigate the expression profiles of lncRNA and mRNA in MSCs, pre-chondrocytes, and hypertrophic chondrocytes. Then, we validated microarray data by RT-PCR and screened three lncRNAs from upregulating groups during chondrogenesis and chondrocyte hypertrophy respectively. After downregulating any of the above lncRNAs, we found that the expression of chondrogenesis-related genes such as Sox9 and Col2a1 and hypertrophy-related genes including Runx2 and Col10a1 was inhibited, respectively. Furthermore, the target genes of above lncRNAs were predicted by bioinformatics approaches. Gene ontology and Kyoto encyclopedia of genes and genome biological pathway analysis were also made to speculate the functions of above lncRNAs. In conclusion, the study first revealed the expression profile of lncRNAs in chondrogenic and hypertrophic differentiations of mouse MSCs and presented a new prospect for the underlying mechanisms of chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China.,Department of Anatomy, Third Military Medical University, Chongqing, 400038, China
| | - Song Huang
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China.,National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
| | - Haibin Ding
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China
| | - Tianyong Hou
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No. 30, Chongqing, 400038, China.
| |
Collapse
|