1
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Giovenzana A, Bezzecchi E, Bichisecchi A, Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L, Tomajer V, Aleotti F, Scotti GM, Socci C, Cesana G, Olmi S, Morelli MJ, Falconi M, Giustina A, Bonini C, Piemonti L, Ruggiero E, Petrelli A. Fat-to-blood recirculation of partially dysfunctional PD-1 +CD4 Tconv cells is associated with dysglycemia in human obesity. iScience 2024; 27:109032. [PMID: 38380252 PMCID: PMC10877684 DOI: 10.1016/j.isci.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRβ repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stefano Olmi
- San Marco Hospital GSD, Zingonia, Bergamo, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Massimo Falconi
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Bonini
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
3
|
Jacks RD, Lumeng CN. Macrophage and T cell networks in adipose tissue. Nat Rev Endocrinol 2024; 20:50-61. [PMID: 37872302 DOI: 10.1038/s41574-023-00908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
The signals and structure of the tissues in which leukocytes reside critically mould leukocyte function and development and have challenged our fundamental understanding of how to define and categorize tissue-resident immune cells. One specialized tissue niche that has a powerful effect on immune cell function is adipose tissue. The field of adipose tissue leukocyte biology has expanded dramatically and has revealed how tissue niches can shape immune cell function and reshape them in a setting of metabolic stress, such as obesity. Most notably, adipose tissue macrophages and T cells are under intense investigation due to their contributions to adipose tissue in the lean and obese states. Both adipose tissue macrophages and T cells have features associated with the metabolic function of adipose tissue that are distinct from features of macrophages and T cells that are classically characterized in other tissues. This Review provides state-of-the-art understanding of adipose tissue macrophages and T cells and discusses how their unique niche can help us to better understand diversity in leukocyte responses.
Collapse
Affiliation(s)
- Ramiah D Jacks
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Sun Y, Wang B, Hu Q, Zhang H, Lai X, Wang T, Zhao C, Wang J, Zhang X, Niu Q, He B, Jiang E, Shi M, Feng X, Luo Y. Loss of Lkb1 in CD11c + myeloid cells protects mice from diet-induced obesity while enhancing glucose intolerance and IL-17/IFN-γ imbalance. Cell Mol Life Sci 2023; 80:63. [PMID: 36781473 PMCID: PMC9925521 DOI: 10.1007/s00018-023-04707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
Adipose tissue CD11c+ myeloid cell is an independent risk factor associated with obesity and metabolic disorders. However, the underlying molecular basis remains elusive. Here, we demonstrated that liver kinase B1 (Lkb1), a key bioenergetic sensor, is involved in CD11c+ cell-mediated immune responses in diet-induced obesity. Loss of Lkb1 in CD11c+ cells results in obesity resistance but lower glucose tolerance, which accompanies tissue-specific immune abnormalities. The accumulation and CD80's expression of Lkb1 deficient adipose-tissue specific dendritic cells but not macrophages is restrained. Additionally, the balance of IL-17A and IFN-γ remarkably tips towards the latter in fat T cells and CD11c- macrophages. Mechanistically, IFN-γ promotes apoptosis of preadipocytes and inhibits their adipogenesis while IL-17A promotes the adipogenesis in vitro, which might account in part for the fat gain resistant phenotype. In summary, these findings reveal that Lkb1 is essential for fat CD11c+ dendritic cells responding to HFD exposure and provides new insights into the IL-17A/IFN-γ balance in HFD-induced obesity.
Collapse
Affiliation(s)
- Yunyan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Bing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qianwen Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Tier Wang
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxiao Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Baolin He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
5
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
6
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Krzyżanowska N, Wojas-Krawczyk K, Milanowski J, Krawczyk P. Future Prospects of Immunotherapy in Non-Small-Cell Lung Cancer Patients: Is There Hope in Other Immune Checkpoints Targeting Molecules? Int J Mol Sci 2022; 23:3087. [PMID: 35328510 PMCID: PMC8950480 DOI: 10.3390/ijms23063087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of both groups of antibodies has been proven in many clinical trials, which have translated into positive immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well tolerated, and certain patients achieve durable responses. However, given the resistance of some patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives are constantly being sought. Specifically, new drugs targeting already known molecules are being tested, and new potential targets are being explored. The aim of this paper is to provide an overview of the latest developments in this area.
Collapse
Affiliation(s)
- Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (K.W.-K.); (J.M.); (P.K.)
| | | | | | | |
Collapse
|
8
|
Mekchay S, Pothakam N, Norseeda W, Supakankul P, Teltathum T, Liu G, Naraballobh W, Khamlor T, Sringarm K, Krutmuang P. Association of IFNA16 and TNFRSF19 Polymorphisms with Intramuscular Fat Content and Fatty Acid Composition in Pigs. BIOLOGY 2022; 11:109. [PMID: 35053107 PMCID: PMC8773020 DOI: 10.3390/biology11010109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Interferon-alpha-16 (IFNA16) and tumor necrosis factor receptor superfamily member 19 (TNFRSF19) are cytokines that may play a role in adipogenesis and fatness. Single nucleotide polymorphisms (SNPs) of the porcine IFNA16 and TNFRSF19 genes were verified and their association with intramuscular fat (IMF) content and fatty acid (FA) composition were evaluated in commercial crossbred pigs. Two non-synonymous SNPs of the porcine IFNA16 c.413G > A and TNFRSF19 c.860G > C loci were detected in commercial crossbred pigs. The porcine IFNA16 c.413G >A polymorphism was significantly associated with stearic acid, total saturated FAs (SFAs), and the ratio of monounsaturated FAs (MUFAs) to SFAs (p < 0.05). Furthermore, the porcine TNFRSF19 c.860G > C polymorphism was found to be significantly associated with IMF content and arachidic acid levels (p < 0.05). The results revealed that porcine IFNA16 and TNFRSF19 polymorphisms are related to IMF content and/or FA composition and affirmed the importance of these cytokine genes as potential candidate genes for lipid deposition and FA composition in the muscle tissue of pigs.
Collapse
Affiliation(s)
- Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (W.N.); (T.K.); (K.S.)
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nanthana Pothakam
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (W.N.); (T.K.); (K.S.)
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand
- Veterinary, Conservation and Research Section, Animal Management Division, Chiang Mai Night Safari, Chiang Mai 50230, Thailand
| | - Worrarak Norseeda
- Department of Agriculture, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand;
| | - Pantaporn Supakankul
- Division of Animal Science, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Tawatchai Teltathum
- Mae Hong Son Livestock Research and Breeding Center, Mae Hong Son 58000, Thailand;
| | - Guisheng Liu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Watcharapong Naraballobh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (W.N.); (T.K.); (K.S.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Trisadee Khamlor
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (W.N.); (T.K.); (K.S.)
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (N.P.); (W.N.); (T.K.); (K.S.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharin Krutmuang
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Wang Q, Wang Y, Xu D. The roles of T cells in obese adipose tissue inflammation. Adipocyte 2021; 10:435-445. [PMID: 34515616 PMCID: PMC8463033 DOI: 10.1080/21623945.2021.1965314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue inflammation in obese patients can cause a series of metabolic diseases. There are a variety of immune cells in adipose tissue, and studies have shown that T cells are associated with adipose tissue inflammation. This review aims to describe the current understanding of the relationship between T cells and adipose tissue inflammation, with a focus on regulation by T cell subtypes. Studies have shown that Th1, Th17 and CD8+ T cells, which are important T cell subsets, can promote the development of adipose tissue inflammation, whereas Treg cells protect against inflammation, suggesting that targeting the mechanism by which T cell subtypes regulate adipose tissue inflammation is a potential therapeutic strategy for treating obesity. T cells play important roles in regulating obesity-associated adipose tissue inflammation, thus providing new research directions for the treatment of obesity. More studies are needed to clarify how T cell subtypes regulate adipose tissue inflammation to identify new treatments for obesity.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danyan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Liu L, Hu J, Wang Y, Lei H, Xu D. The role and research progress of the balance and interaction between regulatory T cells and other immune cells in obesity with insulin resistance. Adipocyte 2021; 10:66-79. [PMID: 33472506 PMCID: PMC7834085 DOI: 10.1080/21623945.2021.1876375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metabolic homoeostasis in adipose tissue plays a major role in obesity-related insulin resistance (IR). Regulatory T (Treg) cells have been recorded to regulate metabolic homoeostasis in adipose tissue. However, their specific mechanism is not yet known. This review aims to present the role of Treg cells and other immune cells in obesity-associated IR, focusing on the balance of numbers and functions of Treg cells and other immune cells as well as the crucial role of their interactions in maintaining adipose tissue homoeostasis. Th1 cells, Th17 cells, CD8+ T cells, and pro-inflammatory macrophages mediate the occurrence of obesity and IR by antagonizing Treg cells, while anti-inflammatory dendritic cells, eosinophils and type 2 innate lymphoid cells (ILC2s) regulate the metabolic homoeostasis of adipose tissue by promoting the proliferation and differentiation of Treg cells. γ δ T cells and invariant natural killer T (iNKT) cells have complex effects on Treg cells, and their roles in obesity-associated IR are controversial. The balance of Treg cells and other immune cells can help maintain the metabolic homoeostasis of adipose tissue. Further research needs to explore more specific molecular mechanisms, thus providing more precise directions for the treatment of obesity with IR.
Collapse
Affiliation(s)
- Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahui Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yating Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Lei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Zhang S, Gang X, Yang S, Cui M, Sun L, Li Z, Wang G. The Alterations in and the Role of the Th17/Treg Balance in Metabolic Diseases. Front Immunol 2021; 12:678355. [PMID: 34322117 PMCID: PMC8311559 DOI: 10.3389/fimmu.2021.678355] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic inflammation plays an important role in the development of metabolic diseases. These include obesity, type 2 diabetes mellitus, and metabolic dysfunction-associated fatty liver disease. The proinflammatory environment maintained by the innate immunity, including macrophages and related cytokines, can be influenced by adaptive immunity. The function of T helper 17 (Th17) and regulatory T (Treg) cells in this process has attracted attention. The Th17/Treg balance is regulated by inflammatory cytokines and various metabolic factors, including those associated with cellular energy metabolism. The possible underlying mechanisms include metabolism-related signaling pathways and epigenetic regulation. Several studies conducted on human and animal models have shown marked differences in and the important roles of Th17/Treg in chronic inflammation associated with obesity and metabolic diseases. Moreover, Th17/Treg seems to be a bridge linking the gut microbiota to host metabolic disorders. In this review, we have provided an overview of the alterations in and the functions of the Th17/Treg balance in metabolic diseases and its role in regulating immune response-related glucose and lipid metabolism.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Shuo Yang
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mengzhao Cui
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Lin Sun
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Zhuo Li
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Adipose Tissue Immunomodulation and Treg/Th17 Imbalance in the Impaired Glucose Metabolism of Children with Obesity. CHILDREN-BASEL 2021; 8:children8070554. [PMID: 34199040 PMCID: PMC8305706 DOI: 10.3390/children8070554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.
Collapse
|
13
|
Zhao Y, Zhang J, Zhang W, Xu Y. A myriad of roles of dendritic cells in atherosclerosis. Clin Exp Immunol 2021; 206:12-27. [PMID: 34109619 DOI: 10.1111/cei.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is an inflammatory disease with break-down of homeostatic immune regulation of vascular tissues. As a critical initiator of host immunity, dendritic cells (DCs) have also been identified in the aorta of healthy individuals and atherosclerotic patients, whose roles in regulating arterial inflammation aroused great interest. Accumulating evidence has now pointed to the fundamental roles for DCs in every developmental stage of atherosclerosis due to their myriad of functions in immunity and tolerance induction, ranging from lipid uptake, efferocytosis and antigen presentation to pro- and anti-inflammatory cytokine or chemokine secretion. In this study we provide a timely summary of the published works in this field, and comprehensively discuss both the direct and indirect roles of DCs in atherogenesis. Understanding the pathogenic roles of DCs during the development of atherosclerosis in vascular tissues would certainly help to open therapeutic avenue to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Jing Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
14
|
Abstract
Obesity is becoming an epidemic in the United States and worldwide and increases risk for many diseases, particularly insulin resistance, type 2 diabetes mellitus, and cardiovascular disease. The mechanisms linking obesity with these diseases remain incompletely understood. Over the past 2 to 3 decades, it has been recognized that in obesity, inflammation, with increased accumulation and inflammatory polarization of immune cells, takes place in various tissues, including adipose tissue, skeletal muscle, liver, gut, pancreatic islet, and brain and may contribute to obesity-linked metabolic dysfunctions, leading to insulin resistance and type 2 diabetes mellitus. Therapies targeting inflammation have shed light on certain obesity-linked diseases, including type 2 diabetes mellitus and atherosclerotic cardiovascular disease, but remain to be tested further and confirmed in clinical trials. This review focuses on inflammation in adipose tissue and its potential role in insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Huaizhu Wu
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Pediatrics (H.W.), Baylor College of Medicine, Houston, TX
| | - Christie M Ballantyne
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Molecular and Human Genetics (C.M.B.), Baylor College of Medicine, Houston, TX.,Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B 2020; 10:414-433. [PMID: 32140389 PMCID: PMC7049610 DOI: 10.1016/j.apsb.2019.08.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
The T cell co-stimulatory molecule OX40 and its cognate ligand OX40L have attracted broad research interest as a therapeutic target in T cell-mediated diseases. Accumulating preclinical evidence highlights the therapeutic efficacy of both agonist and blockade of the OX40-OX40L interaction. Despite this progress, many questions about the immuno-modulator roles of OX40 on T cell function remain unanswered. In this review we summarize the impact of the OX40-OX40L interaction on T cell subsets, including Th1, Th2, Th9, Th17, Th22, Treg, Tfh, and CD8+ T cells, to gain a comprehensive understanding of anti-OX40 mAb-based therapies. The potential therapeutic application of the OX40-OX40L interaction in autoimmunity diseases and cancer immunotherapy are further discussed; OX40-OX40L blockade may ameliorate autoantigen-specific T cell responses and reduce immune activity in autoimmunity diseases. We also explore the rationale of targeting OX40-OX40L interactions in cancer immunotherapy. Ligation of OX40 with targeted agonist anti-OX40 mAbs conveys activating signals to T cells. When combined with other therapeutic treatments, such as anti-PD-1 or anti-CTLA-4 blockade, cytokines, chemotherapy, or radiotherapy, the anti-tumor activity of agonist anti-OX40 treatment will be further enhanced. These data collectively suggest great potential for OX40-mediated therapies.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Abstract
In the past decade, nonalcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease and cirrhosis, as well as an important risk factor for hepatocellular carcinoma (HCC). NAFLD encompasses a spectrum of liver lesions, including simple steatosis, steatohepatitis and fibrosis. Although steatosis is often harmless, the lobular inflammation that characterizes nonalcoholic steatohepatitis (NASH) is considered a driving force in the progression of NAFLD. The current view is that innate immune mechanisms represent a key element in supporting hepatic inflammation in NASH. However, increasing evidence points to the role of adaptive immunity as an additional factor promoting liver inflammation. This Review discusses data regarding the role of B cells and T cells in sustaining the progression of NASH to fibrosis and HCC, along with the findings that antigens originating from oxidative stress act as a trigger for immune responses. We also highlight the mechanisms affecting liver immune tolerance in the setting of steatohepatitis that favour lymphocyte activation. Finally, we analyse emerging evidence concerning the possible application of immune modulating treatments in NASH therapy.
Collapse
Affiliation(s)
- Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy.
| |
Collapse
|
17
|
Sun G, Jin H, Zhang C, Meng H, Zhao X, Wei D, Ou X, Wang Q, Li S, Wang T, Sun X, Shi W, Tian D, Liu K, Xu H, Tian Y, Li X, Guo W, Jia J, Zhang Z, Zhang D. OX40 Regulates Both Innate and Adaptive Immunity and Promotes Nonalcoholic Steatohepatitis. Cell Rep 2019; 25:3786-3799.e4. [PMID: 30590049 DOI: 10.1016/j.celrep.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/26/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023] Open
Abstract
Both innate and adaptive immune cells are involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), but the crosstalk between innate and adaptive immunity is largely unknown. Here we show that compared with WT mice, OX40-/- mice exhibit decreased liver fat accumulation, lobular inflammation, and focal necrosis after feeding with diets that induce NASH. Mechanistically, OX40 deficiency suppresses Th1 and Th17 differentiation, and OX40 deficiency in T cells inhibits monocyte migration, antigen presentation, and M1 polarization. Soluble OX40 stimulation alone upregulates antigen presentation, chemokine receptor expression, and proinflammatory cytokine secretion by liver monocytes. Furthermore, plasma soluble OX40 levels are positively associated with NASH in humans, suggesting clinical relevance of the findings. In conclusion, we show a mechanism for T cell regulation of innate immune cells. OX40 is a key regulator of both intrahepatic innate and adaptive immunity, generates two-way signals, and promotes both proinflammatory monocyte and macrophage and T cell function, resulting in NASH development.
Collapse
Affiliation(s)
- Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Hua Jin
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Chunpan Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Hua Meng
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dan Wei
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Xiaojuan Ou
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qianyi Wang
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shuxiang Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Tianqi Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Xiaojing Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Wen Shi
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Dan Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Hufeng Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Xinmin Li
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Wei Guo
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Jidong Jia
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, 100050, China
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Clinical Research Institute, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
18
|
Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. Obesity-induced inflammation and insulin resistance: A mini-review on T-cells. Metabol Open 2019; 3:100015. [PMID: 32812921 PMCID: PMC7424835 DOI: 10.1016/j.metop.2019.100015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Excessive lipid accumulation in an obese state is linked with activation and release of detrimental cytokines and chemokines that promote metabolic dysregulation. In fact, emerging experimental evidence shows that abnormal modulation of T-cells in an obese state correlates with the development and progression of insulin resistance. Importantly, the evolving concept linking insulin resistance with impaired immunological mechanisms such as T-cell responses provides new prospects for understanding the role of inflammation in moderating metabolic complications.
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G. Role of Adaptive and Innate Immunity in Type 2 Diabetes Mellitus. J Diabetes Res 2018; 2018:7457269. [PMID: 30533447 PMCID: PMC6250017 DOI: 10.1155/2018/7457269] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
After the recognition of the essential role of the immune system in the progression of type 2 diabetes mellitus, more studies are focused on the effects produced by the abnormal differentiation of components of the immune system. In patients suffering from obesity or T2DM, there were alterations in proliferation of T cells and macrophages, and impairment in function of NK cells and B cells, which represented abnormal innate and adaptive immunity. The abnormality of either innate immunity, adaptive immunity, or both was involved and interacted with each other during the progression of T2DM. Although previous studies have revealed the functional involvement of T cells in T2DM, and the regulation of metabolism by the innate or adaptive immune system during the pathogenesis of T2DM, there has been a lack of literature reviewing the relevant role of adaptive and innate immunity in the progression of T2DM. Here, we will review their relevant roles, aiming to provide new thought for the development of immunotherapy in T2DM.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zheng Hu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhenxiang Yu
- Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
20
|
Th17 and Treg lymphocytes in obesity and Type 2 diabetic patients. Clin Immunol 2018; 197:77-85. [PMID: 30218707 DOI: 10.1016/j.clim.2018.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Assumption that the pathogenesis of obesity-associated type 2 diabetes (T2DM) encompasses inflammation and autoimmune aspects is increasingly recognized. In the state of obesity and T2DM, the imbalance of T helper 17 (Th17) cells and regulatory T (Treg) cells are observed. These alterations reflect a loss of T cell homeostasis, which may contribute to tissue and systemic inflammation and immunity in T2DM. In this review we will discuss the accumulating data supporting the concept that Th17/Treg mediated immune responses are present in obesity-related T2DM pathogenesis, and provide evidences that restoration of Th17/Treg imbalance may be a possible therapeutic avenue for the prevention and treatment of T2DM and its complications.
Collapse
|
21
|
Stone TW, McPherson M, Gail Darlington L. Obesity and Cancer: Existing and New Hypotheses for a Causal Connection. EBioMedicine 2018; 30:14-28. [PMID: 29526577 PMCID: PMC5952217 DOI: 10.1016/j.ebiom.2018.02.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Existing explanations of obesity-associated cancer emphasise direct mutagenic effects of dietary components or hormonal imbalance. Some of these hypotheses are reviewed briefly, but recent evidence suggests a major role for chronic inflammation in cancer risk, possibly involving dietary content. These ideas include the inflammation-induced activation of the kynurenine pathway and its role in feeding and metabolism by activation of the aryl hydrocarbon receptor (AHR) and by modulating synaptic transmission in the brain. Evidence for a role of the kynurenine pathway in carcinogenesis then provides a potentially major link between obesity and cancer. A second new hypothesis is based on evidence that serine proteases can deplete cells of the tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin. These enzymes include mammalian chymotryptic proteases released by pro-inflammatory neutrophils and macrophages. Blood levels of chymotrypsin itself increase in parallel with food intake. The mechanistically similar bacterial enzyme subtilisin is widespread in the environment, animal probiotics, meat processing and cleaning products. Simple public health schemes in these areas, with selective serine protease inhibitors and AHR antagonists and could prevent a range of intestinal and other cancers.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Megan McPherson
- School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|