1
|
Zarobkiewicz M, Kowalska W, Szymańska A, Lehman N, Kowalczyk B, Tomczak W, Bojarska-Junak A. γδ T Are Significantly Impacted by CLL Burden but Only Mildly Influenced by M-MDSCs. Cancers (Basel) 2025; 17:254. [PMID: 39858035 PMCID: PMC11763719 DOI: 10.3390/cancers17020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The current study explores the impact of CLL on γδ T cells and, in an attempt to better understand the sources of immunosuppression, assesses the impact of M-MDSCs on γδ T cells in vitro. METHODS The study included 163 CLL patients and 34 healthy volunteers. γδ T cells were screened with flow cytometry, including NKG2D, Fas, FasL, and TRAIL staining. Additionally, to deepen understanding of the immunosuppressive impact of CLL on γδ T, a set of in vitro co-cultures of γδ T and M-MDSCs was performed. RESULTS RNAseq revealed significant, though relatively minor, changes in the transcriptome. Functional analyses showed a minor drop in cytotoxic potential against CLL cells. Finally, depletion of M-MDSCs from CLL-derived peripheral blood mononuclear cells did not restore γδ T cells' proliferative response. CONCLUSIONS Altogether, this suggests a minor impact of M-MDSCs on activated γδ T. Thus, it seems probable that other mechanisms than M-MDSCs mediate the negative impact of CLL on circulating γδ T cells.
Collapse
Affiliation(s)
- Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Agata Szymańska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Natalia Lehman
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Bożena Kowalczyk
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| |
Collapse
|
2
|
Lin KR, Li PX, Zhu XH, Mao XF, Peng JL, Chen XP, SiTu CY, Zhang LF, Luo W, Han YB, Yu SF. Peripheral immune characteristics and subset disorder in reproductive females with endometriosis. Front Immunol 2024; 15:1431175. [PMID: 39669572 PMCID: PMC11634862 DOI: 10.3389/fimmu.2024.1431175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Pathogenesis of endometriosis (EN) is still unknown, but growing evidence suggests that immune regulation may be important, and the pattern of peripheral immune changes in reproductive women with EN has yet to be fully explored. In this study, we conducted a comprehensive and systematic analysis of immune cell subsets within T cells, B cells, NK cells, and γδ T cells in peripheral blood (PB) samples from women with EN, women with uterine fibroids (UF) but without EN (UF-alone), and healthy controls using multi-parameter flow cytometry. Our findings revealed that UF, a common comorbidity of EN, exhibited similar peripheral immune features to EN, particularly in T cell and B cell immunity. Compared to healthy controls, we constructed the peripheral immune profile of EN. This profile highlighted that the immunopathogenic factors in EN predominantly relate to the immune disorder of B cells and their subsets, as well as the functional abnormalities within immune cell subsets of CD4+ T cells, CD8+ T cells, and γδ T cells. Moreover, using the random forest (RF) machine-learning method, we developed a diagnostic model that can effectively identify the patients with EN from healthy controls. The immune factors identified within this model could be pivotal for unraveling the immune pathogenic mechanisms of EN. Our study is the first to present a comprehensive depiction of the circulating immune features in EN, although the detailed roles and underlying mechanisms of these immune factors in the context of EN require further investigation.
Collapse
Affiliation(s)
- Kai-Rong Lin
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Pei-Xian Li
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Xiao-hong Zhu
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiao-fan Mao
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Jia-Li Peng
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiang-Ping Chen
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Cui-Yao SiTu
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Li-Fang Zhang
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Wei Luo
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| | - Yu-Bin Han
- Department of Gynecology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Si-Fei Yu
- Institute of Translational Medicine, The First People'sHospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
3
|
Singer M, Elsayed AM, Husseiny MI. Regulatory T-cells: The Face-off of the Immune Balance. FRONT BIOSCI-LANDMRK 2024; 29:377. [PMID: 39614434 DOI: 10.31083/j.fbl2911377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells (APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Ahmed M Elsayed
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Wei XY, Tan YQ, Zhou G. γδ T cells in oral diseases. Inflamm Res 2024; 73:867-876. [PMID: 38563967 DOI: 10.1007/s00011-024-01870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE γδ T cells are a distinct subset of unconventional T cells, which link innate and adaptive immunity by secreting cytokines and interacting with other immune cells, thereby modulating immune responses. As the first line of host defense, γδ T cells are essential for mucosal homeostasis and immune surveillance. When abnormally activated or impaired, γδ T cells can contribute to pathogenic processes. Accumulating evidence has revealed substantial impacts of γδ T cells on the pathogenesis of cancers, infections, and immune-inflammatory diseases. γδ T cells exhibit dual roles in cancers, promoting or inhibiting tumor growth, depending on their phenotypes and the clinical stage of cancers. During infections, γδ T cells exert high cytotoxic activity in infectious diseases, which is essential for combating bacterial and viral infections by recognizing foreign antigens and activating other immune cells. γδ T cells are also implicated in the onset and progression of immune-inflammatory diseases. However, the specific involvement and underlying mechanisms of γδ T cells in oral diseases have not been systematically discussed. METHODS We conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases. RESULTS The literature review revealed that γδ T cells play a pivotal role in maintaining oral mucosal homeostasis and are involved in the pathogenesis of oral cancers, periodontal diseases, graft-versus-host disease (GVHD), oral lichen planus (OLP), and oral candidiasis. γδ T cells mainly influence various pathophysiological processes, such as anti-tumor activity, eradication of infection, and immune response regulation. CONCLUSION This review focuses on the involvement of γδ T cells in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which γδ T cells influence the pathogenesis and progression of these conditions. This review underscores the potential of γδ T cells as therapeutic targets in managing oral health issues.
Collapse
Affiliation(s)
- Xin-Yi Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Fan B, Fan B, Sun N, Zou H, Gu X. A radiomics model to predict γδ T-cell abundance and overall survival in head and neck squamous cell carcinoma. FASEB J 2024; 38:e23529. [PMID: 38441524 DOI: 10.1096/fj.202301353rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
γδ T cells are becoming increasingly popular because of their attractive potential for antitumor immunotherapy. However, the role and assessment of γδ T cells in head and neck squamous cell carcinoma (HNSCC) are not well understood. We aimed to explore the prognostic value of γδ T cell and predict its abundance using a radiomics model. Computer tomography images with corresponding gene expression data and clinicopathological data were obtained from online databases. After outlining the volumes of interest manually, the radiomic features were screened using maximum melevance minimum redundancy and recursive feature elimination algorithms. A radiomics model was developed to predict γδ T-cell abundance using gradient boosting machine. Kaplan-Meier survival curves and univariate and multivariate Cox regression analyses were used for the survival analysis. In this study, we confirmed that γδ T-cell abundance was an independent predictor of favorable overall survival (OS) in patients with HNSCC. Moreover, a radiomics model was built to predict the γδ T-cell abundance level (the areas under the operating characteristic curves of 0.847 and 0.798 in the training and validation sets, respectively). The calibration and decision curves analysis demonstrated the fitness of the model. The high radiomic score was an independent protective factor for OS. Our results indicated that γδ T-cell abundance was a promising prognostic predictor in HNSCC, and the radiomics model could discriminate its abundance levels and predict OS. The noninvasive radiomics model provided a potentially powerful prediction tool to aid clinical judgment and antitumor immunotherapy.
Collapse
Affiliation(s)
- Binna Fan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Binting Fan
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Wang CQ, Lim PY, Tan AHM. Gamma/delta T cells as cellular vehicles for anti-tumor immunity. Front Immunol 2024; 14:1282758. [PMID: 38274800 PMCID: PMC10808317 DOI: 10.3389/fimmu.2023.1282758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Adoptive cellular immunotherapy as a new paradigm to treat cancers is exemplified by the FDA approval of six chimeric antigen receptor-T cell therapies targeting hematological malignancies in recent years. Conventional αβ T cells applied in these therapies have proven efficacy but are confined almost exclusively to autologous use. When infused into patients with mismatched human leukocyte antigen, αβ T cells recognize tissues of such patients as foreign and elicit devastating graft-versus-host disease. Therefore, one way to overcome this challenge is to use naturally allogeneic immune cell types, such as γδ T cells. γδ T cells occupy the interface between innate and adaptive immunity and possess the capacity to detect a wide variety of ligands on transformed host cells. In this article, we review the fundamental biology of γδ T cells, including their subtypes, expression of ligands, contrasting roles in and association with cancer prognosis or survival, as well as discuss the gaps in knowledge pertaining to this cell type which we currently endeavor to elucidate. In addition, we propose how to harness the unique properties of γδ T cells for cellular immunotherapy based on lessons gleaned from past clinical trials and provide an update on ongoing trials involving these cells. Lastly, we elaborate strategies that have been tested or can be explored to improve the anti-tumor activity and durability of γδ T cells in vivo.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yu Lim
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andy Hee-Meng Tan
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology (SIT), Singapore, Singapore
| |
Collapse
|
8
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
9
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
10
|
Chen Q, Liu M, Guo H, Wang K, Liu J, Wang Y, Lin Y, Li J, Li P, Yang L, Jia L, Yang J, Li P, Song H. Altered Respiratory Microbiomes, Plasma Metabolites, and Immune Responses in Influenza A Virus and Methicillin-Resistant Staphylococcus aureus Coinfection. Microbiol Spectr 2023; 11:e0524722. [PMID: 37318361 PMCID: PMC10433956 DOI: 10.1128/spectrum.05247-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Influenza A virus (IAV)-methicillin-resistant Staphylococcus aureus (MRSA) coinfection causes severe respiratory infections. The host microbiome plays an important role in respiratory tract infections. However, the relationships among the immune responses, metabolic characteristics, and respiratory microbial characteristics of IAV-MRSA coinfection have not been fully studied. We used specific-pathogen-free (SPF) C57BL/6N mice infected with IAV and MRSA to build a nonlethal model of IAV-MRSA coinfection and characterized the upper respiratory tract (URT) and lower respiratory tract (LRT) microbiomes at 4 and 13 days postinfection by full-length 16S rRNA gene sequencing. Immune response and plasma metabolism profile analyses were performed at 4 days postinfection by flow cytometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships among the LRT microbiota, the immune response, and the plasma metabolism profile were analyzed by Spearman's correlation analysis. IAV-MRSA coinfection showed significant weight loss and lung injury and significantly increased loads of IAV and MRSA in bronchoalveolar lavage fluid (BALF). Microbiome data showed that coinfection significantly increased the relative abundances of Enterococcus faecalis, Enterobacter hormaechei, Citrobacter freundii, and Klebsiella pneumoniae and decreased the relative abundances of Lactobacillus reuteri and Lactobacillus murinus. The percentages of CD4+/CD8+ T cells and B cells in the spleen; the levels of interleukin-9 (IL-9), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8 in the lung; and the level of mevalonolactone in plasma were increased in IAV-MRSA-coinfected mice. L. murinus was positively correlated with lung macrophages and natural killer (NK) cells, negatively correlated with spleen B cells and CD4+/CD8+ T cells, and correlated with multiple plasma metabolites. Future research is needed to clarify whether L. murinus mediates or alters the severity of IAV-MRSA coinfection. IMPORTANCE The respiratory microbiome plays an important role in respiratory tract infections. In this study, we characterized the URT and LRT microbiota, the host immune response, and plasma metabolic profiles during IAV-MRSA coinfection and evaluated their correlations. We observed that IAV-MRSA coinfection induced severe lung injury and dysregulated host immunity and plasma metabolic profiles, as evidenced by the aggravation of lung pathological damage, the reduction of innate immune cells, the strong adaptation of the immune response, and the upregulation of mevalonolactone in plasma. L. murinus was strongly correlated with immune cells and plasma metabolites. Our findings contribute to a better understanding of the role of the host microbiome in respiratory tract infections and identified a key bacterial species, L. murinus, that may provide important references for the development of probiotic therapies.
Collapse
Affiliation(s)
- Qichao Chen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Kaiying Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yun Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- School of Public Health, China Medical University, Shenyang City, Liaoning Province, China
| | - Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jinhui Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Peihan Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Lang Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Leili Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| |
Collapse
|
11
|
Duquette D, Harmon C, Zaborowski A, Michelet X, O'Farrelly C, Winter D, Koay HF, Lynch L. Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, Responding to Cytokines Rather than TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:633-647. [PMID: 37449888 DOI: 10.4049/jimmunol.2300083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
NK cells and CD8 T cells use cytotoxic molecules to kill virally infected and tumor cell targets. While perforin and granzyme B (GzmB) are the most commonly studied lytic molecules, less is known about granzyme K (GzmK). However, this granzyme has been recently associated with improved prognosis in solid tumors. In this study, we show that, in humans, GzmK is predominantly expressed by innate-like lymphocytes, as well as a newly identified population of GzmK+CD8+ non- mucosal-associated invariant T cells with innate-like characteristics. We found that GzmK+ T cells are KLRG1+EOMES+IL-7R+CD62L-Tcf7int, suggesting that they are central memory T and effector memory T cells. Furthermore, GzmK+ cells are absent/low in cord blood, suggesting that GzmK is upregulated with immune experience. Surprisingly, GzmK+ cells respond to cytokine stimuli alone, whereas TCR stimulation downregulates GzmK expression, coinciding with GzmB upregulation. GzmK+ cells have reduced IFN-γ production compared with GzmB+ cells in each T cell lineage. Collectively, this suggests that GzmK+ cells are not naive, and they may be an intermediate memory-like or preterminally differentiated population. GzmK+ cells are enriched in nonlymphoid tissues such as the liver and adipose. In colorectal cancer, GzmK+ cells are enriched in the tumor and can produce IFN-γ, but GzmK+ expression is mutually exclusive with IL-17a production. Thus, in humans, GzmK+ cells are innate memory-like cells that respond to cytokine stimulation alone and may be important effector cells in the tumor.
Collapse
Affiliation(s)
- Danielle Duquette
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cathal Harmon
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | | | - Xavier Michelet
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des Winter
- St. Vincent's University Hospital, Dublin, Ireland
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Austria
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Corcoran M, Chernyshev M, Mandolesi M, Narang S, Kaduk M, Ye K, Sundling C, Färnert A, Kreslavsky T, Bernhardsson C, Larena M, Jakobsson M, Karlsson Hedestam GB. Archaic humans have contributed to large-scale variation in modern human T cell receptor genes. Immunity 2023; 56:635-652.e6. [PMID: 36796364 DOI: 10.1016/j.immuni.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.
Collapse
Affiliation(s)
- Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mateusz Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kewei Ye
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Färnert
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Taras Kreslavsky
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Maximilian Larena
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | | |
Collapse
|
13
|
Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Mol Cancer 2023; 22:31. [PMID: 36793048 PMCID: PMC9930367 DOI: 10.1186/s12943-023-01722-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors (ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs combined with γδT cells as a good treatment option.
Collapse
Affiliation(s)
- Zhifei Gao
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Yifeng Bai
- grid.54549.390000 0004 0369 4060The Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Anqi Lin
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China
| | - Aimin Jiang
- grid.73113.370000 0004 0369 1660The Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- grid.216417.70000 0001 0379 7164The Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xin Chen
- The Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
14
|
Zhu R, Yan Q, Wang Y, Wang K. Biological characteristics of γδT cells and application in tumor immunotherapy. Front Genet 2023; 13:1077419. [PMID: 36685942 PMCID: PMC9846053 DOI: 10.3389/fgene.2022.1077419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Human γδT cells are a special immune cell type which exist in small quantities in the body, do not require processing and presentation for antigen recognition, and have non-major histocompatibility complex (MHC)-restricted immune response. They play an important role in the body's anti-tumor, anti-infection, immune regulation, immune surveillance and maintenance of immune tolerance. This article reviews the generation and development of human γδT cells, genetic characteristics, classification, recognition and role of antigens, and research progress in tumor immunotherapy.
Collapse
Affiliation(s)
- Renhong Zhu
- Department of Laboratory Medicine, Second Affiliated Hospital of Shandong First Medical University, Tai’an, China,Department of Laboratory Medicine, Tai’an Tumor Prevention and Treatment Hospital, Tai’an, China
| | - Qian Yan
- Department of Laboratory Medicine, Second Hospital of Traditional Chinese Medicine, Tai’an, China
| | - Yashu Wang
- Department of Laboratory Medicine, The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, China
| | - Keqiang Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Shandong First Medical University, Tai’an, China,*Correspondence: Keqiang Wang,
| |
Collapse
|
15
|
Giannotta C, Autino F, Massaia M. Vγ9Vδ2 T-cell immunotherapy in blood cancers: ready for prime time? Front Immunol 2023; 14:1167443. [PMID: 37143664 PMCID: PMC10153673 DOI: 10.3389/fimmu.2023.1167443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
In the last years, the tumor microenvironment (TME) has emerged as a promising target for therapeutic interventions in cancer. Cancer cells are highly dependent on the TME to growth and evade the immune system. Three major cell subpopulations are facing each other in the TME: cancer cells, immune suppressor cells, and immune effector cells. These interactions are influenced by the tumor stroma which is composed of extracellular matrix, bystander cells, cytokines, and soluble factors. The TME can be very different depending on the tissue where cancer arises as in solid tumors vs blood cancers. Several studies have shown correlations between the clinical outcome and specific patterns of TME immune cell infiltration. In the recent years, a growing body of evidence suggests that unconventional T cells like natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells are key players in the protumor or antitumor TME commitment in solid tumors and blood cancers. In this review, we will focus on γδ T cells, especially Vγ9Vδ2 T cells, to discuss their peculiarities, pros, and cons as potential targets of therapeutic interventions in blood cancers.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Federica Autino
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S. Croce e Carle, Cuneo, Italy
- *Correspondence: Massimo Massaia,
| |
Collapse
|
16
|
Yuan M, Jin X, Qin F, Zhang X, Wang X, Yuan E, Shi Y, Xu F. The association of γδT lymphocytes with cystic leukomalacia in premature infants. Front Neurol 2022; 13:1043142. [PMID: 36530609 PMCID: PMC9755680 DOI: 10.3389/fneur.2022.1043142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
Background Periventricular leukomalacia (PVL) is an essential cause of cerebral palsy in preterm infants, and cystic PVL (cPVL) is the most severe form of the disease. The pathogenesis of cPVL is complex, and immune imbalances and inflammatory responses may play an essential role in it. Objective This study aimed to investigate the correlation between peripheral blood lymphocyte subsets, especially γδT cells with the pathogenesis of cPVL in preterm infants. Methods Peripheral blood from preterm infants with GA < 32 weeks and BW < 1,500 g was used in this study and was collected at 34 weeks corrected gestational age and within 24 h after the diagnosis with cranial MRI or cranial ultrasound. The infants were divided into cPVL groups and control groups. Flow cytometry was used to detect peripheral blood γδT, CD3+, CD4+, CD8+, and the proportion of total lymphocytes. Multiplex cell assays were used to detect the concentration of extracellular serum cytokines IL-6, IL-2, IL-8, IL-17A, IL-10, IL-1RA, eotaxin (CCL11), MCP-1 (CCL2), CXCL1, G-CSF, and IFNγ. A follow-up visit was carried out when the patient was 3 years old. Results After correcting for confounding factors, the proportion of peripheral blood γδT in the cPVL group was significantly lower than that in the control group (β: 0.216; 95% CI: 0.058-0.800, P < 0.022). Peripheral blood γδT (AUC: 0.722, P=0.006) and multivariate binary regression model (AUC: 0.865, P < 0.000) have good diagnostic values for cPVL. Peripheral blood γδT has some predictive power for neurodevelopmental outcomes in preterm infants (AUC: 0.743, P = 0.002). Conclusion It seems that peripheral blood γδT cells are inversely correlated with cPVL, which is not only a risk factor for cPVL disease but also neurodevelopmental outcomes in preterm infants. However, the causality of cPVL and various lymphocytes is unclear and needs further study.
Collapse
Affiliation(s)
- Mengjie Yuan
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xinyun Jin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Fanyue Qin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Wang L, Li J, Jiang S, Li Y, Guo R, Chen Y, Chen Y, Yu H, Qiao Q, Zhan M, Yin Z, Xiang Z, Xu C, Xu Y. COVID-19 vaccination influences subtypes of γδ-T cells during pregnancy. Front Immunol 2022; 13:900556. [PMID: 36311780 PMCID: PMC9597631 DOI: 10.3389/fimmu.2022.900556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Up to now, there has been insufficient clinical data to support the safety and effects of vaccination on pregnancy post COVID-19 vaccination. The γδ-T cells are considered an important component in the immune system to fight against viral infection and exhibit critical roles throughout the pregnancy period. However, the immunological roles of γδ-T cells in pregnant women with the COVID-19 vaccination remain unclear. Therefore, the objective of this study is to investigate the alteration of frequency and expression pattern of activation receptors and inhibitory receptors in γδ-T cell and its subsets in peripheral blood samples collected from non-pregnant vaccinated women, vaccinated pregnant women, and unvaccinated pregnant women. Our findings indicated that the frequency of CD3+γδ-T+ cells is lower in vaccinated pregnant women than in unvaccinated pregnant women. But no significant difference was found in the frequency of CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. In addition, there were no significant differences in the frequencies of CD3+γδ-T+Vδ1+T cells, CD3+γδ-T+Vδ2+T cells, CD3+γδ-T+Vδ1-Vδ2-T cells, and Vδ1+T cell/Vδ2+T cell ratio between the pregnant women with or without COVID-19 vaccination. Similar results were found after comparing non-pregnant and pregnant women who received the COVID-19 vaccine. However, there was a significant difference in the fraction of Vδ1-Vδ2-T cells in CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. The frequency of NKG2D+ cells in Vδ2+T cells was not significantly different in the vaccinated pregnant women when compared to that in unvaccinated pregnant women or non-pregnant vaccinated women. But the percentage of NKG2D+ cells in Vδ1+T cells was the lowest in pregnant women after COVID-19 vaccination. Furthermore, down-regulation of NKP46 and NKP30 were found in Vδ2+T and Vδ1+T cells in the vaccinated pregnant women, respectively. After the vaccination, up-regulation of PD-1 expression in Vδ1+T cells and Vδ2+T cells indicated γδ-T cells could respond to COVID-19 vaccination and display an exhausted phenotype following activation. In conclusion, COVID-19 vaccination influences subtypes of γδ-T cells during pregnancy, but the side effects might be limited. The phenotypical changes of Vδ1+T cells and Vδ2+T cells will be a promising predictor for evaluating the clinical outcome of the COVID-19 vaccine.
Collapse
Affiliation(s)
- Li Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Jiawei Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, China
| | - Silin Jiang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Yan Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Rong Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Hang Yu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Qingqing Qiao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Mingjie Zhan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Zheng Xiang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| | - Yan Xu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Chengfang Xu, ; Yan Xu,
| |
Collapse
|
18
|
Sanz M, Mann BT, Chitrakar A, Soriano-Sarabia N. Defying convention in the time of COVID-19: Insights into the role of γδ T cells. Front Immunol 2022; 13:819574. [PMID: 36032159 PMCID: PMC9403327 DOI: 10.3389/fimmu.2022.819574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.
Collapse
|
19
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Li Y, Jiang S, Li J, Yin M, Yan F, Chen Y, Chen Y, Wu T, Cheng M, He Y, Liang H, Yu H, Qiao Q, Guo Z, Xu Y, Zhang Y, Xiang Z, Yin Z. Phenotypic Changes of Peripheral γδ T Cell and Its Subsets in Patients With Coronary Artery Disease. Front Immunol 2022; 13:900334. [PMID: 35874761 PMCID: PMC9304556 DOI: 10.3389/fimmu.2022.900334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary atherosclerotic heart disease (CAD) is a chronic inflammatory cardiovascular disease with high morbidity and mortality. Growing data indicate that many immune cells are involved in the development of atherosclerosis. However, the immunological roles of γδ T cells in the initiation and progression of CAD are not fully understood. Here, we used flow cytometry to determine phenotypical changes of γδ T cells and their subpopulations in peripheral blood samples collected from 37 CAD patients. The Pearson correlation coefficient was used to analyze the relationship between the clinical parameter (serum LDL-C level) and the changes of immunophenotypes of γδ T cells. Our results demonstrated that the frequencies and absolute numbers of total γδ T cells and Vδ2+ T cells were significantly decreased in CAD patients when compared to healthy individuals. However, the proportion of Vδ1+ T cells was much lower in CAD patients than that of healthy individuals. Most importantly, a significant alteration of the Vδ1/Vδ2 ratio was found in CAD patients. In addition, a series of surface markers that are associated with costimulatory signals (CD28, CD40L, CD80, CD86), activation levels (CD69, CD25, HLA-DR), activating NK cell receptors (NKp30, NKp46, NKG2D) and inhibitory receptors (PD-1, CTLA-4, PD-1, Tim-3) were determined and then analyzed in the total γδ T cells, Vδ2+T cells and Vδ2-T cells of CAD patients and healthy individuals. The data demonstrated that immunological activities of total γδ T cells, Vδ2+T cells, and Vδ2-T cells of CAD patients were much lower than those in healthy individuals. Moreover, we found that there were positive correlations between the serum LDL-C levels and frequencies of CD3+γδ+ T cells, CD69+Vδ2+T cells, NKG2D+Vδ2+T cells, and NKp46+Vδ2+T cells. By contrast, there was an inverse correlation between the levels of serum LDL-C and the frequencies of CD69+Vδ2-T cells and NKp46+Vδ2-T cells. Accordingly, these findings could help us to better understand the roles of γδ T cells in the CAD, and shed light on the development of novel diagnostic techniques and therapeutic strategies by targeting γδ T cells for CAD patients.
Collapse
Affiliation(s)
- Yan Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Silin Jiang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Mengzhuo Yin
- Department of Geriatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fuxin Yan
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyuan Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Tongwei Wu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengliang Cheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Qingqing Qiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| | - Yanan Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| | - Zheng Xiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| | - Zhinan Yin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Zheng Xiang, ; Yan Xu, ; Yanan Zhang,
| |
Collapse
|
21
|
Zhou C, Rao W, Zhou X, He D, Li Z, Dashtsoodol N, Ren Y. Alteration of circulating unconventional T cells in cerebral ischemia: an observational study. Sci Rep 2022; 12:10078. [PMID: 35710748 PMCID: PMC9203798 DOI: 10.1038/s41598-022-14343-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Immune reactions provoked by cerebral ischemia play crucial roles in the pathogenesis of brain damage and contribute to tissue regeneration processes. While functions of many immune cell types in post-ischemic inflammation have been well studied in experimental stroke, the exact roles played by unconventional T cells in pathogenesis of the clinical stroke remain to be precisely determined. In the present study, we investigated the frequencies and absolute cell numbers of peripheral blood T lymphocyte subpopulations including those of invariant natural killer T (iNKT) cells, CD3+CD56+ NKT-like (NKTL) cells, and γδ T cells from patients with acute cerebral infarction (ACI), chronic cerebrovascular disease (CCD) or chronic cerebral circulation insufficiency (CCI) by flow cytometry, and analyzed their association with the disease severity and the clinical outcome. We observed significantly reduced cell numbers of circulating iNKT cells, NKTL cells and γδ T cells in cerebral ischemia patients as compared with the healthy controls. Of note, we also demonstrated that numbers of peripheral blood iNKT and γδ T cells are significantly reduced in patients with ACI when compared among different cerebral ischemia patient groups. Moreover, the reduced number of iNKT cells is significantly associated with the disease severity and recovery in cerebral ischemia patients. Our results demonstrate for the first time the reduction of peripheral blood NKTL, iNKT and γδ T cells in patients with the cerebral ischemia, and particularly reduced iNKT and γδ T cells in the acute phase. The reduction of iNKT cells seems to be significantly associated with the disease severity and recovery. We hope that our findings might lead to the identification of predictive and prognostic values of human peripheral unconventional T cell subsets in the cerebral ischemia.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wei Rao
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinhua Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Dan He
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhen Li
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Nyambayar Dashtsoodol
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Department of Immunology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.,Department of Hematology and Medical Oncology, Klinikum Rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, Munich, Germany
| | - Yue Ren
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| |
Collapse
|
22
|
Xu QH, Muyayalo KP, Zhang YJ, Wang H, Lin XX, Liao AH. Altered vitamin D metabolism is involved in the dysregulation of γδT cell function and their crosstalk with trophoblasts in recurrent pregnancy loss. Am J Reprod Immunol 2022; 89:e13581. [PMID: 35704547 DOI: 10.1111/aji.13581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is a common disease characterized by immune dysfunction and vitamin D deficiency. This study aimed to investigate vitamin D metabolism and γδT cell phenotypes at the maternal-fetal interface in women with early normal pregnancy (NP) and RPL and to determine the effects of vitamin D on the functions of γδT cells and their crosstalk with trophoblasts. METHODS The levels of 25-(OH)VD3 , the expression of vitamin D metabolic enzymes in the villi, and the proportion of γδT cells in the decidua were detected in women with NP and RPL. After treatment with different concentrations of vitamin D, the mRNA expression of the vitamin D receptor (VDR), cytokines, and transcription factors was detected in Vδ2+ γδT cells. In addition, the proliferation, migration, and invasion of HTR-8/SVneo trophoblasts were determined by co-culturing them with vitamin D-treated Vδ2+ γδT cells and their supernatants. RESULTS In women with RPL, the level of 25-(OH)VD3 in the villi was increased; however, that of CYP27B1 (enzyme converting 25-(OH)VD3 into 1,25-(OH)2 VD3 ) was decreased. In addition, the proportion of Vδ2+ γδT cells increased, whereas that of Foxp3+ Vδ2+ γδT cells decreased in the decidua of women with RPL. An in vitro study showed that vitamin D increased the expression of VDR mRNA and Foxp3, but decreased the expression of IFN-γ mRNA, in Vδ2+ γδT cells. Finally, vitamin D-treated Vδ2+ γδT cells promoted trophoblast migration and invasion. CONCLUSIONS Abnormal vitamin D metabolism and γδT cell proportions were present at the maternal-fetal interface in women with RPL. Under normal pregnancy conditions, vitamin D can induce the differentiation of decidual Vδ2+ γδT cells toward an anti-inflammatory phenotype (Treg-like γδT cells) and modulate the crosstalk between Vδ2+ γδT cells and trophoblasts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
23
|
Binette P, Tesfamariam M, Cockrell D, Heinzen RA, Richards C, Shaia C, Long CM. Murine Q Fever Vaccination Model Reveals Sex Dimorphism in Early Phase Delayed-Type Hypersensitivity Responses. Front Immunol 2022; 13:894536. [PMID: 35784317 PMCID: PMC9241443 DOI: 10.3389/fimmu.2022.894536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
Delayed-type hypersensitivity (DTH) responses to microbial vaccines and related components are a major roadblock for widespread licensing of whole cell vaccines such as that of Q fever. Q fever is a zoonotic disease caused by the intracellular bacterium Coxiella burnetii. The only currently licensed vaccine, Q-Vax®, is a whole cell inactivated formulation that is associated with a potentially severe dermal post vaccination DTH response in previously sensitized individuals. To investigate the underlying immunologic mechanisms of this response and better represent the early-phase DTH response observed in humans, a murine sensitization and skin testing model was developed and employed. Female C57Bl/6J mice displayed the most robust early-phase DTH responses following sensitization and elicitation compared to their male counterparts and other mouse strains. Immunologic responses were measured within the skin, draining lymph nodes, and serum following both sensitization and elicitation with Q fever whole cell vaccines. Local immunologic responses in the dermis were characterized by inflammation primarily involving neutrophils, macrophages, and T cells. Secondary lymphoid organ profiling revealed distinct immunological signatures following both sensitization and elicitation with a sex-based dichotomy in T cell phenotypes and antigen presenting cell numbers. Beyond providing a post-Q fever vaccination DTH model that recapitulates early-phase DTH events, these data suggest that sex is a primary factor influencing the magnitude and composition of the ensuing response.
Collapse
Affiliation(s)
- Picabo Binette
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Mahelat Tesfamariam
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Diane Cockrell
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Robert A. Heinzen
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Crystal Richards
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Carrie Mae Long
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
24
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
25
|
Bernicke B, Engelbogen N, Klein K, Franzenburg J, Borzikowsky C, Peters C, Janssen O, Junker R, Serrano R, Kabelitz D. Analysis of the Seasonal Fluctuation of γδ T Cells and Its Potential Relation with Vitamin D 3. Cells 2022; 11:1460. [PMID: 35563767 PMCID: PMC9099506 DOI: 10.3390/cells11091460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
In addition to its role in bone metabolism, vitamin D3 exerts immunomodulatory effects and has been proposed to contribute to seasonal variation of immune cells. This might be linked to higher vitamin D3 levels in summer than in winter due to differential sun exposure. γδ T cells comprise a numerically small subset of T cells in the blood, which contribute to anti-infective and antitumor immunity. We studied the seasonal fluctuation of γδ T cells, the possible influence of vitamin D3, and the effect of the active metabolite 1α,25(OH)2D3 on the in vitro activation of human γδ T cells. In a retrospective analysis with 2625 samples of random blood donors, we observed higher proportions of γδ T cells in winter when compared with summer. In a prospective study over one year with a small cohort of healthy adults who did or did not take oral vitamin D3 supplementation, higher proportions of γδ T cells were present in donors without oral vitamin D3 uptake, particularly in spring. However, γδ T cell frequency in blood did not directly correlate with serum levels of 25(OH)D3. The active metabolite 1α,25(OH)2D3 inhibited the in vitro activation of γδ T cells at the level of proliferation, cytotoxicity, and interferon-γ production. Our study reveals novel insights into the seasonal fluctuation of γδ T cells and the immunomodulatory effects of vitamin D3.
Collapse
Affiliation(s)
- Birthe Bernicke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Nils Engelbogen
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Katharina Klein
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Jeanette Franzenburg
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Christoph Borzikowsky
- Institute of Bioinformatics and Statistics, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Ralf Junker
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (N.E.); (J.F.); (R.J.)
| | - Ruben Serrano
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany; (B.B.); (K.K.); (C.P.); (O.J.)
| |
Collapse
|
26
|
McGraw JM, Witherden DA. γδ T cell costimulatory ligands in antitumor immunity. EXPLORATION OF IMMUNOLOGY 2022; 2:79-97. [PMID: 35480230 PMCID: PMC9041367 DOI: 10.37349/ei.2022.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph M. McGraw
- 1Department of Biology, Calibr at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deborah A. Witherden
- 2Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Zarobkiewicz MK, Bojarska-Junak AA. The Mysterious Actor-γδ T Lymphocytes in Chronic Lymphocytic Leukaemia (CLL). Cells 2022; 11:cells11040661. [PMID: 35203309 PMCID: PMC8870520 DOI: 10.3390/cells11040661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common leukaemia among adults. It is the clonal expansion of B cells expressing CD19 and CD5. Despite significant progress in treatment, CLL is still incurable. γδ T cells comprise an important subset of the cytotoxic T cells. Although γδ T cells in CLL are dysfunctional, they still can possibly be used for immunotherapy. The current paper reviews our understanding of γδ T lymphocytes in CLL.
Collapse
|
28
|
Beatson RE, Parente-Pereira AC, Halim L, Cozzetto D, Hull C, Whilding LM, Martinez O, Taylor CA, Obajdin J, Luu Hoang KN, Draper B, Iqbal A, Hardiman T, Zabinski T, Man F, de Rosales RT, Xie J, Aswad F, Achkova D, Joseph CYR, Ciprut S, Adami A, Roider HG, Hess-Stumpp H, Győrffy B, Quist J, Grigoriadis A, Sommer A, Tutt AN, Davies DM, Maher J. TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer. Cell Rep Med 2021; 2:100473. [PMID: 35028614 PMCID: PMC8714942 DOI: 10.1016/j.xcrm.2021.100473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-β1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells, as the control). Unexpectedly, the yield and viability of γδ[T2] cells are also increased by TGF-β1, when compared to γδ[2] controls. γδ[T2] cells are less differentiated and yet display increased cytolytic activity, cytokine release, and antitumor activity in several leukemic and solid tumor models. Efficacy is further enhanced by cancer cell sensitization using aminobisphosphonates or Ara-C. A number of contributory effects of TGF-β are described, including prostaglandin E2 receptor downmodulation, TGF-β insensitivity, and upregulated integrin activity. Biological relevance is supported by the identification of a favorable γδ[T2] signature in acute myeloid leukemia (AML). Given their enhanced therapeutic activity and compatibility with allogeneic use, γδ[T2] cells warrant evaluation in cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Culture Media, Serum-Free/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Immunophenotyping
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- Mice, SCID
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transforming Growth Factor beta1/metabolism
- Mice
Collapse
Affiliation(s)
- Richard E. Beatson
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Ana C. Parente-Pereira
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Leena Halim
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Domenico Cozzetto
- Translational Bioinformatics, NIHR Biomedical Research Centre, Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London SE1 9RT, UK
| | - Caroline Hull
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Lynsey M. Whilding
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Olivier Martinez
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Chelsea A. Taylor
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Jana Obajdin
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Kim Ngan Luu Hoang
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Benjamin Draper
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Ayesha Iqbal
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Tom Hardiman
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Tomasz Zabinski
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Francis Man
- King’s College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Rafael T.M. de Rosales
- King’s College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Jinger Xie
- Bayer Healthcare Innovation Center, Mission Bay, 455 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Fred Aswad
- Bayer Healthcare Innovation Center, Mission Bay, 455 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Daniela Achkova
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Chung-Yang Ricardo Joseph
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Sara Ciprut
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Antonella Adami
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | | | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest H1085, Hungary
- Cancer Biomarker Research Group, Research Center for Natural Science, Budapest H1117, Hungary
| | - Jelmar Quist
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Anita Grigoriadis
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Cancer Bioinformatics, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | | | - Andrew N.J. Tutt
- King’s College London, Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Leucid Bio, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
29
|
Xu QH, Liu H, Wang LL, Zhu Q, Zhang YJ, Muyayalo KP, Liao AH. Roles of γδT cells in pregnancy and pregnancy-related complications. Am J Reprod Immunol 2021; 86:e13487. [PMID: 34331364 DOI: 10.1111/aji.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
A successful pregnancy is a complex and unique process comprised of discrete events, including embryo implantation, placentation, and parturition. To maintain the balance between maternal-fetal immune tolerance and resistance to infections, the maternal immune system must have a high degree of stage-dependent plasticity throughout the period of pregnancy. Innate immunity is the frontline force for the establishment of early anti-infection and tolerance mechanisms in mammals. Belonging to the innate immune system, a subset of T cells called γδT cells (based on γδT cell receptors) are the main participants in immune surveillance and immune defense. Unlike traditional αβT cells, γδT cells are regarded as a bridge between innate immunity and acquired immunity. In this review, we summarize current knowledge on the functional plasticity of γδT cells during pregnancy. Furthermore, we discuss the roles of γδT cells in pathological pregnancies.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Erratum: Systemic Characterization of Novel Immune Cell Phenotypes in Recurrent Pregnancy Loss. Front Immunol 2021; 12:722805. [PMID: 34249023 PMCID: PMC8262454 DOI: 10.3389/fimmu.2021.722805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
|
31
|
Rosso DA, Rosato M, Iturrizaga J, González N, Shiromizu CM, Keitelman IA, Coronel JV, Gómez FD, Amaral MM, Rabadan AT, Salamone GV, Jancic CC. Glioblastoma cells potentiate the induction of the Th1-like profile in phosphoantigen-stimulated γδ T lymphocytes. J Neurooncol 2021; 153:403-415. [PMID: 34125375 DOI: 10.1007/s11060-021-03787-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE γδ T lymphocytes are non-conventional T cells that participate in protective immunity and tumor surveillance. In healthy humans, the main subset of circulating γδ T cells express the TCRVγ9Vδ2. This subset responds to non-peptide prenyl-pyrophosphate antigens such as (E)-4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP). This unique feature of Vγ9Vδ2 T cells makes them a candidate for anti-tumor immunotherapy. In this study, we investigated the response of HMBPP-activated Vγ9Vδ2 T lymphocytes to glioblastoma multiforme (GBM) cells. METHODS Human purified γδ T cells were stimulated with HMBPP (1 µM) and incubated with GBM cells (U251, U373 and primary GBM cultures) or their conditioned medium. After overnight incubation, expression of CD69 and perforin was evaluated by flow cytometry and cytokines production by ELISA. As well, we performed a meta-analysis of transcriptomic data obtained from The Cancer Genome Atlas. RESULTS HMBPP-stimulated γδ T cells cultured with GBM or its conditioned medium increased CD69, intracellular perforin, IFN-γ, and TNF-α production. A meta-analysis of transcriptomic data showed that GBM patients display better overall survival when mRNA TRGV9, the Vγ9 chain-encoding gene, was expressed in high levels. Moreover, its expression was higher in low-grade GBM compared to GBM. Interestingly, there was an association between γδ T cell infiltrates and TNF-α expression in the tumor microenvironment. CONCLUSION GBM cells enhanced Th1-like profile differentiation in phosphoantigen-stimulated γδ T cells. Our results reinforce data that have demonstrated the implication of Vγ9Vδ2 T cells in the control of GBM, and this knowledge is fundamental to the development of immunotherapeutic protocols to treat GBM based on γδ T cells.
Collapse
Affiliation(s)
- David A Rosso
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Juan Iturrizaga
- División Neurocirugía, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno González
- Instituto de Investigaciones Biomédicas (INBIOMED) - Universidad de Buenos Aires - CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina M Shiromizu
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene A Keitelman
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Juan V Coronel
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernando D Gómez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra T Rabadan
- División Neurocirugía, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela V Salamone
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina C Jancic
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina. .,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
Liu H, Lin XX, Huang XB, Huang DH, Song S, Chen YJ, Tang J, Tao D, Yin ZN, Mor G, Liao AH. Systemic Characterization of Novel Immune Cell Phenotypes in Recurrent Pregnancy Loss. Front Immunol 2021; 12:657552. [PMID: 34122414 PMCID: PMC8195235 DOI: 10.3389/fimmu.2021.657552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a disturbing disease in women, and 50% of RPL is reported to be associated with immune dysfunction. Most previous studies of RPL focused mainly on the relationship between RPL and either T cells or natural killer (NK) cells in peripheral blood and the decidua; few studies presented the systemic profiles of the peripheral immune cell subsets in RPL women. Herein, we simultaneously detected 63 immune cell phenotypes in the peripheral blood from nonpregnant women (NPW), women with a history of normal pregnancy (NP) and women with a history of RPL (RPL) by multi-parameter flow cytometry. The results demonstrated that the percentages of naïve CD4+ T cells, central memory CD4+ T cells, naïve CD8+ T cells, mature NK cells, Vδ1+ T cells and the ratio of Vδ1+ T cells/Vδ2+ T cells were significantly higher in the RPL group than those in the NPW and NP groups, whereas the percentages of terminal differentiated CD4+ T cells, effective memory CD4+ T cells, immature NK cells and Vδ2+ T cells were significantly lower in the RPL group than those in the NPW and NP groups. Interestingly, we found that peripheral T helper (TPH) cells were more abundant in the NPW group than in the NP and RPL groups. In addition, we also determined the 5th percentile lower limit and 95th percentile upper limit of the significantly changed immunological parameters based on the files of the NPW group. Taken together, this is the first study to simultaneously characterize the multiple immune cell subsets in the peripheral blood at a relatively large scale in RPL, which might provide a global readout of the immune status for clinicians to identify clinically-relevant immune disorders and guide them to make clear and individualized advice and treatment plans.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Hui Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Song
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang-Jiao Chen
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Tang
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Ding Tao
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhi-Nan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Zhang Y, Chen S, Li J, Dai W, Qian Y. Immune infiltrating cells in cholangiocarcinoma may become clinical diagnostic markers: based on bioinformatics analysis. World J Surg Oncol 2021; 19:59. [PMID: 33618734 PMCID: PMC7901112 DOI: 10.1186/s12957-021-02168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor originating from the secondary bile duct and its branch epithelium. Among primary liver tumors, the incidence of ICC is second only to hepatocellular carcinoma. Tumor microenvironment can regulate the occurrence and development of tumors. This study is dedicated to finding more markers that can diagnose ICC by finding the differential tumor microenvironment cells between ICC and normal tissues. METHODS We wanted to study the infiltration of immune cells between the cholangiocarcinoma of the same patient and its paired non-tumor tissues, to explore the difference of immune cells in the tumor microenvironment and adjacent non-tumor tissues in the same organism. So, we searched the relevant data of patients with ICC from the GEO database and found that the GSE45001 data set meets our research needs. CIBERSORT database is used to calculate immune cell composition. Finally, perform visual analysis and data statistics to find out the differentially expressed immune cells. RESULTS We found that the expression levels of dendritic cells activated, macrophages M2, and T cells regulatory (Tregs) in ICC were higher than normal tissues, and the expression levels of macrophages M1, monocytes, and T cells follicular helper in ICC were lower than normal tissues. CONCLUSION These 6 types of immune cells are expected to become molecular markers for clinical diagnosis of ICC.
Collapse
Affiliation(s)
- Yongwei Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Wei H, Jin C, Peng A, Xie H, Xie S, Feng Y, Xie A, Li J, Fang C, Yang Q, Qiu H, Qi Y, Yin Z, Wang X, Huang J. Characterization of γδT cells in lung of Plasmodium yoelii-infected C57BL/6 mice. Malar J 2021; 20:89. [PMID: 33588839 PMCID: PMC7885449 DOI: 10.1186/s12936-021-03619-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Malaria has high morbidity and mortality rates in some parts of tropical and subtropical countries. Besides respiratory and metabolic function, lung plays a role in immune system. γδT cells have multiple functions in producing cytokines and chemokines, regulating the immune response by interacting with other cells. It remains unclear about the role of γδT cells in the lung of mice infected by malaria parasites. Methods Flow cytometry (FCM) was used to evaluate the frequency of γδT cells and the effects of γδT cells on the phenotype and function of B and T cells in Plasmodium yoelii-infected wild-type (WT) or γδTCR knockout (γδT KO) mice. Haematoxylin-eosin (HE) staining was used to observe the pathological changes in the lungs. Results The percentage and absolute number of γδT cells in the lung increased after Plasmodium infection (p < 0.01). More γδT cells were expressing CD80, CD11b, or PD-1 post-infection (p < 0.05), while less γδT cells were expressing CD34, CD62L, and CD127 post-infection (p < 0.05). The percentages of IL-4+, IL-5+, IL-6+, IL-21+, IL-1α+, and IL-17+ γδT cells were increased (p < 0.05), but the percentage of IFN-γ-expressing γδT cells decreased (p < 0.05) post-infection. The pathological changes in the lungs of the infected γδT KO mice were not obvious compared with the infected WT mice. The proportion of CD3+ cells and absolute numbers of CD3+ cells, CD3+ CD4+ cells, CD3+ CD8+ cells decreased in γδT KO infected mice (p < 0.05). γδT KO infected mice exhibited no significant difference in the surface molecular expression of T cells compared with the WT infected mice (p > 0.05). While, the percentage of IFN-γ-expressing CD3+ and CD3+ CD8+ cells increased in γδT KO infected mice (p < 0.05). There was no significant difference in the absolute numbers of the total, CD69+, ICOS+, and CD80+ B cells between the WT infected and γδT KO infected mice (p > 0.05). Conclusions The content, phenotype, and function of γδT cells in the lung of C57BL/6 mice were changed after Plasmodium infection. γδT cells contribute to T cell immune response in the progress of Plasmodium infection.
Collapse
Affiliation(s)
- Haixia Wei
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Chenxi Jin
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Anping Peng
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hongyan Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shihao Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuanfa Feng
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Anqi Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiajie Li
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Chao Fang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Quan Yang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huaina Qiu
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yanwei Qi
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xinhua Wang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jun Huang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
36
|
Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front Immunol 2021; 11:616949. [PMID: 33584708 PMCID: PMC7873351 DOI: 10.3389/fimmu.2020.616949] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Wang Q, Sun Q, Chen Q, Li H, Liu D. Expression of CD27 and CD28 on γδ T cells from the peripheral blood of patients with allergic rhinitis. Exp Ther Med 2020; 20:224. [PMID: 33193838 PMCID: PMC7646692 DOI: 10.3892/etm.2020.9354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
The costimulatory receptors CD27 and CD28 have pivotal and non-redundant roles in the activation and differentiation of γδ T-cells. However, the roles of CD27 and CD28 on γδ T-cells in allergic rhinitis (AR) have remained elusive. The aim of the present study was to investigate the expression of CD27 and CD28 on γδ T cells in patients with AR. Peripheral blood mononuclear cells from 14 patients with AR and 12 healthy subjects were isolated and analyzed by flow cytometry to determine the percentage of γδ T cells and regulatory T cells (Tregs), and the expression of IFN-γ, IL-17A, CD27 and CD28 on γδ T cells. The correlations between the expression of CD27 and CD28, and the percentages of IFN-γ+ and IL-17A+ γδ T-cell subsets and Tregs in AR were analyzed. It was observed that the percentages of γδ T cells, and the IL-17A+, CD27-CD28+ and CD27-CD28- γδ T-cell subsets were significantly increased, while the percentages of Tregs and IFN-γ+ and CD27+CD28+ γδ T-cell subsets were significantly decreased in AR. Of note, the percentage of CD27+CD28+ γδ T-cell subsets was positively correlated with that of the IFN-γ+ γδ T-cell subset and the percentage of the CD27-CD28+ γδ T-cell subset was positively correlated with that of the IL-17A+ γδ T-cell subset. Furthermore, the percentages of γδ T cells and the CD27-CD28+ γδ T-cell subset were both negatively correlated with that of Tregs. Therefore, the results of the present study indicate that CD27 and CD28 may be the key signals for activation of different γδ T-cell subsets and may contribute to the immune regulatory function of γδ T cells in the peripheral blood of patients with AR.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Qun Sun
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Qiguo Chen
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Hao Li
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| | - Ding Liu
- Department of Otolaryngology, Shiyan People's Hospital of Baoan District in Shenzhen City, Shenzhen, Guangdong 518108, P.R. China
| |
Collapse
|
38
|
Qu X, Wang Z, Zhou T, Shan L. Determination of the molecular mechanism by which macrophages and γδ-T cells contribute to ZOL-induced ONJ. Aging (Albany NY) 2020; 12:20743-20752. [PMID: 33100272 PMCID: PMC7655157 DOI: 10.18632/aging.104006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/14/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE This study aims to explore the molecular mechanism of macrophages and γδ-T cells in the ZOL drug-induced osteonecrosis of jaws based on the IFN-γ involved osteoblast differentiation signaling pathway. RESULTS The number and apoptotic rate of CD11b+Gr1hi cells and γδ-T cells in the ONJ group were significantly higher. The TNF-α, IL-1β, IFN-γ, CCL3, CCL4, IL-12 and IL-13 levels were significantly higher in the ONJ group. The expression of CTSK and FGFR3 was lower in the ONJ group, but was higher in the NF-κB and ERBB2IP group. CONCLUSION The proliferation of macrophages and γδ-T cells promote the inflammation in ZOL-induced jaw necrosis. METHODS A total of 20 patients with osteonecrosis of the jaw from January 2016 to March 2018 were collected and assigned into the observation group, while 20 healthy subjects were assigned into the control group. Furthermore, 40 SD rats were selected and assigned into observation group, while 10 non-treatment SD rats were selected and assigned as controls. The distribution and proportion of CD11b+Gr1hi cells and γδ-T cells in the necrotic tissues of the jaw were analyzed. Then, the TNF-α, IL-1β, IFN-γ, CCL3, CCL4, IL-12 and IL-13 levels were measured. Afterwards, the expression of CTSK, FGFR3, NF-κB and ERBB2IP in the necrotic tissues of the jaw in the animal models were analyzed.
Collapse
Affiliation(s)
- Xingzhou Qu
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Zhen Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Tian Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Liancheng Shan
- Department of Orthopedics, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
39
|
Rafia C, Harly C, Scotet E. Beyond CAR T cells: Engineered Vγ9Vδ2 T cells to fight solid tumors. Immunol Rev 2020; 298:117-133. [DOI: 10.1111/imr.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Chirine Rafia
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
- ImCheck Therapeutics Marseille France
| | - Christelle Harly
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
| | - Emmanuel Scotet
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
| |
Collapse
|
40
|
Characteristic of TIGIT and DNAM-1 Expression on Foxp3+ γδ T Cells in AML Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4612952. [PMID: 32802845 PMCID: PMC7403925 DOI: 10.1155/2020/4612952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Foxp3+ γδ regulatory T (γδ Treg) cells promote tumor growth by various mechanisms and induce immuno-senescence. The novel immune checkpoint coinhibitory receptor T cell Ig and ITIM domain (TIGIT) shares similar ligands as the costimulatory receptor DNAX accessory molecule 1 (DNAM-1) and suppresses T cell responses in tumor patients. This study is aimed at characterizing whether the TIGIT/DNAM-1 axis is involved in the distribution and expression of Foxp3+ γδ Treg cell subsets in acute myeloid leukemia (AML) patients of different clinical statuses: de novo AML (27 patients), AML in nonremission (NR) (7 patients), and AML in complete remission (CR) (12 patients). Our data demonstrated that the proportions of Foxp3+, TIGIT+Foxp3+, and DNAM-1+Foxp3+ γδ T cells are significantly higher in de novo and NR patients. High levels of TIGIT and DNAM-1 on Foxp3+ γδ T cells correlated with increased Foxp3+ γδ T cell frequencies. In addition, a high TIGIT/DNAM-1 ratio was observed in de novo AML patients and healthy individuals (HIs). Furthermore, the phenotypic abnormalities in Foxp3+, TIGIT+Foxp3+, and DNAM-1+Foxp3+ γδ T cells were restored when the patients achieved CR after chemotherapy. Moreover, higher TIGIT+Foxp3+ γδ T cells were associated with AML patients who had poor overall survival and were an independent risk factor for prognosis. In conclusion, our study reveals for the first time that the TIGIT/DNAM-1 axis may be involved in Foxp3+ γδ Treg cells and indicates the clinical progression and prognosis of AML patients of different clinical statuses, which is considered beneficial for efficient AML immunotherapy.
Collapse
|
41
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Front Vet Sci 2020; 7:340. [PMID: 32637426 PMCID: PMC7318773 DOI: 10.3389/fvets.2020.00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.
Collapse
Affiliation(s)
- James J Zhu
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Carolina Stenfeldt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth A Bishop
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jessica A Canter
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education (ORISE), Orient, NY, United States
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Luis L Rodriguez
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jonathan Arzt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| |
Collapse
|
42
|
IL-17A-producing γδ T cells promote liver pathology in acute murine schistosomiasis. Parasit Vectors 2020; 13:334. [PMID: 32611373 PMCID: PMC7329544 DOI: 10.1186/s13071-020-04200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background The main symptoms of schistosomiasis are granuloma and fibrosis, caused by Schistosoma eggs. Numerous types of cells and cytokines are involved in the progression of Schistosoma infection. As a class of innate immune cells, γδ T cells play critical roles in the early immune response. However, their role in modulating granuloma and fibrosis remains to be clarified. Methods Liver fibrosis in wild-type (WT) mice and T cell receptor (TCR) δ knockout (KO) mice infected with Schistosoma japonicum was examined via Masson’s trichrome staining of collagen deposition and quantitative reverse transcriptase-PCR (RT-PCR) of fibrosis-related genes. Granuloma was detected by hematoxylin-eosin (H&E) staining and quantified. Flow cytometry was used for immune cell profiling and for detecting cytokine secretion. The abundance of the related cytokines was measured using quantitative RT-PCR. Results The livers of S. japonicum-infected mice had significantly increased proportions of interleukin (IL)-17A producing γδ T cells and secreted IL-17A. Compared with the WT mice, TCR δ deficiency resulted in reduced pathological impairment and fibrosis in the liver and increased survival in infected mice. In addition, the profibrogenic effects of γδ T cells in infected mice were associated with enhanced CD11b+Gr-1+ cells, concurrent with increased expression of transforming growth factor (TGF)-β in the liver. Conclusions In this mouse model of Schistosoma infection, γδ T cells may promote liver fibrosis by recruiting CD11b+Gr-1+ cells. These findings shed new light on the pathogenesis of liver pathology in murine schistosomiasis.![]()
Collapse
|
43
|
Zhou C, Zhou X, He D, Li Z, Xie X, Ren Y. Reduction of Peripheral Blood iNKT and γδT Cells in Patients With Parkinson's Disease: An Observational Study. Front Immunol 2020; 11:1329. [PMID: 32670293 PMCID: PMC7330172 DOI: 10.3389/fimmu.2020.01329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Objective: To investigate the frequencies and numbers of invariant natural killer T (iNKT) cells and γδT cells in the peripheral blood of patients with the Parkinson's disease (PD), and to examine their association with the PD severity. Methods: Peripheral blood samples from 47 PD patients (PD group) and 47 age-matched healthy control subjects (HC group) were collected. The frequencies and the absolute cell numbers were analyzed by flow cytometry. Mann-Whitney U-test was used to test the difference between two groups, where P < 0.05 was considered as significant. An ordered probit regression method was used to examine the association of the iNKT and γδT cells with severity of PD. Results: Patients in the PD group showed significantly lower frequencies (0.039 vs. 0.139%; P = 0) and cell counts (308/mL vs. 1,371/mL; P = 0) of iNKT cells compared to the HC group. Moreover, the percentages and absolute numbers of γδT cells were significantly decreased in the PD group compared to the HC group (3.69 vs. 7.95% and 30/μL vs. 66/μL; P = 0). The iNKT cells were significantly reduced in PD patients with higher Unified Parkinson's Disease Rating Scale (UPDRS) scores or cognitive decline. Conclusions: Cell frequencies and absolute numbers of iNKT cells and γδT cells are significantly reduced in the peripheral blood samples of PD patients. Patients with high UPDRS scores or cognitive decline also showed significant reduction of iNKT cells. Our results suggest that iNKT cells and γδT cells may contribute to the development of PD.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Xinhua Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Dan He
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Zhen Li
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Xufang Xie
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Ren
- The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Mann BT, Sambrano E, Maggirwar SB, Soriano-Sarabia N. Boosting the Immune System for HIV Cure: A γδ T Cell Perspective. Front Cell Infect Microbiol 2020; 10:221. [PMID: 32509594 PMCID: PMC7248175 DOI: 10.3389/fcimb.2020.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The major barrier to HIV cure is a population of long-lived cells that harbor latent but replication-competent virus, are not eliminated by antiretroviral therapy (ART), and remain indistinguishable from uninfected cells. However, ART does not cure HIV infection, side effects to treatment still occur, and the steady global rate of new infections makes finding a sustained ART-free HIV remission or cure for HIV-seropositive individuals urgently needed. Approaches aimed to cure HIV are mostly based on the "shock and kill" method that entails the use of a drug compound to reactivate latent virus paired together with strategies to boost or supplement the existing immune system to clear reactivated latently infected cells. Traditionally, these strategies have utilized CD8+ cytotoxic lymphocytes (CTL) but have been met with a number of challenges. Enhancing innate immune cell populations, such as γδ T cells, may provide an alternative route to HIV cure. γδ T cells possess anti-viral and cytotoxic capabilities that have been shown to directly inhibit HIV infection and specifically eliminate reactivated, latently infected cells in vitro. Most notably, their access to immune privileged anatomical sites and MHC-independent antigen recognition may circumvent many of the challenges facing CTL-based strategies. In this review, we discuss the role of γδ T cells in normal immunity and HIV infection as well as their current use in strategies to treat cancer. We present this information as means to speculate about the utilization of γδ T cells for HIV cure strategies and highlight some of the fundamental gaps in knowledge that require investigation.
Collapse
Affiliation(s)
| | | | | | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
45
|
Olusola BA, Kabelitz D, Olaleye DO, Odaibo GN. Early HIV infection is associated with reduced proportions of gamma delta T subsets as well as high creatinine and urea levels. Scand J Immunol 2020; 91:e12868. [PMID: 32052490 PMCID: PMC7335456 DOI: 10.1111/sji.12868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/19/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023]
Abstract
Renal dysfunctions are major predictors of co-morbidities and mortality in HIV-infected individuals. Unconventional T cells have been shown to regulate kidney functions. However, there is dearth of information on the effect of HIV-associated nephropathies on γδ and DN T cells. It is also not clear whether γδ T cell perturbations observed during the early stages of HIV infection occur before immune activation. In this study, we investigated the relationship between creatinine and urea on the number of unconventional T cells in HIV-infected individuals at the early and chronic stages of infection. Persons in the chronic stage of infection were divided into treatment naïve and exposed groups. Treatment exposed individuals were further subdivided into groups with undetectable and detectable HIV-1RNA in their blood. Creatinine and urea levels were significantly higher among persons in the early HIV infection compared with the other groups. Proportions of γδ T, γδ + CD8, γδ + CD16 cells were also significantly reduced in the early stage of HIV infection (P < .01). Markers of immune activation, CD4 + HLA-DR and CD8 + HLA-DR, were also significantly reduced during early HIV infection (P < .01). Taken together, our findings suggest that high levels of renal markers as well as reduced proportions of gamma delta T cells are associated with the early stages of HIV infection. This event likely occurs before systemic immune activation reaches peak levels. This study provides evidence for the need for early HIV infection diagnosis and treatment.
Collapse
Affiliation(s)
- Babatunde A. Olusola
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Dieter Kabelitz
- Institute of Immunology, UKSH Campus Kiel,
Christian-Albrechts-University, Kiel, Germany
| | - David O. Olaleye
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
46
|
Kouakanou L, Peters C, Sun Q, Floess S, Bhat J, Huehn J, Kabelitz D. Vitamin C supports conversion of human γδ T cells into FOXP3-expressing regulatory cells by epigenetic regulation. Sci Rep 2020; 10:6550. [PMID: 32300237 PMCID: PMC7162875 DOI: 10.1038/s41598-020-63572-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Human γδ T cells are potent cytotoxic effector cells, produce a variety of cytokines, and can acquire regulatory activity. Induction of FOXP3, the key transcription factor of regulatory T cells (Treg), by TGF-β in human Vγ9 Vδ2 T cells has been previously reported. Vitamin C is an antioxidant and acts as multiplier of DNA hydroxymethylation. Here we have investigated the effect of the more stable phospho-modified Vitamin C (pVC) on TGF-β-induced FOXP3 expression and the resulting regulatory activity of highly purified human Vγ9 Vδ2 T cells. pVC significantly increased the TGF-β-induced FOXP3 expression and stability and also increased the suppressive activity of Vγ9 Vδ2 T cells. Importantly, pVC induced hypomethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene. Genome-wide methylation analysis by Reduced Representation Bisulfite Sequencing additionally revealed differentially methylated regions in several important genes upon pVC treatment of γδ T cells. While Vitamin C also enhances effector functions of Vγ9 Vδ2 T cells in the absence of TGF-β, our results demonstrate that pVC potently increases the suppressive activity and FOXP3 expression in TGF-β-treated Vγ9 Vδ2 T cells by epigenetic modification of the FOXP3 gene.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Qiwei Sun
- BGI Genomics Institute, Shenzhen, China
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
- Metabolic Programming, School of Life Sciences, Technical University Munich (TUM), 85354, Freising, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany.
| |
Collapse
|
47
|
Gubenzhike Recipe Ameliorates Respiratory Mucosal Immunity in Mice with Chronic Obstructive Pulmonary Disease through Upregulation of the γδT Lymphocytes and KGF Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3056797. [PMID: 32280354 PMCID: PMC7128036 DOI: 10.1155/2020/3056797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
Background Gubenzhike recipe, a traditional Chinese herbal compound, was assumed to have a possible beneficial effect on COPD. This study was designed to elucidate the mechanism from the perspective of respiratory mucosal immunity. Methods COPD model was induced by exposure to cigarette smoke and LPS instillation in mice for 12 weeks. Animals were administered solution of Gubenzhike recipe by intragastric gavage daily for 4 weeks. After that, mice were sacrificed for lung function test and histological examination of lung tissues. The levels of IL-6 and IL-13 in serum, bronchoalveolar lavage fluid (BALF), and intestinal mucus were measured by ELISA. The KGF and KGFR in lung tissue were analysed by immunohistochemical staining, ELISA, and western blotting, and the mRNA expressions were assessed by PCR. γδT lymphocytes in the lungs were isolated and analysed by immunohistochemical staining and flow cytometry. Results Gubenzhike recipe improved the structure of airway and damage of lung tissue and also the respiratory status and lung function, reduced the content of IL-6 in serum and BALF and IL-13 in BALF and intestinal mucus, increased the proportion of γδT cells in lung tissue, and promoted the secretion of KGF and KGFR (P < 0.05). Conclusion We for the first time demonstrated an experimental procedure for the isolation of γδT lymphocytes from lung tissue. This study suggested that Gubenzhike recipe could enhance the respiratory mucosal immunity which provided experimental evidence for its effects of reinforcing "wei qi" by means of strengthening vital qi, tonifying spleen and kidney, relieving cough, and reducing phlegm in TCM.
Collapse
|
48
|
de Wolf ACMT, Herberts CA, Hoefnagel MHN. Dawn of Monitoring Regulatory T Cells in (Pre-)clinical Studies: Their Relevance Is Slowly Recognised. Front Med (Lausanne) 2020; 7:91. [PMID: 32300597 PMCID: PMC7142310 DOI: 10.3389/fmed.2020.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.
Collapse
|
49
|
Schilbach K, Krickeberg N, Kaißer C, Mingram S, Kind J, Siegers GM, Hashimoto H. Suppressive activity of Vδ2 + γδ T cells on αβ T cells is licensed by TCR signaling and correlates with signal strength. Cancer Immunol Immunother 2020; 69:593-610. [PMID: 31982940 PMCID: PMC7113223 DOI: 10.1007/s00262-019-02469-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
Despite recent progress in the understanding of γδ T cells' roles and functions, their interaction with αβ T cells still remains to be elucidated. In this study, we sought to clarify what precisely endows peripheral Vδ2+ T cells with immunosuppressive function on autologous αβ T cells. We found that negatively freshly isolated Vδ2+ T cells do not exhibit suppressive behavior, even after stimulation with IL-12/IL-18/IL-15 or the sheer contact with butyrophilin-3A1-expressing tumor cell lines (U251 or SK-Mel-28). On the other hand, Vδ2+ T cells positively isolated through TCR crosslinking or after prolonged stimulation with isopentenyl pyrophosphate (IPP) mediate strong inhibitory effects on αβ T cell proliferation. Stimulation with IPP in the presence of IL-15 induces the most robust suppressive phenotype of Vδ2+ T cells. This indicates that Vδ2+ T cells' suppressive activity is dependent on a TCR signal and that the degree of suppression correlates with its strength. Vδ2+ T cell immunosuppression does not correlate with their Foxp3 expression but rather with their PD-L1 protein expression, evidenced by the massive reduction of suppressive activity when using a blocking antibody. In conclusion, pharmacologic stimulation of Vδ2+ T cells via the Vδ2 TCR for activation and expansion induces Vδ2+ T cells' potent killer activity while simultaneously licensing them to suppress αβ T cell responses. Taken together, the study is a further step to understand-in more detail-the suppressive activity of Vδ2+ γδ T cells.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/immunology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cells, Cultured
- Gene Expression/drug effects
- Gene Expression/immunology
- Hemiterpenes/pharmacology
- Humans
- Immune Tolerance/drug effects
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Interleukin-15/pharmacology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Organophosphorus Compounds/pharmacology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany.
| | - Naomi Krickeberg
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Carlotta Kaißer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Simon Mingram
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Janika Kind
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | | | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| |
Collapse
|
50
|
Criado M, Benavides J, Vallejo R, Arteche N, Gutiérrez D, Ferreras MC, Pérez V, Espinosa J. Local assessment of WC1 + γδ T lymphocyte subset in the different types of lesions associated with bovine paratuberculosis. Comp Immunol Microbiol Infect Dis 2020; 69:101422. [PMID: 31982851 DOI: 10.1016/j.cimid.2020.101422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The local expression of WC1+ γδ T lymphocytes subset has been evaluated by immunohistochemical methods at the different types of lesions present in cows naturally infected with Mycobacterium avium subsp. paratuberculosis (Map) and in non-infected control animals. Infected cattle were either in the latent/subclinical (focal lesions) or clinical (diffuse paucibacillary and multibacillary forms) stage of paratuberculosis. To assess the cell distribution, a differential cell count was carried out at the lamina propria, gut-associated lymphoid tissue and submucosa. A significant increase in the number of WC1+ γδ T cells was observed in all the infected animals, regardless of the type of lesion. Cows with focal lesions showed higher number of labeled cells than those with diffuse forms, where no differences were found between the two types. This increase in the number of positively immunolabelled lymphocytes in infected animals was seen in the lamina propria, with higher values in those with focal lesions. While in the lymphoid tissue no differences in the numbers were observed, in animals with focal lesions, WC1+ γδ T cells tended to be located at the periphery of the granulomas. These findings suggest a proinflammatory action of WC1+ γδ T lymphocytes in bovine paratuberculosis, which might play an important role in the containment of the Map-infection in the focal granulomas located in the lymphoid tissue, helping to prevent the progression toward diffuse forms responsible for the clinical signs.
Collapse
Affiliation(s)
- Miguel Criado
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Julio Benavides
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Raquel Vallejo
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Noive Arteche
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Daniel Gutiérrez
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - M Carmen Ferreras
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Valentín Pérez
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - José Espinosa
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain.
| |
Collapse
|