1
|
Chen J, Ren C, Zhao S, Wu H, Wang J, Dong Y, Liu S, Pan Y, Xiao Z, Yang S, Zhang J, Liu M. CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility. Cell Mol Life Sci 2025; 82:61. [PMID: 39853433 DOI: 10.1007/s00018-025-05583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025]
Abstract
Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants. The knockout mice displayed severe sperm flagellar defects (MMAF), high hydrocephalus incidence, but no significant impact on respiratory cilia. Similarly, the patients exhibited MMAF and infertility without respiratory symptoms. CFAP65 was found to anchor at the base of the C2a projection of the axoneme, interacting with proteins such as CFAP70 and MYCBPAP. Loss of CFAP65 caused disorganization of the sperm head-shaping microtubule structure and impaired protamine precursor removal, leading to nuclear condensation defects and poor assisted reproductive outcomes. Importantly, the assembly of CFAP65 was unaffected in mice with defects in the radial spokes (RSs) and nexin-dynein regulatory complex (N-DRC), indicating that CFAP65 assembly is independent of these components. However, CFAP65 deficiency led to the disintegration of the C2a projection, compromising ciliary and flagellar integrity. These findings establish CFAP65 as an essential component of the C2a projection, critical for the structure and function of sperm flagella and ependymal cilia, but not respiratory cilia, underscoring the organ-specific consequences of C2a projection defects in PCD.
Collapse
Affiliation(s)
- Jinyi Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Chuan Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiaxiong Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhuang Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shenmin Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215002, China.
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Wloga D, Joachimiak E, Osinka A, Ahmadi S, Majhi S. Motile Cilia in Female and Male Reproductive Tracts and Fertility. Cells 2024; 13:1974. [PMID: 39682722 DOI: 10.3390/cells13231974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia. Uncoordinated or altered cilia motion or cilia immotility may result in subfertility or even infertility. Here, we summarize the current knowledge regarding the localization and function of MCCs in the human reproductive tracts, discuss how cilia and cilia beating-generated fluid flow directly and indirectly contribute to the processes in these organs, and how lack or improper functioning of cilia influence human fertility.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Salman Ahmadi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Lindemann CB, Lesich KA. The mechanics of cilia and flagella: What we know and what we need to know. Cytoskeleton (Hoboken) 2024; 81:648-668. [PMID: 38780123 DOI: 10.1002/cm.21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In this review, we provide a condensed overview of what is currently known about the mechanical functioning of the flagellar/ciliary axoneme. We also present a list of 10 specific areas where our current knowledge is incomplete and explain the benefits of further experimental investigation. Many of the physical parameters of the axoneme and its component parts have not been determined. This limits our ability to understand how the axoneme structure contributes to its functioning in several regards. It restricts our ability to understand how the mechanics of the structure contribute to the regulation of motor function. It also confines our ability to understand the three-dimensional workings of the axoneme and how various beating modes are accomplished. Lastly, it prevents accurate computational modeling of the axoneme in three-dimensions.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
4
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Brody SL, Pan J, Huang T, Xu J, Xu H, Koenitizer J, Brennan SK, Nanjundappa R, Saba TG, Berical A, Hawkins FJ, Wang X, Zhang R, Mahjoub MR, Horani A, Dutcher SK. Loss of an extensive ciliary connectome induces proteostasis and cell fate switching in a severe motile ciliopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585965. [PMID: 38562900 PMCID: PMC10983967 DOI: 10.1101/2024.03.20.585965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in CCDC39 and CCDC40 cause severe disease not explained by loss of motility. Using human cells with pathological variants in these genes, Chlamydomonas genetics, cryo-electron microscopy, single cell RNA transcriptomics, and proteomics, we identified perturbations in multiple cilia-independent pathways. Absence of the axonemal CCDC39/CCDC40 heterodimer results in loss of a connectome of over 90 proteins. The undocked connectome activates cell quality control pathways, switches multiciliated cell fate, impairs microtubule architecture, and creates a defective periciliary barrier. Both cilia-dependent and independent defects are likely responsible for the disease severity. Our findings provide a foundation for reconsidering the broad cellular impact of pathologic variants in ciliopathies and suggest new directions for therapies.
Collapse
Affiliation(s)
- Steven L. Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jeffrey Koenitizer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Steven K. Brennan
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rashmi Nanjundappa
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas G. Saba
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amjad Horani
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Susan K. Dutcher
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
6
|
Ghanaeian A, Majhi S, McCafferty CL, Nami B, Black CS, Yang SK, Legal T, Papoulas O, Janowska M, Valente-Paterno M, Marcotte EM, Wloga D, Bui KH. Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. Nat Commun 2023; 14:5741. [PMID: 37714832 PMCID: PMC10504270 DOI: 10.1038/s41467-023-41480-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, using cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localize 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila. We also find that the CCDC96/113 complex is in close contact with the DRC9/10 in the linker region. In addition, we reveal that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.
Collapse
Affiliation(s)
- Avrin Ghanaeian
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Babak Nami
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Martyna Janowska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Institute of Experimental and Clinical Medicine, Polish Academy of Science, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada.
| |
Collapse
|
7
|
Ghanaeian A, Majhi S, McCaffrey CL, Nami B, Black CS, Yang SK, Legal T, Papoulas O, Janowska M, Valente-Paterno M, Marcotte EM, Wloga D, Bui KH. Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543107. [PMID: 37398254 PMCID: PMC10312493 DOI: 10.1101/2023.05.31.543107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila . We also found that the CCDC96/113 complex is in close contact with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.
Collapse
Affiliation(s)
- Avrin Ghanaeian
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Caitie L McCaffrey
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Babak Nami
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Martyna Janowska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
- current address: Laboratory of Immunology, Mossakowski Institute of Experimental and Clinical Medicine, Polish Academy of Science, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
8
|
Walton T, Gui M, Velkova S, Fassad MR, Hirst RA, Haarman E, O'Callaghan C, Bottier M, Burgoyne T, Mitchison HM, Brown A. Axonemal structures reveal mechanoregulatory and disease mechanisms. Nature 2023; 618:625-633. [PMID: 37258679 PMCID: PMC10266980 DOI: 10.1038/s41586-023-06140-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures.
Collapse
Affiliation(s)
- Travis Walton
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Simona Velkova
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mahmoud R Fassad
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Eric Haarman
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christopher O'Callaghan
- Infection, Immunity & Inflammation Department, NIHR GOSH BRC, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mathieu Bottier
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Thomas Burgoyne
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Kubo S, Black CS, Joachimiak E, Yang SK, Legal T, Peri K, Khalifa AAZ, Ghanaeian A, McCafferty CL, Valente-Paterno M, De Bellis C, Huynh PM, Fan Z, Marcotte EM, Wloga D, Bui KH. Native doublet microtubules from Tetrahymena thermophila reveal the importance of outer junction proteins. Nat Commun 2023; 14:2168. [PMID: 37061538 PMCID: PMC10105768 DOI: 10.1038/s41467-023-37868-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Cilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs). However, the functions of most MIPs remain unknown. Here, we present single-particle cryo-EM-based analyses of the Tetrahymena thermophila native doublet microtubule and identify 42 MIPs. These data shed light on the evolutionarily conserved and diversified roles of MIPs. In addition, we identified MIPs potentially responsible for the assembly and stability of the doublet outer junction. Knockout of the evolutionarily conserved outer junction component CFAP77 moderately diminishes Tetrahymena swimming speed and beat frequency, indicating the important role of CFAP77 and outer junction stability in cilia beating generation and/or regulation.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Katya Peri
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Ahmad Abdelzaher Zaki Khalifa
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Avrin Ghanaeian
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| | - Chelsea De Bellis
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Phuong M Huynh
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Zhe Fan
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and Adjacent Inner Dynein Arms in Tetrahymena Cilia. Cells 2022; 11:cells11244048. [PMID: 36552811 PMCID: PMC9776847 DOI: 10.3390/cells11244048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.
Collapse
|
11
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
12
|
De Ita M, Gaytán-Cervantes J, Cisneros B, Araujo MA, Huicochea-Montiel JC, Cárdenas-Conejo A, Lazo-Cárdenas CC, Ramírez-Portillo CI, Feria-Kaiser C, Peregrino-Bejarano L, Yáñez-Gutiérrez L, González-Torres C, Rosas-Vargas H. Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries. Genes (Basel) 2022; 13:genes13091662. [PMID: 36140829 PMCID: PMC9498580 DOI: 10.3390/genes13091662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling.
Collapse
Affiliation(s)
- Marlon De Ita
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
| | - Bulmaro Cisneros
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - María Antonieta Araujo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Juan Carlos Huicochea-Montiel
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Alan Cárdenas-Conejo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Charles César Lazo-Cárdenas
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - César Iván Ramírez-Portillo
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Carina Feria-Kaiser
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | | | - Lucelli Yáñez-Gutiérrez
- Clínica de Cardiopatías Congénitas, UMAE Hospital de Cardiología, CMN Siglo XXI, Ciudad de México 06720, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| |
Collapse
|
13
|
Soh AWJ, Woodhams LG, Junker AD, Enloe CM, Noren BE, Harned A, Westlake CJ, Narayan K, Oakey JS, Bayly PV, Pearson CG. Intracellular connections between basal bodies promote the coordinated behavior of motile cilia. Mol Biol Cell 2022; 33:br18. [PMID: 35767367 DOI: 10.1091/mbc.e22-05-0150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrodynamic flow produced by multiciliated cells is critical for fluid circulation and cell motility. Hundreds of cilia beat with metachronal synchrony for fluid flow. Cilia-driven fluid flow produces extracellular hydrodynamic forces that cause neighboring cilia to beat in a synchronized manner. However, hydrodynamic coupling between neighboring cilia is not the sole mechanism that drives cilia synchrony. Cilia are nucleated by basal bodies (BBs) that link to each other and to the cell's cortex via BB-associated appendages. The intracellular BB and cortical network is hypothesized to synchronize ciliary beating by transmitting cilia coordination cues. The extent of intracellular ciliary connections and the nature of these stimuli remain unclear. Moreover, how BB connections influence the dynamics of individual cilia has not been established. We show by focused ion beam scanning electron microscopy imaging that cilia are coupled both longitudinally and laterally in the ciliate Tetrahymena thermophila by the underlying BB and cortical cytoskeletal network. To visualize the behavior of individual cilia in live, immobilized Tetrahymena cells, we developed Delivered Iron Particle Ubiety Live Light (DIPULL) microscopy. Quantitative and computer analyses of ciliary dynamics reveal that BB connections control ciliary waveform and coordinate ciliary beating. Loss of BB connections reduces cilia-dependent fluid flow forces.
Collapse
Affiliation(s)
- Adam W J Soh
- Department of Cell and Developmental Biology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Louis G Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Anthony D Junker
- Department of Cell and Developmental Biology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Cassidy M Enloe
- Department of Chemical Engineering, College of Engineering and Applied Science, University of Wyoming, Laramie, WY 82071
| | - Benjamin E Noren
- Department of Chemical Engineering, College of Engineering and Applied Science, University of Wyoming, Laramie, WY 82071
| | - Adam Harned
- Center for Molecular Microscopy and Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Kedar Narayan
- Center for Molecular Microscopy and Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - John S Oakey
- Department of Chemical Engineering, College of Engineering and Applied Science, University of Wyoming, Laramie, WY 82071
| | - Philip V Bayly
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Chad G Pearson
- Department of Cell and Developmental Biology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| |
Collapse
|
14
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
15
|
Abstract
Piwi-bound small RNAs induce programmed DNA elimination in the ciliated protozoan Tetrahymena. Using the phenomenon called codeletion, this process can be reprogrammed to induce ectopic DNA elimination at basically any given genomic location. Here, we describe the usage of codeletion for genetic studies in Tetrahymena and for investigations of the molecular mechanism of Piwi-directed programmed DNA elimination.
Collapse
Affiliation(s)
- Salman Shehzada
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
16
|
Fabritius AS, Bayless BA, Li S, Stoddard D, Heydeck W, Ebmeier CC, Anderson L, Gunnels T, Nachiappan C, Whittall JB, Old W, Agard DA, Nicastro D, Winey M. Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs. Mol Biol Cell 2021; 32:br8. [PMID: 34406789 PMCID: PMC8693976 DOI: 10.1091/mbc.e20-12-0786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.
Collapse
Affiliation(s)
- Amy S. Fabritius
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Brian A. Bayless
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
- Department of Biology, Santa Clara University, Santa Clara, CA 95053
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
| | - Daniel Stoddard
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Westley Heydeck
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Christopher C. Ebmeier
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Lauren Anderson
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Tess Gunnels
- Department of Biology, Santa Clara University, Santa Clara, CA 95053
| | | | | | - William Old
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| |
Collapse
|
17
|
Composition and function of the C1b/C1f region in the ciliary central apparatus. Sci Rep 2021; 11:11760. [PMID: 34083607 PMCID: PMC8175508 DOI: 10.1038/s41598-021-90996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.
Collapse
|
18
|
Pyrih J, Žárský V, Fellows JD, Grosche C, Wloga D, Striepen B, Maier UG, Tachezy J. The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista. BMC Ecol Evol 2021; 21:46. [PMID: 33740894 PMCID: PMC7980591 DOI: 10.1186/s12862-021-01777-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. Results We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. Conclusion Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans). Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01777-x.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Justin D Fellows
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Christopher Grosche
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA, 19104, USA
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
19
|
Nabeel-Shah S, Garg J, Kougnassoukou Tchara PE, Pearlman RE, Lambert JP, Fillingham J. Functional proteomics protocol for the identification of interaction partners in Tetrahymena thermophila. STAR Protoc 2021; 2:100362. [PMID: 33786459 PMCID: PMC7988224 DOI: 10.1016/j.xpro.2021.100362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We describe an optimized protocol for one-step affinity purification of FZZ-tagged proteins followed by mass spectrometry analysis for the identification of protein-protein interactions in the ciliate protozoan Tetrahymena thermophila. The FZZ epitope tag contains 2 protein A moieties (ZZ) and a 3xFLAG separated by a TEV cleavage site, which can also be employed in tandem affinity purification. This protocol is versatile and is suitable to use for other common epitope tags and can be adapted for other ciliates. For complete details on the use and execution of this protocol, please refer to Garg et al. (2019).
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jyoti Garg
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center, Big Data Research Center, Université Laval, Quebec City, QC, Canada
- CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ronald E. Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Big Data Research Center, Université Laval, Quebec City, QC, Canada
- CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
20
|
Bazan R, Schröfel A, Joachimiak E, Poprzeczko M, Pigino G, Wloga D. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet 2021; 17:e1009388. [PMID: 33661892 PMCID: PMC7987202 DOI: 10.1371/journal.pgen.1009388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.
Collapse
Affiliation(s)
- Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adam Schröfel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Human Technopole, Milan, Italy
- * E-mail: (GP); (DW)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (GP); (DW)
| |
Collapse
|
21
|
Drew K, Lee C, Cox RM, Dang V, Devitt CC, McWhite CD, Papoulas O, Huizar RL, Marcotte EM, Wallingford JB. A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. Dev Biol 2020; 467:108-117. [PMID: 32898505 DOI: 10.1016/j.ydbio.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.e., label-free) method. Application of DIF-FRAC to cultured tissue explants of Xenopus mucociliary epithelium identified dozens of known RNA-associated proteins as expected, but also several novel RNA-associated proteins, including proteins related to assembly of the mitotic spindle and regulation of ciliary beating. In particular, we show that the inner dynein arm tether Cfap44 is an RNA-associated protein that localizes not only to axonemes, but also to liquid-like organelles in the cytoplasm called DynAPs. This result led us to discover that DynAPs are generally enriched for RNA. Together, these data provide a useful resource for a deeper understanding of mucociliary epithelia and demonstrate that DIF-FRAC will be broadly applicable for systematic identification of RNA-associated proteins from embryonic tissues.
Collapse
Affiliation(s)
- Kevin Drew
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Chanjae Lee
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Rachael M Cox
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Vy Dang
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Caitlin C Devitt
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Claire D McWhite
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ophelia Papoulas
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ryan L Huizar
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Edward M Marcotte
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| | - John B Wallingford
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
22
|
Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020; 16:e1008691. [PMID: 32764743 PMCID: PMC7444499 DOI: 10.1371/journal.pgen.1008691] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/19/2020] [Accepted: 02/22/2020] [Indexed: 01/10/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mihaela Stoyanova
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wu-Lin Charng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mathieu Bottier
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Patrick R. Sears
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wei-Ning Yin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh Anne Daniels
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hailey Bowen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donald F. Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lawrence E. Ostrowski
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maimoona A. Zariwala
- Department of Pathology and Laboratory Medicine and the Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
23
|
Gardner LE, Horton KL, Shoemark A, Lucas JS, Nielsen KG, Kobbernagel H, Rubbo B, Hirst RA, Kouis P, Ullmann N, Reula A, Rumman N, Mitchison HM, Pinto A, Richardson C, Schmidt A, Thompson J, Gaupmann R, Dabrowski M, Mill P, Carr SB, Norris DP, Kuehni CE, Goutaki M, Hogg C. Proceedings of the 4 th BEAT-PCD Conference and 5 th PCD Training School. BMC Proc 2020; 14:7. [PMID: 32577127 PMCID: PMC7304082 DOI: 10.1186/s12919-020-00191-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an inherited ciliopathy leading to chronic suppurative lung disease, chronic rhinosinusitis, middle ear disease, sub-fertility and situs abnormalities. As PCD is rare, it is important that scientists and clinicians foster international collaborations to share expertise in order to provide the best possible diagnostic and management strategies. 'Better Experimental Approaches to Treat Primary Ciliary Dyskinesia' (BEAT-PCD) is a multidisciplinary network funded by EU COST Action (BM1407) to coordinate innovative basic science and clinical research from across the world to drive advances in the field. The fourth and final BEAT-PCD Conference and fifth PCD Training School were held jointly in March 2019 in Poznan, Poland. The varied program of plenaries, workshops, break-out sessions, oral and poster presentations were aimed to enhance the knowledge and skills of delegates, whilst also providing a collaborative platform to exchange ideas. In this final BEAT-PCD conference we were able to build upon programmes developed throughout the lifetime of the COST Action. These proceedings report on the conference, highlighting some of the successes of the BEAT-PCD programme.
Collapse
Affiliation(s)
- Laura E Gardner
- Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital, Sydney Street, London, UK
| | - Katie L Horton
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Amelia Shoemark
- Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital, Sydney Street, London, UK.,Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Kim G Nielsen
- Danish PCD & Child Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Helene Kobbernagel
- Danish PCD & Child Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bruna Rubbo
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - Robert A Hirst
- Department of Respiratory Sciences, Centre for PCD Diagnosis and Research, University of Leicester, RKCSB, Leicester, LE2 7LX UK
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Nicola Ullmann
- Paediatric Pulmonology and Respiratory Intermediate Care Unit, Sleep and Long-term Ventilation Unit, Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Ana Reula
- Pathology Department, University of Valencia, Valencia, Spain.,Molecular, Cellular and Genomic Biomedicine Group, IIS La Fe, Valencia, Spain
| | - Nisreen Rumman
- Department of Pediatrics, Makassed Hospital, East Jerusalem, Palestine
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andreia Pinto
- Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital, Sydney Street, London, UK
| | - Charlotte Richardson
- Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital, Sydney Street, London, UK
| | - Anne Schmidt
- Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital, Sydney Street, London, UK
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK
| | - René Gaupmann
- Department of Paediatrics, Division of Paediatric Allergy, Pulmology, and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - Maciej Dabrowski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU UK
| | - Siobhan B Carr
- Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital, Sydney Street, London, UK
| | | | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Paediatric Respiratory Medicine, University Children's Hospital, University of Bern, Bern, Switzerland
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Paediatric Respiratory Medicine, University Children's Hospital, University of Bern, Bern, Switzerland
| | - Claire Hogg
- Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital, Sydney Street, London, UK
| |
Collapse
|
24
|
Soares H, Sunter JD, Wloga D, Joachimiak E, Miceli C. Trypanosoma, Paramecium and Tetrahymena: From genomics to flagellar and ciliary structures and cytoskeleton dynamics. Eur J Protistol 2020; 76:125722. [PMID: 32679518 DOI: 10.1016/j.ejop.2020.125722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Cilia and flagella play an important role in motility, sensory perception, and the life cycles of eukaryotes, from protists to humans. However, much critical information concerning cilia structure and function remains elusive. The vast majority of ciliary and flagellar proteins analyzed so far are evolutionarily conserved and play a similar role in protozoa and vertebrates. This makes protozoa attractive biological models for studying cilia biology. Research conducted on ciliated or flagellated protists may improve our general understanding of cilia protein composition, of cilia beating, and can shed light on the molecular basis of the human disorders caused by motile cilia dysfunction. The Symposium "From genomics to flagellar and ciliary structures and cytoskeleton dynamics" at ECOP2019 in Rome presented the latest discoveries about cilia biogenesis and the molecular mechanisms of ciliary and flagellum motility based on studies in Paramecium, Tetrahymena, and Trypanosoma. Here, we review the most relevant aspects presented and discussed during the symposium and add our perspectives for future research.
Collapse
Affiliation(s)
- Helena Soares
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| |
Collapse
|
25
|
Joachimiak E, Waclawek E, Niziolek M, Osinka A, Fabczak H, Gaertig J, Wloga D. The LisH Domain-Containing N-Terminal Fragment is Important for the Localization, Dimerization, and Stability of Katnal2 in Tetrahymena. Cells 2020; 9:cells9020292. [PMID: 31991798 PMCID: PMC7072489 DOI: 10.3390/cells9020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.
Collapse
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Ewa Waclawek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
- Correspondence: ; Tel.: +48-(22)-5892338
| |
Collapse
|
26
|
Beneke T, Banecki K, Fochler S, Gluenz E. LAX28 is required for the stable assembly of the inner dynein arm f complex, and the tether and tether head complex in Leishmania flagella. J Cell Sci 2020; 133:jcs239855. [PMID: 31932510 PMCID: PMC7747692 DOI: 10.1242/jcs.239855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins; however, the mechanisms of dynein coordination and regulation are incompletely understood. The inner dynein arm (IDA) f complex (also known as the I1 complex), and the tether and tether head (T/TH) complex are thought to be key regulators of dynein action but, unlike the IDA f complex, T/TH proteins remain poorly characterised. Here, we characterised T/TH-associated proteins in the protist Leishmania mexicana Proteome analysis of axonemes from null mutants for the CFAP44 T/TH protein showed that they lacked the IDA f protein IC140 and a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between LAX28 and the uncharacterised human sperm tail protein TEX47, both sharing features with sensory BLUF-domain-containing proteins. Leishmania lacking LAX28, CFAP44 or IC140 retained some motility, albeit with reduced swimming speed and directionality and a propensity for flagellar curling. Expression of tagged proteins in different null mutant backgrounds showed that the axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in motility and show mutual dependencies of IDA f and T/TH-associated proteins for axonemal assembly in Leishmania.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katherine Banecki
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sophia Fochler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
27
|
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 2020; 140:21-42. [PMID: 31950240 DOI: 10.1007/s00439-020-02113-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.
Collapse
Affiliation(s)
- Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France.,INSERM U1016, Institut Cochin, 75014, Paris, France.,Centre National de La Recherche Scientifique UMR8104, 75014, Paris, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
| |
Collapse
|
28
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
29
|
Bayless BA, Navarro FM, Winey M. Motile Cilia: Innovation and Insight From Ciliate Model Organisms. Front Cell Dev Biol 2019; 7:265. [PMID: 31737631 PMCID: PMC6838636 DOI: 10.3389/fcell.2019.00265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Ciliates are a powerful model organism for the study of basal bodies and motile cilia. These single-celled protists contain hundreds of cilia organized in an array making them an ideal system for both light and electron microscopy studies. Isolation and subsequent proteomic analysis of both cilia and basal bodies have been carried out to great success in ciliates. These studies reveal that ciliates share remarkable protein conservation with metazoans and have identified a number of essential basal body/ciliary proteins. Ciliates also boast a genetic and molecular toolbox that allows for facile manipulation of ciliary genes. Reverse genetics studies in ciliates have expanded our understanding of how cilia are positioned within an array, assembled, stabilized, and function at a molecular level. The advantages of cilia number coupled with a robust genetic and molecular toolbox have established ciliates as an ideal system for motile cilia and basal body research and prove a promising system for future research.
Collapse
Affiliation(s)
- Brian A Bayless
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Francesca M Navarro
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
30
|
Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R. Structure of the Decorated Ciliary Doublet Microtubule. Cell 2019; 179:909-922.e12. [PMID: 31668805 PMCID: PMC6936269 DOI: 10.1016/j.cell.2019.09.030] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
The axoneme of motile cilia is the largest macromolecular machine of eukaryotic cells. In humans, impaired axoneme function causes a range of ciliopathies. Axoneme assembly, structure, and motility require a radially arranged set of doublet microtubules, each decorated in repeating patterns with non-tubulin components. We use single-particle cryo-electron microscopy to visualize and build an atomic model of the repeating structure of a native axonemal doublet microtubule, which reveals the identities, positions, repeat lengths, and interactions of 38 associated proteins, including 33 microtubule inner proteins (MIPs). The structure demonstrates how these proteins establish the unique architecture of doublet microtubules, maintain coherent periodicities along the axoneme, and stabilize the microtubules against the repeated mechanical stress induced by ciliary motility. Our work elucidates the architectural principles that underpin the assembly of this large, repetitive eukaryotic structure and provides a molecular basis for understanding the etiology of human ciliopathies.
Collapse
Affiliation(s)
- Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Mihaela Stoyanova
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Griffin Rademacher
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
31
|
Beurois J, Martinez G, Cazin C, Kherraf ZE, Amiri-Yekta A, Thierry-Mieg N, Bidart M, Petre G, Satre V, Brouillet S, Touré A, Arnoult C, Ray PF, Coutton C. CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report. Hum Reprod 2019; 34:2071-2079. [DOI: 10.1093/humrep/dez166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/14/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The use of high-throughput sequencing techniques has allowed the identification of numerous mutations in genes responsible for severe astheno-teratozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). However, more than half of the analysed cases remain unresolved suggesting that many yet uncharacterised gene defects account for this phenotype. Based on whole-exome sequencing data from a large cohort of 167 MMAF-affected subjects, we identified two unrelated affected individuals carrying a homozygous deleterious mutation in CFAP70, a gene not previously linked to the MMAF phenotype. One patient had a homozygous splice variant c.1723-1G>T, altering a consensus splice acceptor site of CFAP70 exon 16, and one had a likely deleterious missense variant in exon 3 (p.Phe60Ile). The CFAP70 gene encodes a regulator protein of the outer dynein arms (ODA) strongly expressed in the human testis. In the sperm cells from the patient carrying the splice variant, immunofluorescence (IF) experiments confirmed the absence of the protein in the sperm flagellum. Moreover, IF analysis showed the absence of markers for the ODAs and the central pair complex of the axoneme. Interestingly, whereas CFAP70 staining was present in sperm cells from patients with mutations in the three other MMAF-related genes ARMC2, FSIP2 and CFAP43, we observed an absence of staining in sperm cells from patients mutated in the WDR66 gene, suggesting a possible interaction between two different axonemal components. In conclusion, this work provides the first evidence that loss of CFAP70 function causes MMAF and that ODA-related proteins may be crucial for the assembly and/or stability of the flagellum axoneme in addition to its motility.
Collapse
Affiliation(s)
- Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Marie Bidart
- INSERM U1205, UFR Chimie Biologie, Université Grenoble Alpes, Grenoble, France
| | - Graciane Petre
- INSERM U1205, UFR Chimie Biologie, Université Grenoble Alpes, Grenoble, France
| | - Véronique Satre
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Sophie Brouillet
- Laboratoire d'AMP-CECOS, CHU Grenoble-Alpes, U1036 INSERM-UGA-CEA-CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France
- UMR 8104, Centre National de la Recherche Scientifique, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000 Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| |
Collapse
|
32
|
Lin J, Le TV, Augspurger K, Tritschler D, Bower R, Fu G, Perrone C, O’Toole ET, Mills KV, Dymek E, Smith E, Nicastro D, Porter ME. FAP57/WDR65 targets assembly of a subset of inner arm dyneins and connects to regulatory hubs in cilia. Mol Biol Cell 2019; 30:2659-2680. [PMID: 31483737 PMCID: PMC6761771 DOI: 10.1091/mbc.e19-07-0367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat and the highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for preassembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms (IDAs) to a specific location in the 96 nm repeat. IDA8 encodes flagellar-associated polypeptide (FAP)57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple IDAs and regulatory complexes.
Collapse
Affiliation(s)
- Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Thuc Vy Le
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Katherine Augspurger
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Catherine Perrone
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eileen T. O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Erin Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Elizabeth Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E. Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
33
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
34
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
35
|
Morimoto Y, Yoshida S, Kinoshita A, Satoh C, Mishima H, Yamaguchi N, Matsuda K, Sakaguchi M, Tanaka T, Komohara Y, Imamura A, Ozawa H, Nakashima M, Kurotaki N, Kishino T, Yoshiura KI, Ono S. Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology 2019; 92:e2364-e2374. [PMID: 31004071 PMCID: PMC6598815 DOI: 10.1212/wnl.0000000000007505] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/22/2019] [Indexed: 11/24/2022] Open
Abstract
Objective To identify genes related to normal-pressure hydrocephalus (NPH) in one Japanese family with several members with NPH. Methods We performed whole-exome sequencing (WES) on a Japanese family with multiple individuals with NPH and identified a candidate gene. Then we generated knockout mouse using CRISPR/Cas9 to confirm the effect of the candidate gene on the pathogenesis of hydrocephalus. Results In WES, we identified a loss-of-function variant in CFAP43 that segregated with the disease. CFAP43 encoding cilia- and flagella-associated protein is preferentially expressed in the testis. Recent studies have revealed that mutations in this gene cause male infertility owing to morphologic abnormalities of sperm flagella. We knocked out mouse ortholog Cfap43 using CRISPR/Cas9 technology, resulting in Cfap43-deficient mice that exhibited a hydrocephalus phenotype with morphologic abnormality of motile cilia. Conclusion Our results strongly suggest that CFAP43 is responsible for morphologic or movement abnormalities of cilia in the brain that result in NPH.
Collapse
Affiliation(s)
- Yoshiro Morimoto
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Shintaro Yoshida
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Akira Kinoshita
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Chisei Satoh
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Hiroyuki Mishima
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Naohiro Yamaguchi
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Katsuya Matsuda
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Miako Sakaguchi
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Takeshi Tanaka
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Yoshihiro Komohara
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Akira Imamura
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Hiroki Ozawa
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Masahiro Nakashima
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Naohiro Kurotaki
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Tatsuya Kishino
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Koh-Ichiro Yoshiura
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan
| | - Shinji Ono
- From the Departments of Neuropsychiatry (Y.M., N.Y., H.O.) and Otolaryngology-Head and Neck Surgery (C.S.), Unit of Translation Medicine, and Department of Human Genetics (S.Y., A.K., H.M., K.-i.Y., S.O.), Nagasaki University Graduate School of Biomedical Sciences; Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute (K.M., M.N.), Central Laboratory, Institute of Tropical Medicine (NEKKEN) (M.S.), and Gene Research Center, Center for Frontier Life Sciences (T.K.), Nagasaki University; Department of Infectious Diseases (T.T.) and Child and Adolescent Psychiatry Community Partnership Unit (A.I.), Nagasaki University Hospital; Department of Cell Pathology (Y.K.), Graduate School of Medical Sciences, Kumamoto University; and Department of Clinical Psychology, Faculty of Medicine (N.K.), Kagawa University, Takamatsu, Japan.
| |
Collapse
|
36
|
Nsota Mbango JF, Coutton C, Arnoult C, Ray PF, Touré A. Genetic causes of male infertility: snapshot on morphological abnormalities of the sperm flagellum. Basic Clin Androl 2019; 29:2. [PMID: 30867909 PMCID: PMC6398242 DOI: 10.1186/s12610-019-0083-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
Male infertility due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF), is characterized by nearly total asthenozoospermia due to the presence of a mosaic of sperm flagellar anomalies, which corresponds to short, angulated, absent flagella and flagella of irregular calibre. In the last four years, 7 novel genes whose mutations account for 45% of a cohort of 78 MMAF individuals were identified: DNAH1, CFAP43, CFAP44, CFAP69, FSIP2, WDR66 (CFAP251), AK7. This successful outcome results from the efficient combination of high-throughput sequencing technologies together with robust and complementary approaches for functional validation, in vitro, and in vivo using the mouse and unicellular model organisms such as the flagellated parasite T. brucei. Importantly, these genes are distinct from genes responsible for Primary Ciliary Dyskinesia (PCD), an autosomal recessive disease associated with both respiratory cilia and sperm flagellum defects, and their mutations therefore exclusively lead to male infertility. In the future, these genetic findings will definitely improve the diagnosis efficiency of male infertility and might provide genotype-phenotype correlations, which could be helpful for the prognosis of intracytoplasmic sperm injection (ICSI) performed with sperm from MMAF patients. In addition, functional study of these novel genes should improve our knowledge about the protein networks and molecular mechanisms involved in mammalian sperm flagellum structure and beating.
Collapse
Affiliation(s)
- Jean-Fabrice Nsota Mbango
- 1INSERMU1016, CNRS UMR8104, Université Paris Descartes, 75014 Paris, France.,2Centre National de la Recherche Scientifique UMR8104, 75014 Paris, France.,3Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Charles Coutton
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France.,5CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Pierre F Ray
- Institut for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France.,CHU de Grenoble, UM GI-DPI, F-38000 Grenoble, France
| | - Aminata Touré
- 1INSERMU1016, CNRS UMR8104, Université Paris Descartes, 75014 Paris, France.,2Centre National de la Recherche Scientifique UMR8104, 75014 Paris, France.,3Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
37
|
Fu G, Wang Q, Phan N, Urbanska P, Joachimiak E, Lin J, Wloga D, Nicastro D. The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Mol Biol Cell 2018. [PMID: 29514928 PMCID: PMC5921572 DOI: 10.1091/mbc.e18-02-0142] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Motile cilia are essential for propelling cells and moving fluids across tissues. The activity of axonemal dynein motors must be precisely coordinated to generate ciliary motility, but their regulatory mechanisms are not well understood. The tether and tether head (T/TH) complex was hypothesized to provide mechanical feedback during ciliary beating because it links the motor domains of the regulatory I1 dynein to the ciliary doublet microtubule. Combining genetic and biochemical approaches with cryoelectron tomography, we identified FAP44 and FAP43 (plus the algae-specific, FAP43-redundant FAP244) as T/TH components. WT-mutant comparisons revealed that the heterodimeric T/TH complex is required for the positional stability of the I1 dynein motor domains, stable anchoring of CK1 kinase, and proper phosphorylation of the regulatory IC138-subunit. T/TH also interacts with inner dynein arm d and radial spoke 3, another important motility regulator. The T/TH complex is a conserved regulator of I1 dynein and plays an important role in the signaling pathway that is critical for normal ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Qian Wang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|