1
|
Li X, Xing SS, Meng SB, Hou ZY, Yu L, Chen MJ, Yuan DD, Xu HF, Cai HF, Li M. SOX6 AU controls myogenesis by cis-modulation of SOX6 in cattle. Epigenetics 2024; 19:2341578. [PMID: 38615330 PMCID: PMC11018032 DOI: 10.1080/15592294.2024.2341578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/06/2024] [Indexed: 04/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.
Collapse
Affiliation(s)
| | | | - Sheng-Bo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhong-Yi Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lei Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Meng-Juan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dong-Dong Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hui-Fen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Han-Fang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Krishna BM, Garg P, Ramisetty S, Subbalakshmi AR, Kulkarni P, Salgia R, Singhal SS. Comprehensive investigation of long non-coding RNA HOTAIR polymorphisms and cancer risk: a current meta-analysis encompassing 96,458 participants. Sci Rep 2024; 14:22670. [PMID: 39349529 PMCID: PMC11442654 DOI: 10.1038/s41598-024-72586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
Cancer ranks as the second leading cause of mortality worldwide, prompting extensive investigations into factors contributing to its development. Among these factors, genetic variations, known as genotypic polymorphisms, have been identified as significant influencers in the susceptibility to various types of cancer. Recent research has focused on exploring the connection between polymorphisms in the Long Non-coding RNA HOTAIR and cancer risk. However, the results from these studies have been inconsistent, leading to ambiguity and controversy. To address this uncertainty, we conducted a systematic analysis by gathering relevant studies from PubMed, EMBASE, and Google Scholar. Specifically, we focused on three well-studied polymorphisms within the HOTAIR lncRNA (HOTAIR rs920778 C > T, HOTAIR rs1899663 G > T, HOTAIR rs4759314 A > G) and their association with cancer risk. Our meta-analysis included data from 48 case-control studies involving 42,321 cases and 54,137 controls. The results of our updated meta-analysis revealed a significant correlation between HOTAIR rs1899663 G > T and HOTAIR rs4759314 A > G polymorphisms and overall cancer risk, particularly in the homozygous and recessive genetic models. Subgroup analysis further revealed that these associations were notably pronounced in the Asian population but not observed in the Iranian population. Furthermore, our findings underscore the potential of HOTAIR polymorphisms as diagnostic markers for overall cancer risk, particularly in gynecological cancers, precisely, HOTAIR rs1899663 G > T polymorphism in breast cancer. In conclusion, our systematic analysis provides compelling evidence that Long Non-coding RNA HOTAIR polymorphisms are linked to cancer risk, particularly in certain populations and cancer types, suggesting their potential clinical relevance as diagnostic indicators.
Collapse
Affiliation(s)
- B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sravani Ramisetty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ayalur Raghu Subbalakshmi
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Prakash Kulkarni
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Farzaneh M, Anbiyaee O, Azizidoost S, Nasrolahi A, Ghaedrahmati F, Kempisty B, Mozdziak P, Khoshnam SE, Najafi S. The Mechanisms of Long Non-coding RNA-XIST in Ischemic Stroke: Insights into Functional Roles and Therapeutic Potential. Mol Neurobiol 2024; 61:2745-2753. [PMID: 37932544 DOI: 10.1007/s12035-023-03740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke, which occurs due to the occlusion of cerebral arteries, is a common type of stroke. Recent research has highlighted the important role of long non-coding RNAs (lncRNAs) in the development of cerebrovascular diseases, specifically ischemic stroke. Understanding the functional roles of lncRNAs in ischemic stroke is crucial, given their potential contribution to the disease pathology. One noteworthy lncRNA is X-inactive specific transcript (XIST), which exhibits downregulation during the early stages of ischemic stroke and subsequent upregulation in later stages. XIST exert its influence on the development of ischemic stroke through interactions with multiple miRNAs and transcription factors. These interactions play a significant role in the pathogenesis of the condition. In this review, we have provided a comprehensive summary of the functional roles of XIST in ischemic stroke. By investigating the involvement of XIST in the disease process, we aim to enhance our understanding of the mechanisms underlying ischemic stroke and potentially identify novel therapeutic targets.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Namazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA
| | - Paul Mozdziak
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Maciak P, Suder A, Wadas J, Aronimo F, Maiuri P, Bochenek M, Pyrc K, Kula-Pacurar A, Pabis M. Dynamic changes in LINC00458/HBL1 lncRNA expression during hiPSC differentiation to cardiomyocytes. Sci Rep 2024; 14:109. [PMID: 38167488 PMCID: PMC10761834 DOI: 10.1038/s41598-023-49753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute the largest and most diverse class of non-coding RNAs. They localize to the nucleus, cytoplasm, or both compartments, and regulate gene expression through various mechanisms at multiple levels. LncRNAs tend to evolve faster and present higher tissue- and developmental stage-specific expression than protein-coding genes. Initially considered byproducts of erroneous transcription without biological function, lncRNAs are now recognized for their involvement in numerous biological processes, such as immune response, apoptosis, pluripotency, reprogramming, and differentiation. In this study, we focused on Heart Brake lncRNA 1 (HBL1), a lncRNA recently reported to modulate the process of pluripotent stem cell differentiation toward cardiomyocytes. We employed RT-qPCR and high-resolution RNA FISH to monitor the expression and localization of HBL1 during the differentiation progression. Our findings indicate a significant increase in HBL1 expression during mesodermal and cardiac mesodermal stages, preceding an anticipated decrease in differentiated cells. We detected the RNA in discrete foci in both the nucleus and in the cytoplasm. In the latter compartment, we observed colocalization of HBL1 with Y-box binding protein 1 (YB-1), which likely results from an interaction between the RNA and the protein, as the two were found to be coimmunoprecipitated in RNP-IP experiments. Finally, we provide evidence that HBL1, initially reported as an independent lncRNA gene, is part of the LINC00458 (also known as lncRNA-ES3 or ES3) gene, forming the last exon of some LINC00458 splice isoforms.
Collapse
Affiliation(s)
- Patrycja Maciak
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Agnieszka Suder
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Cracow, Poland
| | - Jakub Wadas
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Cracow, Poland
| | - Faith Aronimo
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michał Bochenek
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Anna Kula-Pacurar
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland.
| | - Marta Pabis
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland.
| |
Collapse
|
5
|
Danilevicz MF, Gill M, Fernandez CGT, Petereit J, Upadhyaya SR, Batley J, Bennamoun M, Edwards D, Bayer PE. DNABERT-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J 2023; 21:5676-5685. [PMID: 38058296 PMCID: PMC10696397 DOI: 10.1016/j.csbj.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
Long non-coding ribonucleic acids (lncRNAs) have been shown to play an important role in plant gene regulation, involving both epigenetic and transcript regulation. LncRNAs are transcripts longer than 200 nucleotides that are not translated into functional proteins but can be translated into small peptides. Machine learning models have predominantly used transcriptome data with manually defined features to detect lncRNAs, however, they often underrepresent the abundance of lncRNAs and can be biased in their detection. Here we present a study using Natural Language Processing (NLP) models to identify plant lncRNAs from genomic sequences rather than transcriptomic data. The NLP models were trained to predict lncRNAs for seven model and crop species (Zea mays, Arabidopsis thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Glycine max and Oryza sativa) using publicly available genomic references. We demonstrated that lncRNAs can be accurately predicted from genomic sequences with the highest accuracy of 83.4% for Z. mays and the lowest accuracy of 57.9% for B. rapa, revealing that genome assembly quality might affect the accuracy of lncRNA identification. Furthermore, we demonstrated the potential of using NLP models for cross-species prediction with an average of 63.1% accuracy using target species not previously seen by the model. As more species are incorporated into the training datasets, we expect the accuracy to increase, becoming a more reliable tool for uncovering novel lncRNAs. Finally, we show that the models can be interpreted using explainable artificial intelligence to identify motifs important to lncRNA prediction and that these motifs frequently flanked the lncRNA sequence.
Collapse
Affiliation(s)
| | - Mitchell Gill
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Australia
| | - Mohammed Bennamoun
- School of Physics, Mathematics and Computing, University of Western Australia, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Australia
| |
Collapse
|
6
|
Olazagoitia-Garmendia A, Senovilla-Ganzo R, García-Moreno F, Castellanos-Rubio A. Functional evolutionary convergence of long noncoding RNAs involved in embryonic development. Commun Biol 2023; 6:908. [PMID: 37670146 PMCID: PMC10480150 DOI: 10.1038/s42003-023-05278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Long noncoding RNAs have been identified in most vertebrates, but the functional characterization of these molecules is challenging, mainly due to the lack of linear sequence homology between species. In this work, we aimed to find functional evolutionary convergent lncRNAs involved in development by screening of k-mer content (nonlinear similarity) and secondary structure-based approaches combining in silico, in vitro and in vivo validation analysis. From the Madagascar gecko genes, we have found a non-orthologous lncRNA with a similar k-mer content and structurally concordant with the human lncRNA EVX1AS. Analysis of function-related characteristics together with locus-specific targeting of human EVX1AS and gecko EVX1AS-like (i.e., CRISPR Display) in human neuroepithelial cells and chicken mesencephalon have confirmed that gecko EVX1AS-like lncRNA mimics human EVX1AS function and induces EVX1 expression independently of the target species. Our data shows functional convergence of non-homologous lncRNAs and presents a useful approach for the definition and manipulation of lncRNA function within different model organisms.
Collapse
Affiliation(s)
- Ane Olazagoitia-Garmendia
- University of the Basque Country, UPV-EHU, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Fernando García-Moreno
- University of the Basque Country, UPV-EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ainara Castellanos-Rubio
- University of the Basque Country, UPV-EHU, Leioa, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- CIBERDEM/CIBERER, Madrid, Spain.
| |
Collapse
|
7
|
Choudhuri S. Long noncoding RNAs: biogenesis, regulation, function, and their emerging significance in toxicology. Toxicol Mech Methods 2023; 33:541-551. [PMID: 36992569 DOI: 10.1080/15376516.2023.2197489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
The repertoire of regulatory noncoding RNAs (ncRNAs) has been enriched by the inclusion of long noncoding RNA (lncRNA) that are longer than 200 nt. Some of the currently known lncRNAs, were reported in the 1990s before the term lncRNA was introduced. These lncRNAs have diverse regulatory functions including regulation of transcription via interactions with proteins and RNAs, chromatin remodeling, translation, posttranslational protein modification, protein trafficking and cell signaling. Predictably, the dysregulation of lncRNA expression due to exposure to toxicants may precipitate adverse health consequences. Dysregulation of lncRNAs has also been implicated in various adverse human health outcomes. There is an increasing agreement that lncRNA expression profiling data needs to be closely examined to determine whether their altered expression can be used as biomarkers of toxicity as well as adverse human health outcomes. This review summarizes the biogenesis, regulation, function of lncRNA and their emerging significance in toxicology and disease conditions. Because our understanding of the lncRNA-toxicity relationship is still evolving, this review discusses this developing field using some examples.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
8
|
Hou W, Zong M, Zhao Q, Yang X, Zhang J, Liu S, Li X, Chen L, Tang C, Wang X, Dong Z, Gao M, Su J, Kong Q. Network characterization linc1393 in the maintenance of pluripotency provides the principles for lncRNA targets prediction. iScience 2023; 26:107469. [PMID: 37588167 PMCID: PMC10425947 DOI: 10.1016/j.isci.2023.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in diverse biological processes. However, the functional mechanisms have not yet been fully explored. Characterizing the interactions of lncRNAs with chromatin is central to determining their functions but, due to precise and efficient approaches lacking, our understanding of their functional mechanisms has progressed slowly. In this study, we demonstrate that a nuclear lncRNA linc1393 maintains mouse ESC pluripotency by recruiting SET1A near its binding sites, to establish H3K4me3 status and activate the expression of specific pluripotency-related genes. Moreover, we characterized the principles of lncRNA-chromatin interaction and transcriptional regulation. Accordingly, we developed a computational framework based on the XGBoost model, LncTargeter, to predict the targets of a given lncRNA, and validated its reliability in various cellular contexts. Together, these findings elucidate the roles and mechanisms of lncRNA on pluripotency maintenance, and provide a promising tool for predicting the regulatory networks of lncRNAs.
Collapse
Affiliation(s)
- Weibo Hou
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Zong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Yang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuanghui Liu
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanwen Li
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Chen
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chun Tang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhixiong Dong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiling Gao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Bitar M, Rivera I, Almeida I, Shi W, Ferguson K, Beesley J, Lakhani S, Edwards S, French J. Redefining normal breast cell populations using long noncoding RNAs. Nucleic Acids Res 2023; 51:6389-6410. [PMID: 37144467 PMCID: PMC10325898 DOI: 10.1093/nar/gkad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Single-cell RNAseq has allowed unprecedented insight into gene expression across different cell populations in normal tissue and disease states. However, almost all studies rely on annotated gene sets to capture gene expression levels and sequencing reads that do not align to known genes are discarded. Here, we discover thousands of long noncoding RNAs (lncRNAs) expressed in human mammary epithelial cells and analyze their expression in individual cells of the normal breast. We show that lncRNA expression alone can discriminate between luminal and basal cell types and define subpopulations of both compartments. Clustering cells based on lncRNA expression identified additional basal subpopulations, compared to clustering based on annotated gene expression, suggesting that lncRNAs can provide an additional layer of information to better distinguish breast cell subpopulations. In contrast, these breast-specific lncRNAs poorly distinguish brain cell populations, highlighting the need to annotate tissue-specific lncRNAs prior to expression analyses. We also identified a panel of 100 breast lncRNAs that could discern breast cancer subtypes better than protein-coding markers. Overall, our results suggest that lncRNAs are an unexplored resource for new biomarker and therapeutic target discovery in the normal breast and breast cancer subtypes.
Collapse
Affiliation(s)
- Mainá Bitar
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Isela Sarahi Rivera
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
- School of Biomedical Science and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4001, Australia
| | - Isabela Almeida
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Wei Shi
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Kaltin Ferguson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane 4006, Australia
| | - Jonathan Beesley
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Brisbane 4006, Australia
- Pathology Queensland, The Royal Brisbane & Women's Hospital, Brisbane 4006, Australia
| | - Stacey L Edwards
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Juliet D French
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| |
Collapse
|
10
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
11
|
Shabna A, Bindhya S, Sidhanth C, Garg M, Ganesan TS. Long non-coding RNAs: Fundamental regulators and emerging targets of cancer stem cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188899. [PMID: 37105414 DOI: 10.1016/j.bbcan.2023.188899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, primarily due to the dearth of efficient therapies that result in long-lasting remission. This is especially true in cases of metastatic cancer where drug resistance causes the disease to recur after treatment. One of the factors contributing to drug resistance, metastasis, and aggressiveness of the cancer is cancer stem cells (CSCs) or tumor-initiating cells. As a result, CSCs have emerged as a potential target for drug development. In the present review, we have examined and highlighted the lncRNAs with their regulatory functions specific to CSCs. Moreover, we have discussed the difficulties and various methods involved in identifying lncRNAs that can play a particular role in regulating and maintaining CSCs. Interestingly, this review only focuses on those lncRNAs with strong functional evidence for CSC specificity and the mechanistic role that allows them to be CSC regulators and be the focus of CSC-specific drug development.
Collapse
Affiliation(s)
- Aboo Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India; Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 610016, India; Department of Endocrinology, Indian Council of Medical Research - National Institute of Nutrtion, Tarnaka, Hyderabad 50007, India
| | - Sadanadhan Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India; Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 610016, India.
| |
Collapse
|
12
|
Mishra A, Kumar R, Mishra SN, Vijayaraghavalu S, Tiwari NK, Shukla GC, Gurusamy N, Kumar M. Differential Expression of Non-Coding RNAs in Stem Cell Development and Therapeutics of Bone Disorders. Cells 2023; 12:cells12081159. [PMID: 37190068 PMCID: PMC10137108 DOI: 10.3390/cells12081159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into proteins but act as essential epigenetic regulators in stem cells' self-renewal and differentiation. Different signaling pathways are monitored efficiently by the differential expression of ncRNAs, which function as regulatory elements in determining the fate of stem cells. In addition, several species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases, including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their effective molecular mechanisms in the growth and development of stem cells, and in the regulation of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered ncRNA expression with stem cells and bone turnover.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Satya Narayan Mishra
- Maa Gayatri College of Pharmacy, Dr. APJ Abdul Kalam Technical University, Prayagraj 211009, India
| | | | - Neeraj Kumar Tiwari
- Department of IT-Satellite Centre, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Girish C Shukla
- Department of Biological, Geological, and Environmental Sciences, 2121 Euclid Ave., Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
13
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:cells12081115. [PMID: 37190024 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
14
|
Xie K, Yan Z, Yang Q, Huang X, Wang P, Gao X, Li J, Gun S. lnc001776 Affects CPB2 Toxin-Induced Excessive Injury of Porcine Intestinal Epithelial Cells via Activating JNK/NF-kB Pathway through ssc-let-7i-5p/IL-6 Axis. Cells 2023; 12:cells12071036. [PMID: 37048109 PMCID: PMC10093645 DOI: 10.3390/cells12071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Piglet diarrhea caused by Clostridium perfringens (C. perfringens) type C (CpC) seriously endangers the development of the pig production industry. C. perfringens beta2 (CPB2) toxin is a virulent toxin produced by CpC. Long non-coding RNAs (lncRNAs) are key regulators in the immune inflammatory response to bacterial infection. Nevertheless, the functional mechanism of lncRNAs in bacterial piglet diarrhea is unclear. Herein, a novel lncRNA lnc001776 expression was confirmed to be substantially elevated in the ileum tissue of CpC-infected diarrhea piglets and in CPB2 toxin-treated porcine small intestinal epithelial cells (IPEC-J2). lnc001776 knockdown restrained CPB2 toxin-induced apoptosis, inflammatory injury, barrier dysfunction and activation of JNK/NF-kB pathway in IPEC-J2 cells. Additionally, ssc-let-7i-5p was identified as sponge for lnc001776. Overexpression of ssc-let-7i-5p repressed CPB2-induced injury in IPEC-J2 cells. Interleukin 6 (IL-6), a target gene of ssc-let-7i-5p, was enhanced in CPB2 toxin-treated IPEC-J2 cells. Rescue experiments demonstrated that a ssc-let-7i-5p mimic reversed the effect of lnc001776 overexpression on CPB2 toxin-induced IPEC-J2 cell injury and JNK/NF-kB pathway, whereas IL-6 overexpression partially restored the impact of lnc001776. Overall, lnc001776 overexpression exacerbated CPB2 toxin-induced IPEC-J2 cell damage by sponging ssc-let-7i-5p to regulate IL-6 to activate JNK/NF-kB pathway, indicating that lnc001776 could be a key target for piglet resistance to CpC-induced diarrhea.
Collapse
|
15
|
Saga Y, Shimoyama Y, Yamada Y, Morikawa N, Kawata T. The cytosolic lncRNA dutA affects STATa signaling and developmental commitment in Dictyostelium. Genes Cells 2023; 28:111-128. [PMID: 36504347 DOI: 10.1111/gtc.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
STATa is a pivotal transcription factor for Dictyostelium development. dutA is the most abundant RNA transcribed by RNA polymerase II in Dictyostelium, and its functional interplay with STATa has been suggested. This study demonstrates that dutA RNA molecules are distributed as spot-like structures in the cytoplasm, and that its cell type-specific expression changes dramatically during development. dutA RNA was exclusively detectable in the prespore region of slugs and then predominantly localized in prestalk cells, including the organizer region, at the Mexican hat stage before most dutA transcripts, excluding those in prestalk O cells, disappeared as culmination proceeded. dutA RNA was not translated into small peptides from any potential open reading frame, which confirmed that it is a cytoplasmic lncRNA. Ectopic expression of dutA RNA in the organizer region of slugs caused a prolonged slug migration period. In addition, buffered suspension-cultured cells of the strain displayed reduced STATa nuclear translocation and phosphorylation on Tyr702. Analysis of gene expression in various dutA mutants revealed changes in the levels of several STATa-regulated genes, such as the transcription factors mybC and gtaG, which might affect the phenotype. dutA RNA may regulate several mRNA species, thereby playing an indirect role in STATa activation.
Collapse
Affiliation(s)
- Yukika Saga
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yudai Shimoyama
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yoko Yamada
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan.,Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Naoki Morikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
16
|
Song Y, Guo F, Zhao Y, Ma X, Wu L, Yu J, Ji H, Shao M, Huang F, Zhao L, Fan X, Xu Y, Wang Q, Qin G. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Prolif 2023; 56:e13349. [PMID: 36316968 PMCID: PMC9890532 DOI: 10.1111/cpr.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Elevated thioredoxin-interacting protein (TXNIP)-induced pyroptosis contributes to the pathology of diabetic kidney disease (DKD). However, the molecular mechanisms in dysregulated TXNIP in DKD remain largely unclear. MATERIALS AND METHODS Transcriptomic analysis identified a novel long noncoding RNA-Prader Willi/Angelman region RNA, SNRPN neighbour (PWARSN)-which was highly expressed in a proximal tubular epithelial cell (PTEC) under high glucose conditions. We focused on revealing the functions of PWARSN in regulating TXNIP-mediated pyroptosis in PTECs by targeting PWARSN expression via lentivirus-mediated overexpression and CRISPR-Cas9-based knockout in vitro and overexpressing PWARSN in the renal cortex by AAV-9 targeted injection in vivo. A number of molecular techniques disclosed the mechanisms of PWARSN in regulating TXNIP induced-pyroptosis in DKD. RESULTS TXNIP-NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and PTEC pyroptosis were activated in the renal tubules of patients with DKD and in diabetic mice. Then we explored that PWARSN enhanced TXNIP-driven PTECs pyroptosis in vitro and in vivo. Mechanistically, cytoplasmic PWARSN sponged miR-372-3p to promote TXNIP expression. Moreover, nuclear PWARSN interacted and facilitated RNA binding motif protein X-linked (RBMX) degradation through ubiquitination, resulting in the initiation of TXNIP transcription by reducing H3K9me3-enrichment at the TXNIP promoter. Further analysis indicated that PWARSN might be a potential biomarker for DKD. CONCLUSIONS These findings illustrate distinct dual molecular mechanisms for PWARSN-modulated TXNIP and PTECs pyroptosis in DKD, presenting PWARSN as a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Yi Song
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Feng Guo
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Yan‐yan Zhao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao‐jun Ma
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li‐na Wu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ji‐feng Yu
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong‐fei Ji
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ming‐wei Shao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Feng‐juan Huang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Zhao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xun‐jie Fan
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Ya‐nan Xu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Qing‐zhu Wang
- Department of Nuclear MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐jun Qin
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
17
|
Shabtai R, Tzur YB. Male-specific roles of lincRNA in C. elegans fertility. Front Cell Dev Biol 2023; 11:1115605. [PMID: 37035238 PMCID: PMC10076526 DOI: 10.3389/fcell.2023.1115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
The testis is the mammalian tissue with the highest expression levels of long intergenic non-coding RNAs (lincRNAs). However, most in vivo models have not found significant reductions in male fertility when highly expressed lincRNA genes were removed. This suggests that certain lincRNAs may act redundantly or lack functional roles. In the genome of the nematode Caenorhabditis elegans, there is an order of magnitude fewer lincRNA genes than in mammals. This characteristic lowers the potential for redundancy, making it an ideal model to test these possibilities. We identified five highly and dynamically expressed lincRNAs in male C. elegans gonads and quantified the fertility of worm strains in which these genes were removed. In contrast to the hermaphrodites of deletion strains, which exhibited no significant reductions in broods, smaller brood sizes were observed in the progeny of males of three of the lincRNA deleted strains. This demonstrates reduced male fertility in worms with those genes removed. Interestingly, reduced brood size was statistically significant only in the last days of egg laying in two of these strains. This suggests the effect is due to early deterioration and aging of the transferred sperm. We detected a mild increase in embryonic lethality in only one of the strains, supporting the possibility that these lincRNAs do not affect fertility through critical roles in essential meiotic processes. Together our results indicate a sexually dimorphic outcome on fertility when lincRNA are removed and show that, unlike mammals, individual lincRNAs in C. elegans do play significant roles in male fertility.
Collapse
|
18
|
Linc-RAM is a metabolic regulator maintaining whole-body energy homeostasis in mice. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1684-1693. [PMID: 36604148 PMCID: PMC9828040 DOI: 10.3724/abbs.2022170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are known to have profound functions in regulating cell fate specification, cell differentiation, organogenesis, and disease, but their physiological roles in controlling cellular metabolism and whole-body metabolic homeostasis are less well understood. We previously identified a skeletal muscle-specific long intergenic noncoding RNA (linc-RNA) activator of myogenesis, Linc-RAM, which enhances muscle cell differentiation during development and regeneration. Here, we report that Linc-RAM exerts a physiological function in regulating skeletal muscle metabolism and the basal metabolic rate to maintain whole-body metabolic homeostasis. We first demonstrate that Linc-RAM is preferentially expressed in type-II enriched glycolytic myofibers, in which its level is more than 60-fold higher compared to that in differentiated myotubes. Consistently, genetic deletion of the Linc-RAM gene in mice increases the expression levels of genes encoding oxidative fiber versions of myosin heavy chains and decreases those of genes encoding rate-limiting enzymes for glycolytic metabolism. Physiologically, Linc-RAM-knockout mice exhibit a higher basal metabolic rate, elevated insulin sensitivity and reduced fat deposition compared to their wild-type littermates. Together, our findings indicate that Linc-RAM is a metabolic regulator of skeletal muscle metabolism and may represent a potential pharmaceutical target for preventing and/or treating metabolic diseases, including obesity.
Collapse
|
19
|
Yang Y, Wu Y, Ji M, Rong X, Zhang Y, Yang S, Lu C, Cai C, Gao P, Guo X, Li B, Cao G. The long non-coding RNA lncMYOZ2 mediates an AHCY/MYOZ2 axis to promote adipogenic differentiation in porcine preadipocytes. BMC Genomics 2022; 23:700. [PMID: 36221052 PMCID: PMC9552422 DOI: 10.1186/s12864-022-08923-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play a vital role in regulating adipogenesis. However, the associated regulatory mechanisms have yet to be described in detail in pig. In this study, we demonstrate a critical role for lncMYOZ2 in adipogenesis from porcine preadipocytes. Specifically, lncMYOZ2 was more abundant in the adipose tissue of Mashen (fat-type) pigs than for Large White (lean-type) pigs, and knockdown of this lncRNA significantly inhibited the differentiation of porcine preadipocytes into adipocytes. Mechanistically, we used RNA pull-down and RIP assays to establish that lncMYOZ2 interacts with adenosylhomocysteinase (AHCY). Moreover, lncMYOZ2 knockdown increased promoter methylation of the target gene MYOZ2 and lowered its expression. Finally, we describe a positive regulatory role for MYOZ2 in adipogenesis. Collectively, these findings establish lncMYOZ2 as an important epigenetic regulator of adipogenesis via the aforementioned AHCY/MYOZ2 pathway, and provide insights into the role of lncRNAs in porcine adipose development.
Collapse
Affiliation(s)
- Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Yiqi Wu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Mengting Ji
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoyin Rong
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanwei Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuai Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
20
|
Mirzadeh Azad F, Taheri Bajgan E, Naeli P, Rudov A, Bagheri Moghadam M, Sadat Akhtar M, Gholipour A, Mowla SJ, Malakootian M. Differential Expression Pattern of linc-ROR Spliced Variants in Pluripotent and Non-Pluripotent Cell Lines. CELL JOURNAL 2022; 24:569-576. [PMID: 36259474 PMCID: PMC9617025 DOI: 10.22074/cellj.2022.8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The human large intergenic non-coding RNA-regulator of reprogramming program (linc-ROR) is known as a stem cell specific linc-RNA. linc-ROR counteracts differentiation via sequestering microRNA-145 (miR-145) that targets OCT4 transcript. Despite the research on the expression and function, the exact structure of linc-ROR transcripts is not clear. Considering the contribution of alternative splicing in transcripts structures and function, identifying different spliced variants of linc-ROR is necessary for further functional analyses. We aimed to find the alternatively spliced transcripts of linc-ROR and investigate their expression pattern in stem and cancer cell lines and during neural differentiation of NT2 cells as a model for understanding linc-ROR role in stem cell and differentiation. MATERIALS AND METHODS In this experimental study, linc-ROR locus was scanned for identifying novel exons. Different primer sets were used to detect new spliced variants by reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing. Quantitative PCR (qPCR) and RT-PCR were employed to profile expression of linc-ROR transcripts in different cell lines and during neural differentiation of stem cells. RESULTS We could discover 13 novel spliced variants of linc-ROR harboring unique array of exons. Our work uncovered six novel exons, some of which were the product of exonized transposable elements. Monitoring expression profile of the linc-ROR spliced variants in a panel of pluripotent and non-pluripotent cells exhibited that all transcripts were primarily expressed in pluripotent cells. Moreover, the examined linc-ROR spliced variants showed a similar downregulation during neural differentiation of NT2 cells. CONCLUSION Altogether, our data showed despite the difference in the structure and composition of exons, various spliced variants of linc-ROR showed similar expression pattern in stem cells and through differentiation.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Elham Taheri Bajgan
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Naeli
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Alexander Rudov
- Department of Biomolecular Sciences, University of Urbino, Via Saffi Urbino, Italy
| | - Mahrokh Bagheri Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Sadat Akhtar
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akram Gholipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Javad Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,Cardiogenetic Research CenterRajaie Cardiovascular Medical and Research CenterIran University
of Medical SciencesTehranIran
| |
Collapse
|
21
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
22
|
Picerno A, Giannuzzi F, Curci C, De Palma G, Di Chiano MG, Simone S, Franzin R, Gallone A, Di Lorenzo VF, Stasi A, Pertosa GB, Sabbà C, Gesualdo L, Sallustio F. The long non-coding RNA HOTAIR controls the self-renewal, cell senescence, and secretion of antiaging protein α-Klotho in human adult renal progenitor cells. Stem Cells 2022; 40:963-975. [PMID: 35922038 DOI: 10.1093/stmcls/sxac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
The long non-coding RNAs (lncRNA) play an important role in several biological processes including some renal diseases. Nevertheless, little is known on lncRNA that are expressed in healthy kidney and involved in renal cell homeostasis and development, and even less is known about lncRNA involved in the maintenance of human adult renal stem/progenitor cells (ARPCs) that have been shown to be very important for renal homeostasis and repair processes. Through a whole genome transcriptome screening, we found that the HOTAIR lncRNA is highly expressed in renal progenitors and potentially involved in cell cycle and senescence biological processes. By CRISPR/Cas9 genome editing, we generated HOTAIR knock-out ARPC lines and established a key role of this lncRNA in ARPC self-renewal properties by sustaining their proliferative capacity and limiting the apoptotic process. Intriguingly, the HOTAIR knock-out led to the ARPC senescence and to a significant decrease of the CD133 stem cell marker expression, that is an inverse marker of ARPC senescence and can regulate renal tubular repair after the damage. Furthermore, we found that ARPCs expressed high levels of the α-Klotho anti-aging protein and especially 2.6-fold higher levels compared to that secreted by renal proximal tubular cells (RPTECs). Finally, we showed that HOTAIR exerts its function through the epigenetic silencing of the cell cycle inhibitor p15 inducing the trimethylation of the histone H3K27. Altogether, these results shed new light on the mechanisms of regulation of these important renal cells and may support the future development of precision therapies for kidney diseases.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe De Palma
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Giovanna Di Chiano
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italia
| | - Simona Simone
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Gallone
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, 70124, Bari, Italy
| | | | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanni Battista Pertosa
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
23
|
Minchiotti G, D’Aniello C, Fico A, De Cesare D, Patriarca EJ. Capturing Transitional Pluripotency through Proline Metabolism. Cells 2022; 11:cells11142125. [PMID: 35883568 PMCID: PMC9323356 DOI: 10.3390/cells11142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we summarize the current knowledge of the role of proline metabolism in the control of the identity of Embryonic Stem Cells (ESCs). An imbalance in proline metabolism shifts mouse ESCs toward a stable naïve-to-primed intermediate state of pluripotency. Proline-induced cells (PiCs), also named primitive ectoderm-like cells (EPLs), are phenotypically metastable, a trait linked to a rapid and reversible relocalization of E-cadherin from the plasma membrane to intracellular membrane compartments. The ESC-to-PiC transition relies on the activation of Erk and Tgfβ/Activin signaling pathways and is associated with extensive remodeling of the transcriptome, metabolome and epigenome. PiCs maintain several properties of naïve pluripotency (teratoma formation, blastocyst colonization and 3D gastruloid development) and acquire a few traits of primed cells (flat-shaped colony morphology, aerobic glycolysis metabolism and competence for primordial germ cell fate). Overall, the molecular and phenotypic features of PiCs resemble those of an early-primed state of pluripotency, providing a robust model to study the role of metabolic perturbations in pluripotency and cell fate decisions.
Collapse
|
24
|
Wang S, Zhang J, Ding Y, Zhang H, Wu X, Huang L, He J, Zhou J, Liu XM. Dynamic Transcriptome Profiling Reveals LncRNA-Centred Regulatory Networks in the Modulation of Pluripotency. Front Cell Dev Biol 2022; 10:880674. [PMID: 35646895 PMCID: PMC9130768 DOI: 10.3389/fcell.2022.880674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as vital regulators of gene expression during embryonic stem cell (ESC) self-renewal and differentiation. Here, we systemically analyzed the differentially regulated lncRNAs during ESC-derived cardiomyocyte (CM) differentiation. We established a perspicuous profile of lncRNA expression at four critical developmental stages and found that the differentially expressed lncRNAs were grouped into six distinct clusters. The cluster with specific expression in ESC enriches the largest number of lncRNAs. Investigation of lncRNA-protein interaction network revealed that they are not only controlled by classic key transcription factors, but also modulated by epigenetic and epitranscriptomic factors including N6-methyladenosine (m6A) effector machineries. A detailed inspection revealed that 28 out of 385 lncRNAs were modified by methylation as well as directly recruited by the nuclear m6A reader protein Ythdc1. Unlike other 27 non-coding transcripts, the ESC-specific lncRNA Gm2379, located in both nucleus and cytoplasm, becomes dramatically upregulated in response to the depletion of m6A or Ythdc1. Consistent with the role of m6A in cell fate regulation, depletion of Gm2379 results in dysregulated expressions of pluripotent genes and crucial genes required for the formation of three germ layers. Collectively, our study provides a foundation for understanding the dynamic regulation of lncRNA transcriptomes during ESC differentiation and identifies the interplay between epitranscriptomic modification and key lncRNAs in the regulation of cell fate decision.
Collapse
Affiliation(s)
- Shen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu’an Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haotian Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingci Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Junjie He
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing, China
| |
Collapse
|
25
|
Wang Y, Jia L, Wang C, Du Z, Zhang S, Zhou L, Wen X, Li H, Chen H, Nie Y, Li D, Liu S, Figueroa DS, Ay F, Xu W, Zhang S, Li W, Cui J, Hoffman AR, Guo H, Hu JF. Pluripotency exit is guided by the Peln1-mediated disruption of intrachromosomal architecture. J Cell Biol 2022; 221:213009. [PMID: 35171230 PMCID: PMC8855478 DOI: 10.1083/jcb.202009134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular circuitry that causes stem cells to exit from pluripotency remains largely uncharacterized. Using chromatin RNA in situ reverse transcription sequencing, we identified Peln1 as a novel chromatin RNA component in the promoter complex of Oct4, a stem cell master transcription factor gene. Peln1 was negatively associated with pluripotent status during somatic reprogramming. Peln1 overexpression caused E14 cells to exit from pluripotency, while Peln1 downregulation induced robust reprogramming. Mechanistically, we discovered that Peln1 interacted with the Oct4 promoter and recruited the DNA methyltransferase DNMT3A. By de novo altering the epigenotype in the Oct4 promoter, Peln1 dismantled the intrachromosomal loop that is required for the maintenance of pluripotency. Using RNA reverse transcription-associated trap sequencing, we showed that Peln1 targets multiple pathway genes that are associated with stem cell self-renewal. These findings demonstrate that Peln1 can act as a new epigenetic player and use a trans mechanism to induce an exit from the pluripotent state in stem cells.
Collapse
Affiliation(s)
- Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Zhonghua Du
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Xue Wen
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Li
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huiling Chen
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Yuanyuan Nie
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | - Dan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| | | | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Wei Xu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Songling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Andrew R Hoffman
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Guo
- Department of Endocrinology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
26
|
Yang X, Cao D, Ma W, Gao S, Wen G, Zhong J. Wnt signaling in triple-negative breast cancers: Its roles in molecular subtyping and cancer cell stemness and its crosstalk with non-coding RNAs. Life Sci 2022; 300:120565. [DOI: 10.1016/j.lfs.2022.120565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
|
27
|
Ilieva M, Uchida S. Long Non-Coding RNAs in Induced Pluripotent Stem Cells and Their Differentiation. Am J Physiol Cell Physiol 2022; 322:C769-C774. [PMID: 35235428 DOI: 10.1152/ajpcell.00059.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The breakthrough technology for reprogramming somatic cells into induced pluripotent stem cells (iPSC) has created a new path for science and medicine. The iPSC technology provides a powerful tool for elucidating the mechanisms of cellular differentiation and cell fate decision as well as to study targets and pathways relevant to pathological processes. Since they can be generated from any person, iPSC are a promising resource for regenerative medicine potentiating the possibility to discover new drugs in a high-throughput screening format and treat diseases through personalized cell therapy-based strategies. However, the reprogramming process is complex, and its regulation needs fine tuning. The regulatory mechanisms of cell reprogramming and differentiation are still not elucidated, but significant results show that multiple long non-coding RNAs (lncRNAs) play essential roles. In this mini review, we discuss the latest research on lncRNAs in iPSC stemness, neuronal and cardiac differentiation.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| |
Collapse
|
28
|
Rappaport Y, Falk R, Achache H, Tzur YB. linc-20 and linc-9 do not have compensatory fertility roles in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000524. [PMID: 35169683 PMCID: PMC8837906 DOI: 10.17912/micropub.biology.000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/15/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcripts longer than 200 nucleotides which are transcribed from regions that do not overlap with protein coding sequences. Reproductive organs express high levels of lincRNAs, yet removal of many lincRNA genes with high and dynamic germline expression did not lead to fertility defects. It was previously suggested this stems from redundant roles of different lincRNA genes. We previously reported engineering C. elegans strains in which we deleted lincRNA genes with high and dynamic expression in the gonad. The individual mutations did not lead to major effects on fertility. Two of those lincRNA genes, linc-9 and linc-20, are highly homologous, suggesting they could perform redundant roles. Here we report that in the double mutant linc-9; linc-20 the brood size and embryonic lethality do not significantly differ from wild-type worms. This could be explained by either lack of fertility roles, or redundancy with other lincRNA genes.
Collapse
Affiliation(s)
- Yisrael Rappaport
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Roni Falk
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hanna Achache
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan B. Tzur
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
Correspondence to: Yonatan B. Tzur ()
| |
Collapse
|
29
|
Gao H, Dong H, Zheng J, Jiang X, Gong M, Hu L, He J, Wang Y. LINC01119 negatively regulates osteogenic differentiation of mesenchymal stem cells via the Wnt pathway by targeting FZD4. Stem Cell Res Ther 2022; 13:43. [PMID: 35093173 PMCID: PMC8800246 DOI: 10.1186/s13287-022-02726-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Mesenchymal stem cells (MSCs) can differentiate into diverse cell types under specific conditions. Dysfunction in the osteogenic differentiation of MSCs can result in bone metabolism-related diseases, including osteoporosis. Accumulating evidence has revealed that long non-coding RNA (lncRNAs) play critical regulatory roles during MSC differentiation.
Methods
In the present study, we identified an evolutionarily conserved lncRNA expressed during the osteogenic differentiation of MSCs, which we termed LINC01119. We first identified LINC01119 as a negative regulator of the osteogenic differentiation of MSCs.
Results
LINC01119 knockdown markedly induced calcium deposition in bone marrow MSCs and promoted the osteogenic differentiation of MSCs. More importantly, we demonstrated the underlying molecular basis through which LINC01119 regulates osteogenesis via the Wnt pathway by targeting FZD4. Furthermore, we observed that transcription factor EBF3 could directly bind the promoter site of LINC01119.
Conclusions
We first explored the molecular regulatory mechanism of LINC01119 during the osteogenic differentiation of MSCs and revealed that LINC01119 negatively regulates osteogenesis through the Wnt pathway by targeting FZD4.
Collapse
|
30
|
Functional Implications of Intergenic GWAS SNPs in Immune-Related LncRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:147-160. [DOI: 10.1007/978-3-030-92034-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Mustafin RN. Relationship of Peptides and Long Non-Coding RNAs with Aging. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Wang M, Gu J, Zhang X, Yang J, Zhang X, Fang X. Long Non-coding RNA DANCR in Cancer: Roles, Mechanisms, and Implications. Front Cell Dev Biol 2021; 9:753706. [PMID: 34722539 PMCID: PMC8554091 DOI: 10.3389/fcell.2021.753706] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNA (lncRNA) DANCR (also known as ANCR)—differentiation antagonizing non-protein coding RNA, was first reported in 2012 to suppress differentiation of epithelial cells. Emerging evidence demonstrates that DANCR is a cancer-associated lncRNA abnormally expressed in many cancers (e.g., lung cancer, gastric cancer, breast cancer, hepatocellular carcinoma). Increasing studies suggest that the dysregulation of DANCR plays critical roles in cancer cell proliferation, apoptosis, migration, invasion, and chemoresistance in vitro and tumor growth and metastasis in vivo. Mechanistic analyses show that DANCR can serve as miRNA sponges, stabilize mRNAs, and interact with proteins. Recent research reveals that DANCR can be detected in many body fluids such as serum, plasma, and exosomes, providing a quick and convenient method for cancer monitor. Thus DANCR can be used as a promising diagnostic and prognostic biomarker and therapeutic target for various types of cancer. This review focuses on the role and mechanism of DANCR in cancer progression with an emphasis on the clinical significance of DANCR in human cancers.
Collapse
Affiliation(s)
- Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianping Yang
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
34
|
Hunkler HJ, Groß S, Thum T, Bär C. Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with therapeutic perspective for heart regeneration. Cardiovasc Res 2021; 118:3071-3084. [PMID: 34718448 PMCID: PMC9732524 DOI: 10.1093/cvr/cvab335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Myocardial infarction causes a massive loss of cardiomyocytes (CMs), which can lead to heart failure accompanied by fibrosis, stiffening of the heart, and loss of function. Heart failure causes high mortality rates and is a huge socioeconomic burden, which, based on diets and lifestyle in the developed world, is expected to increase further in the next years. At present, the only curative treatment for heart failure is heart transplantation associated with a number of limitations such as donor organ availability and transplant rejection among others. Thus, the development of cellular reprogramming and defined differentiation protocols provide exciting new possibilities for cell therapy approaches and which opened up a new era in regenerative medicine. Consequently, tremendous research efforts were undertaken to gain a detailed molecular understanding of the reprogramming processes and the in vitro differentiation of pluripotent stem cells into functional CMs for transplantation into the patient's injured heart. In the last decade, non-coding RNAs, particularly microRNAs, long non-coding RNAs, and circular RNAs emerged as critical regulators of gene expression that were shown to fine-tune cellular processes both on the transcriptional and the post-transcriptional level. Unsurprisingly, also cellular reprogramming, pluripotency, and cardiac differentiation and maturation are regulated by non-coding RNAs. In here, we review the current knowledge on non-coding RNAs in these processes and highlight how their modulation may enhance the quality and quantity of stem cells and their derivatives for safe and efficient clinical application in patients with heart failure. In addition, we summarize the clinical cell therapy efforts undertaken thus far.
Collapse
Affiliation(s)
- Hannah J Hunkler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Thum
- Corresponding authors. Tel: +49 511 532 5272; fax: +49 511 532 5274, E-mail: (T.T.); Tel: +49 511 532 2883; fax: +49 511 532 5274, E-mail: (C.B.)
| | - Christian Bär
- Corresponding authors. Tel: +49 511 532 5272; fax: +49 511 532 5274, E-mail: (T.T.); Tel: +49 511 532 2883; fax: +49 511 532 5274, E-mail: (C.B.)
| |
Collapse
|
35
|
Zheng Y, Zhang Y, Zhang X, Dang Y, Cheng Y, Hua W, Teng M, Wang S, Lu X. Novel lncRNA-miRNA-mRNA Competing Endogenous RNA Triple Networks Associated Programmed Cell Death in Heart Failure. Front Cardiovasc Med 2021; 8:747449. [PMID: 34692796 PMCID: PMC8528160 DOI: 10.3389/fcvm.2021.747449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Increasing evidence has uncovered the roles of lncRNA-miRNA-mRNA regulatory networks in cardiovascular diseases. However, the crosstalk between ceRNA networks and development of heart failure (HF) remains unclear. This study was to investigate the role of lncRNA-mediated ceRNA networks in the pathophysiological process of HF and its potential regulatory functions on programmed cell death. Methods: We firstly screened the GSE77399, GSE52601 and GSE57338 datasets in the NCBI GEO database for screening differentially expressed lncRNAs, miRNAs and mRNAs. lncRNA-miRNA-mRNA regulatory networks based on the ceRNA theory were subsequently constructed. GO and KEGG enrichment analysis was conducted to predict potential biological functions of mRNAs in ceRNA networks. Differentially expressed mRNAs were then interacted with programmed cell death related genes. lncRNA-mediated ceRNA regulatory pathways on programmed cell death were validated with qRT-PCR testing. Results: Based on our bioinformatic analysis, two lncRNAs, eight miRNAs and 65 mRNAs were extracted to construct two lncRNAs-mediated ceRNA networks in HF. Biological processes and pathways were enriched in extracellular matrix. Seven lncRNA-mediated ceRNA regulatory pathways on programmed cell death, GAS5/miR-345-5p/ADAMTS4, GAS5/miR-18b-5p/AQP3, GAS5/miR-18b-5p/SHISA3, GAS5/miR-18b-5p/C1orf105, GAS5/miR-18b-5p/PLIN2, GAS5/miR-185-5p/LPCAT3, and GAS5/miR-29b-3p/STAT3, were finally validated. Conclusions: Two novel ceRNA regulatory networks in HF were discovered based on our bioinformatic analysis. Based on the interaction and validation analysis, seven lncRNA GAS5-mediated ceRNA regulatory pathways were hypothesized to impact programmed cell death including seven for apoptosis, three for ferroptosis, and one for pyroptosis. Upon which, we provided novel insights and potential research plots for bridging ceRNA regulatory networks and programmed cell death in HF.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingjie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihui Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Teng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shenrui Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Cagnin S, Alessio E, Bonadio RS, Sales G. Single-Cell RNAseq Analysis of lncRNAs. Methods Mol Biol 2021; 2348:71-90. [PMID: 34160800 DOI: 10.1007/978-1-0716-1581-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mammalian genomes are pervasively transcribed and a small fraction of RNAs produced codify for proteins. The importance of noncoding RNAs for the maintenance of cell functions is well known (e.g., rRNAs, tRNAs), but only recently it was first demonstrated the involvement of microRNAs (miRNAs) in posttranscriptional regulation and then the activity of long noncoding RNAs (lncRNAs) in the regulation of miRNAs, DNA structure and protein function. LncRNAs have an expression more cell specific than other RNAs and basing on their subcellular localization exert different functions. In this book chapter we consider different protocols to evaluate the expression of lncRNAs at the single cell level using genome-wide approaches. We considered the skeletal muscle as example because the most abundant tissue in mammals involved in the regulation of metabolism and body movement. We firstly described how to isolate the smallest complete contractile system responsible for muscle metabolic and contractile traits (myofibers). We considered how to separate long and short RNAs to allow the sequencing of the full-length transcript using the SMART technique for the retrotranscription. Because of myofibers are multinucleated cells and because of it is better to perform single cell sequencing on fresh tissues we described the single-nucleus sequencing that can be applied to frozen tissues. The chapter concludes with a description of bioinformatics approaches to evaluate differential expression from single-cell or single-nucleus RNA sequencing.
Collapse
Affiliation(s)
- Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy.
- CRIBI Biotechnology Center, University of Padova, Padova, Italy.
- CIR-Myo Myology Center, University of Padova, Padova, Italy.
| | - Enrico Alessio
- Department of Biology, University of Padova, Padova, Italy
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
37
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
38
|
LncRNA AWPPH as a prognostic predictor in human cancers in Chinese population: evidence from meta-analysis. Biosci Rep 2021; 41:228775. [PMID: 34042153 PMCID: PMC8188174 DOI: 10.1042/bsr20210012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNA associated with poor prognosis of hepatocellular carcinoma (AWPPH) is dysregulated in a variety of human cancers. However, the prognostic value of AWPPH in various cancers remains unclear. Methods: Comprehensive literature search was performed in PubMed, Web of Science, CNKI and Wangfang databases, and eligible studies were obtained according to the inclusion and exclusion criteria. The pooled hazard ratios (HRs) and odds ratios (ORs) were applied to assess the clinical value of AWPPH expression for overall survival (OS) and clinicopathological features. Results: A total of 19 articles including 1699 cancer patients were included in the study. The pooled results demonstrated that evaluated AWPPH expression was positively related to a poorer overall survival of patients with cancers (HR = 1.79, 95%CI: 1.44–2.14, P<0.001). Subgroup analysis revealed that tumor type and sample size affect the predictive value of AWPPH on OS, whereas cut-off value and HR estimation method have no impact on it. In addition, the pooled data also showed that AWPPH was positively linked to advanced TNM stage (OR = 2.50, 95%CI: 1.94–3.22, P<0.001), bigger tumor size (OR = 2.64, 95%CI: 1.47–4.73, P=0.001), macro-vascular invasion (OR = 2.08, 95%CI: 1.04–4.16, P=0.04) and lymph node metastasis (OR = 2.68, 95%CI: 1.82–3.96, P<0.001). Moreover, the results of the trim and fill analysis confirmed the reliability of our finding. Conclusions: Up-regulation of AWPPH was associated with advanced TNM stage, bigger tumor size, worse lymph node metastasis, macro-vascular invasion and shorter overall survival, suggesting that AWPPH may serve as a biomarker for prognosis and clinicopathological characteristics in human cancers among the Chinese population.
Collapse
|
39
|
Sato M, Kadomatsu T, Miyata K, Warren JS, Tian Z, Zhu S, Horiguchi H, Makaju A, Bakhtina A, Morinaga J, Sugizaki T, Hirashima K, Yoshinobu K, Imasaka M, Araki M, Komohara Y, Wakayama T, Nakagawa S, Franklin S, Node K, Araki K, Oike Y. The lncRNA Caren antagonizes heart failure by inactivating DNA damage response and activating mitochondrial biogenesis. Nat Commun 2021; 12:2529. [PMID: 33953175 PMCID: PMC8099897 DOI: 10.1038/s41467-021-22735-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, many long noncoding RNAs (lncRNAs) have been identified and their in vitro functions defined, although in some cases their functions in vivo remain less clear. Moreover, unlike nuclear lncRNAs, the roles of cytoplasmic lncRNAs are less defined. Here, using a gene trapping approach in mouse embryonic stem cells, we identify Caren (short for cardiomyocyte-enriched noncoding transcript), a cytoplasmic lncRNA abundantly expressed in cardiomyocytes. Caren maintains cardiac function under pathological stress by inactivating the ataxia telangiectasia mutated (ATM)-DNA damage response (DDR) pathway and activating mitochondrial bioenergetics. The presence of Caren transcripts does not alter expression of nearby (cis) genes but rather decreases translation of an mRNA transcribed from a distant gene encoding histidine triad nucleotide-binding protein 1 (Hint1), which activates the ATM-DDR pathway and reduces mitochondrial respiratory capacity in cardiomyocytes. Therefore, the cytoplasmic lncRNA Caren functions in cardioprotection by regulating translation of a distant gene and maintaining cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
- Division of Kumamoto Mouse Clinic (KMC), Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Immunity, Allergy, and Vascular Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junco S Warren
- Division of Kumamoto Mouse Clinic (KMC), Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zhe Tian
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunshun Zhu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaname Hirashima
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kumiko Yoshinobu
- Division of Bioinformatics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Mai Imasaka
- Division of Developmental Genetics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Masatake Araki
- Division of Bioinformatics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Koichi Node
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Developmental Genetics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
40
|
Interaction between LINC-ROR and Stemness State in Gastric Cancer Cells with Helicobacter pylori Infection. IRANIAN BIOMEDICAL JOURNAL 2021. [PMID: 33745265 PMCID: PMC8183384 DOI: 10.52547/ibj.25.3.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Functional annotation of lncRNA in high-throughput screening. Essays Biochem 2021; 65:761-773. [PMID: 33835127 PMCID: PMC8564734 DOI: 10.1042/ebc20200061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Recent efforts on the characterization of long non-coding RNAs (lncRNAs) revealed their functional roles in modulating diverse cellular processes. These include pluripotency maintenance, lineage commitment, carcinogenesis, and pathogenesis of various diseases. By interacting with DNA, RNA and protein, lncRNAs mediate multifaceted mechanisms to regulate transcription, RNA processing, RNA interference and translation. Of more than 173000 discovered lncRNAs, the majority remain functionally unknown. The cell type-specific expression and localization of the lncRNA also suggest potential distinct functions of lncRNAs across different cell types. This highlights the niche of identifying functional lncRNAs in different biological processes and diseases through high-throughput (HTP) screening. This review summarizes the current work performed and perspectives on HTP screening of functional lncRNAs where different technologies, platforms, cellular responses and the downstream analyses are discussed. We hope to provide a better picture in applying different technologies to facilitate functional annotation of lncRNA efficiently.
Collapse
|
42
|
Nayak P, Colas A, Mercola M, Varghese S, Subramaniam S. Temporal mechanisms of myogenic specification in human induced pluripotent stem cells. SCIENCE ADVANCES 2021; 7:eabf7412. [PMID: 33731358 PMCID: PMC7968833 DOI: 10.1126/sciadv.abf7412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
Understanding the mechanisms of myogenesis in human induced pluripotent stem cells (hiPSCs) is a prerequisite to achieving patient-specific therapy for diseases of skeletal muscle. hiPSCs of different origin show distinctive kinetics and ability to differentiate into myocytes. To address the unique cellular and temporal context of hiPSC differentiation, we perform a longitudinal comparison of the transcriptomic profiles of three hiPSC lines that display differential myogenic specification, one robust and two blunted. We detail temporal differences in mechanisms that lead to robust myogenic specification. We show gene expression signatures of putative cell subpopulations and extracellular matrix components that may support myogenesis. Furthermore, we show that targeted knockdown of ZIC3 at the outset of differentiation leads to improved myogenic specification in blunted hiPSC lines. Our study suggests that β-catenin transcriptional cofactors mediate cross-talk between multiple cellular processes and exogenous cues to facilitate specification of hiPSCs to mesoderm lineage, leading to robust myogenesis.
Collapse
Affiliation(s)
- P Nayak
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - A Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - M Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, USA
| | - S Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - S Subramaniam
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
43
|
Nilsson F, Storm P, Sozzi E, Hidalgo Gil D, Birtele M, Sharma Y, Parmar M, Fiorenzano A. Single-Cell Profiling of Coding and Noncoding Genes in Human Dopamine Neuron Differentiation. Cells 2021; 10:137. [PMID: 33445654 PMCID: PMC7827700 DOI: 10.3390/cells10010137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson's disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation. DA neurons sharing similar molecular identities to those found in authentic DA neurons derived from human fetal VM were the major cell type after two months in culture. We also developed a bioinformatic pipeline that provided a comprehensive long noncoding RNA landscape based on temporal and cell-type specificity, which may contribute to unraveling the intricate regulatory network of coding and noncoding genes in DA neuron differentiation. Our findings serve as a valuable resource to elucidate the molecular steps of development, maturation, and function of human DA neurons, and to identify novel candidate coding and noncoding genes driving specification of progenitors into functionally mature DA neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (F.N.); (P.S.); (E.S.); (D.H.G.); (M.B.); (Y.S.)
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (F.N.); (P.S.); (E.S.); (D.H.G.); (M.B.); (Y.S.)
| |
Collapse
|
44
|
Long non-coding RNA levels can be modulated by 5-azacytidine in Schistosoma mansoni. Sci Rep 2020; 10:21565. [PMID: 33299037 PMCID: PMC7725772 DOI: 10.1038/s41598-020-78669-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.
Collapse
|
45
|
Piipponen M, Nissinen L, Kähäri VM. Long non-coding RNAs in cutaneous biology and keratinocyte carcinomas. Cell Mol Life Sci 2020; 77:4601-4614. [PMID: 32462404 PMCID: PMC7599158 DOI: 10.1007/s00018-020-03554-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a largely uncharacterized group of non-coding RNAs with diverse regulatory roles in various biological processes. Recent observations have elucidated the functional roles of lncRNAs in cutaneous biology, e.g. in proliferation and differentiation of epidermal keratinocytes and in cutaneous wound repair. Furthermore, the role of lncRNAs in keratinocyte-derived skin cancers is emerging, especially in cutaneous squamous cell carcinoma (cSCC), which presents a significant burden to health care services worldwide and causes high mortality as metastatic disease. Elucidation of the functions of keratinocyte-specific lncRNAs will improve understanding of the molecular pathogenesis of epidermal disorders and skin cancers and can be exploited in development of new diagnostic and therapeutic applications for keratinocyte carcinomas. In this review, we summarize the current evidence of functionally important lncRNAs in cutaneous biology and in keratinocyte carcinomas.
Collapse
Affiliation(s)
- Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
- Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
- Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland.
- Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
46
|
Analytical ultracentrifuge: an ideal tool for characterization of non-coding RNAs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:809-818. [PMID: 33067686 DOI: 10.1007/s00249-020-01470-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Analytical ultracentrifugation (AUC) has emerged as a robust and reliable technique for biomolecular characterization with extraordinary sensitivity. AUC is widely used to study purity, conformational changes, biomolecular interactions, and stoichiometry. Furthermore, AUC is used to determine the molecular weight of biomolecules such as proteins, carbohydrates, and DNA and RNA. Due to the multifaceted role(s) of non-coding RNAs from viruses, prokaryotes, and eukaryotes, research aimed at understanding the structure-function relationships of non-coding RNAs is rapidly increasing. However, due to their large size, flexibility, complicated secondary structures, and conformations, structural studies of non-coding RNAs are challenging. In this review, we are summarizing the application of AUC to evaluate the homogeneity, interactions, and conformational changes of non-coding RNAs from adenovirus as well as from Murray Valley, Powassan, and West Nile viruses. We also discuss the application of AUC to characterize eukaryotic long non-coding RNAs, Xist, and HOTAIR. These examples highlight the significant role AUC can play in facilitating the structural determination of non-coding RNAs and their complexes.
Collapse
|
47
|
Li Z, Huang C, Yang B, Hu W, Chan MTV, Wu WKK. Emerging roles of long non-coding RNAs in osteonecrosis of the femoral head. Am J Transl Res 2020; 12:5984-5991. [PMID: 33042474 PMCID: PMC7540093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic condition that, in most late-stage cases, requires total hip arthroplasty. Although direct trauma to the hip (e.g. femoral neck fracture, hip dislocation) that leads to vascular interruption is a strong risk factor for ONFH, there are many non-traumatic risk factors (e.g. use of corticosteroid, alcohol abuse) which molecular mechanisms in ONFH still remain obscured. Long non-coding RNAs (lncRNAs) is a class of regulatory RNAs that play crucial roles in various cellular functions, including cell proliferation, invasion, metabolism, apoptosis and stem cell differentiation. Recent studies also suggested their participation in bone development and regeneration, and a direct involvement in the pathogenesis of numerous of orthopaedic conditions, such as ONFH. LncRNAs are differentially expressed in ONFH tissues as well as bone marrow-mesenchymal stem cells and bone microvascular endothelial cells isolated from ONFH patients. Functional studies further established their critical roles in regulating biological processes, such as osteoblast survival and osteogenic differentiation of bone marrow-mesenchymal stem cells, which are closely related to ONFH. The current review aims at summarizing the recent advancement in this field and discussing the potential diagnostic, prognostic and therapeutic utilities of lncRNAs in the clinical management of ONFH.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Cheng Huang
- Center for Osteonecrosis and Joint Preserving & Reconstruction, Department of Orthopaedic Surgery, China-Japan Friendship HospitalBeijing, China
| | - Bo Yang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical UniversityShenzhen, Guangdong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong KongHong Kong Special Administrative Region
| | - Matthew TV Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong KongHong Kong Special Administrative Region
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong KongHong Kong Special Administrative Region
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong KongHong Kong Special Administrative Region
| |
Collapse
|
48
|
Xu H, Yang X, Huang W, Ma Y, Ke H, Zou L, Yang Q, Jiao B. Single-cell profiling of long noncoding RNAs and their cell lineage commitment roles via RNA-DNA-DNA triplex formation in mammary epithelium. Stem Cells 2020; 38:1594-1611. [PMID: 32930441 DOI: 10.1002/stem.3274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are crucial for organ development, exhibit cell-specific expression. Thus, transcriptomic analysis based on total tissue (bulk-seq) cannot accurately reflect the expression pattern of lncRNAs. Here, we used high-throughput single-cell RNA-seq data to investigate the role of lncRNAs using the hierarchical model of mammary epithelium. With our comprehensive annotation of the mammary epithelium, lncRNAs showed much greater cell-lineage specific expression than coding genes. The lineage-specific lncRNAs were functionally correlated with lineage commitment through the coding genes via the cis- and trans-effects of lncRNAs. For the working mechanism, lncRNAs formed a triplex structure with the DNA helix to regulate downstream lineage-specific marker genes. We used lncRNA-Carmn as an example to validate the above findings. Carmn, which is specifically expressed in mammary gland stem cells (MaSCs) and basal cells, positively regulated the Wnt signaling ligand Wnt10a through formation of a lncRNA-DNA-DNA triplex, and thus controlled the stemness of MaSCs. Our study suggests that lncRNAs play essential roles in cell-lineage commitment and provides an approach to decipher lncRNA functions based on single-cell RNA-seq data.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen, People's Republic of China
| | - Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen, People's Republic of China
| | - Yujie Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Hao Ke
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
49
|
Systematic analysis of long intergenic non-coding RNAs in C. elegans germline uncovers roles in somatic growth. RNA Biol 2020; 18:435-445. [PMID: 32892705 DOI: 10.1080/15476286.2020.1814549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcripts longer than 200 nucleotides that are transcribed from non-coding loci yet undergo biosynthesis similar to coding mRNAs. The disproportional number of lincRNAs expressed in testes suggests that lincRNAs are important during gametogenesis, but experimental evidence has implicated very few lincRNAs in this process. We took advantage of the relatively limited number of lincRNAs in the genome of the nematode Caenorhabditis elegans to systematically analyse the functions of lincRNAs during meiosis. We deleted six lincRNA genes that are highly and dynamically expressed in the C. elegans gonad and tested the effects on central meiotic processes. Surprisingly, whereas the lincRNA deletions did not strongly impact fertility, germline apoptosis, crossovers, or synapsis, linc-4 was required for somatic growth. Slower growth was observed in linc-4-deletion mutants and in worms depleted of linc-4 using RNAi, indicating that linc-4 transcripts are required for this post-embryonic process. Unexpectedly, analysis of worms depleted of linc-4 in soma versus germline showed that the somatic role stems from linc-4 expression in germline cells. This unique feature suggests that some lincRNAs, like some small non-coding RNAs, are required for germ-soma interactions.
Collapse
|
50
|
Khadirnaikar S, Chatterjee A, Kumar P, Shukla S. A Greedy Algorithm-Based Stem Cell LncRNA Signature Identifies a Novel Subgroup of Lung Adenocarcinoma Patients With Poor Prognosis. Front Oncol 2020; 10:1203. [PMID: 32850350 PMCID: PMC7431877 DOI: 10.3389/fonc.2020.01203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells play an essential role in therapy response and aggressiveness of various cancers, including lung adenocarcinoma (LUAD). Interestingly it also shares many features of embryonic stem cells (ESCs). Recently, long non-coding RNAs (lncRNAs) have emerged as a critical regulator of cell physiology. Here, we used expression data of ESCs, LUAD, and normal lung to identify 198 long non-coding hESC-associated lncRNAs (hESC-lncRNAs). Intriguingly, K-means clustering of hESC-associated lncRNAs identified a subgroup of LUAD patients [undifferentiated LUAD (uLUAD)] with high stem cell-like characteristic, decreased differentiation genes expression, and poor survival. We also observed that the uLUAD patients had overexpression of proteins associated with cell proliferation. Interestingly, uLUAD patients were highly enriched with the stemness-related gene sets, and had higher mutation load. A notable result observed was high infiltration of T cells and a higher level of neopeptides in uLUAD patients, making these patients an optimal candidate for immunotherapy. Further, feature selection using greedy algorithm identified 17-hESC-lncRNAs signature, which showed significant consistency with 198 hESC-lncRNAs-based classification, and identified a group of patients with high stem cell-like characteristic in the 10 most common cancer types and CCLE cell lines. These results suggest the conventional role of hESC-lncRNAs in stem cell biology. In summary, we identified a novel subgroup of LUAD patients (uLUAD) using a set of hESC-lncRNAs. The uLUAD patients had high stem cell-like characteristic and reduced survival rate and may be referred for immunotherapy. Furthermore, our analysis also showed the importance of lncRNAs in cancer and cancer stem cells.
Collapse
Affiliation(s)
- Seema Khadirnaikar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
- Department of Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Annesha Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|