1
|
Elder NH, Majd A, Bulger EA, Samuel RM, Zholudeva LV, McDevitt TC, Fattahi F. Distinct differentiation trajectories leave lasting impacts on gene regulation and function of V2a interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626573. [PMID: 39677634 PMCID: PMC11642877 DOI: 10.1101/2024.12.03.626573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During development, early regionalization segregates lineages and directs diverse cell fates. Sometimes, however, distinct progenitors produce analogous cell types. For example, V2a neurons, are excitatory interneurons that emerge from different anteroposterior progenitors. V2a neurons demonstrate remarkable plasticity after spinal cord injury and improve motor function, showing potential for cell therapy. To examine how lineage origins shape their properties, we differentiated V2a neurons from hPSC-derived progenitors with distinct anteroposterior identities. Single-nucleus multiomic analysis revealed lineage-specific transcription factor motifs and numerous differentially expressed genes related to axon growth and calcium handling. Bypassing lineage patterning via transcription factor-induced differentiation yielded neurons distinct from both developmentally relevant populations and human tissue, emphasizing the need to follow developmental steps to generate authentic cell identities. Using in silico and in vitro loss-of-function analyses, we identified CREB5 and TCF7L2 as regulators specific to posterior identities, underscoring the critical role of lieage origins in determining cell states and functions.
Collapse
Affiliation(s)
- Nicholas H. Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Alireza Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Emily A. Bulger
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Current address: Genentech, South San Francisco, California 94080 USA
| | - Ryan M. Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lyandysha V. Zholudeva
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Current address: Genentech, South San Francisco, California 94080 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
2
|
Renaux E, Baudouin C, Schakman O, Gay O, Martin M, Marchese D, Achouri Y, Rezsohazy R, Gofflot F, Clotman F. Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development. Front Cell Neurosci 2024; 18:1466056. [PMID: 39479525 PMCID: PMC11521906 DOI: 10.3389/fncel.2024.1466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Motor activity is organized by neuronal networks composed of motor neurons and a wide variety of pre-motor interneuron populations located in the brainstem and spinal cord. Differential expression and single-cell RNA sequencing studies recently unveiled that these populations subdivide into multiple subsets. However, some interneuron subsets have not been described yet, and the mechanisms contributing to this neuronal diversification have only been partly deciphered. In this study, we aimed to identify additional markers to further describe the diversity of spinal V2 interneuron populations. Here, we compared the transcriptome of V2 interneurons with that of the other cells of the embryonic spinal cord and extracted a list of genes enriched in V2 interneurons, including Arid3c. Arid3c identifies an uncharacterized subset of V2 that partially overlaps with V2c interneurons. These two populations are characterized by the production of Onecut factors and Sox2, suggesting that they could represent a single functional V2 unit. Furthermore, we show that the overexpression or inactivation of Arid3c does not alter V2 production, but its absence results in minor defects in locomotor execution, suggesting a possible function in subtle aspects of spinal locomotor circuit formation.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Behavioral Analysis Platform (BEAP), Brussels, Belgium
| | - Ondine Gay
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon Cedex, France
| | - Manon Martin
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Younès Achouri
- Université catholique de Louvain, de Duve Institute, Transgenic Core Facility, Brussels, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| |
Collapse
|
3
|
Renaux E, Baudouin C, Marchese D, Clovis Y, Lee SK, Gofflot F, Rezsohazy R, Clotman F. Lhx4 surpasses its paralog Lhx3 in promoting the differentiation of spinal V2a interneurons. Cell Mol Life Sci 2024; 81:286. [PMID: 38970652 PMCID: PMC11335214 DOI: 10.1007/s00018-024-05316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics. The LIM-homeodomain transcription factors Lhx3, Lhx4, Isl1 and Isl2 promote the segregation and differentiation of spinal motor neurons and V2 interneurons. Based on their high sequence identity and their similar distribution, the Lhx3 and Lhx4 paralogs are considered to contribute similarly to these processes. However, the specific contribution of Lhx4 has never been studied. Here, we provide evidence that Lhx3 and Lhx4 are present in the same cell populations during spinal cord development. Similarly to Lhx3, Lhx4 can form multiproteic complexes with Isl1 or Isl2 and the nuclear LIM interactor NLI. Lhx4 can stimulate a V2-specific enhancer more efficiently than Lhx3 and surpasses Lhx3 in promoting the differentiation of V2a interneurons in chicken embryo electroporation experiments. Finally, Lhx4 inactivation in mice results in alterations of differentiation of the V2a subpopulation, but not of motor neuron production, suggesting that Lhx4 plays unique roles in V2a differentiation that are not compensated by the presence of Lhx3. Thus, Lhx4 could be the major LIM-HD factor involved in V2a interneuron differentiation during spinal cord development and should be considered for in vitro differentiation of spinal neuronal populations.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - Yoanne Clovis
- Pediatric Neuroscience Research Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soo-Kyung Lee
- Pediatric Neuroscience Research Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium.
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium.
| |
Collapse
|
4
|
Hu Z, Przytycki PF, Pollard KS. CellWalker2: multi-omic discovery of hierarchical cell type relationships and their associations with genomic annotations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594770. [PMID: 38798605 PMCID: PMC11118555 DOI: 10.1101/2024.05.17.594770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
CellWalker2 is a graph diffusion-based method for single-cell genomics data integration. It extends the CellWalker model by incorporating hierarchical relationships between cell types, providing estimates of statistical significance, and adding data structures for analyzing multi-omics data so that gene expression and open chromatin can be jointly modeled. Our open-source software enables users to annotate cells using existing ontologies and to probabilistically match cell types between two or more contexts, including across species. CellWalker2 can also map genomic regions to cell ontologies, enabling precise annotation of elements derived from bulk data, such as enhancers, genetic variants, and sequence motifs. Through simulation studies, we show that CellWalker2 performs better than existing methods in cell type annotation and mapping. We then use data from the brain and immune system to demonstrate CellWalker2's ability to discover cell type-specific regulatory programs and both conserved and divergent cell type relationships in complex tissues.
Collapse
Affiliation(s)
- Zhirui Hu
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, 94158, CA, USA
| | - Pawel F Przytycki
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, 94158, CA, USA
- Faculty of Computing & Data Sciences, Boston University, 665 Commonwealth Avenue, Boston, 02215, MA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, 94158, CA, USA
- Department of Epidemiology & Biostatistics, University of California, 1650 Owens Street, San Francisco, 94158, CA, USA
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, 94158, CA, USA
| |
Collapse
|
5
|
Bello-Rojas S, Bagnall MW. Clonally related, Notch-differentiated spinal neurons integrate into distinct circuits. eLife 2022; 11:e83680. [PMID: 36580075 PMCID: PMC9799969 DOI: 10.7554/elife.83680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/30/2022] Open
Abstract
Shared lineage has diverse effects on patterns of neuronal connectivity. In mammalian cortex, excitatory sister neurons assemble into shared microcircuits. In Drosophila, in contrast, sister neurons with different levels of Notch expression (NotchON/NotchOFF) develop distinct identities and diverge into separate circuits. Notch-differentiated sister neurons have been observed in vertebrate spinal cord and cerebellum, but whether they integrate into shared or distinct circuits remains unknown. Here, we evaluate how sister V2a (NotchOFF)/V2b (NotchON) neurons in the zebrafish integrate into spinal circuits. Using an in vivo labeling approach, we identified pairs of sister V2a/b neurons born from individual Vsx1+ progenitors and observed that they have somata in close proximity to each other and similar axonal trajectories. However, paired whole-cell electrophysiology and optogenetics revealed that sister V2a/b neurons receive input from distinct presynaptic sources, do not communicate with each other, and connect to largely distinct targets. These results resemble the divergent connectivity in Drosophila and represent the first evidence of Notch-differentiated circuit integration in a vertebrate system.
Collapse
Affiliation(s)
- Saul Bello-Rojas
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
6
|
Li WY, Deng LX, Zhai FG, Wang XY, Li ZG, Wang Y. Chx10+V2a interneurons in spinal motor regulation and spinal cord injury. Neural Regen Res 2022; 18:933-939. [PMID: 36254971 PMCID: PMC9827767 DOI: 10.4103/1673-5374.355746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chx10-expressing V2a (Chx10+V2a) spinal interneurons play a large role in the excitatory drive of motoneurons. Chemogenetic ablation studies have demonstrated the essential nature of Chx10+V2a interneurons in the regulation of locomotor initiation, maintenance, alternation, speed, and rhythmicity. The role of Chx10+V2a interneurons in locomotion and autonomic nervous system regulation is thought to be robust, but their precise role in spinal motor regulation and spinal cord injury have not been fully explored. The present paper reviews the origin, characteristics, and functional roles of Chx10+V2a interneurons with an emphasis on their involvement in the pathogenesis of spinal cord injury. The diverse functional properties of these cells have only been substantiated by and are due in large part to their integration in a variety of diverse spinal circuits. Chx10+V2a interneurons play an integral role in conferring locomotion, which integrates various corticospinal, mechanosensory, and interneuron pathways. Moreover, accumulating evidence suggests that Chx10+V2a interneurons also play an important role in rhythmic patterning maintenance, left-right alternation of central pattern generation, and locomotor pattern generation in higher order mammals, likely conferring complex locomotion. Consequently, the latest research has focused on postinjury transplantation and noninvasive stimulation of Chx10+V2a interneurons as a therapeutic strategy, particularly in spinal cord injury. Finally, we review the latest preclinical study advances in laboratory derivation and stimulation/transplantation of these cells as a strategy for the treatment of spinal cord injury. The evidence supports that the Chx10+V2a interneurons act as a new therapeutic target for spinal cord injury. Future optimization strategies should focus on the viability, maturity, and functional integration of Chx10+V2a interneurons transplanted in spinal cord injury foci.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng-Guo Zhai
- Department of Pharmacy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China
| | - Xiao-Yu Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China
| | - Zhi-Gang Li
- Department of General Surgery, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China,Correspondence to: Ying Wang, ; Zhi-Gang Li, .
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China,Correspondence to: Ying Wang, ; Zhi-Gang Li, .
| |
Collapse
|
7
|
Li X, Hu X, Jiang Y, Wang D, Wang T, Li B. Autonomic behavioral impairment induced by simazine exposure during early life of male mouse is mediated by Lmx1a/Wnt1 pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:776-788. [PMID: 34936186 DOI: 10.1002/tox.23442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Simazine is a widely used herbicide and known as an environmental estrogen. Multiple studies have proved simazine can induced the degeneration of dopaminergic neuron resulting in a degenerative disease-like syndrome. Herein, we explored the neurotoxicity of simazine on the dopaminergic nervous system of embryos and weaned offspring during the maternal gestation period or the maternal gestation and lactation periods. We found that simazine disturbed the crucial components expression involved in Lmx1a/Wnt1 pathway of dopaminergic neuron in embryonic and weaned offspring. Furthermore, morphological and behavioral tests performed on weaned male offspring treated by simazine suggested that the grip strength, autonomic exploring, and the space sense ability were weakened, as well as the pathological damage of dopaminergic neuron was clearly observed. But, the same neurotoxicity of simazine is less significantly observed in female offspring. Our findings will provide reliable reference for the determination of environmental limits and new insight into the pathogenesis of nonfamilial neurodegenerative diseases related to environmental risk factors.
Collapse
Affiliation(s)
- Xueting Li
- Department of Hygienic Toxicology, College of Public Health, Harbin Medical University, Harbin, China
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Xiaomeng Hu
- Department of Hygienic Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yujia Jiang
- Department of Hygienic Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Dandan Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Ting Wang
- Department of Hygienic Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Baixiang Li
- Department of Hygienic Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Katsuyama T, Kadoya M, Shirai M, Sasai N. Sox14 is essential for initiation of neuronal differentiation in the chick spinal cord. Dev Dyn 2021; 251:350-361. [PMID: 34181293 DOI: 10.1002/dvdy.392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The neural tube comprises several different types of progenitors and postmitotic neurons that co-ordinately act with each other to play integrated functions. Its development consists of two phases: proliferation of progenitor cells and differentiation into postmitotic neurons. How progenitor cells differentiate into each corresponding neuron is an important question for understanding the mechanisms of neuronal development. RESULTS Here we introduce one of the Sox transcription factors, Sox14, which plays an essential role in the promotion of neuronal differentiation. Sox14 belongs to the SoxB2 subclass and its expression starts in the progenitor regions before neuronal differentiation is initiated at the trunk level of the neural tube. After neuronal differentiation is initiated, Sox14 expression gradually becomes confined to the V2a region of the neural tube, where Chx10 is co-expressed. Overexpression of Sox14 restricts progenitor cell proliferation. Conversely, the blockade of Sox14 expression by the RNAi strategy inhibits V2a neuron differentiation and causes expansion of the progenitor domain. We further found that Sox14 acted as a transcriptional activator. CONCLUSIONS Sox14 acts as a modulator of cell proliferation and is essential for initiation of neuronal differentiation in the chick neural tube.
Collapse
Affiliation(s)
- Taiki Katsuyama
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
9
|
Baudouin C, Pelosi B, Courtoy GE, Achouri Y, Clotman F. Generation and characterization of a tamoxifen-inducible Vsx1-CreER T2 line to target V2 interneurons in the mouse developing spinal cord. Genesis 2021; 59:e23435. [PMID: 34080769 DOI: 10.1002/dvg.23435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/11/2022]
Abstract
In the spinal cord, ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities including locomotion. Interneurons arise during embryonic development from distinct progenitor domains orderly distributed along the dorso-ventral axis of the neural tube. The p2 progenitor domain generates at least five V2 interneuron populations. However, identification and characterization of all V2 populations remain currently incomplete and the mechanisms that control their development remain only partly understood. In this study, we report the generation of a Vsx1-CreERT2 BAC transgenic mouse line that drives CreERT2 recombinase expression mimicking endogenous Vsx1 expression pattern in the developing spinal cord. We showed that the Vsx1-CreERT2 transgene can mediate recombination in V2 precursors with a high efficacy and specificity. Lineage tracing demonstrated that all the V2 interneurons in the mouse developing spinal cord derive from cells expressing Vsx1. Finally, we confirmed that V2 precursors generate additional V2 populations that are not characterized yet. Thus, the Vsx1-CreERT2 line described here is a useful genetic tool for lineage tracing and for functional studies of the mouse spinal V2 interneurons.
Collapse
Affiliation(s)
- Charlotte Baudouin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Barbara Pelosi
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Guillaume E Courtoy
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Younes Achouri
- de Duve Institute, Transgenic Core Facility, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Clotman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Zygotic Vsx1 Plays a Key Role in Defining V2a Interneuron Sub-Lineage by Directly Repressing tal1 Transcription in Zebrafish. Int J Mol Sci 2020; 21:ijms21103600. [PMID: 32443726 PMCID: PMC7279403 DOI: 10.3390/ijms21103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
In the spinal cord, excitatory V2a and inhibitory V2b interneurons are produced together by the final division of common P2 progenitors. During V2a and V2b diversification, Tal1 is necessary and sufficient to promote V2b differentiation and Vsx2 suppresses the expression of motor neuron genes to consolidate V2a interneuron identity. The expression program of Tal1 is triggered by a Foxn4-driven regulatory network in the common P2 progenitors. Why the expression of Tal1 is inhibited in V2a interneurons at the onset of V2a and V2b sub-lineage diversification remains unclear. Since transcription repressor Vsx1 is expressed in the P2 progenitors and newborn V2a cells in zebrafish, we investigated the role of Vsx1 in V2a fate specification during V2a and V2b interneuron diversification in this species by loss and gain-of-function experiments. In vsx1 knockdown embryos or knockout Go chimeric embryos, tal1 was ectopically expressed in the presumptive V2a cells, while the generation of V2a interneurons was significantly suppressed. By contrast, in vsx1 overexpression embryos, normal expression of tal1 in the presumptive V2b cells was suppressed, while the generation of V2a interneuron was expanded. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly bind to tal1 promoter and repress tal1 transcription. These results indicate that Vsx1 can directly repress tal1 transcription and plays an essential role in defining V2a interneuron sub-lineage during V2a and V2b sub-lineage diversification in zebrafish.
Collapse
|