1
|
Mohan M, Mannan A, Nauriyal A, Singh TG. Emerging targets in amyotrophic lateral sclerosis (ALS): The promise of ATP-binding cassette (ABC) transporter modulation. Behav Brain Res 2025; 476:115242. [PMID: 39243983 DOI: 10.1016/j.bbr.2024.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative primarily affecting motor neurons, leading to disability and neuronal death, and ATP-Binding Cassette (ABC) transporter due to their role in drug efflux and modulation of various cellular pathways contributes to the pathogenesis of ALS. In this article, we extensively investigated various molecular and mechanistic pathways linking ALS transporter to the pathogenesis of ALS; this involves inflammatory pathways such as Mitogen-Activated Protein Kinase (MAPK), Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt), Toll-Like Receptor (TLR), Glycogen Synthase Kinase 3β (GSK-3β), Nuclear Factor Kappa-B (NF-κB), and Cyclooxygenase (COX). Oxidative pathways such as Astrocytes, Glutamate, Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Sirtuin 1 (SIRT-1), Forkhead box protein O (FOXO), Extracellular signal-regulated kinase (ERK). Additionally, we delve into the role of autophagic pathways like TAR DNA-binding protein 43 (TDP-43), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and lastly, the apoptotic pathways. Furthermore, by understanding these intricate interactions, we aim to develop novel therapeutic strategies targeting ABC transporters, improving drug delivery, and ultimately offering a promising avenue for treating ALS.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Aayush Nauriyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Mi Y, Zhang P, Hou X, Ding Y, Wang Y, Du H, Deng M. A rare genetic variant in APEX1 is associated with familial amyotrophic lateral sclerosis with slow progression. Acta Neurol Belg 2024:10.1007/s13760-024-02692-w. [PMID: 39604641 DOI: 10.1007/s13760-024-02692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by loss of motor neurons and progressive muscle weakness. We aimed to identify the pathogenic genetic variants in familial ALS (fALS) pedigrees and to elucidate their impact on the disease phenotype. Through the analysis of whole-genome sequencing data of 34 fALS probands that screened negative for mutations in the most common ALS-causing genes, we identified a rare missense variant in APEX1 (NM_001641.4: c.22G > A, p.Gly8Arg) associated with ALS in one pedigree. Fluorescence microscopy images using green fluorescent protein (GFP)-fusion proteins suggested that this amino acid substitution could cause an impairment in nuclear localization of the protein. We described the clinical characteristics of this cohort analyzed and found that patients carrying this variant exhibit lower motor neuron onset and prolonged survival. The relation between APEX1 and ALS occurrence has been elusive despite evidence of a neuroprotective role for the gene. This study provides evidence linking an APEX1 variant with fALS and information on the distinct clinical manifestation. This study contributes to the understanding of the genetic basis of ALS, as well as a potential mechanism leading to loss of neurons, highlighting possible opportunities of targeted treatment harnessing the DNA repair process or ameliorating the oxidative stress.
Collapse
Affiliation(s)
- Yuxin Mi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Peipei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaotong Hou
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuqi Ding
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yiying Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Provasek VE, Bacolla A, Rangaswamy S, Mitra J, Kodavati M, Yusuf IO, Malojirao VH, Vasquez V, Britz GW, Li GM, Xu Z, Mitra S, Garruto RM, Tainer JA, Hegde ML. RNA/DNA Binding Protein TDP43 Regulates DNA Mismatch Repair Genes with Implications for Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594552. [PMID: 38798341 PMCID: PMC11118483 DOI: 10.1101/2024.05.16.594552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
TAR DNA-binding protein 43 (TDP43) is increasingly recognized for its involvement in neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 proteinopathy, characterized by dysregulated nuclear export and cytoplasmic aggregation, is present in most ALS/FTD cases and is associated with a loss of nuclear function and genomic instability in neurons. Building on prior evidence linking TDP43 pathology to DNA double-strand breaks (DSBs), this study identifies a novel regulatory role for TDP43 in the DNA mismatch repair (MMR) pathway. We demonstrate that depletion or overexpression of TDP43 affects the expression of key MMR genes, including MLH1, MSH6, MSH2, MSH3, and PMS2. Specifically, TDP43 modulates the expression of MLH1 and MSH6 proteins through alternative splicing and transcript stability. These findings are validated in ALS mice models, patient-derived neural progenitor cells and autopsied brain tissues from ALS patients. Furthermore, MMR depletion showed a partial rescue of TDP43-induced DNA damage in neuronal cells. Bioinformatics analysis of TCGA cancer database reveals significant correlations between TDP43 and MMR gene expressions and mutational burden across various cancer subtypes. These results collectively establish TDP43 as a critical regulator of the MMR pathway, with broad implications for understanding the genomic instability underlying neurodegenerative and neoplastic diseases.
Collapse
Affiliation(s)
- Vincent E Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Suganya Rangaswamy
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Issa O Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Vikas H Malojirao
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neurosurgery and Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Sankar Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ralph M Garruto
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902
| | - John A Tainer
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
4
|
Soubannier V, Chaineau M, Gursu L, Lépine S, Kalaydjian D, Sirois J, Haghi G, Rouleau G, Durcan TM, Stifani S. Early nuclear phenotypes and reactive transformation in human iPSC-derived astrocytes from ALS patients with SOD1 mutations. Glia 2024; 72:2079-2094. [PMID: 39092466 DOI: 10.1002/glia.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Lale Gursu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Sarah Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - David Kalaydjian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Ghazal Haghi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
He Q, Zhou Y, Jin J, Tian Q, Li H, Hou B, Xie A. Association between NEK1 gene polymorphisms and the potential risk of sporadic Parkinson's disease in the Chinese Northern Han population: A case-control study. Neurosci Lett 2024; 837:137913. [PMID: 39032803 DOI: 10.1016/j.neulet.2024.137913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Parkinson's disease (PD) has been identified as a genetically influenced disease linked to various genetic loci. Previous studies have suggested that neurodegenerative illnesses, including PD, Alzheimer's disease, and Amyotrophic lateral sclerosis (ALS), may share certain genetic loci. Recently, the NEK1 gene was identified as overlapping between PD and ALS. We therefore wanted to explore the potential association between the NEK1 gene single nucleotide polymorphisms (SNPs) and the clinical features and pathophysiology of sporadic PD in a northern Chinese population. METHODS A total of 510 sporadic PD patients and 510 age- and sex-matched healthy controls (HCs) were included in this study. Two SNPs (rs4563461 and rs66509122) of the NEK1 gene were genotyped using polymerase chain reaction (PCR). And we analyzed the association between NEK1 gene polymorphisms and clinical manifestations. RESULTS Allele T (C vs. T, P = 0.018) and genotype TT (CC vs. TT: P = 0.021) of rs66509122 among PD group and HCs were significantly different. In addition, we discovered that the rs66509122 genotype TT was associated with depression in early-onset PD (EOPD) (P = 0.031) and diabetes in female PD (P = 0.032). Unfortunately, no distinct correlation of rs4563461 polymorphisms with sporadic PD susceptibility was found in either the overall group (C vs. T, P = 0.086) or other subgroups. However, the T allele of rs4563461 was significantly correlated with sleep disorders in the PD group, especially in the late-onset PD (LOPD) group and male PD group. CONCLUSION This study found that the NEK1 rs66509122 polymorphism was associated with a lower risk of sporadic PD, while T allele of rs66509122 may be a protective factor for PD. The NEK1 rs4563461 and rs66509122 polymorphisms both showed correlations with some non-motor symptoms in sporadic PD patients. Further research with a larger sample and varied ethnic groups is needed to investigate the role of NEK1 gene polymorphisms in the pathophysiology of PD.
Collapse
Affiliation(s)
- Qiqing He
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuting Zhou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianing Jin
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Tian
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
7
|
Pethe A, Joshi S, Ali Dar T, Poddar NK. Revisiting the role of phospholipases in alzheimer's: crosstalk with processed food. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39002140 DOI: 10.1080/10408398.2024.2377290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Phospholipases such as phospholipase-A, phospholipase-B, phospholipase-C and phospholipase-D are important functional enzymes of the cell membrane responsible for a variety of functions such as signal transduction, production of lipid mediators, metabolite digestion and playing a pathological role in central nervous system diseases. Phospholipases have shown an association with Alzheimer's disease and these enzymes have found a correlation with several metabolic pathways that can lead to the activation of inflammatory signals via astrocytes and microglial cells. We also highlighted unhealthy practices like smoking and consuming processed foods, rich in nitroso compounds and phosphatidic acid, which contribute to neuronal damage in AD through phospholipases. A few therapeutic approaches such as the use of inhibitors of phospholipase-D,phospholipase A2 as well as autophagy-mediated inhibition have been discussed to control the onset of AD. This paper serves as a crosstalk between phospholipases and their role in neurodegenerative pathways as well as their influence on other biomolecules of lipid membranes, which are acquired through unhealthy diets and possible methods to treat these anomalies occurring due to their metabolic disorder involving phospholipases acting as major signaling molecules.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Siddhi Joshi
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
8
|
Kisby GE, Wilson DM, Spencer PS. Introducing the Role of Genotoxicity in Neurodegenerative Diseases and Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:7221. [PMID: 39000326 PMCID: PMC11241460 DOI: 10.3390/ijms25137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.
Collapse
Affiliation(s)
- Glen E. Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine of Pacific Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - David M. Wilson
- Biomedical Research Institute, BIOMED, Hasselt University, 3500 Hasselt, Belgium;
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
9
|
Dashtmian AR, Darvishi FB, Arnold WD. Chronological and Biological Aging in Amyotrophic Lateral Sclerosis and the Potential of Senolytic Therapies. Cells 2024; 13:928. [PMID: 38891059 PMCID: PMC11171952 DOI: 10.3390/cells13110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a group of sporadic and genetic neurodegenerative disorders that result in losses of upper and lower motor neurons. Treatment of ALS is limited, and survival is 2-5 years after disease onset. While ALS can occur in younger individuals, the risk significantly increases with advancing age. Notably, both sporadic and genetic forms of ALS share pathophysiological features overlapping hallmarks of aging including genome instability/DNA damage, mitochondrial dysfunction, inflammation, proteostasis, and cellular senescence. This review explores chronological and biological aging in the context of ALS onset and progression. Age-related muscle weakness and motor unit loss mirror aspects of ALS pathology and coincide with peak ALS incidence, suggesting a potential link between aging and disease development. Hallmarks of biological aging, including DNA damage, mitochondrial dysfunction, and cellular senescence, are implicated in both aging and ALS, offering insights into shared mechanisms underlying disease pathogenesis. Furthermore, senescence-associated secretory phenotype and senolytic treatments emerge as promising avenues for ALS intervention, with the potential to mitigate neuroinflammation and modify disease progression.
Collapse
Affiliation(s)
- Anna Roshani Dashtmian
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - Fereshteh B. Darvishi
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - William David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Neacșu SM, Mititelu M, Ozon EA, Musuc AM, Iuga IDM, Manolescu BN, Petrescu S, Pandele Cusu J, Rusu A, Surdu VA, Oprea E, Lupuliasa D, Popescu IA. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals (Basel) 2024; 17:690. [PMID: 38931357 PMCID: PMC11206646 DOI: 10.3390/ph17060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.
Collapse
Affiliation(s)
- Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Bogdan Nicolae Manolescu
- “C. Nenitescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Petrescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Jeanina Pandele Cusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Way, 060101 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Ioana Andreea Popescu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| |
Collapse
|
11
|
Hu Y, Chen W, Wei C, Jiang S, Li S, Wang X, Xu R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen Res 2024; 19:1036-1044. [PMID: 37862206 PMCID: PMC10749610 DOI: 10.4103/1673-5374.382985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Yushu Hu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Wenzhi Chen
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Caihui Wei
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shu Li
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xinxin Wang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College; The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
12
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
13
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Marques C, Held A, Dorfman K, Sung J, Song C, Kavuturu AS, Aguilar C, Russo T, Oakley DH, Albers MW, Hyman BT, Petrucelli L, Lagier-Tourenne C, Wainger BJ. Neuronal STING activation in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol 2024; 147:56. [PMID: 38478117 PMCID: PMC10937762 DOI: 10.1007/s00401-024-02688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 03/17/2024]
Abstract
The stimulator of interferon genes (STING) pathway has been implicated in neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis (ALS). While prior studies have focused on STING within immune cells, little is known about STING within neurons. Here, we document neuronal activation of the STING pathway in human postmortem cortical and spinal motor neurons from individuals affected by familial or sporadic ALS. This process takes place selectively in the most vulnerable cortical and spinal motor neurons but not in neurons that are less affected by the disease. Concordant STING activation in layer V cortical motor neurons occurs in a mouse model of C9orf72 repeat-associated ALS and frontotemporal dementia (FTD). To establish that STING activation occurs in a neuron-autonomous manner, we demonstrate the integrity of the STING signaling pathway, including both upstream activators and downstream innate immune response effectors, in dissociated mouse cortical neurons and neurons derived from control human induced pluripotent stem cells (iPSCs). Human iPSC-derived neurons harboring different familial ALS-causing mutations exhibit increased STING signaling with DNA damage as a main driver. The elevated downstream inflammatory markers present in ALS iPSC-derived neurons can be suppressed with a STING inhibitor. Our results reveal an immunophenotype that consists of innate immune signaling driven by the STING pathway and occurs specifically within vulnerable neurons in ALS/FTD.
Collapse
Affiliation(s)
- Christine Marques
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine Dorfman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Joon Sung
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine Song
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Amey S Kavuturu
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Corey Aguilar
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Tommaso Russo
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Derek H Oakley
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Mark W Albers
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Alzheimer Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Alzheimer Disease Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
15
|
Nowicka N, Zglejc-Waszak K, Juranek J, Korytko A, Wąsowicz K, Chmielewska-Krzesińska M, Wojtkiewicz J. Novel insights into RAGE signaling pathways during the progression of amyotrophic lateral sclerosis in RAGE-deficient SOD1 G93A mice. PLoS One 2024; 19:e0299567. [PMID: 38457412 PMCID: PMC10923448 DOI: 10.1371/journal.pone.0299567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease characterized by a progressive loss of motor neurons resulting in paralysis and muscle atrophy. One of the most prospective hypothesis on the ALS pathogenesis suggests that excessive inflammation and advanced glycation end-products (AGEs) accumulation play a crucial role in the development of ALS in patients and SOD1 G93A mice. Hence, we may speculate that RAGE, receptor for advanced glycation end-products and its proinflammatory ligands such as: HMGB1, S100B and CML contribute to ALS pathogenesis. The aim of our studies was to decipher the role of RAGE as well as provide insight into RAGE signaling pathways during the progression of ALS in SOD1 G93A and RAGE-deficient SOD1 G93A mice. In our study, we observed alternations in molecular pattern of proinflammatory RAGE ligands during progression of disease in RAGE KO SOD1 G93A mice compared to SOD1 G93A mice. Moreover, we observed that the amount of beta actin (ACTB) as well as Glial fibrillary acidic protein (GFAP) was elevated in SOD1 G93A mice when compared to mice with deletion of RAGE. These data contributes to our understanding of implications of RAGE and its ligands in pathogenesis of ALS and highlight potential targeted therapeutic interventions at the early stage of this devastating disease. Moreover, inhibition of the molecular cross-talk between RAGE and its proinflammatory ligands may abolish neuroinflammation, gliosis and motor neuron damage in SOD1 G93A mice. Hence, we hypothesize that attenuated interaction of RAGE with its proinflammatory ligands may improve well-being and health status during ALS in SOD1 G93A mice. Therefore, we emphasize that the inhibition of RAGE signaling pathway may be a therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Natalia Nowicka
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medium, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medium, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medium, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medium, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof Wąsowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Małgorzata Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medium, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
16
|
Giannini M, Porrua O. Senataxin: A key actor in RNA metabolism, genome integrity and neurodegeneration. Biochimie 2024; 217:10-19. [PMID: 37558082 DOI: 10.1016/j.biochi.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The RNA/DNA helicase senataxin (SETX) has been involved in multiple crucial processes related to genome expression and integrity such us transcription termination, the regulation of transcription-replication conflicts and the resolution of R-loops. SETX has been the focus of numerous studies since the discovery that mutations in its coding gene are the root cause of two different neurodegenerative diseases: Ataxia with Oculomotor Apraxia type 2 (AOA2) and a juvenile form of Amyotrophic Lateral Sclerosis (ALS4). A plethora of cellular phenotypes have been described as the result of SETX deficiency, yet the precise molecular function of SETX as well as the molecular pathways leading from SETX mutations to AOA2 and ALS4 pathologies have remained unclear. However, recent data have shed light onto the biochemical activities and biological roles of SETX, thus providing new clues to understand the molecular consequences of SETX mutation. In this review we summarize near two decades of scientific effort to elucidate SETX function, we discuss strengths and limitations of the approaches and models used thus far to investigate SETX-associated diseases and suggest new possible research avenues for the study of AOA2 and ALS4 pathogenesis.
Collapse
Affiliation(s)
- Marta Giannini
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
17
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Astrocyte DNA damage and response upon acute exposure to ethanol and corticosterone. FRONTIERS IN TOXICOLOGY 2024; 5:1277047. [PMID: 38259729 PMCID: PMC10800529 DOI: 10.3389/ftox.2023.1277047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Astrocytes are the glial cells responsible for brain homeostasis, but if injured, they could damage neural cells even deadly. Genetic damage, DNA damage response (DDR), and its downstream cascades are dramatic events poorly studied in astrocytes. Hypothesis and methods: We propose that 1 h of 400 mmol/L ethanol and/or 1 μmol/L corticosterone exposure of cultured hippocampal astrocytes damages DNA, activating the DDR and eliciting functional changes. Immunolabeling against γH2AX (chromatin DNA damage sites), cyclin D1 (cell cycle control), nuclear (base excision repair, BER), and cytoplasmic (anti-inflammatory functions) APE1, ribosomal nucleolus proteins together with GFAP and S100β plus scanning electron microscopy studies of the astrocyte surface were carried out. Results: Data obtained indicate significant DNA damage, immediate cell cycle arrest, and BER activation. Changes in the cytoplasmic signals of cyclin D1 and APE1, nucleolus number, and membrane-attached vesicles strongly suggest a reactivity like astrocyte response without significant morphological changes. Discussion: Obtained results uncover astrocyte genome immediate vulnerability and DDR activation, plus a functional response that might in part, be signaled through extracellular vesicles, evidencing the complex influence that astrocytes may have on the CNS even upon short-term aggressions.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | | | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
18
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
19
|
Serpente M, Fenoglio C, Arcaro M, Carandini T, Sacchi L, Pintus M, Rotondo E, Borracci V, Ghezzi L, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sánchez Valle R, Laforce R, Graff C, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Le Ber I, Finger E, Tartaglia MC, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Rohrer JD, Arighi A, Galimberti D. Long Non-Coding RNA Profile in Genetic Symptomatic and Presymptomatic Frontotemporal Dementia: A GENFI Study. J Alzheimers Dis 2024; 100:S187-S196. [PMID: 39121124 PMCID: PMC11380264 DOI: 10.3233/jad-240557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation and are implicated in neurodegenerative diseases, including frontotemporal dementia (FTD). However, their expression patterns and potential as biomarkers in genetic FTD involving Chromosome 9 Open Reading Frame (C9ORF72), Microtubule Associated Protein Tau (MAPT), and Progranulin (GRN) genes are not well understood. Objective This study aimed to profile the expression levels of lncRNAs in peripheral blood mononuclear cells collected within the GENetic Frontotemporal dementia Initiative (GENFI). Methods Fifty-three lncRNAs were analyzed with the OpenArray Custom panel, in 131 patients with mutations in C9ORF72, MAPT, and GRN, including 68 symptomatic mutation carriers (SMC) and 63 presymptomatic mutation carriers (PMC), compared with 40 non-carrier controls (NC). Results Thirty-eight lncRNAs were detectable; the relative expression of NEAT1 and NORAD was significantly higher in C9ORF72 SMC as compared with NC. GAS5 expression was instead significantly lower in the GRN group versus NC. MAPT carriers showed no significant deregulations. No significant differences were observed in PMC. Disease duration did not correlate with lncRNA expression. Conclusions NEAT1 and NORAD are upregulated in C9ORF72 SMC and GAS5 levels are downregulated in GRN SMC, underlining lncRNAs' relevance in FTD and their potential for biomarker development. Further validation and mechanistic studies are crucial for clinical implications.
Collapse
Affiliation(s)
- Maria Serpente
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Marina Arcaro
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sacchi
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Manuela Pintus
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Emanuela Rotondo
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittoria Borracci
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Ghezzi
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Phoebe H Foster
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Eve Ferry-Bolder
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Raquel Sánchez Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Robert Laforce
- Département des Sciences Neurologiques, Clinique Interdisciplinaire de Mémoire, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society; Center for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Inflammation and Aging, Karolinska University Hospital, Solna, Sweden
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Department of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Florence Pasquier
- University of Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Centre de Référence Des Démences Rares Ou Précoces, IM2A, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain
- Biogipuzkoa Health Research Institute, Neurosciences Area, Group of Neurodegenerative Diseases, San Sebastian, Spain
- Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Arighi
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Davies MR, Greenberg Z, van Vuurden DG, Cross CB, Zannettino ACW, Bardy C, Wardill HR. More than a small adult brain: Lessons from chemotherapy-induced cognitive impairment for modelling paediatric brain disorders. Brain Behav Immun 2024; 115:229-247. [PMID: 37858741 DOI: 10.1016/j.bbi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Collapse
Affiliation(s)
- Maya R Davies
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Dannis G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the weNetherlands
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrew C W Zannettino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
21
|
Gomes BC, Peixinho N, Pisco R, Gromicho M, Pronto-Laborinho AC, Rueff J, de Carvalho M, Rodrigues AS. Differential Expression of miRNAs in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2023; 60:7104-7117. [PMID: 37531027 PMCID: PMC10657797 DOI: 10.1007/s12035-023-03520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that affects nerve cells in the brain and spinal cord, causing loss of muscle control, muscle atrophy and in later stages, death. Diagnosis has an average delay of 1 year after symptoms onset, which impairs early management. The identification of a specific disease biomarker could help decrease the diagnostic delay. MicroRNA (miRNA) expression levels have been proposed as ALS biomarkers, and altered function has been reported in ALS pathogenesis. The aim of this study was to assess the differential expression of plasma miRNAs in ALS patients and two control populations (healthy controls and ALS-mimic disorders). For that, 16 samples from each group were pooled, and then 1008 miRNAs were assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). From these, ten candidate miRNAs were selected and validated in 35 ALS patients, 16 ALS-mimic disorders controls and 15 healthy controls. We also assessed the same miRNAs in two different time points of disease progression. Although we were unable to determine a miRNA signature to use as disease or condition marker, we found that miR-7-2-3p, miR-26a-1-3p, miR-224-5p and miR-206 are good study candidates to understand the pathophysiology of ALS.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Nuno Peixinho
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita Pisco
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marta Gromicho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria CHULN, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
23
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
24
|
Antoniani F, Cimino M, Mediani L, Vinet J, Verde EM, Secco V, Yamoah A, Tripathi P, Aronica E, Cicardi ME, Trotti D, Sterneckert J, Goswami A, Carra S. Loss of PML nuclear bodies in familial amyotrophic lateral sclerosis-frontotemporal dementia. Cell Death Discov 2023; 9:248. [PMID: 37454169 DOI: 10.1038/s41420-023-01547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise a cytoplasmic and a nuclear arm that are interconnected and share key players. It is thus conceivable that impairment of the nuclear arm of the PQC may have a negative impact on the cytoplasmic arm of the PQC, contributing to the formation of the cytoplasmic pathological inclusions. Here we focused on two stress-inducible condensates that act as transient deposition sites for misfolding-prone proteins: Promyelocytic leukemia protein (PML) nuclear bodies (PML-NBs) and cytoplasmic stress granules (SGs). Upon stress, PML-NBs compartmentalize misfolded proteins, including defective ribosomal products (DRiPs), and recruit chaperones and proteasomes to promote their nuclear clearance. SGs transiently sequester aggregation-prone RNA-binding proteins linked to ALS-FTD and mRNAs to attenuate their translation. We report that PML assembly is impaired in the human brain and spinal cord of familial C9orf72 and FUS ALS-FTD cases. We also show that defective PML-NB assembly impairs the compartmentalization of DRiPs in the nucleus, leading to their accumulation inside cytoplasmic SGs, negatively influencing SG dynamics. Although it is currently unclear what causes the decrease of PML-NBs in ALS-FTD, our data highlight the existence of a cross-talk between the cytoplasmic and nuclear PQC systems, whose alteration can contribute to SG accumulation and cytoplasmic protein aggregation in ALS-FTD.
Collapse
Affiliation(s)
- Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Cimino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Enza M Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maria E Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, 10032, New York, NY, USA.
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, 10032, New York, NY, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
25
|
Wainberg M, Andrews SJ, Tripathy SJ. Shared genetic risk loci between Alzheimer's disease and related dementias, Parkinson's disease, and amyotrophic lateral sclerosis. Alzheimers Res Ther 2023; 15:113. [PMID: 37328865 PMCID: PMC10273745 DOI: 10.1186/s13195-023-01244-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have indicated moderate genetic overlap between Alzheimer's disease (AD) and related dementias (ADRD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), neurodegenerative disorders traditionally considered etiologically distinct. However, the specific genetic variants and loci underlying this overlap remain almost entirely unknown. METHODS We leveraged state-of-the-art GWAS for ADRD, PD, and ALS. For each pair of disorders, we examined each of the GWAS hits for one disorder and tested whether they were also significant for the other disorder, applying Bonferroni correction for the number of variants tested. This approach rigorously controls the family-wise error rate for both disorders, analogously to genome-wide significance. RESULTS Eleven loci with GWAS hits for one disorder were also associated with one or both of the other disorders: one with all three disorders (the MAPT/KANSL1 locus), five with ADRD and PD (near LCORL, CLU, SETD1A/KAT8, WWOX, and GRN), three with ADRD and ALS (near GPX3, HS3ST5/HDAC2/MARCKS, and TSPOAP1), and two with PD and ALS (near GAK/TMEM175 and NEK1). Two of these loci (LCORL and NEK1) were associated with an increased risk of one disorder but decreased risk of another. Colocalization analysis supported a shared causal variant between ADRD and PD at the CLU, WWOX, and LCORL loci, between ADRD and ALS at the TSPOAP1 locus, and between PD and ALS at the NEK1 and GAK/TMEM175 loci. To address the concern that ADRD is an imperfect proxy for AD and that the ADRD and PD GWAS have overlapping participants (nearly all of which are from the UK Biobank), we confirmed that all our ADRD associations had nearly identical odds ratios in an AD GWAS that excluded the UK Biobank, and all but one remained nominally significant (p < 0.05) for AD. CONCLUSIONS In one of the most comprehensive investigations to date of pleiotropy between neurodegenerative disorders, we identify eleven genetic risk loci shared among ADRD, PD, and ALS. These loci support lysosomal/autophagic dysfunction (GAK/TMEM175, GRN, KANSL1), neuroinflammation/immunity (TSPOAP1), oxidative stress (GPX3, KANSL1), and the DNA damage response (NEK1) as transdiagnostic processes underlying multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael Wainberg
- Centre for Addiction and Mental Health, 250 College Street, Toronto, M5T 1R8, Canada
| | - Shea J Andrews
- Department of Psychiatry & Behavioral Sciences, University of California San Francisco, San Francisco, 94143, USA
| | - Shreejoy J Tripathy
- Centre for Addiction and Mental Health, 250 College Street, Toronto, M5T 1R8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada.
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
26
|
Wang H, Guan L, Deng M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front Neurosci 2023; 17:1170996. [PMID: 37250416 PMCID: PMC10213321 DOI: 10.3389/fnins.2023.1170996] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of motor neurons in the brain and spinal cord. The causes of ALS are not fully understood. About 10% of ALS cases were associated with genetic factors. Since the discovery of the first familial ALS pathogenic gene SOD1 in 1993 and with the technology advancement, now over 40 ALS genes have been found. Recent studies have identified ALS related genes including ANXA11, ARPP21, CAV1, C21ORF2, CCNF, DNAJC7, GLT8D1, KIF5A, NEK1, SPTLC1, TIA1, and WDR7. These genetic discoveries contribute to a better understanding of ALS and show the potential to aid the development of better ALS treatments. Besides, several genes appear to be associated with other neurological disorders, such as CCNF and ANXA11 linked to FTD. With the deepening understanding of the classic ALS genes, rapid progress has been made in gene therapies. In this review, we summarize the latest progress on classical ALS genes and clinical trials for these gene therapies, as well as recent findings on newly discovered ALS genes.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - LiPing Guan
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
28
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 2023; 19:200-211. [PMID: 36750681 DOI: 10.1038/s41584-022-00905-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.
Collapse
Affiliation(s)
- Antonio Pezone
- Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Fabiola Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Maria Vittoria Napoli
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Procopio
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Enrico Vittorio Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy.
| | - Armando Gabrielli
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
29
|
Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H. Neurodegenerative disorders: Assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton) 2023; 6:82-97. [PMID: 36911087 PMCID: PMC10000287 DOI: 10.1002/agm2.12243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
Neurodegenerative illnesses refer to the gradual, cumulative loss of neural activity. Neurological conditions are considered to be the second leading cause of mortality in the modern world and the two most prevalent ones are Parkinson's disease and Alzheimer's disease. The negative side effects of pharmaceutical use are a major global concern, despite the availability of many different treatments for therapy. We concentrated on different types of neurological problems and their influence on targets, in vitro, in vivo, and in silico methods toward neurological disorders, as well as the molecular approaches influencing the same, in the first half of the review. The bulk of the second half of the review focuses on the many categories of treatment possibilities, including natural and artificial. Nevertheless, herbal treatment solutions are piquing scholarly attention due to their anti-oxidative properties and accessibility. However, more quality investigations and innovations are undoubtedly needed to back up these conclusions.
Collapse
Affiliation(s)
- Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Chaitali Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | | | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
30
|
Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 2023; 22:185-212. [PMID: 36543887 PMCID: PMC9768794 DOI: 10.1038/s41573-022-00612-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.
Collapse
Affiliation(s)
- Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK
| | - Ning Shan
- Aclipse Therapeutics, Radnor, PA, US
| | | | - Fiona Marshall
- MSD UK Discovery Centre, Merck, Sharp and Dohme (UK) Limited, London, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK.
| |
Collapse
|
31
|
Huber RG, Pandey S, Chhangani D, Rincon-Limas DE, Staff NP, Yeo CJJ. Identification of potential pathways and biomarkers linked to progression in ALS. Ann Clin Transl Neurol 2023; 10:150-165. [PMID: 36533811 PMCID: PMC9930436 DOI: 10.1002/acn3.51697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify potential diagnostic and prognostic biomarkers for clinical management and clinical trials in amyotrophic lateral sclerosis. METHODS We analysed proteomics data of ALS patient-induced pluripotent stem cell-derived motor neurons available through the AnswerALS consortium. After stratifying patients using clinical ALSFRS-R and ALS-CBS scales, we identified differentially expressed proteins indicative of ALS disease severity and progression rate as candidate ALS-related and prognostic biomarkers. Pathway analysis for identified proteins was performed using STITCH. Protein sets were correlated with the effects of drugs using the Connectivity Map tool to identify compounds likely to affect similar pathways. RNAi screening was performed in a Drosophila TDP-43 ALS model to validate pathological relevance. A statistical classification machine learning model was constructed using ridge regression that uses proteomics data to differentiate ALS patients from controls. RESULTS We identified 76, 21, 71 and 1 candidate ALS-related biomarkers and 22, 41, 27 and 64 candidate prognostic biomarkers from patients stratified by ALSFRS-R baseline, ALSFRS-R progression slope, ALS-CBS baseline and ALS-CBS progression slope, respectively. Nineteen proteins enhanced or suppressed pathogenic eye phenotypes in the ALS fly model. Nutraceuticals, dopamine pathway modulators, statins, anti-inflammatories and antimicrobials were predicted starting points for drug repurposing using the connectivity map tool. Ten diagnostic biomarker proteins were predicted by machine learning to identify ALS patients with high accuracy and sensitivity. INTERPRETATION This study showcases the powerful approach of iPSC-motor neuron proteomics combined with machine learning and biological confirmation in the prediction of novel mechanisms and diagnostic and predictive biomarkers in ALS.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix #07-01, 30 Biopolis Street, Singapore, 138671, Singapore
| | - Swapnil Pandey
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, 32611, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Crystal Jing Jing Yeo
- Agency for Science, Technology and Research (A*STAR), IMCB, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
- Lee Kong Chian School of Medicine, Imperial College London and NTU Singapore, Singapore, 308232, Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB243FX, Scotland, UK
- National Neuroscience Institute, TTSH Campus, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
32
|
Meanti R, Licata M, Rizzi L, Bresciani E, Molteni L, Coco S, Locatelli V, Omeljaniuk RJ, Torsello A. Protective Effects of Hexarelin and JMV2894 in a Human Neuroblastoma Cell Line Expressing the SOD1-G93A Mutated Protein. Int J Mol Sci 2023; 24:ijms24020993. [PMID: 36674509 PMCID: PMC9863688 DOI: 10.3390/ijms24020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable motor neuron disease whose etiology remains unresolved; nonetheless, mutations of superoxide dismutase 1 (SOD1) have been associated with several variants of ALS. Currently available pharmacologic interventions are only symptomatic and palliative in effect; therefore, there is a pressing demand for more effective drugs. This study examined potential therapeutic effects of growth hormone secretagogues (GHSs), a large family of synthetic compounds, as possible candidates for the treatment of ALS. Human neuroblastoma cells expressing the SOD1-G93A mutated protein (SH-SY5Y SOD1G93A cells) were incubated for 24 h with H2O2 (150 µM) in the absence, or presence, of GHS (1 µM), in order to study the protective effect of GHS against increased oxidative stress. The two GHSs examined in this study, hexarelin and JMV2894, protected cells from H2O2-induced cytotoxicity by activating molecules that regulate apoptosis and promote cell survival processes. These findings suggest the possibility of developing new GHS-based anti-oxidant and neuroprotective drugs with improved therapeutic potential. Further investigations are required for the following: (i) to clarify GHS molecular mechanisms of action, and (ii) to envisage the development of new GHSs that may be useful in ALS therapy.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Martina Licata
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8224
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| |
Collapse
|
33
|
Shang D, Huang M, Wang B, Yan X, Wu Z, Zhang X. mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:578-598. [PMID: 35950246 PMCID: PMC10207910 DOI: 10.2174/1570159x20666220810114644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Considerable evidence indicates that the semiautonomous organelles mitochondria play key roles in the progression of many neurodegenerative disorders. Mitochondrial DNA (mtDNA) encodes components of the OXPHOS complex but mutated mtDNA accumulates in cells with aging, which mirrors the increased prevalence of neurodegenerative diseases. This accumulation stems not only from the misreplication of mtDNA and the highly oxidative environment but also from defective mitophagy after fission. In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Our work outlines novel therapeutic strategies for targeting mtDNA.
Collapse
Affiliation(s)
- Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
34
|
Xia X, Wang Y, Zheng JC. Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Transl Neurodegener 2022; 11:53. [PMID: 36510311 PMCID: PMC9743667 DOI: 10.1186/s40035-022-00330-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small bilipid layer-enclosed vesicles that can be secreted by all tested types of brain cells. Being a key intercellular communicator, EVs have emerged as a key contributor to the pathogenesis of various neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease through delivery of bioactive cargos within the central nervous system (CNS). Importantly, CNS cell-derived EVs can be purified via immunoprecipitation, and EV cargos with altered levels have been identified as potential biomarkers for the diagnosis and prognosis of NDs. Given the essential impact of EVs on the pathogenesis of NDs, pathological EVs have been considered as therapeutic targets and EVs with therapeutic effects have been utilized as potential therapeutic agents or drug delivery platforms for the treatment of NDs. In this review, we focus on recent research progress on the pathological roles of EVs released from CNS cells in the pathogenesis of NDs, summarize findings that identify CNS-derived EV cargos as potential biomarkers to diagnose NDs, and comprehensively discuss promising potential of EVs as therapeutic targets, agents, and drug delivery systems in treating NDs, together with current concerns and challenges for basic research and clinical applications of EVs regarding NDs.
Collapse
Affiliation(s)
- Xiaohuan Xia
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.24516.340000000123704535Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613 China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China
| | - Jialin C. Zheng
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
35
|
Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Cells 2022; 11:cells11182857. [PMID: 36139432 PMCID: PMC9496915 DOI: 10.3390/cells11182857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death, and incidences are increasing globally. Simply defined, cancer is the uncontrolled proliferation of a cell, and depending on the tissue of origin, the cancer etiology, biology, progression, prognosis, and treatment will differ. Carcinogenesis and its progression are associated with genetic factors that can either be inherited and/or acquired and are classified as an oncogene or tumor suppressor. Many of these genetic factors converge on common signaling pathway(s), such as the MAPK and PI3K/AKT pathways. In this review, we will focus on the metabotropic glutamate receptor (mGluR) family, an upstream protein that transmits extracellular signals into the cell and has been shown to regulate many aspects of tumor development and progression. We explore the involvement of members of this receptor family in various cancers that include breast cancer, colorectal cancer, glioma, kidney cancer, melanoma, oral cancer, osteosarcoma, pancreatic cancer, prostate cancer, and T-cell cancers. Intriguingly, depending on the member, mGluRs can either be classified as oncogenes or tumor suppressors, although in general most act as an oncogene. The extensive work done to elucidate the role of mGluRs in various cancers suggests that it might be a viable strategy to therapeutically target glutamatergic signaling.
Collapse
|
36
|
Braems E, Bercier V, Van Schoor E, Heeren K, Beckers J, Fumagalli L, Dedeene L, Moisse M, Geudens I, Hersmus N, Mehta AR, Selvaraj BT, Chandran S, Ho R, Thal DR, Van Damme P, Swinnen B, Van Den Bosch L. HNRNPK alleviates RNA toxicity by counteracting DNA damage in C9orf72 ALS. Acta Neuropathol 2022; 144:465-488. [PMID: 35895140 PMCID: PMC9381635 DOI: 10.1007/s00401-022-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
A 'GGGGCC' repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| | - Evelien Van Schoor
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Lieselot Dedeene
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Ilse Geudens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Arpan R Mehta
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ritchie Ho
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
37
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
38
|
Qin N, Geng A, Xue R. Activated or Impaired: An Overview of DNA Repair in Neurodegenerative Diseases. Aging Dis 2022; 13:987-1004. [PMID: 35855336 PMCID: PMC9286913 DOI: 10.14336/ad.2021.1212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022] Open
Abstract
As the population ages, age-related neurodegenerative diseases have become a major challenge in health science. Currently, the pathology of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, is still not fully understood. Remarkably, emerging evidence indicates a role of genomic DNA damage and repair in various neurodegenerative disorders. Here, we summarized the current understanding of the function of DNA damage repair, especially base excision repair and double strand break repair pathways, in a variety of neurodegenerative diseases. We concluded that exacerbation of DNA lesions is found in almost all types of neurodegenerative diseases, whereas the activities of different DNA repair pathways demonstrate distinct trends, depending on disease type and even brain region. Specifically, key enzymes involved in base excision repair are likely impaired in Alzheimer's disease and amyotrophic lateral sclerosis but activated in Parkinson's disease, while nonhomologous end joining is likely downregulated in most types of neurodegenerative diseases. Hence, impairment of nonhomologous end joining is likely a common etiology for most neurodegenerative diseases, while defects in base excision repair are likely involved in the pathology of Alzheimer's disease and amyotrophic lateral sclerosis but are Parkinson's disease, based on current findings. Although there are still discrepancies and further studies are required to completely elucidate the exact roles of DNA repair in neurodegeneration, the current studies summarized here provide crucial insights into the pathology of neurodegenerative diseases and may reveal novel drug targets for corresponding neurodegenerative diseases.
Collapse
Affiliation(s)
- Nan Qin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
40
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
41
|
Baziyar P, Seyedalipour B, Hosseinkhani S. Zinc binding loop mutations of hSOD1 promote amyloid fibrils under physiological conditions: Implications for initiation of amyotrophic lateral sclerosis. Biochimie 2022; 199:170-181. [DOI: 10.1016/j.biochi.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
|
42
|
Konopka A, Atkin JD. DNA Damage, Defective DNA Repair, and Neurodegeneration in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:786420. [PMID: 35572138 PMCID: PMC9093740 DOI: 10.3389/fnagi.2022.786420] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is under constant attack from both endogenous and exogenous sources, and when damaged, specific cellular signalling pathways respond, collectively termed the “DNA damage response.” Efficient DNA repair processes are essential for cellular viability, although they decline significantly during aging. Not surprisingly, DNA damage and defective DNA repair are now increasingly implicated in age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS affects both upper and lower motor neurons in the brain, brainstem and spinal cord, leading to muscle wasting due to denervation. DNA damage is increasingly implicated in the pathophysiology of ALS, and interestingly, the number of DNA damage or repair proteins linked to ALS is steadily growing. This includes TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein that is present in a pathological form in almost all (97%) cases of ALS. Hence TDP-43 pathology is central to neurodegeneration in this condition. Fused in Sarcoma (FUS) bears structural and functional similarities to TDP-43 and it also functions in DNA repair. Chromosome 9 open reading frame 72 (C9orf72) is also fundamental to ALS because mutations in C9orf72 are the most frequent genetic cause of both ALS and related condition frontotemporal dementia, in European and North American populations. Genetic variants encoding other proteins involved in the DNA damage response (DDR) have also been described in ALS, including FUS, SOD1, SETX, VCP, CCNF, and NEK1. Here we review recent evidence highlighting DNA damage and defective DNA repair as an important mechanism linked to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka,
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Julie D. Atkin,
| |
Collapse
|
43
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
44
|
Palminha NM, Dos Santos Souza C, Griffin J, Liao C, Ferraiuolo L, El-Khamisy SF. Defective repair of topoisomerase I induced chromosomal damage in Huntington's disease. Cell Mol Life Sci 2022; 79:160. [PMID: 35224690 PMCID: PMC8882575 DOI: 10.1007/s00018-022-04204-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
Topoisomerase1 (TOP1)-mediated chromosomal breaks are endogenous sources of DNA damage that affect neuronal genome stability. Whether TOP1 DNA breaks are sources of genomic instability in Huntington's disease (HD) is unknown. Here, we report defective 53BP1 recruitment in multiple HD cell models, including striatal neurons derived from HD patients. Defective 53BP1 recruitment is due to reduced H2A ubiquitination caused by the limited RNF168 activity. The reduced availability of RNF168 is caused by an increased interaction with p62, a protein involved in selective autophagy. Depletion of p62 or disruption of the interaction between RNAF168 and p62 was sufficient to restore 53BP1 enrichment and subsequent DNA repair in HD models, providing new opportunities for therapeutic interventions. These findings are reminiscent to what was described for p62 accumulation caused by C9orf72 expansion in ALS/FTD and suggest a common mechanism by which protein aggregation perturb DNA repair signaling.
Collapse
Affiliation(s)
- Nelma M Palminha
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Jon Griffin
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Chunyan Liao
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK.
| |
Collapse
|
45
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
46
|
Nicolas G, Sévigny M, Lecoquierre F, Marguet F, Deschênes A, del Pelaez MC, Feuillette S, Audebrand A, Lecourtois M, Rousseau S, Richard AC, Cassinari K, Deramecourt V, Duyckaerts C, Boland A, Deleuze JF, Meyer V, Clarimon Echavarria J, Gelpi E, Akiyama H, Hasegawa M, Kawakami I, Wong TH, Van Rooij JGJ, Van Swieten JC, Campion D, Dutchak PA, Wallon D, Lavoie-Cardinal F, Laquerrière A, Rovelet-Lecrux A, Sephton CF. A postzygotic de novo NCDN mutation identified in a sporadic FTLD patient results in neurochondrin haploinsufficiency and altered FUS granule dynamics. Acta Neuropathol Commun 2022; 10:20. [PMID: 35151370 PMCID: PMC8841087 DOI: 10.1186/s40478-022-01314-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease. The goal of this study was to identify genetic variants contributing to FTLD-FET and to investigate their effects on FUS pathology. We performed whole-exome sequencing on a 50-year-old FTLD patient with ubiquitin and FUS-positive neuronal inclusions and unaffected parents, and identified a de novo postzygotic nonsense variant in the NCDN gene encoding Neurochondrin (NCDN), NM_014284.3:c.1206G > A, p.(Trp402*). The variant was associated with a ~ 31% reduction in full-length protein levels in the patient’s brain, suggesting that this mutation leads to NCDN haploinsufficiency. We examined the effects of NCDN haploinsufficiency on FUS and found that depleting primary cortical neurons of NCDN causes a reduction in the total number of FUS-positive cytoplasmic granules. Moreover, we found that these granules were significantly larger and more highly enriched with FUS. We then examined the effects of a loss of FUS function on NCDN in neurons and found that depleting cells of FUS leads to a decrease in NCDN protein and mRNA levels. Our study identifies the NCDN protein as a likely contributor of FTLD-FET pathophysiology. Moreover, we provide evidence for a negative feedback loop of toxicity between NCDN and FUS, where loss of NCDN alters FUS cytoplasmic dynamics, which in turn has an impact on NCDN expression.
Collapse
|
47
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
48
|
Boas SM, Joyce KL, Cowell RM. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 2021; 11:antiox11010008. [PMID: 35052512 PMCID: PMC8772787 DOI: 10.3390/antiox11010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress has been implicated in the etiology and pathobiology of various neurodegenerative diseases. At baseline, the cells of the nervous system have the capability to regulate the genes for antioxidant defenses by engaging nuclear factor erythroid 2 (NFE2/NRF)-dependent transcriptional mechanisms, and a number of strategies have been proposed to activate these pathways to promote neuroprotection. Here, we briefly review the biology of the transcription factors of the NFE2/NRF family in the brain and provide evidence for the differential cellular localization of NFE2/NRF family members in the cells of the nervous system. We then discuss these findings in the context of the oxidative stress observed in two neurodegenerative diseases, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and present current strategies for activating NFE2/NRF-dependent transcription. Based on the expression of the NFE2/NRF family members in restricted populations of neurons and glia, we propose that, when designing strategies to engage these pathways for neuroprotection, the relative contributions of neuronal and non-neuronal cell types to the overall oxidative state of tissue should be considered, as well as the cell types which have the greatest intrinsic capacity for producing antioxidant enzymes.
Collapse
Affiliation(s)
- Stephanie M. Boas
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Kathlene L. Joyce
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Rita M. Cowell
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
49
|
Brown EE, Scandura MJ, Mehrotra S, Wang Y, Du J, Pierce EA. Reduced nuclear NAD+ drives DNA damage and subsequent immune activation in the retina. Hum Mol Genet 2021; 31:1370-1388. [PMID: 34750622 DOI: 10.1093/hmg/ddab324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in NMNAT1, a key enzyme involved in the synthesis of NAD+ in the nucleus, lead to an early onset severe inherited retinal degeneration (IRD). We aimed to understand the role of nuclear NAD+ in the retina and to identify the molecular mechanisms underlying NMNAT1-associated disease, using a mouse model that harbors the p.V9M mutation in Nmnat1 (Nmnat1V9M/V9M). We identified temporal transcriptional reprogramming in the retinas of Nmnat1V9M/V9M mice prior to retinal degeneration, which begins at 4 weeks of age, with no significant alterations in gene expression at 2 weeks of age and over 2600 differentially expressed genes by 3 weeks of age. Expression of the primary consumer of NAD+ in the nucleus, PARP1, an enzyme involved in DNA damage repair and transcriptional regulation, as well as 7 other PARP family enzymes, was elevated in the retinas of Nmnat1V9M/V9M. This was associated with elevated levels of DNA damage, PARP-mediated NAD+ consumption, and migration of Iba1+/CD45+ microglia/macrophages to the subretinal space in the retinas of Nmnat1V9M/V9M mice. These findings suggest that photoreceptor cells are especially sensitive to perturbation of genome homeostasis, and that PARP-mediated cell death may play a role in other genetic forms of IRDs, and potentially other forms of neurodegeneration.
Collapse
Affiliation(s)
- Emily E Brown
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Michael J Scandura
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
50
|
Jurga M, Abugable AA, Goldman ASH, El-Khamisy SF. USP11 controls R-loops by regulating senataxin proteostasis. Nat Commun 2021; 12:5156. [PMID: 34526504 PMCID: PMC8443744 DOI: 10.1038/s41467-021-25459-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
R-loops are by-products of transcription that must be tightly regulated to maintain genomic stability and gene expression. Here, we describe a mechanism for the regulation of the R-loop-specific helicase, senataxin (SETX), and identify the ubiquitin specific peptidase 11 (USP11) as an R-loop regulator. USP11 de-ubiquitinates SETX and its depletion increases SETX K48-ubiquitination and protein turnover. Loss of USP11 decreases SETX steady-state levels and reduces R-loop dissolution. Ageing of USP11 knockout cells restores SETX levels via compensatory transcriptional downregulation of the E3 ubiquitin ligase, KEAP1. Loss of USP11 reduces SETX enrichment at KEAP1 promoter, leading to R-loop accumulation, enrichment of the endonuclease XPF and formation of double-strand breaks. Overexpression of KEAP1 increases SETX K48-ubiquitination, promotes its degradation and R-loop accumulation. These data define a ubiquitination-dependent mechanism for SETX regulation, which is controlled by the opposing activities of USP11 and KEAP1 with broad applications for cancer and neurological disease.
Collapse
Affiliation(s)
- Mateusz Jurga
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Arwa A Abugable
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Sherif F El-Khamisy
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK.
| |
Collapse
|