1
|
Ma B, Wu H, Gou S, Lian M, Xia C, Yang K, Jin L, Liu J, Wu Y, Shu Y, Yan H, Li Z, Lai L, Fan Y. A-to-G/C/T and C-to-T/G/A dual-function base editor for creating multi-nucleotide variants. J Genet Genomics 2024; 51:1494-1504. [PMID: 39490920 DOI: 10.1016/j.jgg.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Multi-nucleotide variants (MNVs) are critical genetic variants associated with various genetic diseases. However, tools for precisely installing MNVs are limited. In this study, we present the development of a dual-base editor, BDBE, by integrating TadA-dual and engineered human N-methylpurine DNA glycosylase (eMPG) into nCas9 (D10A). Our results demonstrate that BDBE effectively converts A-to-G/C/T (referred to as A-to-B) and C-to-T/G/A (referred to as C-to-D) simultaneously, yielding nine types of dinucleotides from adjacent CA nucleotides while maintaining minimal off-target effects. Notably, BDBE4 exhibits exceptional performance across multiple human cell lines and successfully simulated all nine dinucleotide MNVs from the gnomAD database. These findings indicate that BDBE significantly expands the product range of base editors and offers a valuable resource for advancing MNV research.
Collapse
Affiliation(s)
- Bingxiu Ma
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China
| | - Shixue Gou
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Meng Lian
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
| | - Cong Xia
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kaiming Yang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Long Jin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junyuan Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yunlin Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yahai Shu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Haizhao Yan
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, Hainan 572000, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, Guangdong 510530, China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
2
|
Bulygin AA, Kuznetsov NA. The Trajectory of Damaged-Base Eversion into the Active Site of Apurinic/Apyrimidinic Endonuclease APE1 Regulates This Enzyme's Substrate Specificity. Int J Mol Sci 2024; 25:12287. [PMID: 39596352 PMCID: PMC11595180 DOI: 10.3390/ijms252212287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is responsible for the hydrolysis of the phosphodiester bond on the 5' side of an apurinic/apyrimidinic site during base excision repair. Moreover, in DNA, this enzyme can recognize nucleotides containing such damaged bases as 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), and 1,N6-ethenoadenosine (εA). Previously, by pulsed electron-electron double resonance spectroscopy and pre-steady-state kinetic analysis, we have revealed multistep DNA rearrangements during the formation of the catalytic complex. In the present study, the modeling of the eversion trajectory of nucleotides with various damaged bases was performed by directed molecular dynamics simulations. It was found that each damaged base at the beginning of the eversion interacts with protein loop Val196-Arg201, which should be moved to enable further nucleotide eversion. This movement involves a shift in loop Val196-Arg201 away from loop Asn253-Thr257 and requires the disruption of contacts between these loops. The Glu260Ala substitution facilitates the separation of the two loops. Moreover, conformational changes in the Asn253-Thr257 loop should occur in the second half of the lesion eversion trajectory. All these perturbations within the protein globule tend to reduce steric interactions of each damaged base with the protein during the eversion of the nucleotide from DNA and movement to the active site. These perturbations are important determinants of substrate specificity of endonuclease APE1.
Collapse
Affiliation(s)
- Anatoly A. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Yang L, Sun Z. Role of APE1 in hepatocellular carcinoma and its prospects as a target in clinical settings (Review). Mol Clin Oncol 2024; 21:82. [PMID: 39301126 PMCID: PMC11411593 DOI: 10.3892/mco.2024.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
In recent years, the incidence of liver cancer has increased annually. However, current medical treatments for liver cancer are limited, and most patients have a high risk of recurrence after surgery. Therefore, the discovery and development of novel treatment targets for liver cancer is urgently needed. Apurinic/apyrimidinic endonuclease 1 (APE1) is a protein that has a DNA repair function and serves an important role in various physiological processes, including reduction-oxidation, cell proliferation and differentiation. The expression levels of APE1 are abnormally elevated in liver cancer cells, as ectopic expression of the APE1 gene has been reported, in addition to other abnormal signs, such as cell proliferation and migration. Therefore, it could be suggested that APE1 is an important indicator of hepatocellular carcinogenesis. APE1 may be used as a therapeutic target for tumors and proposed targeted therapy against abnormal APE1 expression could potentially inhibit the progression of tumors. The present review aimed to introduce the important role of APE1 in the physiological processes of tumor cells and the feasibility of using APE1 as a potential therapeutic target, providing a novel direction for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Zhipeng Sun
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
4
|
Zhao H, Richardson C, Marriott I, Yang IH, Yan S. APE1 is a master regulator of the ATR-/ATM-mediated DNA damage response. DNA Repair (Amst) 2024; 144:103776. [PMID: 39461278 DOI: 10.1016/j.dnarep.2024.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
To maintain genomic integrity, cells have evolved several conserved DNA damage response (DDR) pathways in response to DNA damage and stress conditions. Apurinic/apyrimidinic endonuclease 1 (APE1) exhibits AP endonuclease, 3'-5' exonuclease, 3'-phosphodiesterase, and 3'-exoribonuclease activities and plays critical roles in the DNA repair and redox regulation of transcription. However, it remains unclear whether and how APE1 is involved in DDR pathways. In this perspective, we first updated our knowledge of APE1's functional domains and its nuclease activities and their specific associated substrates. We then summarized the newly discovered roles and mechanisms of action of APE1 in the global and nucleolar ATR-mediated DDR pathway. While the ATM-mediated DDR is well known to be activated by DNA double-strand breaks and oxidative stress, here we provided new perspectives as to how ATM DDR signaling is activated by indirect single-strand breaks (SSBs) resulting from genotoxic stress and defined SSB structures, and discuss how ATM kinase is directly activated and regulated by its activator, APE1. Together, accumulating body of new evidence supports the notion that APE1 is a master regulator protein of the ATR- and ATM-mediated DDR pathways. These new findings of APE1 in DDR signaling provide previously uncharacterized but critical functions and regulations of APE1 in genome integrity.
Collapse
Affiliation(s)
- Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christine Richardson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - In Hong Yang
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
5
|
Cui C, Guo G, Chen TH. Toehold region triggered CRISPR/Cas12a trans-cleavage for detection of uracil-DNA glycosylase activity. Biotechnol J 2024; 19:e2400097. [PMID: 38987221 DOI: 10.1002/biot.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024]
Abstract
DNA glycosylases are a group of enzymes that play a crucial role in the DNA repair process by recognizing and removing damaged or incorrect bases from DNA molecules, which maintains the integrity of the genetic information. The abnormal expression of uracil-DNA glycosylase (UDG), one of significant DNA glycosylases in the base-excision repair pathway, is linked to numerous diseases. Here, we proposed a simple UDG activity detection method based on toehold region triggered CRISPR/Cas12a trans-cleavage. The toehold region on hairpin DNA probe (HP) produced by UDG could induce the trans-cleavage of ssDNA with fluorophore and quencher, generating an obvious fluorescence signal. This protospacer adjacent motif (PAM)-free approach achieves remarkable sensitivity and specificity in detecting UDG, with a detection limit as low as 0.000368 U mL-1. Moreover, this method is able to screen inhibitors and measure UDG in complex biological samples. These advantages render it highly promising for applications in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Chenyu Cui
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
6
|
Tong H, Wang H, Wang X, Liu N, Li G, Wu D, Li Y, Jin M, Li H, Wei Y, Li T, Yuan Y, Shi L, Yao X, Zhou Y, Yang H. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase. Nat Commun 2024; 15:4897. [PMID: 38851742 PMCID: PMC11162499 DOI: 10.1038/s41467-024-49343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.
Collapse
Affiliation(s)
- Huawei Tong
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
| | | | - Xuchen Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nana Liu
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Danni Wu
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yun Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hengbin Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yinghui Wei
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- School of Future Technology on Bio-Breeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Linyu Shi
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Xuan Yao
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yingsi Zhou
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Fan T, Shi T, Sui R, Wang J, Kang H, Yu Y, Zhu Y. The chromatin remodeler ERCC6 and the histone chaperone NAP1 are involved in apurinic/apyrimidinic endonuclease-mediated DNA repair. THE PLANT CELL 2024; 36:2238-2252. [PMID: 38367203 PMCID: PMC11132878 DOI: 10.1093/plcell/koae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
During base excision repair (BER), the apurinic or apyrimidinic (AP) site serves as an intermediate product following base excision. In plants, APE-redox protein (ARP) represents the major AP site of cleavage activity. Despite the well-established understanding that the nucleosomal structure acts as a barrier to various DNA-templated processes, the regulatory mechanisms underlying BER at the chromatin level remain elusive, especially in plants. In this study, we identified plant chromatin remodeler Excision Repair Cross-Complementing protein group 6 (ERCC6) and histone chaperone Nucleosome Assembly Protein 1 (NAP1) as interacting proteins with ARP. The catalytic ATPase domain of ERCC6 facilitates its interaction with both ARP and NAP1. Additionally, ERCC6 and NAP1 synergistically contribute to nucleosome sliding and exposure of hindered endonuclease cleavage sites. Loss-of-function mutations in Arabidopsis (Arabidopsis thaliana) ERCC6 or NAP1 resulted in arp-dependent plant hypersensitivity to 5-fluorouracil, a toxic agent inducing BER, and the accumulation of AP sites. Furthermore, similar protein interactions are also found in yeast cells, suggesting a conserved recruitment mechanism employed by the AP endonuclease to overcome chromatin barriers during BER progression.
Collapse
Affiliation(s)
- Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianfang Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Ran Sui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingqi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
9
|
Diao J, Fan H, Zhang J, Fu X, Liao R, Zhao P, Huang W, Huang S, Liao H, Yu J, Pan D, Wang M, Xiao W, Wen X. Activation of APE1 modulates Nrf2 protected against acute liver injury by inhibit hepatocyte ferroptosis and promote hepatocyte autophagy. Int Immunopharmacol 2024; 128:111529. [PMID: 38244516 DOI: 10.1016/j.intimp.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) plays a crucial role in DNA base excision repair, cell apoptosis, cell signaling, and the regulation of transcription factors through redox modulation and the control of reactive oxygen species (ROS). However, the connection between APE1 and acute liver injury (ALI) remains enigmatic. This study aims to unravel the molecular mechanisms underlying ALI and shed light on the role of APE1 in this context. METHOD We induced acute liver injury (ALI) in mice by lipopolysaccharide/D-galactosamine (LPS/GalN) and intervened with the APE1 inhibitor E3330. We examined the expression of APE1 in ALI mice and ALI patient tissues after E3330 intervention, Additionally, we measured hepatic oxidative stress, ferroptosis, and autophagy marker proteins and genes. In establishing an AML-12 liver cell injury model, we utilized the Nrf2 activator tert-butylhydroquinone (TBHQ) as an intervention and examined APE1, Nrf2, ferroptosis-related proteins, and autophagy marker proteins and mRNA. RESULTS Both ALI patients and ALI mice exhibited reduced APE1 expression levels. After E3330 intervention, there was a significant exacerbation of liver injury, oxidative stress, and a reduction in the expression of proteins, including GPX4, X-CT, ATG3, ATG5, and LC3 (LC3I/II). Consistent results were also observed in AML-12 cells. With TBHQ intervention, Nrf2 expression increased, along with the expression of proteins associated with iron death and autophagy. Mechanistically, APE1 activation regulates Nrf2 to inhibit ferroptosis and promote autophagy in hepatocytes. CONCLUSION The data suggest that APE1 is a pivotal player in ALI, closely linked to its regulation of Nrf2. Strategies involving APE1 activation to modulate Nrf2, thereby inhibiting hepatocyte ferroptosis and promoting autophagy, may represent innovative therapeutic approaches for ALI. Additionally, tert-butylhydroquinone (TBHQ) holds significant promise in the treatment of acute liver injury.
Collapse
Affiliation(s)
- Jianxin Diao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huijie Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Jia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Rongxin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Wei Huang
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huajun Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jieying Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dongmei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| | - Xiaomin Wen
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
10
|
Ali R, Alhaj Sulaiman A, Memon B, Pradhan S, Algethami M, Aouida M, McKay G, Madhusudan S, Abdelalim EM, Ramotar D. Altered Regulation of the Glucose Transporter GLUT3 in PRDX1 Null Cells Caused Hypersensitivity to Arsenite. Cells 2023; 12:2682. [PMID: 38067110 PMCID: PMC10705171 DOI: 10.3390/cells12232682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Targeting tumour metabolism through glucose transporters is an attractive approach. However, the role these transporters play through interaction with other signalling proteins is not yet defined. The glucose transporter SLC2A3 (GLUT3) is a member of the solute carrier transporter proteins. GLUT3 has a high affinity for D-glucose and regulates glucose uptake in the neurons, as well as other tissues. Herein, we show that GLUT3 is involved in the uptake of arsenite, and its level is regulated by peroxiredoxin 1 (PRDX1). In the absence of PRDX1, GLUT3 mRNA and protein expression levels are low, but they are increased upon arsenite treatment, correlating with an increased uptake of glucose. The downregulation of GLUT3 by siRNA or deletion of the gene by CRISPR cas-9 confers resistance to arsenite. Additionally, the overexpression of GLUT3 sensitises the cells to arsenite. We further show that GLUT3 interacts with PRDX1, and it forms nuclear foci, which are redistributed upon arsenite exposure, as revealed by immunofluorescence analysis. We propose that GLUT3 plays a role in mediating the uptake of arsenite into cells, and its homeostatic and redox states are tightly regulated by PRDX1. As such, GLUT3 and PRDX1 are likely to be novel targets for arsenite-based cancer therapy.
Collapse
Affiliation(s)
- Reem Ali
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Abdallah Alhaj Sulaiman
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
| | - Singdhendubala Pradhan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar; (S.P.); (G.M.)
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (M.A.); (S.M.)
| | - Mustapha Aouida
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar; (S.P.); (G.M.)
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (M.A.); (S.M.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Essam M. Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
| | - Dindial Ramotar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar; (R.A.); (A.A.S.); (B.M.); (M.A.); (E.M.A.)
| |
Collapse
|
11
|
Zhou Z, Xia L, Wang X, Wu C, Liu J, Li J, Lu Z, Song S, Zhu J, Montes ML, Benzaazoua M. Coal slime as a good modifier for the restoration of copper tailings with improved soil properties and microbial function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109266-109282. [PMID: 37759064 DOI: 10.1007/s11356-023-30008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
In recent years, the solid wastes from the coal industry have been widely used as soil amendments. Nevertheless, the impact of utilizing coal slime for copper tailing restoration in terms of plant growth, physicochemical characteristics of the tailing soil, and microbial succession remains uncertain.Herein, the coal slime was employed as a modifier into copper tailings. Their effect on the growth and physiological response of Ryegrass, and the soil physicochemical properties as well as the bacterial community structure were investigated. The results indicated that after a 30-day of restoration, the addition of coal slime at a ratio of 40% enhanced plant growth, with a 21.69% rise in chlorophyll content, and a 62.44% increase in peroxidase activity. The addition of 40% coal slime also increased the content of nutrient elements in copper tailings. Following a 20-day period of restoration, the concentrations of available copper and available zinc in the modified tailings decreased by 39.6% and 48.51%, respectively, with 40% of coal slime added. In the meantime, there was an observed augmentation in the species diversity of the bacterial community in the modified tailings. The alterations in both community structure and function were primarily influenced by variations in pH value, available nitrogen, phosphorus, potassium, and available copper. The addition of 40% coal slime makes the physicochemical properties and microbial community evolution of copper tailings reach a balance point. The utilization of coal slime has the potential to enhance the physicochemical characteristics of tailings and promote the proliferation of microbial communities, hence facilitating the soil evolution of two distinct solid waste materials. Consequently, the application of coal slime in the restoration of heavy metal tailings is a viable approach, offering both cost-effectiveness and efficacy as an enhancer.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China.
| | - Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Chenyu Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiazhi Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
- Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
| | - Zijing Lu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- Hubei Sanxin Gold Copper Limited Company, Huangshi, Hubei, China
| | | | - Mostafa Benzaazoua
- Mohammed VI Polytechnic University (UM6P), Geology and Sustainable Mining, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| |
Collapse
|
12
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Torres JR, Lescano López I, Ayala AM, Alvarez ME. The Arabidopsis DNA glycosylase MBD4L repairs the nuclear genome in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1633-1646. [PMID: 37278489 DOI: 10.1111/tpj.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
DNA glycosylases remove mispaired or modified bases from DNA initiating the base excision repair (BER) pathway. The DNA glycosylase MBD4 (methyl-CpG-binding domain protein 4) has been functionally characterized in mammals, but not yet in plants, where it is called MBD4-like (MBD4L). Mammalian MBD4 and Arabidopsis recombinant MBD4L excise U and T mispaired with G, as well as 5-fluorouracil (5-FU) and 5-bromouracil (5-BrU) in vitro. Here, we investigate the ability of Arabidopsis MBD4L to remove some of these substrates from the nuclear genome in vivo in coordination with uracil DNA glycosylase (AtUNG). We found that mbd4l mutants are hypersensitive to 5-FU and 5-BrU, as they displayed smaller size, less root growth, and higher cell death than control plants in both media. Using comet assays, we determined BER-associated DNA fragmentation in isolated nuclei and observed reduced DNA breaks in mbd4l plants under both conditions, but particularly with 5-BrU. The use of ung and ung x mbd4l mutants in these assays indicated that both MBD4L and AtUNG trigger nuclear DNA fragmentation in response to 5-FU. Consistently, we here report the nuclear localization of AtUNG based on the expression of AtUNG-GFP/RFP constructs in transgenic plants. Interestingly, MBD4L and AtUNG are transcriptionally coordinated but display not completely overlapping functions. MBD4L-deficient plants showed reduced expression of BER genes and enhanced expression of DNA damage response (DDR) gene markers. Overall, our findings indicate that Arabidopsis MBD4L is critical for maintaining nuclear genome integrity and preventing cell death under genotoxic stress conditions.
Collapse
Affiliation(s)
- José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Ana María Ayala
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
14
|
Tong H, Wang X, Liu Y, Liu N, Li Y, Luo J, Ma Q, Wu D, Li J, Xu C, Yang H. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol 2023; 41:1080-1084. [PMID: 36624150 DOI: 10.1038/s41587-022-01595-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/01/2022] [Indexed: 01/11/2023]
Abstract
Here we developed an adenine transversion base editor, AYBE, for A-to-C and A-to-T transversion editing in mammalian cells by fusing an adenine base editor (ABE) with hypoxanthine excision protein N-methylpurine DNA glycosylase (MPG). We also engineered AYBE variants enabling targeted editing at genomic loci with higher transversion editing activity (up to 72% for A-to-C or A-to-T editing).
Collapse
Affiliation(s)
- Huawei Tong
- HuiGene Therapeutics Co., Ltd., Shanghai, China.
| | - Xuchen Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nana Liu
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Yun Li
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Jiamin Luo
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Qian Ma
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Danni Wu
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | - Jiyong Li
- HuiGene Therapeutics Co., Ltd., Shanghai, China
| | | | - Hui Yang
- HuiGene Therapeutics Co., Ltd., Shanghai, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
- HuiEdit Therapeutics Co., Ltd., Shanghai, China.
| |
Collapse
|
15
|
Tong H, Liu N, Wei Y, Zhou Y, Li Y, Wu D, Jin M, Cui S, Li H, Li G, Zhou J, Yuan Y, Zhang H, Shi L, Yao X, Yang H. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl Sci Rev 2023; 10:nwad143. [PMID: 37404457 PMCID: PMC10317176 DOI: 10.1093/nsr/nwad143] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 07/06/2023] Open
Abstract
Current DNA base editors contain nuclease and DNA deaminase that enables deamination of cytosine (C) or adenine (A), but no method for guanine (G) or thymine (T) editing is available at present. Here we developed a deaminase-free glycosylase-based guanine base editor (gGBE) with G editing ability, by fusing Cas9 nickase with engineered N-methylpurine DNA glycosylase protein (MPG). By several rounds of MPG mutagenesis via unbiased and rational screening using an intron-split EGFP reporter, we demonstrated that gGBE with engineered MPG could increase G editing efficiency by more than 1500 fold. Furthermore, this gGBE exhibited high base editing efficiency (up to 81.2%) and high G-to-T or G-to-C (i.e. G-to-Y) conversion ratio (up to 0.95) in both cultured human cells and mouse embryos. Thus, we have provided a proof-of-concept of a new base editing approach by endowing the engineered DNA glycosylase the capability to selectively excise a new type of substrate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Shuna Cui
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Hengbin Li
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Guoling Li
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Jingxing Zhou
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Hainan Zhang
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Linyu Shi
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Xuan Yao
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | | |
Collapse
|
16
|
Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 2022; 23:11665. [PMID: 36232965 PMCID: PMC9570374 DOI: 10.3390/ijms231911665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been used for bread making and beer brewing for thousands of years. In addition, its ease of manipulation, well-annotated genome, expansive molecular toolbox, and its strong conservation of basic eukaryotic biology also make it a prime model for eukaryotic cell biology and genetics. In this review, we discuss the characteristics that made yeast such an extensively used model organism and specifically focus on the DNA damage response pathway as a prime example of how research in S. cerevisiae helped elucidate a highly conserved biological process. In addition, we also highlight differences in the DNA damage response of S. cerevisiae and humans and discuss the challenges of using S. cerevisiae as a model system.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Feng M, Luo J, Wan Y, Zhang J, Lu C, Wang M, Dai L, Cao X, Yang X, Wang Y. Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish ( Danio rerio). ACS OMEGA 2022; 7:32153-32163. [PMID: 36119974 PMCID: PMC9476205 DOI: 10.1021/acsomega.2c03378] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The widespread accumulation of nanoplastics is a growing concern for the environmental and human health. However, studies on the mechanisms of nanoplastic-induced developmental toxicity are still limited. Here, we systematically investigated the potential biological roles of nanoplastic exposure in zebrafish during the early developmental stage. The zebrafish embryos were subjected to exposure to 100 nm polystyrene nanoplastics with different concentrations (0, 100, 200, and 400 mg/L). The results indicated that nanoplastic exposure could decrease the hatching and survival rates of zebrafish embryos. In addition, the developmental toxicity test indicated that nanoplastic exposure exhibits developmental toxicity via the inhibition of the heart rate and body length in zebrafish embryos. Besides, behavioral activity was also significantly suppressed after 96 h of nanoplastic exposure in zebrafish larvae. Further biochemical assays revealed that nanoplastic-induced activation of the oxidative stress responses, including reactive oxygen species accumulation and enhanced superoxide dismutase and catalase activities, might affect developmental toxicity in zebrafish embryos. Furthermore, a quantitative polymerase chain reaction assay demonstrated that the mRNA levels of the base excision repair (BER) pathway-related genes, including lig1, lig3, polb, parp1, pold, fen1, nthl1, apex, xrcc1, and ogg1, were altered in zebrafish embryos for 24 h after nanoplastic exposure, indicating that the activation of the BER pathway would be stimulated after nanoplastic exposure in zebrafish embryos. Therefore, our findings illustrated that nanoplastics could induce developmental toxicity through activation of the oxidative stress response and BER pathways in zebrafish.
Collapse
Affiliation(s)
- Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Juanjuan Luo
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yiping Wan
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Chunjiao Lu
- Guangdong
Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Maya Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Lu Dai
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041,China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol 2022; 10:984245. [PMID: 36158192 PMCID: PMC9491825 DOI: 10.3389/fcell.2022.984245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are the primary sites for cellular energy production and are required for many essential cellular processes. Mitochondrial DNA (mtDNA) is a 16.6 kb circular DNA molecule that encodes only 13 gene products of the approximately 90 different proteins of the respiratory chain complexes and an estimated 1,200 mitochondrial proteins. MtDNA is, however, crucial for organismal development, normal function, and survival. MtDNA maintenance requires mitochondrially targeted nuclear DNA repair enzymes, a mtDNA replisome that is unique to mitochondria, and systems that control mitochondrial morphology and quality control. Here, we provide an overview of the current literature on mtDNA repair and transcription machineries and discuss how dynamic functional interactions between the components of these systems regulate mtDNA maintenance and transcription. A profound understanding of the molecular mechanisms that control mtDNA maintenance and transcription is important as loss of mtDNA integrity is implicated in normal process of aging, inflammation, and the etiology and pathogenesis of a number of diseases.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Unit for precision medicine, Akershus University Hospital, Nordbyhagen, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Nicola Pietro Montaldo,
| |
Collapse
|
19
|
Yalçın B, Güneş M, Kurşun AY, Kaya N, Marcos R, Kaya B. Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology 2022; 16:393-407. [PMID: 35818303 DOI: 10.1080/17435390.2022.2098072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.
Collapse
Affiliation(s)
- Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Nuray Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Antalya, Spain
| | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
20
|
Elsakrmy N, Aouida M, Hindi N, Moovarkumudalvan B, Mohanty A, Ali R, Ramotar D. C. elegans ribosomal protein S3 protects against H2O2-induced DNA damage and suppresses spontaneous mutations in yeast. DNA Repair (Amst) 2022; 117:103359. [DOI: 10.1016/j.dnarep.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
21
|
Genome Integrity and Neurological Disease. Int J Mol Sci 2022; 23:ijms23084142. [PMID: 35456958 PMCID: PMC9025063 DOI: 10.3390/ijms23084142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neurological complications directly impact the lives of hundreds of millions of people worldwide. While the precise molecular mechanisms that underlie neuronal cell loss remain under debate, evidence indicates that the accumulation of genomic DNA damage and consequent cellular responses can promote apoptosis and neurodegenerative disease. This idea is supported by the fact that individuals who harbor pathogenic mutations in DNA damage response genes experience profound neuropathological manifestations. The review article here provides a general overview of the nervous system, the threats to DNA stability, and the mechanisms that protect genomic integrity while highlighting the connections of DNA repair defects to neurological disease. The information presented should serve as a prelude to the Special Issue “Genome Stability and Neurological Disease”, where experts discuss the role of DNA repair in preserving central nervous system function in greater depth.
Collapse
|
22
|
Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-Lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022; 13:793096. [PMID: 35296074 PMCID: PMC8918667 DOI: 10.3389/fimmu.2022.793096] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Leonam Gomes Coutinho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Paulo do Potengi, Brazil
| | | | | | - Guilherme Cavalcanti Farias
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Lucymara Fassarella Agnez-Lima,
| |
Collapse
|