1
|
Mialon M, Patrash L, Weinreb A, Özkan E, Bessereau JL, Pinan-Lucarre B. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611427. [PMID: 39314492 PMCID: PMC11418930 DOI: 10.1101/2024.09.05.611427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
Collapse
|
2
|
Srivastava Y, Donta M, Mireles LL, Paulucci-Holthauzen A, Shi L, Bedford MT, Waxham MN, McCrea PD. Exploring the PDZ, DUF, and LIM Domains of Pdlim5 in Dendrite Branching. Int J Mol Sci 2024; 25:8326. [PMID: 39125895 PMCID: PMC11312917 DOI: 10.3390/ijms25158326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5's multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5's structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5's function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects.
Collapse
Affiliation(s)
- Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maxsam Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | - Lydia L. Mireles
- Department of Neurobiology & Anatomy, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | | | - Leilei Shi
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T. Bedford
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M. Neal Waxham
- Department of Neurobiology & Anatomy, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Program in Neuroscience, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Program in Neuroscience, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| |
Collapse
|
3
|
Hu X, Dong J, Geng P, Sun Y, Du W, Zhao X, Wang Q, Liu C, Wang X, Liu Y, Liu W, Cheng H, Wang W, Jin X. Nicotine Treatment Ameliorates Blood-Brain Barrier Damage After Acute Ischemic Stroke by Regulating Endothelial Scaffolding Protein Pdlim5. Transl Stroke Res 2024; 15:672-687. [PMID: 37233908 DOI: 10.1007/s12975-023-01158-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Analysis of a National Institutes of Health (NIH) trial shows that cigarette smoking protected tissue plasminogen activator (tPA)-treated patients from hemorrhage transformation (HT); however, the underlying mechanism is not clear. Damage to the integrity of the blood-brain barrier (BBB) is the pathological basis of HT. Here, we investigated the molecular events of BBB damage after acute ischemic stroke (AIS) using in vitro oxygen-glucose deprivation (OGD) and in vivo mice middle cerebral artery occlusion (MCAO) models. Our results showed that the permeability of bEND.3 monolayer endothelial cells was significantly increased after being exposed to OGD for 2 h. Mice were subjected to 90-min ischemia with 45-min reperfusion, and BBB integrity was significantly damaged, accompanied by tight junction protein occludin degradation, downregulation of microRNA-21 (miR-21), transforming growth factor-β (TGF-β), phosphorylated Smad (p-Smad), plasminogen activator inhibitor-1 (PAI-1), and the upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that has been shown to regulate TGF-β-Smad3 pathway. In addition, pretreatment with two-week nicotine significantly reduced AIS-induced BBB damage and its associated protein dysregulation via downregulating Pdlim5. Notably, AIS did not significantly induce BBB damage in Pdlim5 deficit mice, but overexpression of Pdlim5 in the striatum with adeno-associated virus produced BBB damage and associated protein dysregulation which could be ameliorated by two-week nicotine pretreatment. More important, AIS induced a significant miR-21 decrease, and miR-21 mimics treatment decreased AIS-induced BBB damage by decreasing Pdlim5. Together, these results demonstrate that nicotine treatment alleviates the AIS-compromised integrity of BBB by regulating Pdlim5.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jiali Dong
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yanyun Sun
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaoyun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Changqing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiaona Wang
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Yushan Liu
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Wang
- Department of Physiology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, People's Republic of China.
- Institute of Neuroscience, the second affiliated hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
4
|
Bondarenko V, Chen Q, Tillman TS, Xu Y, Tang P. Unconventional PDZ Recognition Revealed in α7 nAChR-PICK1 Complexes. ACS Chem Neurosci 2024; 15:2070-2079. [PMID: 38691676 PMCID: PMC11099923 DOI: 10.1021/acschemneuro.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qiang Chen
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tommy S. Tillman
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yan Xu
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pei Tang
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Fu Y, Li S, Nie J, Yan D, Zhang B, Hao X, Zhang H. Expression of PDLIM5 Spliceosomes and Regulatory Functions on Myogenesis in Pigs. Cells 2024; 13:720. [PMID: 38667334 PMCID: PMC11049100 DOI: 10.3390/cells13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Meat yield, determined by muscle growth and development, is an important economic trait for the swine industry and a focus of research in animal genetics and breeding. PDZ and LIM domain 5 (PDLIM5) are cytoskeleton-related proteins that play key roles in various tissues and cells. These proteins have multiple isoforms, primarily categorized as short (PDLIM5-short) and long (PDLIM5-long) types, distinguished by the absence and presence of an LIM domain, respectively. However, the expression patterns of swine PDLIM5 isoforms and their regulation during porcine skeletal muscle development remain largely unexplored. We observed that PDLIM5-long was expressed at very low levels in pig muscles and that PDLIM5-short and total PDLIM5 were highly expressed in the muscles of slow-growing pigs, suggesting that PDLIM5-short, the dominant transcript in pigs, is associated with a slow rate of muscle growth. PDLIM5-short suppressed myoblast proliferation and myogenic differentiation in vitro. We also identified two single nucleotide polymorphisms (-258 A > T and -191 T > G) in the 5' flanking region of PDLIM5, which influenced the activity of the promoter and were associated with muscle growth rate in pigs. In summary, we demonstrated that PDLIM5-short negatively regulates myoblast proliferation and differentiation, providing a theoretical basis for improving pig breeding programs.
Collapse
Affiliation(s)
- Yu Fu
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Shixin Li
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Jingru Nie
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Bo Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Xin Hao
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| | - Hao Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Beijing Key Laboratory of Animal Genetic Engineering, China Agricultural University, Beijing 100193, China; (Y.F.); (S.L.); (J.N.); (B.Z.)
| |
Collapse
|
6
|
Zhao Y, Li B, Cao H, Wang F, Mu M, Jin H, Liu J, Fan Z, Tao X. Maternal nicotine exposure promotes hippocampal CeRNA-mediated excitotoxicity and social barriers in adolescent offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116079. [PMID: 38377778 DOI: 10.1016/j.ecoenv.2024.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
Nicotine, an addictive component of cigarettes, causes cognitive defects, particularly when exposure occurs early in life. However, the exact mechanism through which nicotine causes toxicity and alters synaptic plasticity is still not fully understood. The aim of the current study is to examine how non-coding developmental regulatory RNA impacts the hippocampus of mice offspring whose mothers were exposed to nicotine. Female C57BL/6J mice were given nicotine water from one week before pregnancy until end of lactation. Hippocampal tissue from offspring at 20 days post-birth was used for LncRNA and mRNA microarray analysis. Differential expression of LncRNAs and mRNAs associated with neuronal development were screened and validated, and the CeRNA pathway mediating neuronal synaptic plasticity GM13530/miR-7119-3p/mef2c was predicted using LncBase Predicted v.2. Using protein immunoblotting, Golgi staining and behavioral tests, our findings revealed that nicotine exposure in offspring mice increased hippocampal NMDAR receptor, activated receptor-dependent calcium channels, enhanced the formation of NMDAR/nNOS/PSD95 ternary complexes, increased NO synthesis, mediated p38 activation, induced neuronal excitability toxicity. Furthermore, an epigenetic CeRNA regulatory mechanism was identified, which suppresses Mef2c-mediated synaptic plasticity and leads to modifications in the learning and social behavior of the offspring during adolescence. This study uncovers the way in which maternal nicotine exposure results in neurotoxicity in offspring.
Collapse
Affiliation(s)
- Yehong Zhao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Bing Li
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Hangbing Cao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Fei Wang
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Min Mu
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Haibo Jin
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Jing Liu
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Zhenzhen Fan
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China
| | - Xinrong Tao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, China; School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, China.
| |
Collapse
|
7
|
Healy MD, Collins BM. The PDLIM family of actin-associated proteins and their emerging role in membrane trafficking. Biochem Soc Trans 2023; 51:2005-2016. [PMID: 38095060 PMCID: PMC10754285 DOI: 10.1042/bst20220804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
The PDZ and LIM domain (PDLIM) proteins are associated with the actin cytoskeleton and have conserved in roles in metazoan actin organisation and function. They primarily function as scaffolds linking various proteins to actin and its binding partner α-actinin via two conserved domains; an N-terminal postsynaptic density 95, discs large and zonula occludens-1 (PDZ) domain, and either single or multiple C-terminal LIN-11, Isl-1 and MEC-3 (LIM) domains in the actinin-associated LIM protein (ALP)- and Enigma-related proteins, respectively. While their role in actin organisation, such as in stress fibres or in the Z-disc of muscle fibres is well known, emerging evidence also suggests a role in actin-dependent membrane trafficking in the endosomal system. This is mediated by a recently identified interaction with the sorting nexin 17 (SNX17) protein, an adaptor for the trafficking complex Commander which is itself intimately linked to actin-directed formation of endosomal recycling domains. In this review we focus on the currently understood structural basis for PDLIM function. The PDZ domains mediate direct binding to distinct classes of PDZ-binding motifs (PDZbms), including α-actinin and other actin-associated proteins, and a highly specific interaction with the type III PDZbm such as the one found in the C-terminus of SNX17. The structures of the LIM domains are less well characterised and how they engage with their ligands is completely unknown. Despite the lack of experimental structural data, we find that recently developed machine learning-based structure prediction methods provide insights into their potential interactions and provide a template for further studies of their molecular functions.
Collapse
Affiliation(s)
- Michael D. Healy
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland 4072, Australia
| | - Brett M. Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland 4072, Australia
| |
Collapse
|
8
|
Khan SA, Leonel Javeres MN, Abbas Shah ST, Bibi N, Muneer Z, Hussain S, Nepovimova E, Kuca K, Nurulain SM. Dysregulation of butyrylcholinesterase, BCHE gene SNP rs1803274, and pro-inflammatory cytokines in occupational workers. ENVIRONMENTAL RESEARCH 2023; 220:115195. [PMID: 36592809 DOI: 10.1016/j.envres.2022.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND People in different occupations are exposed to a variety of xenobiotics which affect the health and physiological processes of the body. Butyrylcholinesterase (BChE), has been reported to play neuronal and non-neuronal roles, though its exact function is yet to be established. This study aimed to find the status and role of BChE in seven different occupational groups; gasoline fillers, auto-mechanics, carpenters, textile shop workers, furniture shop workers, electricians, and office workers. METHODS A total of 400 samples were screened. BChE activity was determined by Worek et al. method based on Ellman's principle. Pro-inflammatory cytokines were determined by ELISA. Genotypic analysis of the K-variant of BCHE gene SNP was carried out by standard molecular methods. Among seven groups, office workers were taken as a control to compare the results with all other occupational groups. RESULTS The results revealed a significant decrease in BChE activity in gasoline fillers (79.52%) followed by carpenters (73.49%), auto mechanics (39.76%), textile shop workers (18.07%), electricians (10.84%), and furniture shop workers (7.23%). TNF-α, IL-6, and IL1-β were elevated in all groups. IL-6 and IL1-β in gasoline fillers, and electricians were not statistically significantly increased. Binomial regression to determine the odd ratio was found to be significant (p < 0.05) in all groups. However, correlation (Pearson) did not reveal significance between different biochemical parameters. Genotypic analysis of the K-variant SNP of the BCHE gene showed a significant association with occupational groups when compared with control which indicates a possible association with xenobiotics exposure and the physiological role of K-variant in understudied occupational groups. CONCLUSION The study concluded that BChE and its gene SNP rs 1803274 and proinflammatory cytokines significantly dysregulates under the exposure to cumulative multiple xenobiotics in different occupational groups which may lead to pathophysiological conditions.
Collapse
Affiliation(s)
- Sosan Andleeb Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | | | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Zahid Muneer
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Sabir Hussain
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec Kralove, Czech Republic.
| | - Syed Muhammad Nurulain
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan.
| |
Collapse
|