1
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
2
|
Asadi M, Ahangari MM, Iraji A, Azizian H, Nokhbehzaim A, Bahadorikhalili S, Mojtabavi S, Faramarzi MA, Nasli-Esfahani E, Larijani B, Mahdavi M, Amanlou M. Synthesis, α-glucosidase inhibitory activity, and molecular dynamic simulation of 6-chloro-2-methoxyacridine linked to triazole derivatives. Sci Rep 2024; 14:17338. [PMID: 39069559 PMCID: PMC11284203 DOI: 10.1038/s41598-024-68176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Α-glucosidase inhibition can be useful in the management of carbohydrate-related diseases, especially type 2 diabetes mellitus. Therefore, in this study, a new series of 6-chloro-2-methoxyacridine bearing different aryl triazole derivatives were designed, synthesized, and evaluated as potent α-glucosidase inhibitors. The most potent derivative in this group was 7h bearing para-fluorine with IC50 values of 98.0 ± 0.3 µM compared with standard drug acarbose (IC50 value = 750.0 ± 10.5 μM). A kinetic study of compound 7h revealed that it is a competitive inhibitor against α-glucosidase. Molecular dynamic simulations of the most potent derivative were also executed and indicated suitable interactions with residues of the enzyme which rationalized the in vitro results.
Collapse
Affiliation(s)
- Mehdi Asadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Mehdi Ahangari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Homa Azizian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ali Nokhbehzaim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Somaye Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohamad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
3
|
Sayahi MH, Zareei S, Halimi M, Alikhani M, Moazzam A, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Rastegar H, Taslimi P, Ibrahim EH, Ghramh HA, Larijani B, Mahdavi M. Design, synthesis, in vitro, and in silico anti-α-glucosidase assays of N-phenylacetamide-1,2,3-triazole-indole-2-carboxamide derivatives as new anti-diabetic agents. Sci Rep 2024; 14:15791. [PMID: 38982268 PMCID: PMC11233587 DOI: 10.1038/s41598-024-66201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
In this work, a novel series of N-phenylacetamide-1,2,3-triazole-indole-2-carboxamide derivatives 5a-n were designed by consideration of the potent α-glucosidase inhibitors containing indole and carboxamide-1,2,3-triazole-N-phenylacetamide moieties. These compounds were synthesized by click reaction and evaluated against yeast α-glucosidase. All the newly title compounds demonstrated superior potency when compared with acarbose as a standard inhibitor. Particularly, compound 5k possessed the best inhibitory activity against α-glucosidase with around a 28-fold improvement in the inhibition effect in comparison standard inhibitor. This compound showed a competitive type of inhibition in the kinetics. The molecular docking and dynamics demonstrated that compound 5k with a favorable binding energy well occupied the active site of α-glucosidase.
Collapse
Affiliation(s)
| | - Samira Zareei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Majid Alikhani
- Department of Internal Medicine, School of Medicine, Rheumatology Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Song J, Zhang S, Zhang B, Ma J. The anti-breast cancer therapeutic potential of 1,2,3-triazole-containing hybrids. Arch Pharm (Weinheim) 2024; 357:e2300641. [PMID: 38110853 DOI: 10.1002/ardp.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Breast cancer, as one of the most common invasive malignancies and the leading cause of cancer-related deaths in women globally, poses a significant challenge in the world health system. Substantial advances in diagnosis and treatment have significantly improved the survival rate of breast cancer patients, but the number of incidences and deaths of breast cancer are projected to increase by 40% and 50%, respectively, by 2040. Chemotherapy is one of the principal treatments for breast cancer therapy, but multidrug resistance and severe side effects remain the major obstacles to the success of treatment. Hence, there is a vital need to develop novel chemotherapeutic agents to combat this deadly disease. 1,2,3-Triazole, which can be effectively constructed by click chemistry, not only can serve as a linker to connect different anti-breast cancer pharmacophores but also is a valuable pharmacophore with anti-breast cancer potential and favorable properties such as hydrogen bonding, moderate dipole moment, and enhanced water solubility. Particularly, 1,2,3-triazole-containing hybrids have demonstrated promising in vitro and in vivo anti-breast cancer potential against both drug-sensitive and drug-resistant forms and possessed excellent selectivity by targeting different biological pathways associated with breast cancer, representing privileged scaffolds for the discovery of novel anti-breast cancer candidates. This review concentrates on the latest advancements of 1,2,3-triazole-containing hybrids with anti-breast cancer potential, including work published between 2020 and the present. The structure-activity relationships (SARs) and mechanisms of action are also reviewed to shed light on the development of more effective and multitargeted candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo, China
| | - Shuai Zhang
- Department of General Surgery, People's Hospital of Zhoucun District, Zibo, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo, China
| | - Junwei Ma
- Department of General Surgery, Zibo 148 Hospital, Zibo, China
| |
Collapse
|
5
|
Shirisha T, Majhi S, Divakar K, Kashinath D. Metal-free synthesis of functionalized tacrine derivatives and their evaluation for acetyl/butyrylcholinesterase and α-glucosidase inhibition. Org Biomol Chem 2024; 22:790-804. [PMID: 38167698 DOI: 10.1039/d3ob01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A mild and greener protocol was developed for C-C (C(sp3)-H functionalization) and C-N bond formation to synthesize functionalized tacrine derivatives using a biodegradable and reusable deep eutectic solvent [(DES) formed from N,N'-dimethyl urea and L-(+)-tartaric acid in a 3 : 1 ratio at 80 °C]. The condensation of 9-chloro-1,2,3,4-tetrahydroacridines with a variety of aromatic aldehydes gave unsaturated compounds via C(sp3)-H functionalization (at the C-4 position) with good yields. The substituted N-aryl tacrine derivatives were obtained from the condensed products of 9-chloro-1,2,3,4-tetrahydroacridine with substituted anilines via the nucleophilic substitution reaction (SN2 type) in the DES with good yields. This is the first example of C4-functionalized tacrine derivatives, highlighting the dual capacity of the DES to serve as both a catalyst and a solvent for facilitating C-N bond formation on acridine. The generated compounds were evaluated for acetyl/butyrylcholinesterase (AChE/BChE) and α-glucosidase inhibitory activity. It was found that the majority of the compounds reported here were significantly more potent inhibitors than the standard inhibitor tacrine (AChE IC50 = 203.51 nM; BChE IC50 = 204.01 nM). Among the compounds screened, 8m was found to be more potent with IC50 = 125.06 nM and 119.68 nM towards AChE and BChE inhibition respectively. The α-glucosidase inhibitory activity of the compounds was tested using acarbose as a standard drug (IC50 = 23 100 nM) and compound 8j was found to be active with IC50 = 19 400 nM.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Kalivarathan Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous), Sriperumbudur, Tamilnadu-602 117, India.
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
6
|
Sharma A, Dubey R, Bhupal R, Patel P, Verma SK, Kaya S, Asati V. An insight on medicinal attributes of 1,2,3- and 1,2,4-triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Mol Divers 2023:10.1007/s11030-023-10728-1. [PMID: 37733243 DOI: 10.1007/s11030-023-10728-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023]
Abstract
Diabetes Mellitus (DM) is the globe's common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3-triazol and 1,2,4-triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole-triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure-activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Ritu Bhupal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Savas Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
7
|
Khalid Z, Shafqat SS, Ahmad HA, Munawar MA, Mutahir S, Elkholi SM, Shafqat SR, Huma R, Asiri AM. A Combined Experimental and Computational Study of Novel Benzotriazinone Carboxamides as Alpha-Glucosidase Inhibitors. Molecules 2023; 28:6623. [PMID: 37764399 PMCID: PMC10535199 DOI: 10.3390/molecules28186623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes is a chronic metabolic disorder of the endocrine system characterized by persistent hyperglycemia appears due to the deficiency or ineffective use of insulin. The glucose level of diabetic patients increases after every meal and medically recommended drugs are used to control hyperglycemia. Alpha-glucosidase inhibitors are used as antidiabetic medicine to delay the hydrolysis of complex carbohydrates. Acarbose, miglitol, and voglibose are commercial drugs but patients suffer side effects of flatulence, bloating, diarrhea, and loss of hunger. To explore a new antidiabetic drug, a series of benzotriazinone carboxamides was synthesized and their alpha-glucosidase inhibition potentials were measured using in vitro experiments. The compounds 14k and 14l were found to be strong inhibitors compared to the standard drug acarbose with IC50 values of 27.13 ± 0.12 and 32.14 ± 0.11 μM, respectively. In silico study of 14k and 14l was carried out using molecular docking to identify the type of interactions developed between these compounds and enzyme sites. Both potent compounds 14k and 14l exhibited effective docking scores by making their interactions with selected amino acid residues. Chemical hardness and orbital energy gap values were investigated using DFT studies and results depicted affinity of 14k and 14l towards biological molecules. All computational findings were found to be in good agreement with in vitro results.
Collapse
Affiliation(s)
- Zunera Khalid
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (Z.K.); (R.H.)
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan;
| | - Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Hafiz Adnan Ahmad
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan;
| | - Munawar Ali Munawar
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan;
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan
| | - Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China;
| | - Safaa M. Elkholi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | | | - Rahila Huma
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (Z.K.); (R.H.)
| | - Abdullah Mohammed Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 64274, Saudi Arabia;
| |
Collapse
|
8
|
Yousefnejad F, Mohammadi-Moghadam-Goozali M, Sayahi MH, Halimi M, Moazzam A, Mohammadi-Khanaposhtani M, Mojtabavi S, Asadi M, Faramarzi MA, Larijani B, Amanlou M, Mahdavi M. Design, synthesis, in vitro, and in silico evaluations of benzo[d]imidazole-amide-1,2,3-triazole-N-arylacetamide hybrids as new antidiabetic agents targeting α-glucosidase. Sci Rep 2023; 13:12397. [PMID: 37524733 PMCID: PMC10390517 DOI: 10.1038/s41598-023-39424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
α-Glucosidase as a carbohydrate-hydrolase enzyme is a crucial therapeutic target for type 2 diabetes. In this work, benzo[d]imidazole-amide containing 1,2,3-triazole-N-arylacetamide derivatives 8a-n were synthesized and evaluated for their inhibitory activity against α-glucosidase. In vitro α-glucosidase inhibition assay demonstrated that more than half of the title compounds with IC50 values in the range of 49.0-668.5 μM were more potent than standard inhibitor acarbose (IC50 = 750.0 µM). The most promising inhibitor was N-2-methylphenylacetamid derivative 8c. Kinetic study revealed that compound 8c (Ki = 40.0 µM) is a competitive inhibitor against α-glucosidase. Significantly, molecular docking and molecular dynamics studies on the most potent compound showed that this compound with a proper binding energy interacted with important amino acids of the α-glucosidase active site. Study on cytotoxicity of the most potent compounds 8c, 8e, and 8g demonstrated that these compounds did not show cytotoxic activity against the cancer and normal cell lines MCF-7 and HDF, respectively. Furthermore, the ADMET study predicted that compound 8c is likely to be orally active and non-cytotoxic.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Halimi
- Department of Biology, Islamic Azad University, Babol Branch, Babol, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
10
|
Synthesis, biological evaluation, and bioinformatics analysis of indole analogs on AChE and GST activities. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int J Mol Sci 2022; 23:ijms23158117. [PMID: 35897691 PMCID: PMC9368212 DOI: 10.3390/ijms23158117] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.
Collapse
|
12
|
Fallah Z, Tajbakhsh M, Alikhani M, Larijani B, Faramarzi MA, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Mohammadi-Khanaposhtani M, Nikraftar A, Asgari MS, Emadi M, Mojtabavi S, Faramarzi MA, Rastegar H, Larijani B, Mahdavi M. Synthesis, in vitro and in silico enzymatic inhibition assays, and toxicity evaluations of new 4,5-diphenylimidazole-N-phenylacetamide derivatives as potent α-glucosidase inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|