1
|
López-Tofiño Y, Hopkins MA, Bagues A, Boullon L, Abalo R, Llorente-Berzal Á. The Endocannabinoid System of the Nervous and Gastrointestinal Systems Changes after a Subnoxious Cisplatin Dose in Male Rats. Pharmaceuticals (Basel) 2024; 17:1256. [PMID: 39458898 PMCID: PMC11509924 DOI: 10.3390/ph17101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Cisplatin, a common chemotherapy agent, is well known to cause severe side effects in the gastrointestinal and nervous systems due to its toxic and pro-inflammatory effects. Although pharmacological manipulation of the endocannabinoid system (ECS) can alleviate these side effects, how chemotherapy affects the ECS components in these systems remains poorly understood. Our aim was to evaluate these changes. Methods: Male Wistar rats received cisplatin (5 mg/kg, i.p.) or saline on day 0 (D0). Immediately after, serial X-rays were taken for 24 h (D0). Body weight was recorded (D0, D1, D2 and D7) and behavioural tests were performed on D4. On D7, animals were euthanized, and gastrointestinal tissue, dorsal root ganglia (DRGs) and brain areas were collected. Expression of genes related to the ECS was assessed via Rt-PCR, while LC-MS/MS was used to analyse endocannabinoid and related N-acylethanolamine levels in tissue and plasma. Results: Animals treated with cisplatin showed a reduction in body weight. Cisplatin reduced gastric emptying during D0 and decreased MAGL gene expression in the antrum at D7. Despite cisplatin not causing mechanical or heat sensitivity, we observed ECS alterations in the prefrontal cortex (PFC) and DRGs similar to those seen in other chronic pain conditions, including an increased CB1 gene expression in L4/L5 DRGs and a decreased MAGL expression in PFC. Conclusions: A single dose of cisplatin (5 mg/kg, i.p.), subnoxious, but capable of inducing acute gastrointestinal effects, caused ECS changes in both gastrointestinal and nervous systems. Modulating the ECS could alleviate or potentially prevent chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Mary A. Hopkins
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Ana Bagues
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Laura Boullon
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia, Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids, Spanish Pain Society, 28046 Madrid, Spain
| | - Álvaro Llorente-Berzal
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
- Department of Physiology, School of Medicine, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
2
|
Crowley K, Kiraga Ł, Miszczuk E, Skiba S, Banach J, Latek U, Mendel M, Chłopecka M. Effects of Cannabinoids on Intestinal Motility, Barrier Permeability, and Therapeutic Potential in Gastrointestinal Diseases. Int J Mol Sci 2024; 25:6682. [PMID: 38928387 PMCID: PMC11203611 DOI: 10.3390/ijms25126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds. The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins. The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.
Collapse
Affiliation(s)
- Kijan Crowley
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Edyta Miszczuk
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Sergiusz Skiba
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Joanna Banach
- Department of Research and Processing Seed, Institute of Natural Fibers and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| | - Urszula Latek
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| |
Collapse
|
3
|
Borra V, Borra N, Bondi G, Yartha SGR, Machineni NV, Agarwal C, Ramasahayam K, Kuchipudi PR, Mundla SR, Bansal P, Bathija SA, Ogbu IR, Desai R. Is dependent cannabis use in adult hospitalizations with inflammatory bowel disease associated with major adverse cardiovascular and cerebrovascular events? Insights from National Inpatient Sample Analysis. Curr Med Res Opin 2024; 40:605-611. [PMID: 38376123 DOI: 10.1080/03007995.2024.2321328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) and dependent cannabis use or cannabis use disorder (CUD+) are independent risk factors for cardiovascular diseases. Usage of cannabis for pain increased in IBD patients. However, associated cardiovascular safety remains unclear. This study aims to investigate the major adverse cardiac and cerebrovascular events (MACCE) associated with CUD + in hospitalized IBD patients. METHODS We analyzed the National Inpatient Sample 2020 using ICD-10-CM codes; hospitalized IBD patients were identified and divided based on CUD's presence or absence. Multivariable regression models were performed to evaluate MACCE [in-hospital mortality, acute myocardial infarction (AMI), cardiac arrest (CA), and acute ischemic stroke (AIS)] odds after adjusting for baseline demographics, hospital-level characteristics, and relevant cardiac/extra-cardiac morbidities. RESULTS Among the 302,770 hospitalized adult IBD patients, 3.1% (9,490) had CUD+. The majority of patients in the CUD + cohort were white (67.7%), male (57.5%), and aged between 18 and 44 years (66.2%). Cardiovascular risk factors like hypertension, diabetes, hyperlipidemia, and prior myocardial infarction were higher in the CUD - cohort (p <0.001) compared to the CUD + cohort. The CUD + cohort had a lower rate of MACCE (3.1% vs. 5.8%), crude in-hospital mortality (0.7% vs. 2.2%), AMI (1.7% vs. 2.6%), CA (0.3% vs. 0.7%), and AIS (0.6% vs. 1.2%) with statistical significance (p <0.001). However, after adjusting for baseline characteristics and comorbidities, the adjusted odds ratios (aORs) did not show a statistically significant difference for MACCE (aOR = 0.9, 95% CI = 0.65-1.25, p = 0.530), CA (aOR = 0.54, 95% CI = 0.2-1.47, p = 0.227), and AIS (aOR = 0.86, 95% CI = 0.43-1.73, p = 0.669). CONCLUSION Our study did not find a statistically significant difference in MACCE among hospitalized IBD patients with and without CUD. This emphasizes the need for more extensive prospective studies focusing on the quantity, method, and duration of cannabis use (recreational or medicinal) in patients with IBD.
Collapse
Affiliation(s)
- Vamsikalyan Borra
- Department of Internal Medicine, University of Texas Rio Grande Valley, Weslaco, TX, USA
| | - Nithya Borra
- Sri Venkateswara Medical College, Tirupati, India
| | - Gayatri Bondi
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | | | | | | | - Karthikeya Ramasahayam
- Konaseema Institute of Medical Sciences and Research Foundation, East Godavari, Andhra Pradesh, India
| | | | - Sravya R Mundla
- Apollo Institute of Medical Sciences and Research, Hyderabad, Telangana, India
| | - Prerna Bansal
- Rural Medical College, Pravara Institute of Medical Sciences, Loni, Maharashtra, India
| | - Sagar A Bathija
- Department of Internal Medicine, Lowell General Hospital, Lowell, MA, USA
| | - Ikechukwu R Ogbu
- Department of Internal Medicine, Mountainview Hospital Sunrise GME, Las Vegas, NV, USA
| | - Rupak Desai
- Independent Outcomes Researcher, Atlanta, GA, USA
| |
Collapse
|
4
|
Iqbal H, Ilyas K, Akash MSH, Rehman K, Hussain A, Iqbal J. Real-time fluorescent monitoring of phase I xenobiotic-metabolizing enzymes. RSC Adv 2024; 14:8837-8870. [PMID: 38495994 PMCID: PMC10941266 DOI: 10.1039/d4ra00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara Okara Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22044 Pakistan
| |
Collapse
|
5
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
6
|
Haider A, Wang L, Gobbi L, Li Y, Chaudhary A, Zhou X, Chen J, Zhao C, Rong J, Xiao Z, Hou L, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Ahmed H, Crowe R, Honer M, Rominger A, Grether U, Liang SH, Ametamey SM. Evaluation of [ 18F]RoSMA-18-d 6 as a CB2 PET Radioligand in Nonhuman Primates. ACS Chem Neurosci 2023; 14:3752-3760. [PMID: 37788055 DOI: 10.1021/acschemneuro.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 μM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Dalavaye N, Erridge S, Nicholas M, Pillai M, Bapir L, Holvey C, Coomber R, Rucker JJ, Hoare J, Sodergren MH. The effect of medical cannabis in inflammatory bowel disease: analysis from the UK Medical Cannabis Registry. Expert Rev Gastroenterol Hepatol 2023; 17:85-98. [PMID: 36562418 DOI: 10.1080/17474124.2022.2161046] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Cannabis-based medicinal products (CBMPs) have shown promising preclinical activity in inflammatory bowel disease (IBD). However, clinical trials have not demonstrated effects on inflammation. This study aims to analyze changes in health-related quality of life (HRQoL) and adverse events in IBD patients prescribed CBMPs. METHODS A case series from the UK Medical Cannabis Registry was performed. Primary outcomes included changes from baseline in the Short Inflammatory Bowel Disease Questionnaire (SIBDQ), Generalized Anxiety Disorder-7 (GAD-7), Single-Item Sleep Quality Scale (SQS), and EQ-5D-5L Index score at 1 and 3 months. Statistical significance was defined using p < 0.050. RESULTS Seventy-six patients with Crohn's disease (n = 51; 67.11%) and ulcerative colitis (n = 25; 32.89%) were included. The median baseline SIBDQ score improved at 1 and 3 months. EQ-5D-5L index values, GAD-7, and SQS also improved after 3 months (p < 0.050). Sixteen (21.05%) patients reported adverse events with the majority being classified as mild to moderate in severity. CONCLUSION Patients treated with CBMPs for refractory symptoms of Crohn's disease and ulcerative colitis demonstrated a short-term improvement in IBD-specific and general HRQoL. Prior cannabis consumers reported greater improvement compared to cannabis-naïve individuals.
Collapse
Affiliation(s)
- Nishaanth Dalavaye
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Simon Erridge
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK.,Sapphire Medical Clinics, London, UK
| | - Martha Nicholas
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Manaswini Pillai
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Lara Bapir
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Ross Coomber
- Sapphire Medical Clinics, London, UK.,St. George's Hospital NHS Trust, London, UK
| | - James J Rucker
- Sapphire Medical Clinics, London, UK.,Department of Psychological Medicine, Kings College London, London, UK.,South London & Maudsley NHS Foundation Trust, London, UK
| | - Jonathan Hoare
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK.,Sapphire Medical Clinics, London, UK
| | - Mikael H Sodergren
- Imperial College Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, UK.,Sapphire Medical Clinics, London, UK
| |
Collapse
|
8
|
Hosseinzadeh Anvar L, Ahmadalipour A. Fatty acid amide hydrolase C385A polymorphism affects susceptibility to various diseases. Biofactors 2023; 49:62-78. [PMID: 36300805 DOI: 10.1002/biof.1911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/24/2022] [Indexed: 11/08/2022]
Abstract
The endocannabinoid (eCB) system is an important neuromodulatory system with its extensive network of receptors throughout the human body that has complex actions in the nervous system, immune system, and all of the body's other organs. Fatty acid amide hydrolase (FAAH) is an important membrane-bound homodimeric degrading enzyme that controls the biological activity of N-arachidonoylethanolamide (AEA) in the eCB system and other relevant bioactive lipids. It has been shown that several single nucleotide polymorphisms (SNPs) of FAAH are associated with various phenotypes and diseases including cardiovascular, endocrine, drug abuse, and neuropsychiatric disorders. A common functional and most studied polymorphism of this gene is C385A (rs324420), which results in the replacement of a conserved proline to threonine in the FAAH enzyme structure, leads to a reduction of the activity and expression of FAAH, compromises the inactivation of AEA and causes higher synaptic concentrations of AEA that can be associated with several various phenotypes. The focus of this review is on evidence-based studies on the associations of the FAAH C385A polymorphism and the various diseases or traits. Although there was variability in the results of these reports, the overall consensus is that the FAAH C385A genotype can affect susceptibility to some multifactorial disorders and can be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Leila Hosseinzadeh Anvar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Jacobs RJ, Colon J, Kane MN. Medical Students’ Attitudes, Knowledge, and Beliefs about Medical Cannabis: A Qualitative Descriptive Study. Cureus 2022; 14:e28336. [PMID: 36168342 PMCID: PMC9502535 DOI: 10.7759/cureus.28336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background There has been increased attention given to understanding the uses of medical cannabis (MC) for symptom management of various medical conditions. Physicians receive minimal training in medical school and rely mostly on anecdotal evidence; by proxy, medical students generally do receive formal training in MC. It is unknown how medical students perceive MC, including its efficacy, appropriateness in medicine, its possible adverse effects, and its value for patients. This study investigated medical students’ perceived knowledge, beliefs, and attitudes toward MC to better understand their knowledge about and attitudes toward MC. Method Using a semi-structured interview guide, eight focus groups were conducted with 83 medical students via Zoom virtual meeting platform (Zoom Video Communications, Inc., San Jose, California, United States) in June 2022. The interviews were guided by the following content areas: (1) beliefs about cannabis' therapeutic utility, (2) perceived knowledge about MC, (3) the role of the physician regarding MC, (4) concern for cannabis’ adverse effects, and (5) MC education in the school curriculum. Data were analyzed using thematic analysis, an iterative, systematic process of coding patterns, and emerged themes in the interview data to explore medical students’ perceptions about MC. Themes were validated based on whether each theme captured distinct parts of the interview data and whether their content cohered meaningfully. Results Four themes emerged from the focus group interviews investigating medical students’ perceptions of MC: (1) erroneous beliefs about MC, (2) unreliable sources of information, (3) mixed attitudes toward legalization, and (4) desire for MC education while in medical school. Attitudes regarding MC in general, including legalization, varied by United States state of origin of the student and exposure to MC (e.g., use by family member). Conclusion MC seems to be a significant issue for medical trainees who might be required to recommend it to patients and manage coexisting therapies. Cultivating new knowledge about students’ perceptions and perceived knowledge about medicinal options and dosing of MC is critical for medical educators as they design undergraduate curricular initiatives for future physicians.
Collapse
|
10
|
Behl T, Makkar R, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Exploration of Multiverse Activities of Endocannabinoids in Biological Systems. Int J Mol Sci 2022; 23:ijms23105734. [PMID: 35628545 PMCID: PMC9147046 DOI: 10.3390/ijms23105734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.)
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hassan A. Alhazmi
- Department of Pharmaceutcal Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| |
Collapse
|
11
|
Dodu JC, Moncayo RK, Damaj MI, Schlosburg JE, Akbarali HI, O'Brien LD, Kendall DA, Wu Z, Lu D, Lichtman AH. The Cannabinoid Receptor Type 1 Positive Allosteric Modulator ZCZ011 Attenuates Naloxone-Precipitated Diarrhea and Weight Loss in Oxycodone-Dependent Mice. J Pharmacol Exp Ther 2022; 380:1-14. [PMID: 34625464 PMCID: PMC8969135 DOI: 10.1124/jpet.121.000723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Opioid use disorder reflects a major public health crisis of morbidity and mortality in which opioid withdrawal often contributes to continued use. However, current medications that treat opioid withdrawal symptoms are limited by their abuse liability or lack of efficacy. Although cannabinoid 1 (CB1) receptor agonists, including Δ9-tetrahydrocannabinol, ameliorate opioid withdrawal in both clinical and preclinical studies of opioid dependence, this strategy elicits cannabimimetic side effects as well as tolerance and dependence after repeated administration. Alternatively, CB1 receptor positive allosteric modulators (PAMs) enhance CB1 receptor signaling and show efficacy in rodent models of pain and cannabinoid dependence but lack cannabimimetic side effects. We hypothesize that the CB1 receptor PAM ZCZ011 attenuates naloxone-precipitated withdrawal signs in opioid-dependent mice. Accordingly, male and female mice given an escalating dosing regimen of oxycodone, a widely prescribed opioid, and challenged with naloxone displayed withdrawal signs that included diarrhea, weight loss, jumping, paw flutters, and head shakes. ZCZ011 fully attenuated naloxone-precipitated withdrawal-induced diarrhea and weight loss and reduced paw flutters by approximately half, but its effects on head shakes were unreliable, and it did not affect jumping behavior. The antidiarrheal and anti-weight loss effects of ZCZ0111 were reversed by a CB1 not a cannabinoid receptor type 2 receptor antagonist and were absent in CB1 (-/-) mice, suggesting a necessary role of CB1 receptors. Collectively, these results indicate that ZCZ011 completely blocked naloxone-precipitated diarrhea and weight loss in oxycodone-dependent mice and suggest that CB1 receptor PAMs may offer a novel strategy to treat opioid dependence. SIGNIFICANCE STATEMENT: Opioid use disorder represents a serious public health crisis in which current medications used to treat withdrawal symptoms are limited by abuse liability and side effects. The CB1 receptor positive allosteric modulator (PAM) ZCZ011, which lacks overt cannabimimetic behavioral effects, ameliorated naloxone-precipitated withdrawal signs through a CB1 receptor mechanism of action in a mouse model of oxycodone dependence. These results suggest that CB1 receptor PAMs may represent a viable strategy to treat opioid withdrawal.
Collapse
Affiliation(s)
- Julien C Dodu
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Rebecca K Moncayo
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - M Imad Damaj
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Joel E Schlosburg
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Hamid I Akbarali
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Lesley D O'Brien
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Debra A Kendall
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Zhixing Wu
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Dai Lu
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| |
Collapse
|
12
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Naftali T, Bar-Lev Schleider L, Scklerovsky Benjaminov F, Konikoff FM, Matalon ST, Ringel Y. Cannabis is associated with clinical but not endoscopic remission in ulcerative colitis: A randomized controlled trial. PLoS One 2021; 16:e0246871. [PMID: 33571293 PMCID: PMC7877751 DOI: 10.1371/journal.pone.0246871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cannabis is often used by patients with ulcerative colitis, but controlled studies are few. We aimed to assess the effect of cannabis in improving clinical and inflammatory outcomes in ulcerative colitis patients. METHODS In a double-blind, randomized, placebo-controlled trial, patients received either cigarettes containing 0.5 g of dried cannabis flowers with80mgTetrahydrocannabinol (THC)or placebo cigarettes for 8 weeks. Parameters of disease including Lichtiger disease activity index, C reactive protein (CRP), calprotectin, Mayo endoscopic score and quality of life (QOL) were assessed before, during and after treatment. RESULTS The study included 32 patients. Mean age was 30 years, 14 (43%) females. Lichtiger index improved in the cannabis group from 10.9 (IQR 9-14) to5 (IQR 1-7), (p<0.000), and in the placebo group from 11 (IQR 9-13) to 8 (IQR 7-10)(p = 0.15, p between groups 0.001). QOL improved in the cannabis group from 77±4 to 98±20 (p = 0.000) but not in the placebo group (78±3 at week 0 and 78±17 at week 8;p = 0.459; p between groups 0.007). Mayo endoscopic score changed in the cannabis group from 2.13±1 to 1.25±2 (p = 0.015) and in the placebo group from 2.15±1to 1.69±1 (p = 0.367, p between groups 0.17). CONCLUSION Short term treatment with THC rich cannabis induced clinical remission and improved quality of life in patients with mild to moderately active ulcerative colitis. However, these beneficial clinical effects were not associated with significant anti-inflammatory improvement in the Mayo endoscopic score or laboratory markers for inflammation.(clinicaltrials.gov NCT01040910).
Collapse
Affiliation(s)
- Timna Naftali
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Bar-Lev Schleider
- Research Department, Tikun-Olam – Cannbit Pharmaceuticals, Tel-Aviv, Israel
- Clinical Research Center, Soroka Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Fabiana Scklerovsky Benjaminov
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Fred Meir Konikoff
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover Matalon
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Ringel
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Gajendran M, Sifuentes J, Bashashati M, McCallum R. Cannabinoid hyperemesis syndrome: definition, pathophysiology, clinical spectrum, insights into acute and long-term management. J Investig Med 2020; 68:1309-1316. [PMID: 33115959 DOI: 10.1136/jim-2020-001564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Although cannabinoid hyperemesis syndrome (CHS) was first reported more than 15 years ago, it still remains an unfamiliar clinical entity among physicians worldwide. CHS is categorized by Rome IV classification as a functional gastroduodenal disorder. It is characterized by stereotypical episodic vomiting in the setting of chronic, daily cannabis use, with cycles decreasing by the cessation of cannabis. CHS is also associated with abdominal pain reduced by hot baths and showers with comparative well-being between attacks. Thus, its clinical presentation resembles 'classic' cyclic vomiting syndrome, but eliciting a cannabis history is crucial in diagnosing this entity. In acute attacks, parenteral benzodiazepines are very effective. For prevention and long-term management, tricyclic antidepressants such as amitriptyline are the mainstay of therapy requiring doses in the range of 50-200 mg/d to achieve symptom control. In addition, counseling to achieve marijuana cessation, accompanied by antianxiety medications, is necessary for sustaining clinical outcomes. Once the patient is in remission and off marijuana for a period of 6-12 months, then tapering the dose of amitriptyline can be implemented, with the goal of no therapy being achieved in the majority of patients over time. With the legalization of marijuana in many states, CHS will become an increasingly prevalent clinical entity, so educating about CHS is an important goal, particularly for emergency department physicians who generally first encounter these patients.
Collapse
Affiliation(s)
- Mahesh Gajendran
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, Texas, USA
| | - Joshua Sifuentes
- Department of Gastroenterology, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, Texas, USA
| | - Mohammad Bashashati
- Department of Gastroenterology, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, Texas, USA
| | - Richard McCallum
- Department of Gastroenterology, Center for Neurogastroenterology and GI Motility, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, Texas, USA
| |
Collapse
|
15
|
Toschi A, Tugnoli B, Rossi B, Piva A, Grilli E. Thymol modulates the endocannabinoid system and gut chemosensing of weaning pigs. BMC Vet Res 2020; 16:289. [PMID: 32787931 PMCID: PMC7425016 DOI: 10.1186/s12917-020-02516-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background The recent identification of the endocannabinoid system in the gastrointestinal tract suggests a role in controlling intestinal inflammation. In addition, the gut chemosensing system has therapeutic applications in the treatment of gastrointestinal diseases and inflammation due to the presence of a large variety of receptors. The purposes of this study were to investigate the presence of markers of the endocannabinoid system and the chemosensing system in the pig gut and, second, to determine if thymol modulates these markers. One hundred sixty 28-day-old piglets were allocated into one of 5 treatment groups (n = 32 per treatment): T1 (control), T2 (25.5 mg thymol/kg feed), T3 (51 mg thymol/kg feed), T4 (153 mg thymol/kg feed), and T5 (510 mg thymol/kg feed). After 14 days of treatment, piglets were sacrificed (n = 8), and then duodenal and ileal mucosal scrapings were collected. Gene expression of cannabinoid receptors (CB1 and CB2), transient receptor potential vanilloid 1 (TRPV1), the olfactory receptor OR1G1, diacylglycerol lipases (DGL-α and DGL-β), fatty acid amine hydrolase (FAAH), and cytokines was measured, and ELISAs of pro-inflammatory cytokines levels were performed. Results mRNAs encoding all markers tested were detected. In the duodenum and ileum, the CB1, CB2, TRPV1, and OR1G1 mRNAs were expressed at higher levels in the T4 and T5 groups compared to the control group. The level of the FAAH mRNA was increased in the ileum of the T4 group compared to the control. Regarding the immune response, the level of the tumor necrosis factor (TNF-α) mRNA was significantly increased in the duodenum of the T5 group, but this increase was not consistent with the protein level. Conclusions These results indicate the presence of endocannabinoid system and gut chemosensing markers in the piglet gut mucosa. Moreover, thymol modulated the expression of the CB1, CB2, TRPV1, and OR1G1 mRNAs in the duodenum and ileum. It also modulated the mRNA levels of enzymes involved in the biosynthesis and degradation of endocannabinoid molecules. Based on these findings, the effects of thymol on promoting gut health are potentially mediated by the activation of these receptors.
Collapse
Affiliation(s)
- Andrea Toschi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy
| | | | - Barbara Rossi
- Vetagro SpA, via Porro, 2, 42124, Reggio Emilia, Italy
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy.,Vetagro SpA, via Porro, 2, 42124, Reggio Emilia, Italy
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, BO, Italy. .,Vetagro, Inc., 116 W. Jackson Blvd, Chicago, IL, 60604, USA.
| |
Collapse
|
16
|
ABHD11, a new diacylglycerol lipase involved in weight gain regulation. PLoS One 2020; 15:e0234780. [PMID: 32579589 PMCID: PMC7313976 DOI: 10.1371/journal.pone.0234780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023] Open
Abstract
Obesity epidemic continues to spread and obesity rates are increasing in the world. In addition to public health effort to reduce obesity, there is a need to better understand the underlying biology to enable more effective treatment and the discovery of new pharmacological agents. Abhydrolase domain-containing protein 11 (ABHD11) is a serine hydrolase enzyme, localized in mitochondria, that can synthesize the endocannabinoid 2-arachidonoyl glycerol (2AG) in vitro. In vivo preclinical studies demonstrated that knock-out ABHD11 mice have a similar 2AG level as WT mice and exhibit a lean metabolic phenotype. Such mice resist to weight gain in Diet Induced Obesity studies (DIO) and display normal biochemical plasma parameters. Metabolic and transcriptomic analyses on serum and tissues of ABHD11 KO mice from DIO studies show a modulation in bile salts associated with reduced fat intestinal absorption. These data suggest that modulating ABHD11 signaling pathway could be of therapeutic value for the treatment of metabolic disorders.
Collapse
|
17
|
Olesen JA, Posselt CM, Poulsen CH, Nordentoft M, Hjorthøj C. Cannabis use disorders may protect against certain disorders of the digestive organs in people with schizophrenia but not in healthy controls. Psychol Med 2020; 50:499-506. [PMID: 30880659 DOI: 10.1017/s0033291719000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Previous studies have shown a potential for cannabis in disorders of the digestive organs. We aimed to investigate whether cannabis use disorders (CUD) would decrease the risk of incident disorders of the digestive organs, in people with schizophrenia and population controls. METHODS We combined nationwide Danish registers to identify 21 066 cases with schizophrenia and 176 935 sex-and-age-matched controls. Two models were analyzed for the associations between CUD and digestive disorders in time-varying Cox regressions: one adjusted for sex, year of birth, and calendar year; and one further adjusted for alcohol and other substance use disorders and parental education. RESULTS CUD was associated with a decreased risk of developing disorders of gut-brain interaction (e.g. irritable bowel syndrome, dyspepsia, etc.) among cases with schizophrenia (HR = 0.84, 95% CI 0.74-0.94, p = 0.003). CUD was associated with decreased risk of inflammatory bowel disease (HR = 0.70, 95% CI 0.49-0.99, p = 0.045) in the basically adjusted model, dropping just below statistical significance in the fully adjusted model (HR = 0.71, 95% CI 0.48-1.03, p = 0.07). CUD displayed a tendency toward a decreased risk of serious disorders of the digestive organs among cases with schizophrenia (HR = 0.89, 95% CI 0.77-1.02, p = 0.09) in the fully adjusted model. No associations were observed among controls. CONCLUSIONS In people with schizophrenia, but not in controls, CUD is associated with decreased risk of disorders of gut-brain interaction and inflammatory bowel disease, and possibly other serious disorders of the digestive organs. Our findings could lead to new targets for treatment and prevention of disorders of the digestive organs.
Collapse
Affiliation(s)
- Julie Aamand Olesen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPsych, Aarhus and Copenhagen, Denmark
- University of Copenhagen, The Research Unit for General Practice, Copenhagen, Denmark
| | - Christine Merrild Posselt
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPsych, Aarhus and Copenhagen, Denmark
| | - Chalotte Heinsvig Poulsen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPsych, Aarhus and Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPsych, Aarhus and Copenhagen, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPsych, Aarhus and Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Section of Epidemiology, Copenhagen, Denmark
| |
Collapse
|
18
|
Patel RS, Goyal H, Satodiya R, Tankersley WE. Relationship of Cannabis Use Disorder and Irritable Bowel Syndrome (IBS): An Analysis of 6.8 Million Hospitalizations in the United States. Subst Use Misuse 2020; 55:281-290. [PMID: 31573379 DOI: 10.1080/10826084.2019.1664591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Irritable bowel syndrome (IBS) is a chronic multifactorial gastrointestinal condition that substantially affects the quality of life. Research have suggested an increasing trend in cannabis use to alleviate IBS-related psychiatric symptoms. Objectives: We aim to investigate the association of psychiatric comorbidities and cannabis use disorders (CUD) in hospitalized IBS patients. Methods: We analyzed 31,272 IBS hospitalizations in patients (aged 15-54 years) from the Nationwide Inpatient Sample (NIS). We utilized logistic regression to evaluate the adjusted odds ratio (aOR) of CUD and psychiatric comorbidities. Results: Anxiety (26.3%) and depressive (24.8%) disorders were prevalent and increased the odds for IBS-hospitalization by 2.5 and 1.8 times respectively. Tobacco use disorder was most prevalent (24.5%) followed by CUD (3.7%). After controlling for demographics, psychiatric and medical comorbidities, and other substance use disorders, CUD had higher odds for IBS hospitalizations (aOR 1.407, 95% CI 1.32-1.50). IBS hospitalizations with CUD increased by 32.8% from 2010 to 2014. CUD patients were younger (15-24 years, aOR 5.4, 95% CI 4.27-6.77), males (aOR 1.8, 95% CI 1.59-2.09) and African Americans (aOR 2.8, 95% CI 1.45-2.23) and from low-income families (aOR 1.9, 95% CI 1.58-2.39). Conclusions: We found that patients with CUD have 40.7% higher odds for IBS-hospitalizations with a rising trend of CUD and related psychiatric comorbidities which may further worsen IBS and health quality of life. With limited evidence of efficacy and safety of cannabis in IBS, larger, randomized controlled studies are required to examine its therapeutic efficacy.
Collapse
Affiliation(s)
- Rikinkumar S Patel
- Department of Psychiatry, Griffin Memorial Hospital and Oklahoma Department of Mental Health and Substance Abuse (Odmhas), Norman, OK, USA
| | - Hemant Goyal
- Department of Gastroenterology & Hepatology, The Wright Center of Graduate Medical Education, Scranton, PA, USA
| | - Ritvij Satodiya
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - William E Tankersley
- Department of Psychiatry, Griffin Memorial Hospital and Oklahoma Department of Mental Health and Substance Abuse (Odmhas), Norman, OK, USA
| |
Collapse
|
19
|
Pandey S, Kashif S, Youssef M, Sarwal S, Zraik H, Singh R, Rutkofsky IH. Endocannabinoid system in irritable bowel syndrome and cannabis as a therapy. Complement Ther Med 2019; 48:102242. [PMID: 31987224 DOI: 10.1016/j.ctim.2019.102242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022] Open
Abstract
Irritable bowel syndrome (IBS) global burden is underestimated despite its high prevalence. It's a gastrointestinal disease having obscure pathophysiology with multiple therapies yet unsatisfactory remedies. The Endocannabinoid system (ECS) of our body plays a key role in maintaining normal physiology of the gastrointestinal tract as well as involves abnormalities including functional diseases like IBS. This review highlights the importance of the Endocannabinoid system, its connections with the normal gastrointestinal functions and abnormalities like IBS. It also discusses the role of cannabis as medical therapy in IBS patients. A literature search for articles related to endocannabinoids in IBS and medical cannabis in PubMed and Google Scholar was conducted. The studies highlighted the significant participation of ECS in IBS. However, the breach in obtaining the promising therapeutic model for IBS needed further investigation in ECS and uncover other treatments for IBS. This review summarizes ECS, highlights the relationship of ECS with IBS and explores cannabis as a potential therapy to treat IBS.
Collapse
Affiliation(s)
- Samiksha Pandey
- California Institute of Behavioural Neurosciences and Psychology, CA, USA.
| | - Saima Kashif
- California Institute of Behavioural Neurosciences and Psychology, CA, USA
| | - Mina Youssef
- California Institute of Behavioural Neurosciences and Psychology, CA, USA
| | - Somia Sarwal
- California Institute of Behavioural Neurosciences and Psychology, CA, USA
| | - Hala Zraik
- California Institute of Behavioural Neurosciences and Psychology, CA, USA
| | - Ripudaman Singh
- California Institute of Behavioural Neurosciences and Psychology, CA, USA
| | - Ian H Rutkofsky
- California Institute of Behavioural Neurosciences and Psychology, CA, USA
| |
Collapse
|
20
|
Ghonim AE, Ligresti A, Rabbito A, Mahmoud AM, Di Marzo V, Osman NA, Abadi AH. Structure-activity relationships of thiazole and benzothiazole derivatives as selective cannabinoid CB2 agonists with in vivo anti-inflammatory properties. Eur J Med Chem 2019; 180:154-170. [DOI: 10.1016/j.ejmech.2019.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022]
|
21
|
Picardo S, Kaplan GG, Sharkey KA, Seow CH. Insights into the role of cannabis in the management of inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819870977. [PMID: 31523278 PMCID: PMC6727090 DOI: 10.1177/1756284819870977] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, interest in the therapeutic potential of cannabis and its constituents (e.g. cannabidiol) in the management of inflammatory bowel diseases (IBD) has escalated. Cannabis has been increasingly approved for a variety of medical conditions in several jurisdictions around the world. In animal models, cannabinoids have been shown to improve intestinal inflammation in experimental models of IBD through their interaction with the endocannabinoid system. However, the few randomized controlled trials of cannabis or cannabidiol in patients with IBD have not demonstrated efficacy in modulating inflammatory disease activity. Cannabis may be effective in the symptomatic management of IBD. Given the increasing utilization and cultural acceptance of cannabis, physicians need to be aware of its safety and efficacy in order to better counsel patients. The aim of this review is to provide an overview of the role of cannabis in the management of patients with IBD.
Collapse
Affiliation(s)
- Sherman Picardo
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Gilaad G. Kaplan
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, AB, Canada,Department of Community Health Sciences, University of Calgary, AB, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, AB, Canada
| | | |
Collapse
|
22
|
Abstract
Healthy aging includes freedom from disease, ability to engage in physical activity, and maintenance of cognitive skills for which diet is a major lifestyle factor. Aging, diet, and health are at the forefront of well-being for the growing population of older adults with the caveat of reducing and controlling pain. Obesity and diabetes risk increase in frequency in adults, and exercise is encouraged to control weight, reduce risk of type II diabetes, and maintain muscle mass and mobility. One area of research that appears to integrate many aspects of healthy aging is focused on understanding the endocannabinoid system (ECS) because of its role in systemic energy metabolism, inflammation, pain, and brain biology. Physical activity is important for maintaining health throughout the life cycle. The benefits of exercise facilitate macronutrient use, promote organ health, and augment the maintenance of metabolic activity and physiological functions. One outcome of routine exercise is a generalized well-being, and perhaps, this is linked to the ECS. The purpose of this review is to briefly present the current knowledge of key components of the ECS that contribute to appetite and influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoid receptors and its role in the brain. Herein, the objectives are to (1) explain the role of the ECS in the body, (2) describe the relationship between dietary polyunsaturated fatty acids and macronutrient intake and systemic metabolism, and (3) present areas of promising research where exercise induces endocannabinoid production in the brain to benefit well-being. There are many gaps in the knowledge of how the ECS participates in controlling pain through exercise; however, emerging research will reveal key relationships to understand this system in the brain and body.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Lin M, Chen L, Xiao Y, Yu B. Activation of cannabinoid 2 receptor relieves colonic hypermotility in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2019; 31:e13555. [PMID: 30793435 DOI: 10.1111/nmo.13555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common disease with intestinal dysmotility, whose mechanism remains elusive. The endocannabinoid system is emerging as an important modulator of gastrointestinal (GI) motility in multiple diseases, but its involvement in IBS is unknown. We aimed to determine whether cannabinoid 2 (CB2) receptor modulates intestinal motility associated with stress-induced IBS. METHODS A rat IBS model was established by chronic water avoidance stress (WAS). Colonic pathological alterations were detected histologically and intestinal motility was assessed by intestinal transit time (ITT) and fecal water content (FWC). Visceral sensitivity was determined by visceromotor response (VMR) to colorectal distension (CRD). Real-time PCR, western blot, and immunostaining were performed to identify colonic CB2 receptor expression. Colonic muscle strip contractility was studied by isometric transducers and nitric oxide (NO) was detected by the Griess test. The effects of AM1241, a selective agonist of CB2 receptors, on colonic motility were examined. KEY RESULTS After 10 days of WAS exposure, ITT was decreased and FWC elevated while VMR magnitude in response to CRD was significantly enhanced. Colon CB2 protein and mRNA levels increased and density of CB2-positive macrophages in the mucosa and enteric neurons in the myenteric plexus was higher than in controls. Pharmacological enhancement of CB2 activity by AM1241 relieved colonic hypermotility in WAS rats in a concentration-dependent manner via inhibition of p38 phosphorylation and elevation of NO production. CONCLUSION CB2 receptor may exert an important inhibitory effect in stress-induced colonic hypermotility by modulating NO synthesis through p38 mitogen-activated protein kinase signaling. AM1241 could be used as a potential drug to treat disorders with colonic hypermotility.
Collapse
Affiliation(s)
- Mengjuan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Lei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Yong Xiao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
24
|
Endocannabinoid System in Hepatic Glucose Metabolism, Fatty Liver Disease, and Cirrhosis. Int J Mol Sci 2019; 20:ijms20102516. [PMID: 31121839 PMCID: PMC6566399 DOI: 10.3390/ijms20102516] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022] Open
Abstract
There is growing evidence that glucose metabolism in the liver is in part under the control of the endocannabinoid system (ECS) which is also supported by its presence in this organ. The ECS consists of its cannabinoid receptors (CBRs) and enzymes that are responsible for endocannabinoid production and metabolism. ECS is known to be differentially influenced by the hepatic glucose metabolism and insulin resistance, e.g., cannabinoid receptor type 1(CB1) antagonist can improve the glucose tolerance and insulin resistance. Interestingly, our own study shows that expression patterns of CBRs are influenced by the light/dark cycle, which is of significant physiological and clinical interest. The ECS system is highly upregulated during chronic liver disease and a growing number of studies suggest a mechanistic and therapeutic impact of ECS on the development of liver fibrosis, especially putting its receptors into focus. An opposing effect of the CBRs was exerted via the CB1 or CB2 receptor stimulation. An activation of CB1 promoted fibrogenesis, while CB2 activation improved antifibrogenic responses. However, underlying mechanisms are not yet clear. In the context of liver diseases, the ECS is considered as a possible mediator, which seems to be involved in the synthesis of fibrotic tissue, increase of intrahepatic vascular resistance and subsequently development of portal hypertension. Portal hypertension is the main event that leads to complications of the disease. The main complication is the development of variceal bleeding and ascites, which have prognostic relevance for the patients. The present review summarizes the current understanding and impact of the ECS on glucose metabolism in the liver, in association with the development of liver cirrhosis and hemodynamics in cirrhosis and its complication, to give perspectives for development of new therapeutic strategies.
Collapse
|
25
|
Halbmeijer N, Groeneweg M, De Ridder L. Cannabis, a potential treatment option in pediatric IBD? Still a long way to go. Expert Rev Clin Pharmacol 2019; 12:355-361. [PMID: 30767696 DOI: 10.1080/17512433.2019.1582330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The onset of inflammatory bowel disease (IBD) in children is rising. Current treatment options are based on immunomodulatory therapy. Alternative treatment options are upcoming since they appear to be effective in individual patients. Cannabis might relief IBD symptoms in these cases and improve quality of life. Recent evidence suggests a potential anti-inflammatory effect of cannabis. Areas covered: This review presents an overview of recent literature on the use of cannabis in IBD focussing on pediatric IBD patients. Background information on the role of the endocannabinoid system within the gastrointestinal tract is presented. Other modalities of cannabis and its purified ingredients will be discussed as well, with attention to its applicability in children with IBD. Expert opinion: More research is needed on the efficacy and safety of cannabis in pediatric IBD. Studies are well underway, but until then the use of cannabis in pediatric IBD cannot be recommended.
Collapse
Affiliation(s)
- Nienke Halbmeijer
- a Department of Pediatrics , Maasstad Hospital , Rotterdam , The Netherlands
| | - Michael Groeneweg
- a Department of Pediatrics , Maasstad Hospital , Rotterdam , The Netherlands
| | - Lissy De Ridder
- b Department of Paediatric Gastroenterology , Erasmus MC-Sophia Children's Hospital , Rotterdam , The Netherlands
| |
Collapse
|
26
|
Salama RAA, Abdelsalam RM, Abdel-Salam OME, Khattab MM, Salem NA, El-Khyat ZA, Morsy FA, Eldenshary EEDS. Modulation of gastric acid secretion by cannabinoids in rats. J Biochem Mol Toxicol 2018; 33:e22256. [PMID: 30381869 DOI: 10.1002/jbt.22256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
The current study aimed to evaluate the role of cannabinoid receptors in the regulation of gastric acid secretion and oxidative stress in gastric mucosa. To fulfill this aim, gastric acid secretion stimulated with histamine (5 mg/kg, subcutaneous [SC]), 2-deoxy- d-glucose (D-G) (200 mg/kg, intravenous) or -carbachol (4 μg/kg, SC) in the 4-hour pylorus-ligated rats. The CB1R agonist ( N-arachidonoyl dopamine, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and carbachol but not in histamine, reduced pepsin content, and increased mucin secretion. Furthermore, it decreased malondialdehyde (MDA) and nitric oxide (NO) contents with an increase in glutathione (GSH) and paraoxonase 1 (PON-1). Meanwhile, CB2R antagonist (AM630, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and reduced MDA and NO contents with an increase in GSH and PON-1. Meanwhile, CB1R antagonist rimonabant or CB2R agonist GW 405833 had no effect on stimulated gastric acid secretion. Therefore, both CB1R agonist and CB2R antagonist may exert antisecretory and antioxidant potential in the stomach.
Collapse
Affiliation(s)
- Rania A A Salama
- Toxicology and Narcotics Department, National Research Center (NRC), Cairo, Egypt
| | - Rania M Abdelsalam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - O M E Abdel-Salam
- Toxicology and Narcotics Department, National Research Center (NRC), Cairo, Egypt
| | - Mahmoud M Khattab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Neveen A Salem
- Toxicology and Narcotics Department, National Research Center (NRC), Cairo, Egypt
| | - Zakaria A El-Khyat
- Medical Biochemistry Department, National Research Center (NRC), Cairo, Egypt
| | - Fatma A Morsy
- Clinical Pathology Department, National Research Center (NRC), Cairo, Egypt
| | | |
Collapse
|
27
|
Simmerman E, Qin X, Yu JC, Baban B. Cannabinoids as a Potential New and Novel Treatment for Melanoma: A Pilot Study in a Murine Model. J Surg Res 2018; 235:210-215. [PMID: 30691796 DOI: 10.1016/j.jss.2018.08.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/21/2018] [Accepted: 08/24/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Malignant melanoma is a complex malignancy with significant morbidity and mortality. The incidence continues to rise, and despite advances in treatment, the prognosis is poor. Thus, it is necessary to develop novel strategies to treat this aggressive cancer. Synthetic cannabinoids have been implicated in inhibiting cancer cell proliferation, reducing tumor growth, and reducing metastasis. We developed a unique study focusing on the effects of treatment with a cannabinoid derivative on malignant melanoma tumors in a murine model. METHODS Murine B16F10 melanoma tumors were established subcutaneously in C57BL/6 mice. Mice were then treated with intraperitoneal injections of vehicle twice per week (control-group 1, n = 6), Cisplatin 5 mg/kg/wk (group 2; n = 6), and Cannabidiol (CBD) 5 mg/kg twice per week (group 3; n = 6). Tumors were measured and volume calculated as (4π/3) × (width/2)2 × (length/2). Tumor size and survival curves were measured. Results were compared using a one-way ANOVA with multiple comparison test. RESULTS A significant decrease in tumor size was detected in mice treated with CBD when compared with the control group (P = 0.01). The survival curve of melanoma tumors treated with CBD increased when compared with the control group and was statistically significant (P = 0.04). The growth curve and survival curve of melanoma tumors treated with Cisplatin were significantly decreased and increased, respectively, when compared with the control and CBD-treated groups. Mice treated with Cisplatin demonstrated the longest survival time, but the quality of life and movement of CBD-treated mice were observed to be better. CONCLUSIONS We demonstrate a potential beneficial therapeutic effect of cannabinoids, which could influence the course of melanoma in a murine model. Increased survival and less tumorgenicity are novel findings that should guide research to better understand the mechanisms by which cannabinoids could be utilized as adjunctive treatment of cancer, specifically melanoma. Further studies are necessary to evaluate this potentially new and novel treatment of malignant melanoma.
Collapse
Affiliation(s)
- Erika Simmerman
- Department of Oral Biology/Dental College of Georgia, Augusta University Medical Center, Augusta, Georgia; Division of Plastic Surgery/Medical College of Georgia, Department of Surgery, Augusta University Medical Center, Augusta, Georgia.
| | - Xu Qin
- Department of Oral Biology/Dental College of Georgia, Augusta University Medical Center, Augusta, Georgia
| | - Jack C Yu
- Division of Plastic Surgery/Medical College of Georgia, Department of Surgery, Augusta University Medical Center, Augusta, Georgia
| | - Babak Baban
- Department of Oral Biology/Dental College of Georgia, Augusta University Medical Center, Augusta, Georgia; Division of Plastic Surgery/Medical College of Georgia, Department of Surgery, Augusta University Medical Center, Augusta, Georgia
| |
Collapse
|
28
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
29
|
Contribution of membrane receptor signalling to chronic visceral pain. Int J Biochem Cell Biol 2018; 98:10-23. [DOI: 10.1016/j.biocel.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
|
30
|
Leinwand KL, Jones AA, Huang RH, Jedlicka P, Kao DJ, de Zoeten EF, Ghosh S, Moaddel R, Wehkamp J, Ostaff MJ, Bader J, Aherne CM, Collins CB. Cannabinoid Receptor-2 Ameliorates Inflammation in Murine Model of Crohn's Disease. J Crohns Colitis 2017; 11:1369-1380. [PMID: 28981653 PMCID: PMC5881726 DOI: 10.1093/ecco-jcc/jjx096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Cannabinoid receptor stimulation may have positive symptomatic effects on inflammatory bowel disease [IBD] patients through analgesic and anti-inflammatory effects. The cannabinoid 2 receptor [CB2R] is expressed primarily on immune cells, including CD4+ T cells, and is induced by active inflammation in both humans and mice. We therefore investigated the effect of targeting CB2R in a preclinical IBD model. METHODS Employing a chronic ileitis model [TNFΔARE/+ mice], we assessed expression of the CB2R receptor in ileal tissue and on CD4+ T cells and evaluated the effect of stimulation with CB2R-selective ligand GP-1a both in vitro and in vivo. Additionally, we compared cannabinoid receptor expression in the ilea and colons of healthy human controls with that of Crohn's disease patients. RESULTS Ileal expression of CB2R and the endocannabinoid anandamide [AEA] was increased in actively inflamed TNF∆ARE/+ mice compared with controls. CB2R mRNA was preferentially induced on regulatory T cells [Tregs] compared with T effector cells, approximately 2.4-fold in wild-type [WT] and 11-fold in TNF∆ARE/+ mice. Furthermore, GP-1a enhanced Treg suppressive function with a concomitant increase in IL-10 secretion. GP-1a attenuated murine ileitis, as demonstrated by improved histological scoring and decreased inflammatory cytokine expression. Lastly, CB2R is downregulated in both chronically inflamed TNF∆ARE/+ mice and in IBD patients. CONCLUSIONS In summary, the endocannabinoid system is induced in murine ileitis but is downregulated in chronic murine and human intestinal inflammation, and CB2R activation attenuates murine ileitis, establishing an anti-inflammatory role of the endocannabinoid system.
Collapse
Affiliation(s)
- Kristina L Leinwand
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashleigh A Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rick H Huang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul Jedlicka
- Children’s Hospital Colorado, Department of Pathology, Aurora, CO, USA,Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel J Kao
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edwin F de Zoeten
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soumita Ghosh
- National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Ruin Moaddel
- National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Jan Wehkamp
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| | - Maureen J Ostaff
- Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jutta Bader
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| | - Carol M Aherne
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Colm B Collins
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Corresponding author: Colm B. Collins, PhD, 12700 E 19th Ave B146 Rm10440, Aurora, CO 80045, USA. Tel.: [303]724-7242; fax: [303] 724-7241;
| |
Collapse
|
31
|
Daytime-Dependent Changes of Cannabinoid Receptor Type 1 and Type 2 Expression in Rat Liver. Int J Mol Sci 2017; 18:ijms18091844. [PMID: 28837063 PMCID: PMC5618493 DOI: 10.3390/ijms18091844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022] Open
Abstract
The present study was performed to investigate the diurnal expression pattern of cannabinoid receptor type 1 (CB1) and type 2 (CB2) in liver tissue of 12- and 51-week-old normoglycemic Wistar rats. By using real-time RT-PCR, daytime dependent changes in both age groups and, for both, hepatic Cnr1 and Cnr2 receptor mRNA levels were measured. Highest amount of mRNA was detected in the light period (ZT3, ZT6, and ZT9) while the lowest amount was measured in the dark period (ZT18 and ZT21). Diurnal transcript expression pattern was accompanied by comparable changes of protein level for CB1, as shown by Western blotting. The current results support the conclusion that expression pattern of cannabinoid receptors are influenced by light/dark cycle and therefore seems to be under the control of a diurnal rhythm. These findings might explain the differences in the efficacy of cannabinoid receptor agonists or antagonists. In addition, investigation of liver of streptozotocin (STZ)-treated 12- and 51-week-old rats show alterations in the diurnal profile of both receptors Cnr1 and Cnr2 compared to that of normoglycemic Wistar rats. This suggests an influence of diabetic state on diurnal expression levels of cannabinoid receptors.
Collapse
|
32
|
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis. Life Sci 2017; 179:66-72. [DOI: 10.1016/j.lfs.2016.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/09/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022]
|
33
|
Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn's Disease, a Randomized Controlled Trial. Dig Dis Sci 2017; 62:1615-1620. [PMID: 28349233 DOI: 10.1007/s10620-017-4540-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/10/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is an anti-inflammatory cannabinoid shown to be beneficial in a mouse model of IBD. Lacking any central effect, cannabidiol is an attractive option for treating inflammatory diseases. AIM To assess the effects of cannabidiol on Crohn's disease in a randomized placebo-controlled trial. PATIENTS AND METHODS Twenty patients aged 18-75 years with a Crohn's disease activity index (CDAI) >200 were randomized to receive oral (10 mg) CBD or placebo twice daily. Patients did not respond to standard treatment with steroids (11 patients), thiopurines (14), or TNF antagonists (11). Disease activity and laboratory parameters were assessed during 8 weeks of treatment and 2 weeks thereafter. Other medical treatment remained unchanged. RESULTS Of 20 patients recruited 19 completed the study. Their mean age was 39 ± 15, and 11 were males. The average CDAI before cannabidiol consumption was 337 ± 108 and 308 ± 96 (p = NS) in the CBD and placebo groups, respectively. After 8 weeks of treatment, the index was 220 ± 122 and 216 ± 121 in the CBD and placebo groups, respectively (p = NS). Hemoglobin, albumin, and kidney and liver function tests remained unchanged. No side effects were observed. CONCLUSION In this study of moderately active Crohn's disease, CBD was safe but had no beneficial effects. This could be due to lack of effect of CBD on Crohn's disease, but could also be due to the small dose of CBD, the small number of patients in the study, or the lack of the necessary synergism with other cannabinoids. Further investigation is warranted. CLINICALTRIALS.GOV: NCT01037322.
Collapse
|
34
|
Sorensen CJ, DeSanto K, Borgelt L, Phillips KT, Monte AA. Cannabinoid Hyperemesis Syndrome: Diagnosis, Pathophysiology, and Treatment-a Systematic Review. J Med Toxicol 2017; 13:71-87. [PMID: 28000146 PMCID: PMC5330965 DOI: 10.1007/s13181-016-0595-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022] Open
Abstract
Cannabinoid hyperemesis syndrome (CHS) is a syndrome of cyclic vomiting associated with cannabis use. Our objective is to summarize the available evidence on CHS diagnosis, pathophysiology, and treatment. We performed a systematic review using MEDLINE, Ovid MEDLINE, Embase, Web of Science, and the Cochrane Library from January 2000 through September 24, 2015. Articles eligible for inclusion were evaluated using the Grading and Recommendations Assessment, Development, and Evaluation (GRADE) criteria. Data were abstracted from the articles and case reports and were combined in a cumulative synthesis. The frequency of identified diagnostic characteristics was calculated from the cumulative synthesis and evidence for pathophysiologic hypothesis as well as treatment options were evaluated using the GRADE criteria. The systematic search returned 2178 articles. After duplicates were removed, 1253 abstracts were reviewed and 183 were included. Fourteen diagnostic characteristics were identified, and the frequency of major characteristics was as follows: history of regular cannabis for any duration of time (100%), cyclic nausea and vomiting (100%), resolution of symptoms after stopping cannabis (96.8%), compulsive hot baths with symptom relief (92.3%), male predominance (72.9%), abdominal pain (85.1%), and at least weekly cannabis use (97.4%). The pathophysiology of CHS remains unclear with a dearth of research dedicated to investigating its underlying mechanism. Supportive care with intravenous fluids, dopamine antagonists, topical capsaicin cream, and avoidance of narcotic medications has shown some benefit in the acute setting. Cannabis cessation appears to be the best treatment. CHS is a cyclic vomiting syndrome, preceded by daily to weekly cannabis use, usually accompanied by symptom improvement with hot bathing, and resolution with cessation of cannabis. The pathophysiology underlying CHS is unclear. Cannabis cessation appears to be the best treatment.
Collapse
Affiliation(s)
- Cecilia J Sorensen
- Denver Health Residency in Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, 80204, USA.
| | - Kristen DeSanto
- Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Borgelt
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristina T Phillips
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Andrew A Monte
- Denver Health Residency in Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, 80204, USA
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Rocky Mountain Poison & Drug Center, Denver Health and Hospital Authority, Denver, CO, USA
| |
Collapse
|
35
|
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a lifelong disease of the gastrointestinal tract whose annual incidence and prevalence is on the rise. Current immunosuppressive therapies available for treatment of IBD offer limited benefits and lose effectiveness, exposing a significant need for the development of novel therapies. In the clinical setting, cannabis has been shown to provide patients with IBD symptomatic relief, although the underlying mechanisms of their anti-inflammatory effects remain unclear. METHODS This review reflects our current understanding of how targeting the endocannabinoid system, including cannabinoid receptors 1 and 2, endogenous cannabinoids anandamide and 2-arachidonoylglycerol, atypical cannabinoids, and degrading enzymes including fatty acid amide hydrolase and monoacylglycerol lipase, impacts murine colitis. In addition, the impact of cannabinoids on the human immune system is summarized. RESULTS Cannabinoid receptors 1 and 2, endogenous cannabinoids, and atypical cannabinoids are upregulated in inflammation, and their presence and stimulation attenuate murine colitis, whereas cannabinoid receptor antagonism and cannabinoid receptor deficient models reverse these anti-inflammatory effects. In addition, inhibition of endocannabinoid degradation through monoacylglycerol lipase and fatty acid amide hydrolase blockade can also attenuate colitis development, and is closely linked to cannabinoid receptor expression. CONCLUSIONS Although manipulation of the endocannabinoid system in murine colitis has proven to be largely beneficial in attenuating inflammation, there is a paucity of human study data. Further research is essential to clearly elucidate the specific mechanisms driving this anti-inflammatory effect for the development of therapeutics to target inflammatory disease such as IBD.
Collapse
|
36
|
Abstract
The trend toward decriminalization of cannabis (marijuana) continues sweeping across the United States. Colorado has been a leader of legalization of medical and recreational cannabis use. The growing public interest in the medicinal properties of cannabis and its use by patients with a variety of illnesses including inflammatory bowel disease (IBD) makes it important for pediatric gastroenterologists to understand this movement and its potential effect on patients. This article describes the path to legalization and "medicalization" of cannabis in Colorado and the public perception of safety despite the known adverse health effects of use. We delineate the mammalian endocannabinoid system and our experience of caring for children and adolescents with IBD in an environment of increasing awareness and acceptance of its use. We then summarize the rationale for considering that cannabis may have beneficial and harmful effects for patients with IBD. Finally, we highlight the challenges federal laws impose on conducting research on cannabis in IBD. The intent of this article is to inform health care providers about the issues around cannabis use and research in adolescents and young adults with IBD.
Collapse
|
37
|
Ortega A, García-Hernández VM, Ruiz-García E, Meneses-García A, Herrera-Gómez A, Aguilar-Ponce JL, Montes-Servín E, Prospero-García O, Del Angel SA. Comparing the effects of endogenous and synthetic cannabinoid receptor agonists on survival of gastric cancer cells. Life Sci 2016; 165:56-62. [PMID: 27640887 DOI: 10.1016/j.lfs.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/28/2023]
Abstract
AIMS Anti-neoplastic activity induced by cannabinoids has been extensively documented for a number of cancer cell types; however, this topic has been explored in gastric cancer cells only in a limited number of approaches. Thus, the need of integrative and comparative studies still persists. MATERIALS AND METHODS In this study we tested and compared the effects of three different cannabinoid receptor agonists-anandamide (AEA), (R)-(+)-methanandamide (Meth-AEA) and CP 55,940 (CP)- on gastric cancer cell morphology, viability and death events in order to provide new insights to the use of these agents for therapeutic purposes. KEY FINDINGS The three agents tested exhibited similar concentration-dependent effects in the induction of changes in cell morphology and cell loss, as well as in the decrease of cell viability and DNA laddering in the human gastric adenocarcinoma cell line (AGS). Differences among the cannabinoids tested were mostly observed in the density of cells found in early and late apoptosis and necrosis, favoring AEA and CP as the more effective inducers of apoptotic mechanisms, and Meth-AEA as a more effective inducer of necrosis through transient and rapid apoptosis. SIGNIFICANCE Through a comparative approach, our results support and confirm the therapeutic potential that cannabinoid receptor agonists exert in gastric cancer cells and open possibilities to use cannabinoids as part of a new gastric cancer therapy.
Collapse
Affiliation(s)
- A Ortega
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - V M García-Hernández
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - E Ruiz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - A Meneses-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - A Herrera-Gómez
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - J L Aguilar-Ponce
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - E Montes-Servín
- Unidad de Oncología Torácica, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - O Prospero-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico City, 04510, Mexico
| | - S A Del Angel
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA. Mexico City 14269, Mexico.
| |
Collapse
|
38
|
Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15:513-28. [DOI: 10.1016/j.autrev.2016.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
39
|
Watkins BA, Kim J. The endocannabinoid system: directing eating behavior and macronutrient metabolism. Front Psychol 2015; 5:1506. [PMID: 25610411 PMCID: PMC4285050 DOI: 10.3389/fpsyg.2014.01506] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 12/06/2014] [Indexed: 01/11/2023] Open
Abstract
For many years, the brain has been the primary focus for research on eating behavior. More recently, the discovery of the endocannabinoids (EC) and the endocannabinoid system (ECS), as well as the characterization of its actions on appetite and metabolism, has provided greater insight on the brain and food intake. The purpose of this review is to explain the actions of EC in the brain and other organs as well as their precursor polyunsaturated fatty acids (PUFA) that are converted to these endogenous ligands. The binding of the EC to the cannabinoid receptors in the brain stimulates food intake, and the ECS participates in systemic macronutrient metabolism where the gastrointestinal system, liver, muscle, and adipose are involved. The EC are biosynthesized from two distinct families of dietary PUFA, namely the n-6 and n-3. Based on their biochemistry, these PUFA are well known to exert considerable physiological and health-promoting actions. However, little is known about how these different families of PUFA compete as precursor ligands of cannabinoid receptors to stimulate appetite or perhaps down-regulate the ECS to amend food intake and prevent or control obesity. The goal of this review is to assess the current available research on ECS and food intake, suggest research that may improve the complications associated with obesity and diabetes by dietary PUFA intervention, and further reveal mechanisms to elucidate the relationships between substrate for EC synthesis, ligand actions on receptors, and the physiological consequences of the ECS. Dietary PUFA are lifestyle factors that could potentially curb eating behavior, which may translate to changes in macronutrient metabolism, systemically and in muscle, benefiting health overall.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Jeffrey Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
40
|
Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity: from folklore to practice. FRONTIERS IN PLANT SCIENCE 2015; 6:799. [PMID: 26483815 PMCID: PMC4589652 DOI: 10.3389/fpls.2015.00799] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 05/20/2023]
Abstract
Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.
Collapse
Affiliation(s)
| | | | - Hinanit Koltai
- *Correspondence: Hinanit Koltai, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, POB6, Bet Dagan 50250, Israel,
| |
Collapse
|
41
|
Wang J, Zheng J, Kulkarni A, Wang W, Garg S, Prather PL, Hauer-Jensen M. Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner. Dig Dis Sci 2014; 59:2693-703. [PMID: 24848354 PMCID: PMC4213290 DOI: 10.1007/s10620-014-3212-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/10/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mast cells and neuroimmune interactions regulate the severity of intestinal radiation mucositis, a dose-limiting toxicity during radiation therapy of abdominal malignancies. AIM Because endocannabinoids (eCB) regulate intestinal inflammation, we investigated the effect of the cannabimimetic, palmitoylethanolamide (PEA), in a mast competent (+/+) and mast cell-deficient (Ws/Ws) rat model. METHODS Rats underwent localized, fractionated intestinal irradiation, and received daily injections with vehicle or PEA from 1 day before until 2 weeks after radiation. Intestinal injury was assessed noninvasively by luminol bioluminescence, and, at 2 weeks, by histology, morphometry, and immunohistochemical analysis, gene expression analysis, and pathway analysis. RESULTS Compared with +/+ rats, Ws/Ws rats sustained more intestinal structural injury (p = 0.01), mucosal damage (p = 0.02), neutrophil infiltration (p = 0.0003), and collagen deposition (p = 0.004). PEA reduced structural radiation injury (p = 0.02), intestinal wall thickness (p = 0.03), collagen deposition (p = 0.03), and intestinal inflammation (p = 0.02) in Ws/Ws rats, but not in +/+ rats. PEA inhibited mast cell-derived cellular immune response and anti-inflammatory IL-6 and IL-10 signaling and activated the prothrombin pathway in +/+ rats. In contrast, while PEA suppressed nonmast cell-derived immune responses, it increased anti-inflammatory IL-10 and IL-6 signaling and decreased activation of the prothrombin pathway in Ws/Ws rats. CONCLUSIONS These data demonstrate that the absence of mast cells exacerbate radiation enteropathy by mechanisms that likely involve the coagulation system, anti-inflammatory cytokine signaling, and the innate immune system; and that these mechanisms are regulated by PEA in a mast cell-dependent manner. The eCB system should be explored as target for mitigating intestinal radiation injury.
Collapse
Affiliation(s)
- Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashwini Kulkarni
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wen Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
42
|
Sibaev A, Yuece B, Allescher HD, Saur D, Storr M, Kurjak M. The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats. Pharmacol Rep 2014; 66:256-63. [DOI: 10.1016/j.pharep.2013.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/19/2013] [Accepted: 09/06/2013] [Indexed: 10/25/2022]
|
43
|
Abstract
BACKGROUND The prevalence and perceived effectiveness of marijuana use has not been well studied in inflammatory bowel disease (IBD) despite increasing legal permission for its use in Crohn's disease. Health care providers have little guidance about the IBD symptoms that may improve with marijuana use. The aim of this study was to assess the prevalence, sociodemographic characteristics, and perceived benefits of marijuana use among patients with IBD. METHODS Prospective cohort survey study of marijuana use patterns in patients with IBD at an academic medical center. RESULTS A total of 292 patients completed the survey (response rate = 94%); 12.3% of patients were active marijuana users, 39.0% were past users, and 48.6% were never users. Among current and past users, 16.4% of patients used marijuana for disease symptoms, the majority of whom felt that marijuana was "very helpful" for relief of abdominal pain, nausea, and diarrhea. On multivariate analysis, age and chronic abdominal pain were associated with current marijuana use (odds ratio [OR], 0.93; 95% confidence interval [CI], 0.89-0.97; P < 0.001 and OR, 3.5; 95% CI, 1.24-9.82; P = 0.02). Age and chronic abdominal pain were also multivariate predictors of medicinal use of marijuana (OR, 0.93; 95% CI, 0.89-0.97; P < 0.001 and OR, 4.7; 95% CI, 1.8-12.2; P = 0.001). Half of the never users expressed an interest in using marijuana for abdominal pain, were it legally available. CONCLUSIONS A significant number of patients with IBD currently use marijuana. Most patients find it very helpful for symptom control, including patients with ulcerative colitis, who are currently excluded from medical marijuana laws. Clinical trials are needed to determine marijuana's potential as an IBD therapy and to guide prescribing decisions.
Collapse
|
44
|
Fichna J, Sibaev A, Sałaga M, Sobczak M, Storr M. The cannabinoid-1 receptor inverse agonist taranabant reduces abdominal pain and increases intestinal transit in mice. Neurogastroenterol Motil 2013; 25:e550-9. [PMID: 23692073 DOI: 10.1111/nmo.12158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/26/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Constipation-predominant irritable bowel syndrome (IBS-C) is a common functional gastrointestinal (GI) disorder with abdominal pain and decreased motility. Current treatments of IBS-C are insufficient. The aim of this study was to evaluate the potential application of taranabant, a cannabinoid type 1 (CB1) inverse agonist using mouse models mimicking the symptoms of IBS-C. METHODS Changes in intestinal contractile activity were studied in vitro, using isolated mouse ileum and colon and intracellular recordings. In vivo, whole gastrointestinal transit (WGT) and fecal pellet output (FPO) were measured under standard conditions and with pharmacologically delayed GI transit. The antinociceptive effect was evaluated in mustard oil- and acetic acid-induced models of visceral pain. Forced swimming and tail suspension tests were performed and locomotor activity was measured to evaluate potential central side effects. KEY RESULTS In vitro, taranabant (10(-10) -10(-7) mol L(-1)) increased contractile responses in mouse ileum and blocked the effect of the CB agonist WIN 55,212-2. Taranabant had no effect on the amplitude of electrical field stimulation (EFS)-evoked junction potentials. In vivo, taranabant (0.1-3 mg kg(-1), i.p. and 3 mg kg(-1), p.o.) increased WGT and FPO in mice and reversed experimental constipation. The effect of taranabant was absent in CB1(-/-) mice. Taranabant significantly decreased the number of pain-related behaviors in animal models. At the doses tested, taranabant did not display mood-related adverse side effects typical for CB1 receptor inverse agonists. CONCLUSIONS & INFERENCES Taranabant improved symptoms related to slow GI motility and abdominal pain and may become an attractive template in the development of novel therapeutics targeting IBS-C.
Collapse
Affiliation(s)
- J Fichna
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
45
|
Li K, Fichna J, Schicho R, Saur D, Bashashati M, Mackie K, Li Y, Zimmer A, Göke B, Sharkey KA, Storr M. A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology 2013; 71:255-63. [PMID: 23603203 PMCID: PMC3677091 DOI: 10.1016/j.neuropharm.2013.03.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
Abstract
Objective The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid (CB) receptor, whose role in the gastrointestinal (GI) tract remains unknown. Here we studied the significance of GPR55 in the regulation of GI motility. Design GPR55 mRNA and protein expression were measured by RT-PCR and immunohistochemistry. The effects of the GPR55 agonist O-1602 and a selective antagonist cannabidiol (CBD) were studied in vitro and in vivo and compared to a non-selective cannabinoid receptor agonist WIN55,212-2. CB1/2−/− and GPR55−/− mice were employed to identify the receptors involved. Results GPR55 was localized on myenteric neurons in mouse and human colon. O-1602 concentration-dependently reduced evoked contractions in muscle strips from the colon (∼60%) and weakly (∼25%) from the ileum. These effects were reversed by CBD, but not by CB1 or CB2 receptor antagonists. I.p. and i.c.v. injections of O-1602 slowed whole gut transit and colonic bead expulsion; these effects were absent in GPR55−/− mice. WIN55,212-2 slowed whole gut transit effects, which were counteracted in the presence of a CB1 antagonist AM251. WIN55,212-2, but not O-1602 delayed gastric emptying and small intestinal transit. Locomotion, as a marker for central sedation, was reduced following WIN55,212-2, but not O-1602 treatment. Conclusion GPR55 is strongly expressed on myenteric neurons of the colon and it is selectively involved in the regulation of colonic motility. Since activation of GPR55 receptors is not associated with central sedation, the GPR55 receptor may serve as a future target for the treatment of colonic motility disorders. G protein-coupled receptor 55 (GPR55) is a binding site for cannabinoids. No conclusive information was available on function of GPR55 in the GI tract. We found that targeting GPR55 at peripheral or central sites slows GI motility. Slowing effect of GPR55 activation on GI motility is primarily observed in colon. Targeting GPR55 may be a future tool for treatment of colonic motility disorders.
Collapse
Affiliation(s)
- Kun Li
- Snyder Institute for Chronic Diseases, Division of Gastroenterology, Department of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim J, Li Y, Watkins BA. Fat to treat fat: emerging relationship between dietary PUFA, endocannabinoids, and obesity. Prostaglandins Other Lipid Mediat 2013; 104-105:32-41. [PMID: 23466458 DOI: 10.1016/j.prostaglandins.2012.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/27/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
Abstract
Obesity incidence continues to escalate as a global nutrition and health problem. Scientists and clinicians are engaged in numerous research approaches that include behavior, education, applied nutrition studies and clinical therapies to prevent, control and reverse obesity. The common goal is to identify areas of basic and clinical research to understand aspects of human biology that contribute to obesity. In these approaches recent discoveries in biology and advancing technologies are tools employed to prevent and reverse obesity. The purpose of this review article is to present the current knowledge of key components of the endocannabinoid system that contribute to eating, influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoid receptors. Herein the objectives are to (1) describe the relationship between dietary polyunsaturated fatty acids (PUFA) and obesity, (2) explain the role of this signaling system in obesity, and (3) present areas of consequential future research with dietary long chain PUFA. There are several gaps in the knowledge of the role dietary PUFA play in the tone of the endocannabinoid signaling system involving ligands and receptors. Elucidating the PUFA relationship to signaling tone may explain the presumed overstimulation of signaling believed to contribute to over eating, fat accretion and inflammation. Future research in this endeavor must be hypothesis driven utilizing appropriate models for investigations on dietary PUFA, endocannabinoids and obesity.
Collapse
Affiliation(s)
- Jeffrey Kim
- Lipid Chemistry and Molecular Biology Laboratory, Center on Aging, University of Connecticut, Storrs, CT 06269-4004, USA
| | | | | |
Collapse
|
47
|
Michler T, Storr M, Kramer J, Ochs S, Malo A, Reu S, Göke B, Schäfer C. Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms. Am J Physiol Gastrointest Liver Physiol 2013; 304:G181-92. [PMID: 23139224 DOI: 10.1152/ajpgi.00133.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. Cerulein pancreatitis was induced in wild-type, CB(1)-/-, and MK2-/- mice pretreated with selective cannabinoid receptor agonists or antagonists. Severity of pancreatitis was determined by serum amylase and IL-6 levels, intracellular activation of pancreatic trypsinogen, lung myeloperoxidase activity, pancreatic edema, and histological examinations. Pancreatic lysates were investigated by Western blotting using phospho-specific antibodies against p38 and JNK. Quantitative PCR data, Western blotting experiments, and immunohistochemistry clearly show that CB(1) and CB(2) are expressed in mouse pancreatic acini. During acute pancreatitis, an upregulation especially of CB(2) on apoptotic cells occurred. The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2). Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology. Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.
Collapse
Affiliation(s)
- Thomas Michler
- Department of Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Vasileiou I, Fotopoulou G, Matzourani M, Patsouris E, Theocharis S. Evidence for the involvement of cannabinoid receptors' polymorphisms in the pathophysiology of human diseases. Expert Opin Ther Targets 2013; 17:363-77. [DOI: 10.1517/14728222.2013.754426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Cannabinoid HU210 protects isolated rat stomach against impairment caused by serum of rats with experimental acute pancreatitis. PLoS One 2012; 7:e52921. [PMID: 23285225 PMCID: PMC3532296 DOI: 10.1371/journal.pone.0052921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 11/21/2012] [Indexed: 01/08/2023] Open
Abstract
Acute pancreatitis (AP), especially severe acute pancreatitis often causes extra-pancreatic complications, such as acute gastrointestinal mucosal lesion (AGML) which is accompanied by a considerably high mortality, yet the pathogenesis of AP-induced AGML is still not fully understood. In this report, we investigated the alterations of serum components and gastric endocrine and exocrine functions in rats with experimental acute pancreatitis, and studied the possible contributions of these alterations in the pathogenesis of AGML. In addition, we explored the intervention effects of cannabinoid receptor agonist HU210 and antagonist AM251 on isolated and serum-perfused rat stomach. Our results showed that the AGML occurred after 5 h of AP replication, and the body homeostasis was disturbed in AP rat, with increased levels of pancreatic enzymes, lipopolysaccharide (LPS), proinflammtory cytokines and chemokines in the blood, and an imbalance of the gastric secretion function. Perfusing the isolated rat stomach with the AP rat serum caused morphological changes in the stomach, accompanied with a significant increment of pepsin and [H+] release, and increased gastrin and decreased somatostatin secretion. HU210 reversed the AP-serum-induced rat pathological alterations, including the reversal of transformation of the gastric morphology to certain degree. The results from this study prove that the inflammatory responses and the imbalance of the gastric secretion during the development of AP are responsible for the pathogenesis of AGML, and suggest the therapeutic potential of HU210 for AGML associated with acute pancreatitis.
Collapse
|
50
|
Lipina C, Rastedt W, Irving AJ, Hundal HS. New vistas for treatment of obesity and diabetes? Endocannabinoid signalling and metabolism in the modulation of energy balance. Bioessays 2012; 34:681-91. [PMID: 22674489 DOI: 10.1002/bies.201200031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Growing evidence suggests that pathological overactivation of the endocannabinoid system (ECS) is associated with dyslipidemia, obesity and diabetes. Indeed, this signalling system acting through cannabinoid receptors has been shown to function both centrally and peripherally to regulate feeding behaviour as well as energy expenditure and metabolism. Consequently, modulation of these receptors can promote significant alterations in body weight and associated metabolic profile. Importantly, blocking cannabinoid receptor type 1 function has been found to prevent obesity and metabolic dysfunction in various murine models and in humans. Here we provide a detailed account of the known physiological role of the ECS in energy balance, and explore how recent studies have delivered novel insights into the potential targeting of this system as a therapeutic means for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland
| | | | | | | |
Collapse
|