1
|
Kim EN, Seok HY, Lim JS, Koh J, Bae JM, Kim CJ, Ryu GH, Ok YJ, Choi JS, Cho CH, Oh SJ. CRP deposition in human abdominal aortic aneurysm is associated with transcriptome alterations toward aneurysmal pathogenesis: insights from in situ spatial whole transcriptomic analysis. Front Immunol 2024; 15:1475051. [PMID: 39737187 PMCID: PMC11682986 DOI: 10.3389/fimmu.2024.1475051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression. Methods AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.1 mg/dL, diffuse and strong immunohistochemistry (IHC); n = 7 (12 cores)] and AAA-low-CRP [serum CRP < 0.1 mg/dL, weak IHC; n = 3 (5 cores)] groups. Normal aorta specimens obtained during heart transplantation were used as the control group [n = 3 (6 cores)]. Spatially resolved whole transcriptomic analysis was performed, focusing on CD68-positive macrophages, CD45-positive lymphocytes, and αSMA-positive vascular smooth muscle cells. Results Spatial whole transcriptomic analysis revealed significant differential expression of 1,086, 1,629, and 1,281 genes between high-CRP and low-CRP groups within CD68-, CD45-, and αSMA-positive cells, respectively. Gene ontology (GO) analysis of CD68-positive macrophages identified clusters related to inflammation, apoptosis, and immune response, with signal transducer and activator of transcription 3 implicated across three processes. Notably, genes involved in blood vessel diameter maintenance were significantly downregulated in the high-CRP group. GO analysis of lymphocytes showed upregulation of leukocyte rolling and the apoptosis pathway, whereas, in smooth muscle cells, genes associated with Nuclear factor kappa B (NF-κB) signaling and c-Jun N-terminal Kinase (JNK) pathway were upregulated, and those related to blood pressure regulation were downregulated in the high-CRP group. Discussion CRP deposition was associated with significant transcriptomic changes in macrophages, lymphocytes, and vascular smooth muscle cells in AAA, suggesting its potential role in promoting pro-inflammatory and apoptotic processes, as well as contributing to the degradation of vascular structure and elasticity.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/immunology
- Transcriptome
- Male
- Gene Expression Profiling
- C-Reactive Protein/genetics
- C-Reactive Protein/analysis
- C-Reactive Protein/metabolism
- Female
- Aged
- Macrophages/metabolism
- Macrophages/immunology
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Eun Na Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ga-Hyeon Ryu
- Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - You Jung Ok
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Sung Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences and Pharmacology , College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li D, Wang L, Jiang B, Miao Y, Li X. An evidence update to explore molecular targets and protective mechanisms of apigenin against abdominal aortic aneurysms based on network pharmacology and experimental validation. Mol Divers 2024; 28:2913-2929. [PMID: 37653360 DOI: 10.1007/s11030-023-10723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Abdominal aortic aneurysms (AAA) is a life-threatening disease and the incidence of AAA is still on the rise in recent years. Numerous studies suggest that dietary moderate consumption of polyphenol exerts beneficial effects on cardiovascular disease. Apigenin (API) is a promising dietary polyphenol and possesses potent beneficial effects on our body. Although our previous study revealed protective effects of API on experimental AAA formation, up till now few studies were carried out to further investigate its involved molecular mechanisms. In the present study, network pharmacology combined molecular docking and experimental validation was used to explore API-related therapeutic targets and mechanisms in the treatment of AAA. Firstly, we collected 202 API-related therapeutic targets and 2475 AAA-related pathogenetic targets. After removing duplicates, a total of 68 potential therapeutic targets were obtained. Moreover, 5 targets with high degree including TNF, ACTB, INS, JUN, and MMP9 were identified as core targets of API for treating AAA. In addition, functional enrichment analysis indicated that API exerted pharmacological effects in AAA by affecting versatile mechanisms, including apoptosis, inflammation, blood fluid dynamics, and immune modulation. Molecular docking results further supported that API had strong affinity with the above core targets. Furthermore, protein level of core targets and related pathways were evaluated in a Cacl2-induced AAA model by using western blot and immunohistochemistry. The experimental validation results demonstrated that API significantly attenuated phosphorylation of JUN and protein level of predicted core targets. Taken together, based on network pharmacological and experimental validation, our study systematically explored associated core targets and potential therapeutic pathways of API for AAA treatment, which could supply valuable insights and theoretical basis for AAA treatment.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Hosseini A, Sahranavard T, Reiner Ž, Jamialahmadi T, Dhaheri YA, Eid AH, Sahebkar A. Effect of statins on abdominal aortic aneurysm. Eur J Pharm Sci 2022; 178:106284. [PMID: 36038100 DOI: 10.1016/j.ejps.2022.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent condition which causes progressive growth and rupture of aortic wall with a high death rate. Several studies have found that treatment with statins may decrease the progress of AAA and the risk of rupture by suppressing the inflammatory mediators, decreasing oxidative stress, and inhibiting mechanisms involved in extracellular matrix (ECM) degradation. Moreover, some studies have reported that prehospital therapy with statins can decrease mortality after surgery. The novelty of this paper is that different studies including those performed in humans and animals were reviewed and the potential mechanisms by which statins can have an effect on AAA were summarized. Overall, the evidence suggested an association between treatment with statins and improvement of AAA.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Sahranavard
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, AlAin, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Chronic Intermittent Hypoxia Regulates CaMKII-Dependent MAPK Signaling to Promote the Initiation of Abdominal Aortic Aneurysm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:2502324. [PMID: 34970414 PMCID: PMC8714336 DOI: 10.1155/2021/2502324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023]
Abstract
Obstructive sleep apnea (OSA) is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, the effects of OSA on AAA initiation in a murine model of sleep apnea have not been completely studied. In this paper, Apoe−/− C57BL/6 mice infused with angiotensin II (Ang II) were placed in chronic intermittent hypoxia (CIH) condition for inducing OSA-related AAA. CIH significantly promoted the incidence of AAA and inhibited the survival of mice. By performing ultrasonography and elastic Van Gieson staining, CIH was found to be effective in promoting aortic dilation and elastin degradation. Immunohistochemical and zymography results show that CIH upregulated the expression and activity of MMP2 and MMP9 and upregulated MCP1 expression while downregulating α-SMA expression. Also, CIH exposure promoted ROS generation, apoptosis, and mitochondria damage in vascular smooth muscle cells (VSMCs), which were measured by ROS assay, TUNEL staining, and transmission electron microscopy. The result of RNA sequencing of mouse aortas displayed that 232 mRNAs were differently expressed between Ang II and Ang II+CIH groups, and CaMKII-dependent p38/Jnk was confirmed as one downstream signaling of CIH. CaMKII-IN-1, an inhibitor of CaMKII, eliminated the effects of CIH on the loss of primary VSMCs. To conclude, a mouse model of OSA-related AAA, which contains the phenotypes of both AAA and OSA, was established in this study. We suggested CIH as a risk factor of AAA initiation through CaMKII-dependent MAPK signaling.
Collapse
|
5
|
Kellie JA, Roach D, Dawson J. Regression of a large inflammatory abdominal aortic aneurysm with high-dose steroids. ANZ J Surg 2021; 91:E591-E593. [PMID: 33484207 DOI: 10.1111/ans.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/14/2020] [Accepted: 01/01/2021] [Indexed: 11/29/2022]
Affiliation(s)
- James A Kellie
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Vascular Surgery, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Denise Roach
- Department of Radiology, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Joseph Dawson
- Department of Vascular Surgery, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Kanamoto R, Aoki H, Furusho A, Otsuka H, Shintani Y, Tobinaga S, Hiromatsu S, Fukumoto Y, Tanaka H. The Role of Syk in Inflammatory Response of Human Abdominal Aortic Aneurysm Tissue. Ann Vasc Dis 2020; 13:151-157. [PMID: 32595791 PMCID: PMC7315237 DOI: 10.3400/avd.oa.20-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: Inflammatory response is central to pathogenesis of abdominal aortic aneurysm (AAA). Recently, we reported that Syk, a signaling molecule in inflammatory cells, promotes AAA development in a mouse model. In this study, we aimed to investigate the role of Syk in human AAA pathogenesis. Materials and Methods: We obtained human AAA wall samples during open surgical aortic repair at Kurume University Hospital. Immunohistochemical analyses of AAA samples were performed for Syk activation and cell type markers. Ex vivo culture of human AAA tissue was utilized to evaluate the effect of P505-15, a Syk inhibitor, on secretions of interleukin-6 (IL-6) and matrix metalloproteinases (MMPs). Results: Immunohistochemical analysis showed infiltration of B cells, T cells, and macrophages in AAA samples. Syk activation was localized mainly in B cells and part of macrophages. AAA tissue in culture secreted IL-6, MMP-9, and MMP-2 without any stimulation. The unstimulated secretions of IL-6, MMP-9, and MMP-2 were insensitive to P505-15. Secretions of IL-6 and MMP-9 were enhanced by exogenous normal human immunoglobulin G (IgG), which was suppressed by P505-15, whereas secretion of MMP-2 was insensitive to IgG or P505-15. Conclusion: These results demonstrate an important role of Syk for IgG-dependent inflammatory response in human AAA.
Collapse
Affiliation(s)
- Ryo Kanamoto
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroyuki Otsuka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yusuke Shintani
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Satoru Tobinaga
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shinichi Hiromatsu
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroyuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
7
|
Yan D, Ma H, Shi W, Luo P, Liu T, Guo J, Zhai M, Tao J, Huo S, Li C, Lin J, Li S, Lv J, Zhang C, Lin L. Bazedoxifene Attenuates Abdominal Aortic Aneurysm Formation via Downregulation of Interleukin-6/Glycoprotein 130/Signal Transducer and Activator of Transcription 3 Signaling Pathway in Apolipoprotein E-Knockout Mice. Front Pharmacol 2020; 11:392. [PMID: 32362823 PMCID: PMC7180191 DOI: 10.3389/fphar.2020.00392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by aortic dilatation and predominantly affects an elderly population. Accumulating evidence suggests that Interleukin-6 (IL-6) and the signal transducer and activator of transcription 3 (STAT3) play an important role in formation of AAAs. However, it remains unclear whether Bazedoxifene (BAZ) could suppress the activation of IL-6/GP130/STAT3 in vascular cells and the formation of AAA. Here we explored the effect of BAZ on AngII-stimulated AAA formation. ApoE–/– mice infused with AngII for 28 days using osmotic minipumps were treated with placebo or 5mg/kg BAZ. In our results most of the AngII-induced mice developed AAA with exacerbated inflammation, degradation of elastin fibers, STAT3 phosphorylation, and increased expression of matrix metalloproteinases (MMPs). These effects were markedly attenuated by BAZ. Furthermore, BAZ suppressed the stimuli-induced (IL-6 or AngII) expression of P-STAT3, MMP2 and MMP9 in vascular smooth muscle cells (VSMCs). BAZ inhibited wound healing, colony formation and suppressed STAT3 nuclear translocation in vitro. In conclusion, these results indicated that BAZ downregulated IL-6/GP130/STAT3 signaling and interfered with AAA formation induced by AngII in ApoE–/– mice, which indicates a novel potential strategy for the prevention and therapy of AAA.
Collapse
Affiliation(s)
- Dan Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Cardiology, Department of Internal Medicine, First People's Hospital of Shangqiu, Shangqiu, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Luo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maocai Zhai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Tao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Ma H, Dong XF, Cao XR, Hei NH, Li JL, Wang YL, Kong J, Dong B. Pro-Renin Receptor Overexpression Promotes Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-Knockout Mice. Hum Gene Ther 2020; 31:639-650. [PMID: 31992084 DOI: 10.1089/hum.2019.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pro-renin receptor (PRR) is an important novel component of the renin-angiotensin (Ang) system that has multiple functions, which are not yet completely understood. In this study, we aimed to explore the effect of PRR on the formation of Ang II-induced abdominal aortic aneurysm (AAA) in apolipoprotein E-knockout mice. We used Ang II (1.44 mg/kg/day) infusion to induce AAA followed by a treatment of saline, telmisartan, no treatment, Ad-EGFP, Ad-PRR, or Ad-PRR plus telmisartan. The incidence of AAA was 35%, 60%, 65%, 90%, and 55% in the Telmisartan, Vehicle, Ad-EGFP, Ad-PRR, and Ad-PRR+Telmisartan groups, respectively. Compared with the Vehicle and Ad-EGFP groups, PRR overexpression markedly increased macrophage infiltration; levels of proinflammatory cytokines, including monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α); the expression and activity of MMP2 and MMP9; NOX2 and NOX4 protein and mRNA expression; nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity; extracellular-signal-regulated kinase (ERK) and P38MAPK expression; but decreased smooth muscle cells content in AAA. However, telmisartan reversed the adverse effects of PRR. In addition, ERK inhibitor PD98059 eliminated the acceleration of Ang II-induced AAA formation by PRR, and coadministration of telmisartan and PD98059 further abolished the adverse effects of PRR on Ang II-induced AAA formation. Thus, PRR plays an important role in the pathological development of AAA via both Ang II-dependent and Ang II-independent activation of ERK pathways. These results suggest that inhibition of PRR activation may be a promising approach to the treatment of AAA.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Fei Dong
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.,University of Hull, Hull, United Kingdom
| | - Xin-Ran Cao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Nai-Hao Hei
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun-Long Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Lin Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Kong
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Dong
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Ma H, Wang YL, Hei NH, Li JL, Cao XR, Dong B, Yan WJ. AVE0991, a nonpeptide angiotensin-(1-7) mimic, inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E knockout mice. J Mol Med (Berl) 2020; 98:541-551. [PMID: 32060588 DOI: 10.1007/s00109-020-01880-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
AVE0991, a nonpeptide angiotensin-(1-7) mimic, has similar protective effects for cardiovascular system to Ang-(1-7). In this article, we aimed to explore the effects of AVE0991 and Ang-(1-7) on abdominal aortic aneurysm (AAA) induced by Ang II in apolipoprotein E knockout mice. The mice AAA model was established by Ang II infusion, and then mice received different treatment with saline, Ang II (1.44 mg/kg/day), different dose AVE0991 (0.58 or 1.16 μmol/kg/day), or Ang-(1-7) (400 ng/kg/min). The incidence of AAA was 76%, 48%, 28%, and 24% in the vehicle, the low-dose AVE0991, high-dose AVE0991, and the Ang-(1-7) group, respectively. In comparison with control group, AVE0991 and Ang-(1-7) treatment significantly increased smooth muscle cells and decreased macrophage accumulation, the expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α), and the expression and activity of metalloproteinases 2 and 9 in mice AAA model or in human smooth muscle cells (hVSMCs). The therapeutic effects may be contributed to reduction of oxidative stress and downregulation of P38 and ERK1/2 signal pathways via Mas receptor activation, whereas the positive impacts were reversed by co-administration with the Mas antagonist A779 (400 ng/kg/min) and AVE0991 in Ang II-infused mice or in hVSMCs. Therefore, AVE0991 and Ang-(1-7) might be novel and promising interventions in the prevention and treatment of AAA. KEY MESSAGES: • AVE0991 dose-dependently inhibited Ang II-induced AAA formation in Apoe-/- mice. • Ang-(1-7) played the same protective role as high-dose AVE0991. • Inhibition of Mas receptor with A779 could reverse the protective effect of AVE0991. • The therapeutic effects may be contributed to reduction of oxidative stress and downregulation of P38 and ERK1/2 signal pathways via Mas receptor activation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yu-Lin Wang
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Nai-Hao Hei
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jun-Long Li
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xin-Ran Cao
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bo Dong
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Wen-Jiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Zhao T, Chen H, Cheng C, Zhang J, Yan Z, Kuang J, Kong F, Li C, Lu Q. Liraglutide protects high-glucose-stimulated fibroblasts by activating the CD36-JNK-AP1 pathway to downregulate P4HA1. Biomed Pharmacother 2019; 118:109224. [PMID: 31349139 DOI: 10.1016/j.biopha.2019.109224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus. It's known that glucagon-like peptide-1 (GLP-1) and prolyl 4-hydroxylase subunit alpha-1 (P4HA1) have significant effect on cardiovascular function, but their interaction in cardiac fibroblasts (CFs) is still being unraveled. METHODS AND RESULTS The present study demonstrated that glucose promotes CFs proliferation and cardiac fibrosis. Using qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, wound healing and Transwell assays to explore the functions of liraglutide and P4HA1 in high-glucose (HG)-induced CFs, we proved that liraglutide as well as silencing of P4HA1 inhibited cell proliferation, migration and invasion, and promoted cell cycle arrest and apoptosis in HG-induced CFs. In addition, liraglutide downregulated P4HA1 expression, upregulated CD36 and P-JNK expression levels, and enhanced the DNA binding activity of AP-1 on P4HA1. Inhibition of CD36 or p--JNK promoted P4HA1 expression. CONCLUSIONS Liraglutide may down-regulate P4HA1 expression at least partly though CD36-JNK-AP1 pathway, thereby reducing myocardial fibrosis. Therefore, our study provides novel insight into the molecular mechanism and function of liraglutide in HG-mediated CFs.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Huiqiang Chen
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Chao Cheng
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Juan Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Zhi Yan
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Jiangying Kuang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Chunyan Li
- Department of Gynaecology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China.
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China.
| |
Collapse
|
11
|
Furusho A, Aoki H, Ohno-Urabe S, Nishihara M, Hirakata S, Nishida N, Ito S, Hayashi M, Imaizumi T, Hiromatsu S, Akashi H, Tanaka H, Fukumoto Y. Involvement of B Cells, Immunoglobulins, and Syk in the Pathogenesis of Abdominal Aortic Aneurysm. J Am Heart Assoc 2018; 7:JAHA.117.007750. [PMID: 29545260 PMCID: PMC5907549 DOI: 10.1161/jaha.117.007750] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is a potentially life‐threatening disease that is common in older individuals. Currently, therapeutic options are limited to surgical interventions. Although it has long been known that AAA tissue is enriched in B cells and immunoglobulins, their involvement in AAA pathogenesis remains controversial. Methods and Results We investigated the role of B cells and immunoglobulins in a murine model of AAA, induced with a periaortic application of CaCl2, and in human AAA. Both human and mouse AAA tissue showed B‐cell infiltration. Mouse AAA tissue showed deposition of IgG and activation of Syk, a key molecule in B‐cell activation and immunoglobulin function, which were localized to infiltrating cells including B cells and macrophages. B‐cell–deficient muMT mice showed suppression of AAA development that was associated with reduced activation of Syk and less expression of matrix metalloproteinase‐9. Administration of exogenous immunoglobulins restored the blunted Syk activation and AAA development in muMT mice. Additionally, exogenous immunoglobulins induced interleukin‐6 and metalloproteinase‐9 secretions in human AAA tissue cultures. Furthermore, administration of R788, a specific Syk inhibitor, suppressed AAA expansion, reduced inflammatory response, and reduced immunoglobulin deposition in AAA tissue. Conclusions From these results, we concluded that B cells and immunoglobulins participated in AAA pathogenesis by promoting inflammatory and tissue‐destructive activities. Finally, we identified Syk as a potential therapeutic target.
Collapse
Affiliation(s)
- Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| | - Satoko Ohno-Urabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Michihide Nishihara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Saki Hirakata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Norifumi Nishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sohei Ito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Makiko Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Shinichi Hiromatsu
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hidetoshi Akashi
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hiroyuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
12
|
Ohno T, Aoki H, Ohno S, Nishihara M, Furusho A, Hiromatsu S, Akashi H, Fukumoto Y, Tanaka H. Cytokine Profile of Human Abdominal Aortic Aneurysm: Involvement of JAK/STAT Pathway. Ann Vasc Dis 2018; 11:84-90. [PMID: 29682112 PMCID: PMC5882349 DOI: 10.3400/avd.oa.17-00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) is characterized by inflammation and destruction of normal tissue architecture. The present study aimed to evaluate the inflammatory signaling cascade by analyzing the cytokines of AAA tissue. Materials and Methods: We analyzed the comprehensive cytokine secretion profiles of 52 cytokines from human AAA in four patients with AAA using fluorescent beads-based multiplex assay. Further, the effect of janus kinase (JAK) inhibition by pyridone 6 on cytokine profiles was also evaluated. Results: Cytokine secretion profiles were found to be similar among the four patients. A high level of JAK/signal transducers and activator of transcription (STAT) pathway activity in AAA tissue in culture was maintained, which may be attributed to the secretion of endogenous JAK-activating cytokines. Inhibition of JAK by pyridone 6 resulted in the suppression of STAT3 phosphorylation and secretion of a subset of chemokines and JAK-activating cytokines. However, the inhibition of JAK had no effect on the secretion of matrix metalloproteinase (MMP)-2, MMP-9, or TGF-β family that is responsible for the metabolism of extracellular matrix. Conclusion: The findings of the present study suggested that AAA tissue exhibits a stereotypical profile of cytokine secretion, where JAK/STAT pathway may play a role in regulating a subset of cytokines. Identification of such a cytokine profile may reveal potential diagnostic markers and therapeutic targets for AAA.
Collapse
Affiliation(s)
- Tomokazu Ohno
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Satoko Ohno
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Michihide Nishihara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shinichi Hiromatsu
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetoshi Akashi
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroyuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
13
|
PATELIS N, MORIS D, SCHIZAS D, DAMASKOS C, PERREA D, BAKOYIANNIS C, LIAKAKOS T, GEORGOPOULOS S. Animal Models in the Research of Abdominal Aortic Aneurysms Development. Physiol Res 2017; 66:899-915. [PMID: 28937252 DOI: 10.33549/physiolres.933579] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent and potentially life threatening disease. Many animal models have been developed to simulate the natural history of the disease or test preclinical endovascular devices and surgical procedures. The aim of this review is to describe different methods of AAA induction in animal models and report on the effectiveness of the methods described in inducing an analogue of a human AAA. The PubMed database was searched for publications with titles containing the following terms “animal” or ‘‘animal model(s)’’ and keywords “research”, “aneurysm(s)’’, “aorta”, “pancreatic elastase’’, “Angiotensin”, “AngII” “calcium chloride” or “CaCl2”. Starting date for this search was set to 2004, since previously bibliography was already covered by the review of Daugherty and Cassis (2004). We focused on animal studies that reported a model of aneurysm development and progression. A number of different approaches of AAA induction in animal models has been developed, used and combined since the first report in the 1960’s. Although specific methods are successful in AAA induction in animal models, it is necessary that these methods and their respective results are in line with the pathophysiology and the mechanisms involved in human AAA development. A researcher should know the advantages/disadvantages of each animal model and choose the appropriate model.
Collapse
Affiliation(s)
- N. PATELIS
- First Department of Surgery, Vascular Unit, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The role of IL-6 in pathogenesis of abdominal aortic aneurysm in mice. PLoS One 2017; 12:e0185923. [PMID: 28982132 PMCID: PMC5628902 DOI: 10.1371/journal.pone.0185923] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Although the pathogenesis of abdominal aortic aneurysm (AAA) remains unclear, evidence is accumulating to support a central role for inflammation. Inflammatory responses are coordinated by various soluble cytokines of which IL-6 is one of the major proinflammatory cytokines. In this study we examined the role of IL-6 in the pathogenesis of experimental AAA induced by a periaortic exposure to CaCl2 in mice. We now report that the administration of MR16-1, a neutralizing monoclonal antibody specific for the mouse IL-6 receptor, mildly suppressed the development of AAA. The inhibition of IL-6 signaling provoked by MR16-1 also resulted in a suppression of Stat3 activity. Conversely, no significant changes in either NFκB activity, Jnk activity or the expression of matrix metalloproteinases (Mmp) -2 and -9 were identified. Transcriptome analyses revealed that MR16-1-sensitive genes encode chemokines and their receptors, as well as factors that regulate vascular permeability and cell migration. Imaging cytometric analyses then consistently demonstrated reduced cellular infiltration for MR16-1-treated AAA. These results suggest that IL-6 plays an important but limited role in AAA pathogenesis, and primarily regulates cell migration and infiltration. These data would also suggest that IL-6 activity may play an important role in scenarios of continuous cellular infiltration, possibly including human AAA.
Collapse
|
15
|
Recombinant adeno-associated virus vector carrying the thrombomodulin lectin-like domain for the treatment of abdominal aortic aneurysm. Atherosclerosis 2017; 262:62-70. [DOI: 10.1016/j.atherosclerosis.2017.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022]
|
16
|
Tekin G, İsbir S, Şener G, Çevik Ö, Çetinel Ş, Dericioğlu O, Arsan S, Çobanoğlu A. The preventive and curative effects of melatonin against abdominal aortic aneurysm in rats. J Vasc Surg 2017; 67:1546-1555. [PMID: 28478022 DOI: 10.1016/j.jvs.2017.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Oxygen free radicals are important components involved in the histopathologic tissue alterations observed during abdominal aortic aneurysms (AAAs). This study examined whether melatonin has protective or therapeutic effects against AAAs. METHODS Sprague-Dawley rats were divided into four groups. A CaCl2 model was used to induce AAA. Starting on the operation day (Mel+AAA+Mel group) or 4 weeks after the operation (AAA+Mel group), the rats received intraperitoneal melatonin (10 mg/kg/day) for 6 and 2 weeks, respectively. The control and AAA groups received vehicle for 2 weeks after the sham operation and AAA induction, respectively. Angiographic measurements were recorded at the beginning, week 4, and week 6 of the study. After decapitation, aorta tissues were taken for the measurement of malondialdehyde, 8-hydroxy-2'-deoxyguanosine, glutathione levels, and myeloperoxidase and caspase-3 activity. Matrix metalloproteinase (MMP)-2, MMP-9, tumor necrosis factor-α, and inducible nitric oxide synthase protein expressions were analyzed by Western blot technique. Aortic tissues were also examined by light microscopy. RESULTS CaCl2 caused an inflammatory response and oxidative damage indicated by rises in malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. Myeloperoxidase and caspase-3 activities were increased, but glutathione levels were reduced. On the one hand, MMP-2, MMP-9, tumor necrosis factor-α, and inducible nitric oxide synthase protein expressions were increased in the vehicle-treated AAA group. On the other hand, melatonin treatment reversed all of these biochemical indices and histopathologic alterations. CONCLUSIONS According to the data, although melatonin tended to reverse the biochemical parameters given on week 4, the preventive effect is more pronounced when given concomitantly with AAA induction because values were closer to the control levels.
Collapse
Affiliation(s)
- Gözde Tekin
- Department of Cardiovascular Surgery, School of Medicine, Marmara University, İstanbul, Turkey.
| | - Selim İsbir
- Department of Cardiovascular Surgery, School of Medicine, Marmara University, İstanbul, Turkey
| | - Göksel Şener
- Department of Pharmacology, School of Pharmacy, Marmara University, İstanbul, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Şule Çetinel
- Department of Histology and Embryology, School of Medicine, Marmara University, İstanbul, Turkey
| | - Okan Dericioğlu
- Department of Cardiovascular Surgery, School of Medicine, Marmara University, İstanbul, Turkey
| | - Sinan Arsan
- Department of Cardiovascular Surgery, School of Medicine, Marmara University, İstanbul, Turkey
| | - Adnan Çobanoğlu
- Department of Cardiovascular Surgery, School of Medicine, Marmara University, İstanbul, Turkey
| |
Collapse
|
17
|
Harada T, Yoshimura K, Yamashita O, Ueda K, Morikage N, Sawada Y, Hamano K. Focal Adhesion Kinase Promotes the Progression of Aortic Aneurysm by Modulating Macrophage Behavior. Arterioscler Thromb Vasc Biol 2016; 37:156-165. [PMID: 27856458 DOI: 10.1161/atvbaha.116.308542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease that is associated with persistent inflammation and extracellular matrix degradation. The molecular mechanisms underlying the macrophage-mediated progression of AAA remain largely unclear. APPROACH AND RESULTS We show that focal adhesion kinase (FAK) expression and activity are enhanced in macrophages that are recruited to AAA tissue. FAK potentiates tumor necrosis factor-α-induced secretion of matrix-degrading enzymes and chemokines by cultured macrophages. FAK also promotes macrophage chemotaxis. In mice, the administration of a FAK inhibitor that tempers local macrophage accumulation markedly suppresses the development and progression of chemically induced AAA. CONCLUSIONS FAK plays a key role in macrophage behavior, which underlies the chronic progression of AAA. These findings provide insights into AAA progression and identify FAK as a novel therapeutic target.
Collapse
Affiliation(s)
- Takasuke Harada
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Koichi Yoshimura
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.).
| | - Osamu Yamashita
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Koshiro Ueda
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Noriyasu Morikage
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Yasuhiro Sawada
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Kimikazu Hamano
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| |
Collapse
|
18
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Aoki H. Fountain of Youth in the Aorta. Circ J 2015; 79:1439-40. [PMID: 26041720 DOI: 10.1253/circj.cj-15-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroki Aoki
- Cardiovascular Research Institute, Kurume University
| |
Collapse
|
20
|
Yoshimura K, Nagasawa A, Kudo J, Onoda M, Morikage N, Furutani A, Aoki H, Hamano K. Inhibitory effect of statins on inflammation-related pathways in human abdominal aortic aneurysm tissue. Int J Mol Sci 2015; 16:11213-28. [PMID: 25993292 PMCID: PMC4463697 DOI: 10.3390/ijms160511213] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/03/2022] Open
Abstract
HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitors (statins) have been suggested to attenuate abdominal aortic aneurysm (AAA) growth. However, the effects of statins in human AAA tissues are not fully elucidated. The aim of this study was to investigate the direct effects of statins on proinflammatory molecules in human AAA walls in ex vivo culture. Simvastatin strongly inhibited the activation of nuclear factor (NF)-κB induced by tumor necrosis factor (TNF)-α in human AAA walls, but showed little effect on c-jun N-terminal kinase (JNK) activation. Simvastatin, as well as pitavastatin significantly reduced the secretion of matrix metalloproteinase (MMP)-9, monocyte chemoattractant protein (MCP)-2 and epithelial neutrophil-activating peptide (CXCL5) under both basal and TNF-α-stimulated conditions. Similar to statins, the Rac1 inhibitor NSC23766 significantly inhibited the activation of NF-κB, accompanied by a decreased secretion of MMP-9, MCP-2 and CXCL5. Moreover, the effect of simvastatin and the JNK inhibitor SP600125 was additive in inhibiting the secretion of MMP-9, MCP-2 and CXCL5. These findings indicate that statins preferentially inhibit the Rac1/NF-κB pathway to suppress MMP-9 and chemokine secretion in human AAA, suggesting a mechanism for the potential effect of statins in attenuating AAA progression.
Collapse
Affiliation(s)
- Koichi Yoshimura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
- Graduate School of Health and Welfare, Yamaguchi Prefectural University, Yamaguchi 753-8502, Japan.
| | - Ayako Nagasawa
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
- Division of Thoracic and Cardiovascular Surgery, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan.
| | - Junichi Kudo
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
| | - Masahiko Onoda
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
| | - Noriyasu Morikage
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
| | - Akira Furutani
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume 830-0011, Japan.
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
| |
Collapse
|
21
|
Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul Pharmacol 2015; 73:86-95. [PMID: 25912763 DOI: 10.1016/j.vph.2015.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/08/2015] [Accepted: 04/13/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA), a life-threatening vascular disease, accounts for approximately 10% of the morbidity in people over 65 years old. No satisfactory approach is available to treat AAA. Ginsenosides Rb1 and Rg1 are primary ingredients of Panax notoginseng for the treatment of cardiovascular diseases, but their impact on AAA is unknown. METHODS AND RESULTS An AAA model was established using an Ang II infusion in ApoE(-/-) mice. After continuous stimulation of Ang II for 28 days, suprarenal aortic aneurysms developed in 77% mice and 12% mice died suddenly due to AAA rupture. Administration of ginsenoside Rb1 (20 mg/kg/day), but not ginsenoside Rg1, significantly reduced the incidence and mortality of AAA. Ginsenoside Rb1 treatment dramatically suppressed Ang II-induced diameter enlargement, extracellular matrix degradation, matrix metalloproteinase (MMP) production, inflammatory cell infiltration, and vascular smooth muscle cell (VSMC) dysfunction. Mechanistic studies indicated that the protective effects of ginsenoside Rb1 were associated with the inactivation of JNK and p38 MAPK signaling pathways. A specific activator of JNK and p38, anisomycin, nearly abolished ginsenoside Rb1-driven suppression of MMP secretion by VSMCs. CONCLUSIONS Ginsenoside Rb1, as a potential anti-AAA agent, suppressed AAA through inhibiting the JNK and p38 signaling pathways.
Collapse
|
22
|
Shang T, Liu Z, Liu CJ. Antioxidant Vitamin C attenuates experimental abdominal aortic aneurysm development in an elastase-induced rat model. J Surg Res 2014; 188:316-25. [DOI: 10.1016/j.jss.2013.11.1105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
23
|
Assar AN. Pharmacological therapy for patients with abdominal aortic aneurysm. Expert Rev Cardiovasc Ther 2014; 7:999-1009. [DOI: 10.1586/erc.09.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Fu XM, Yamawaki-Ogata A, Oshima H, Ueda Y, Usui A, Narita Y. Intravenous administration of mesenchymal stem cells prevents angiotensin II-induced aortic aneurysm formation in apolipoprotein E-deficient mouse. J Transl Med 2013; 11:175. [PMID: 23875706 PMCID: PMC3726376 DOI: 10.1186/1479-5876-11-175] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are known to be capable of suppressing inflammatory responses. We previously reported that intra-abdominal implantation of bone marrow-derived MSCs (BM-MSCs) sheet by laparotomy attenuated angiotensin II (AngII)-induced aortic aneurysm (AA) growth in apolipoprotein E-deficient (apoE−/−) mice through anti-inflammation effects. However, cell delivery by laparotomy is invasive; we here demonstrated the effects of multiple intravenous administrations of BM-MSCs on AngII-induced AA formation. Methods BM-MSCs were isolated from femurs and tibiae of male apoE−/− mice. Experimental AA was induced by AngII infusion for 28 days in apoE−/− mice. Mice received weekly intravenous administration of BM-MSCs (n=12) or saline (n=10). After 4 weeks, AA formation incidence, aortic diameter, macrophage accumulation, matrix metalloproteinase (MMP)’ activity, elastin content, and cytokines were evaluated. Results AngII induced AA formation in 100% of the mice in the saline group and 50% in the BM-MSCs treatment group (P < 0.05). A significant decrease of aortic diameter was observed in the BM-MSCs treatment group at ascending and infrarenal levels, which was associated with decreased macrophage infiltration and suppressed activities of MMP-2 and MMP-9 in aortic tissues, as well as a preservation of elastin content of aortic tissues. In addition, interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1 significantly decreased while insulin-like growth factor-1 and tissue inhibitor of metalloproteinases-2 increased in the aortic tissues of BM-MSCs treatment group. Conclusions Multiple intravenous administrations of BM-MSCs attenuated the development of AngII-induced AA in apoE−/− mice and may become a promising alternative therapeutic strategy for AA progression.
Collapse
Affiliation(s)
- Xian-ming Fu
- Department of Cardiothoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Mohandas S, Malik HT, Syed I. Concomitant abdominal aortic aneurysm and gastrointestinal malignancy: evolution of treatment paradigm in the endovascular era - review article. Int J Surg 2012; 11:112-5. [PMID: 23266417 DOI: 10.1016/j.ijsu.2012.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/16/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The incidence of concomitant abdominal aortic aneurysm and gastrointestinal malignancy is rare. Current treatment strategies in patients with both lesions remain controversial. It is unclear whether to treat the AAA and gastrointestinal malignancy simultaneously or in a staged manner. In patients with concomitant AAA and gastrointestinal malignancy surgical orthodoxy dictates that the most symptomatic lesion or the most life threatening condition should be treated first, however there is a therapeutic dilemma when neither or both of the lesions are symptomatic .In this review we explore (a) Priority of treatment in patients with concomitant abdominal aortic aneurysm and gastrointestinal malignancy (b) The role of EVAR in the management of abdominal aortic aneurysm and concomitant gastrointestinal malignancy.
Collapse
Affiliation(s)
- Shailesh Mohandas
- Queens University Hospital, Rom Valley Way, Romford, Essex RM7 0AG, UK.
| | | | | |
Collapse
|
26
|
The calcium chloride-induced rodent model of abdominal aortic aneurysm. Atherosclerosis 2012; 226:29-39. [PMID: 23044097 DOI: 10.1016/j.atherosclerosis.2012.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/01/2012] [Accepted: 09/14/2012] [Indexed: 11/22/2022]
Abstract
Abdominal aortic aneurysm (AAA) affects ∼5% men aged over 65 years and is an important cause of death in this population. Research into AAA pathogenesis has been fuelled by the need to identify new diagnostic biomarkers and therapeutic targets for this disease. One animal model of AAA involves peri-vascular application of calcium chloride (CaCl(2)) onto the infra-renal aorta of mice and rats to induce extracellular matrix remodelling. Twenty-three studies assessing CaCl(2)-induced AAA and six studies assessing AAA induced by a modified CaCl(2) method were identified. In the current report the preparation and pathological features of this AAA model are discussed. We also compared this animal model to human AAA. CaCl(2)-induced AAA shows the following pathological characteristics typically found in human AAA: calcification, inflammatory cell infiltration, oxidative stress, neovascularisation, elastin degradation and vascular smooth muscle cell apoptosis. A number of mechanisms involved in CaCl(2)-induced AAA have been identified which may be relevant to the pathogenesis of human AAA. Key molecules include c-Jun N-terminal kinase, peroxisome proliferator-activated receptor-γ, chemokine (C-C motif) receptor 2, group x secretory phospholipase A2 and plasminogen. CaCl(2)-induced AAA does not display aortic thrombus, atherosclerosis and rupture which are classical features of human AAA. Advantages of the CaCl(2)-induced AAA technique include (1) it can be applied to wild type mice making assessment of transgenic rodent models more straight forward and rapid; and (2) CaCl(2)-induced AAAs are usually developed in the infra-renal abdominal aorta, which is the most common location of human AAA. Currently findings obtained from the CaCl(2)-induced AAA model or other animal models of AAA have not been translated into the human situation. It is hoped that this deficiency will be corrected over the next decade with a number of clinical trials currently examining novel treatment options for AAA patients.
Collapse
|
27
|
Recent advances in pharmacotherapy development for abdominal aortic aneurysm. Int J Vasc Med 2012; 2012:648167. [PMID: 22957259 PMCID: PMC3432368 DOI: 10.1155/2012/648167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common disease causing segmental expansion and rupture of the aorta with a high mortality rate. The lack of nonsurgical treatment represents a large and unmet need in terms of pharmacotherapy. Advances in AAA research revealed that activation of inflammatory signaling pathways through proinflammatory mediators shifts the balance of extracellular matrix (ECM) metabolism toward tissue degradation. This idea is supported by experimental evidence in animal models that pharmacologic intervention at each pathological step can prevent AAA development. Previously, we identified c-Jun N-terminal kinase (JNK), a pro-inflammatory signaling molecule, as a therapeutic target for AAA. Abnormal activation of JNK in AAA tissue regulates multiple pathological processes in a coordinated manner. Pharmacologic inhibition of JNK tips the ECM balance back towards repair rather than degradation. Interventions targeting signaling molecules such as JNK in order to manipulate multiple pathological processes may be an ideal therapeutic strategy for AAA. Furthermore, the development of biomarkers as well as appropriate drug delivery systems is essential to produce clinically practical pharmacotherapy for AAA.
Collapse
|
28
|
Ghosh A, DiMusto PD, Ehrlichman LK, Sadiq O, McEvoy B, Futchko JS, Henke PK, Eliason JL, Upchurch GR. The role of extracellular signal-related kinase during abdominal aortic aneurysm formation. J Am Coll Surg 2012; 215:668-680.e1. [PMID: 22917644 DOI: 10.1016/j.jamcollsurg.2012.06.414] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND It is hypothesized that activation of extracellular signal-related kinase (ERK) is critical in activating matrix metalloproteinases (MMPs) during abdominal aortic aneurysm (AAA) formation. STUDY DESIGN C57BL/6 male mice underwent either elastase or heat-inactivated elastase aortic perfusion (n = 9 per group). Mouse aortic smooth muscle cells were transfected with ERK-1 and 2 siRNA along with or without elastase treatment. Mouse and human aortic tissue were analyzed by Western blots, zymograms, and immunohistochemistry, and statistical analysis was done using Graphpad and Image J softwares. RESULTS Western blot and immunohistochemistry documented increased phospho-mitogen-activated protein kinase kinase-1/2 (pMEK-1/2; 153%, p = 0.270 by Western) and pERK (171%, p = 0.004 by Western blot) in the elastase perfused aortas. Male ERK-1(-/-) mice underwent elastase perfusion, and aortic diameter was determined at day 14. ERK-1(-/-) mice failed to develop AAA, and histologic analysis depicted intact collagen and elastin fibers in the aortas. Zymography of aortas of elastase-treated ERK-1(-/-) mice showed lower levels of proMMP2 (p < 0.005) and active MMP2 (p < 0.0001), as well as proMMP9 (p = 0.037) compared with C57BL/6 mice. siRNA transfection of ERK-1 and -2 significantly reduced formation of pro- and active MMP2 (p < 0.01 for both isoforms) in aortic smooth muscle cells treated with elastase in vitro. Human AAA tissue had significantly elevated levels of pMEK-1/2 (150%, p = 0.014) and pERK (159%, p = 0.013) compared with control tissues. CONCLUSIONS The MAPK (mitogen-activated protein kinase)/ERK pathway is an important modulator of MMPs during AAA formation. Targeting the ERK pathway by reagents that inhibit either the expression or phosphorylation of ERK isoforms could be a potential therapy to prevent AAA formation.
Collapse
Affiliation(s)
- Abhijit Ghosh
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kimura T, Yoshimura K, Aoki H, Imanaka-Yoshida K, Yoshida T, Ikeda Y, Morikage N, Endo H, Hamano K, Imaizumi T, Hiroe M, Aonuma K, Matsuzaki M. Tenascin-C is expressed in abdominal aortic aneurysm tissue with an active degradation process. Pathol Int 2011; 61:559-64. [PMID: 21951663 DOI: 10.1111/j.1440-1827.2011.02699.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common disease caused by segmental weakening of the aortic walls and progressive aortic dilation leading to the eventual rupture of the aorta. Currently no biomarkers have been established to indicate the disease status of AAA. Tenascin-C (TN-C) is a matricellular protein that is synthesized under pathological conditions. In the current study, we related TN-C expression to the clinical course and the histopathology of AAA to investigate whether the pattern of TN-C expression could indicate the status of AAA. We found that TN-C and matrix metalloproteinase (MMP)-9 were highly expressed in human AAA. In individual human AAA TN-C deposition associated with the tissue destruction, overlapped mainly with the smooth muscle actin-positive cells, and showed a pattern distinct from macrophages and MMP-9. In the mouse model of AAA high TN-C expression was associated with rapid expansion of the AAA diameter. Histological analysis revealed that TN-C was produced mainly by vascular smooth muscle cells and was deposited in the medial layer of the aorta during tissue inflammation and excessive destructive activities. Our findings suggest that TN-C may be a useful biomarker for indicating the pathological status of smooth muscle cells and interstitial cells in AAA.
Collapse
Affiliation(s)
- Taizo Kimura
- Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yoshimura K, Ikeda Y, Aoki H. Innocent bystander? Intraluminal thrombus in abdominal aortic aneurysm. Atherosclerosis 2011; 218:285-6. [PMID: 21752379 DOI: 10.1016/j.atherosclerosis.2011.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Koichi Yoshimura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | | | | |
Collapse
|
31
|
Shintani Y, Aoki H, Nishihara M, Ohno S, Furusho A, Hiromatsu SI, Akashi H, Imaizumi T, Aoyagi S. Hepatocyte growth factor promotes an anti-inflammatory cytokine profile in human abdominal aortic aneurysm tissue. Atherosclerosis 2011; 216:307-12. [DOI: 10.1016/j.atherosclerosis.2011.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 02/04/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
32
|
Mata KM, Prudente PS, Rocha FS, Prado CM, Floriano EM, Elias J, Rizzi E, Gerlach RF, Rossi MA, Ramos SG. Combining two potential causes of metalloproteinase secretion causes abdominal aortic aneurysms in rats: a new experimental model. Int J Exp Pathol 2010; 92:26-39. [PMID: 21039990 DOI: 10.1111/j.1365-2613.2010.00746.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Progress in understanding the pathophysiology of abdominal aortic aneurysms (AAA) is dependent in part on the development and application of effective animal models that recapitulate key aspects of the disease. The objective was to produce an experimental model of AAA in rats by combining two potential causes of metalloproteinase (MMP) secretion: inflammation and turbulent blood flow. Male Wistar rats were randomly divided in four groups: Injury, Stenosis, Aneurysm and Control (40/group). The Injury group received a traumatic injury to the external aortic wall. The Stenosis group received an extrinsic stenosis at a corresponding location. The Aneurysm group received both the injury and stenosis simultaneously, and the Control group received a sham operation. Animals were euthanized at days 1, 3, 7 and 15. Aorta and/or aneurysms were collected and the fragments were fixed for morphologic, immunohistochemistry and morphometric analyses or frozen for MMP assays. AAAs had developed by day 3 in 60-70% of the animals, reaching an aortic dilatation ratio of more than 300%, exhibiting intense wall remodelling initiated at the adventitia and characterized by an obvious inflammatory infiltrate, mesenchymal proliferation, neoangiogenesis, elastin degradation and collagen deposition. Immunohistochemistry and zymography studies displayed significantly increased expressions of MMP-2 and MMP-9 in aneurysm walls compared to other groups. The haemo-dynamic alterations caused by the stenosis may have provided additional contribution to the MMPs liberation. This new model illustrated that AAA can be multifactorial and confirmed the key roles of MMP-2 and MMP-9 in this dynamic remodelling process.
Collapse
Affiliation(s)
- Karina M Mata
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Activation of transglutaminase type 2 for aortic wall protection in a rat abdominal aortic aneurysm formation. J Vasc Surg 2010; 52:967-74. [DOI: 10.1016/j.jvs.2010.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 11/21/2022]
|
34
|
Schulte S, Sun J, Libby P, Macfarlane L, Sun C, Lopez-Ilasaca M, Shi GP, Sukhova GK. Cystatin C deficiency promotes inflammation in angiotensin II-induced abdominal aortic aneurisms in atherosclerotic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:456-63. [PMID: 20472891 PMCID: PMC2893687 DOI: 10.2353/ajpath.2010.090381] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/09/2010] [Indexed: 01/21/2023]
Abstract
An imbalance between cysteinyl cathepsins and their principal endogenous inhibitor cystatin C (CystC) may favor proteolysis in the pathogenesis of human abdominal aortic aneurysms (AAA), yet a direct role of CystC in AAA remains unproven. This study used CystC and apolipoprotein E (ApoE) compound mutant (CystC(-/-)ApoE(-/-)) mice to examine directly the role of cysteine protease/protease inhibitor imbalance in AAA formation in angiotensin II-induced AAA. CystC-deficiency increased lumenal diameter and lesion size compared with control mice. CystC(-/-) ApoE(-/-) lesions also demonstrated enhanced inflammatory cell accumulation, more severe elastin fragmentation, and fewer smooth muscle cells in the tunica media. Macrophage content, measured as percent positive area (23.2 +/- 1.4% versus 11.2 +/- 1.4%; P = 0.0003) and number of the CD4(+) T cells (ninefold; P = 0.048), increased significantly in CystC(-/-)ApoE(-/-) lesions. CystC deficiency increased cathepsin activity (5.5 fold; P = 0.001) in AAA, yielding greater elastin degradation and proangiogenic laminin-5 gamma2 peptide production, which may account for increased microvascularization in CystC(-/-)ApoE(-/-) compared with ApoE(-/-) lesions. Increased leukocyte adhesion molecule VCAM-1 expression and leukocyte proliferation might also promote inflammation in CystC-deficient AAA. These data indicate that CystC contributes to experimental AAA pathogenesis and that enhanced cysteine protease activity, due to the lack of CystC, favors inflammation in AAA lesions induced in atherosclerotic mice by promoting microvascularization and smooth muscle cell apoptosis as well as leukocytes adhesion and proliferation.
Collapse
Affiliation(s)
- Stephanie Schulte
- Cardiovascular Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB-730J, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Parissis D, Papachristodoulou A, Dimitriadis A. Inflammatory aneurysm of the abdominal aorta in a patient treated with ropinirole. J Neurol 2010; 257:1582-4. [PMID: 20407782 DOI: 10.1007/s00415-010-5568-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/08/2010] [Indexed: 11/30/2022]
|
36
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2010; 61:198-223. [PMID: 19549927 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
37
|
Update on Multidetector Computed Tomography Angiography of the Abdominal Aorta. Radiol Clin North Am 2010; 48:283-309, viii. [PMID: 20609875 DOI: 10.1016/j.rcl.2010.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Tanaka A, Hasegawa T, Chen Z, Okita Y, Okada K. A novel rat model of abdominal aortic aneurysm using a combination of intraluminal elastase infusion and extraluminal calcium chloride exposure. J Vasc Surg 2009; 50:1423-32. [DOI: 10.1016/j.jvs.2009.08.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/14/2009] [Accepted: 08/15/2009] [Indexed: 11/26/2022]
|
39
|
Saratzis A, Kitas GD, Saratzis N, Melas N. Can statins suppress the development of abdominal aortic aneurysms? A review of the current evidence. Angiology 2009; 61:137-44. [PMID: 19625274 DOI: 10.1177/0003319709335514] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Statins possess several pleiotropic effects and have been shown in vitro and in vivo to inhibit the expression of inflammatory mediators and downregulate molecules involved in extracellular matrix (ECM) degradation. Recent observational studies in humans suggest that statins may have a role in abdominal aortic aneurysm (AAA) prevention or may even inhibit aneurysm expansion. In this review, we summarize the effects of statins on the vessel wall of aneurysmal aortas and currently available data concerning their inhibitory effects on aneurysm progression.
Collapse
Affiliation(s)
- Athanasios Saratzis
- 1st Department of General Surgery and Vascular Surgery, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece. a_saratzis@ yahoo.gr
| | | | | | | |
Collapse
|
40
|
Tedesco MM, Terashima M, Blankenberg FG, Levashova Z, Spin JM, Backer MV, Backer JM, Sho M, Sho E, McConnell MV, Dalman RL. Analysis of in situ and ex vivo vascular endothelial growth factor receptor expression during experimental aortic aneurysm progression. Arterioscler Thromb Vasc Biol 2009; 29:1452-7. [PMID: 19574559 DOI: 10.1161/atvbaha.109.187757] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mural inflammation and neovascularization are characteristic pathological features of abdominal aortic aneurysm (AAA) disease. Vascular endothelial growth factor receptor (VEGFR) expression may also mediate AAA growth and rupture. We examined VEGFR expression as a function of AAA disease progression in the Apolipoprotein E-deficient (Apo E(-/-)) murine AAA model. METHODS AND RESULTS Apo E(-/-) mice maintained on a high-fat diet underwent continuous infusion with angiotensin II at 1000 ng/kg/min (Ang II) or vehicle (Control) via subcutaneous osmotic pump. Serial transabdominal ultrasound measurements of abdominal aortic diameter were recorded (n=16 mice, 3 to 4 time points per mouse) for up to 28 days. Near-infrared receptor fluorescent (NIRF) imaging was performed on Ang II mice (n=9) and Controls (n=5) with scVEGF/Cy, a single-chain VEGF homo-dimer labeled with Cy 5.5 fluorescent tracer (7 to 18 microg/mouse IV). NIRF with inactivated single chain VEGF/Cy tracer (scVEGF/In, 18 microg/mouse IV) was performed on 2 additional Ang II mice to control for nonreceptor-mediated tracer binding and uptake. After image acquisition and sacrifice, aortae were harvested for analysis. An additional AAA mouse cohort received either an oral angiogenesis inhibitor or suitable negative or positive controls to clarify the significance of angiogenesis in experimental aneurysm progression. Aneurysms developed in the suprarenal aortic segment of all Ang II mice. Significantly greater fluorescent signal was obtained from aneurysmal aorta as compared to remote, uninvolved aortic segments in Ang II scVEGF/Cy mice or AAA in scVEGF/In mice or suprarenal aortic segments in Control mice. Signal intensity increased in a diameter-dependent fashion in aneurysmal segments. Immunostaining confirmed mural VEGFR-2 expression in medial smooth muscle cells. Treatment with an angiogenesis inhibitor attenuated AAA formation while decreasing mural macrophage infiltration and CD-31(+) cell density. CONCLUSIONS Mural VEGFR expression, as determined by scVEGF/Cy fluorescent imaging and VEGFR-2 immunostaining, increases in experimental AAAs in a diameter-dependent fashion. Angiogenesis inhibition limits AAA progression. Clinical VEGFR expression imaging strategies, if feasible, may improve real-time monitoring of AAA disease progression and response to suppressive strategies.
Collapse
Affiliation(s)
- Maureen M Tedesco
- Division of Vascular Surgery, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
42
|
Annambhotla S, Bourgeois S, Wang X, Lin PH, Yao Q, Chen C. Recent advances in molecular mechanisms of abdominal aortic aneurysm formation. World J Surg 2008; 32:976-86. [PMID: 18259804 DOI: 10.1007/s00268-007-9456-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abdominal aortic aneurysm (AAA) is an increasingly common clinical condition with fatal implications. It is associated with advanced age, male gender, cigarette smoking, atherosclerosis, hypertension, and genetic predisposition. Although significant evidence has emerged in the last decade, the molecular mechanisms of AAA formation remain poorly understood. Currently, the treatment for AAA remains primarily surgical with the lone innovation of endovascular therapy. With advances in the human genome, understanding precisely which molecules and genes mediate AAA development and blocking their activity at the molecular level could lead to important new discoveries and therapies. This review summarizes recent updates in molecular mechanisms of AAA formation, including animal models, autoimmune components, infection, key molecules and cytokines, mechanical forces, genetics, and pharmacotherapy. This review will be helpful to those who want to recognize the newest endeavors within the field and identify possible lines of investigation in AAA.
Collapse
Affiliation(s)
- Suman Annambhotla
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|