1
|
Olejar T, Jankovska N, Matej R. Alzheimer's Disease as a Membrane Dysfunction Tauopathy? New Insights into the Amyloid Cascade Hypothesis. Int J Mol Sci 2024; 25:9689. [PMID: 39273636 PMCID: PMC11396199 DOI: 10.3390/ijms25179689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer's disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until now. Our preliminary data, coming from our day-to-day neuropathology practice, show that the primary location of the hyperphosphorylated tau protein is in the vicinity of the cell membrane of dystrophic neurites. This observation inspired us to formulate a hypothesis that presumes an interaction between low-density lipoprotein receptor-related protein 1 (LRP1) and fibrillar aggregates of, particularly, Aβ42 anchored at the periphery of neuritic plaques, making internalization of the LRP1-Aβ42 complex infeasible and, thus, causing membrane dysfunction, leading to the tauopathy characterized by intracellular accumulation and hyperphosphorylation of the tau protein. Understanding AD as a membrane dysfunction tauopathy may draw attention to new treatment approaches not only targeting Aβ42 production but also, perhaps paradoxically, preventing the formation of LRP1-Aβ42.
Collapse
Affiliation(s)
- Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Faculty Hospital, 140 59 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Faculty Hospital, 140 59 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Faculty Hospital, 140 59 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
| |
Collapse
|
2
|
Ge WY, Deng X, Shi WP, Lin WJ, Chen LL, Liang H, Wang XT, Zhang TD, Zhao FZ, Guo WH, Yin DC. Amyloid Protein Cross-Seeding Provides a New Perspective on Multiple Diseases In Vivo. Biomacromolecules 2023; 24:1-18. [PMID: 36507729 DOI: 10.1021/acs.biomac.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.
Collapse
Affiliation(s)
- Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng-Zhu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Non-commissioned Officer School, Army Medical University, Shijiazhuang 050081, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Zhao X, Liu Z, Liu H, Guo J, Long S. Hybrid molecules based on caffeic acid as potential therapeutics: A focused review. Eur J Med Chem 2022; 243:114745. [PMID: 36152388 DOI: 10.1016/j.ejmech.2022.114745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 01/29/2023]
Abstract
Caffeic acid-based compounds possess a high degree of structural diversity and show a variety of pharmacological properties, providing a useful framework for the discovery of new therapeutic agents. They are well-known analogues of antioxidants found in many natural products and synthetic compounds. The present review surveys the recent developments in structure-activity relationships (SAR) and mechanism of action (MOA) of various caffeic acid-containing compounds that play important roles in the design and synthesis of new bioactive molecules with antioxidant, antidiabetic, antiviral, antibacterial, anticancer, anti-inflammatory, and other properties. This review should provide inspiration to scientists in the research fields of organic synthesis and medicinal chemistry related to the development of new antioxidants with versatile therapeutic potential.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
4
|
Requena JR. Unlatching a window into the molecular landscape of prion toxicity. Nat Struct Mol Biol 2022; 29:733-735. [PMID: 35948769 DOI: 10.1038/s41594-022-00817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Bernabeu-Zornoza A, Coronel R, Palmer C, Martín A, López-Alonso V, Liste I. Neurogenesis Is Increased in Human Neural Stem Cells by Aβ40 Peptide. Int J Mol Sci 2022; 23:ijms23105820. [PMID: 35628629 PMCID: PMC9143763 DOI: 10.3390/ijms23105820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Amyloid-β 40 peptides [Aβ1-40 (Aβ40)] are present within amyloid plaques in the brains of patients with Alzheimer's disease (AD). Even though Aβ peptides are considered neurotoxic, they can mediate many biological processes, both in adult brains and throughout brain development. However, the physiological function of these Aβ peptides remains poorly understood, and the existing data are sometimes controversial. Here, we analyze and compare the effects of monomeric Aβ40 on the biology of differentiating human neural stem cells (human NSCs). For that purpose, we used a model of human NSCs called hNS1. Our data demonstrated that Aβ40 at high concentrations provokes apoptotic cellular death and the damage of DNA in human NSCs while also increasing the proliferation and favors neurogenesis by raising the percentage of proliferating neuronal precursors. These effects can be mediated, at least in part, by β-catenin. These results provide evidence of how Aβ modulate/regulate human NSC proliferation and differentiation, suggesting Aβ40 may be a pro-neurogenic factor. Our data could contribute to a better understanding of the molecular mechanisms involved in AD pathology and to the development of human NSC-based therapies for AD treatment, since these results could then be used in diagnosing the disease at early stages and be applied to the development of new treatment options.
Collapse
Affiliation(s)
- Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28222 Majadahonda, Spain; (R.C.); (C.P.)
- Correspondence: (A.B.-Z.); (I.L.); Tel.: +34-918-223-292; Fax: +34-918-223-269
| | - Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28222 Majadahonda, Spain; (R.C.); (C.P.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28222 Majadahonda, Spain; (R.C.); (C.P.)
| | - Alberto Martín
- Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28222 Majadahonda, Spain;
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28222 Majadahonda, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28222 Majadahonda, Spain; (R.C.); (C.P.)
- Correspondence: (A.B.-Z.); (I.L.); Tel.: +34-918-223-292; Fax: +34-918-223-269
| |
Collapse
|
6
|
Liu S, Li S, Lin J, Li J, Yang H. Aptamer-Induced-Dimerization Strategy Attenuates AβO Toxicity through Modulating the Trophic Activity of PrP C Signaling. J Am Chem Soc 2022; 144:9264-9270. [PMID: 35583938 DOI: 10.1021/jacs.2c00287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) mainly focus on amyloid β oligomer (AβO) formation or clearance. However, most of them have failed to yield good clinical results. There is an urgent need to explore an alternative therapeutic target for AD treatments. Recent studies have indicated that the cellular prion protein (PrPC) is one of the cell-surface receptors of AβO that mediates related neurotoxicity. Besides, as a neuroprotective protein, the dimerization of PrPC seems to be critical for its trophic activity. We presume that modulating PrPC receptor activity could be another potential approach to abrogate AβO toxicity. In the present work, using an aptamer-induced dimerization (AID) strategy, we enforce PrPC dimerization and modulate its neurotrophic signaling. The AID strategy can attenuate AβO toxic action by (i) interfering with AβO-PrPC interaction and promoting neuroprotective shedding of PrPC; (ii) preventing the AβO-induced mitochondrial dysfunction and the caspase-3-induced apoptosis; and (iii) reducing the secretion of inflammatory cytokines and relieving the neuroinflammation microenvironment. Our findings suggest that the strategy targeting PrPC signaling may shed light on validating new therapeutic strategies in AD.
Collapse
Affiliation(s)
- Shuya Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shiwei Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jirong Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
7
|
Khamphukdee C, Turkmani I, Chotritthirong Y, Chulikhit Y, Boonyarat C, Sekeroglu N, Silva AMS, Monthakantirat O, Kijjoa A. Effects of the Bark Resin Extract of Garcinia nigrolineata on Chronic Stress-Induced Memory Deficit in Mice Model and the In Vitro Monoamine Oxidases and β-Amyloid Aggregation Inhibitory Activities of Its Prenylated Xanthone Constituents. Molecules 2022; 27:molecules27093014. [PMID: 35566362 PMCID: PMC9103351 DOI: 10.3390/molecules27093014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
The present study describes investigation of the effects of the bark resin extract of Garcinia nigrolineata (Clusiaceae) on the cognitive function and the induction of oxidative stress in both frontal cortex and hippocampus by unpredictable chronic mild stress (UCMS). By using behavioral mouse models, i.e., the Y-maze test, the Novel Object Recognition Test (NORT), and the Morris Water Maze Test (MWMT), it was found that the negative impact of repeated mild stress-induced learning and memory deficit through brain oxidative stress in the UCMS mice was reversed by treatment with the bark resin extract G. nigrolineata. Moreover, the prenylated xanthones viz. cowagarcinone C, cowaxanthone, α-mangostin, cowaxanthone B, cowanin, fuscaxanthone A, fuscaxanthone B, xanthochymusxanthones A, 7-O-methylgarcinone E, and cowagarcinone A, isolated from the bark resin of G. nigrolineata, were assayed for their inhibitory activities against β-amyloid (Aβ) aggregation and monoamine oxidase enzymes (MAOs).
Collapse
Affiliation(s)
- Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ibrahim Turkmani
- ICBAS-Instituo de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Yutthana Chotritthirong
- Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.B.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.B.)
| | - Nazim Sekeroglu
- Phytotherapy, Medicinal and Aromatic Plants Application & Research Center and Biology Department, Faculty of Arts and Science, Gaziantep University, 27310 Gaziantep, Turkey;
| | - Artur M. S. Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.B.)
- Correspondence: (O.M.); (A.K.); Tel.: +66-81-3404677 (O.M.); +351-220428331 (A.K.)
| | - Anake Kijjoa
- ICBAS-Instituo de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Correspondence: (O.M.); (A.K.); Tel.: +66-81-3404677 (O.M.); +351-220428331 (A.K.)
| |
Collapse
|
8
|
Myers RR, Sanchez-Garcia J, Leving DC, Melvin RG, Fernandez-Funez P. New Drosophila models to uncover the intrinsic and extrinsic factors that mediate the toxicity of the human prion protein. Dis Model Mech 2022; 15:dmm049184. [PMID: 35142350 PMCID: PMC9093039 DOI: 10.1242/dmm.049184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Misfolding of the prion protein (PrP) is responsible for devastating neurological disorders in humans and other mammals. An unresolved problem in the field is unraveling the mechanisms governing PrP conformational dynamics, misfolding, and the cellular mechanism leading to neurodegeneration. The variable susceptibility of mammals to prion diseases is a natural resource that can be exploited to understand the conformational dynamics of PrP. Here we present a new fly model expressing human PrP with new, robust phenotypes in brain neurons and the eye. By using comparable attP2 insertions, we demonstrated the heightened toxicity of human PrP compared to rodent PrP along with a specific interaction with the amyloid-β peptide. By using this new model, we started to uncover the intrinsic (sequence/structure) and extrinsic (interactions) factors regulating PrP toxicity. We described PERK (officially known as EIF2AK3 in humans) and activating transcription factor 4 (ATF4) as key in the cellular mechanism mediating the toxicity of human PrP and uncover a key new protective activity for 4E-BP (officially known as Thor in Drosophila and EIF4EBP2 in humans), an ATF4 transcriptional target. Lastly, mutations in human PrP (N159D, D167S, N174S) showed partial protective activity, revealing its high propensity to misfold into toxic conformations.
Collapse
Affiliation(s)
- Ryan R. Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | | | - Daniel C. Leving
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| |
Collapse
|
9
|
Li R, Ren M, Yu Y. Anti-PrP monoclonal antibody as a novel treatment for neurogenesis in mouse model of Alzheimer's disease. Brain Behav 2021; 11:e2365. [PMID: 34672433 PMCID: PMC8613428 DOI: 10.1002/brb3.2365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common degenerative disease characterized by cognitive impairment, memory decline, and language disorder for which there is no effective treatment. Neurogenesis has been indicated in AD and may play an important role in the pathogenesis of AD. Targeting this pathway is a new idea for the treatment of the disease. A recent study reveals that the cellular prion protein (PrP), a receptor for Aβ oligomers, regulates neurogenesis, and its elevated expression is related to cell differentiation. The aim of the present study was to investigate the neuroprotective effects of 6D11 (PrP monoclonal antibody) via neurogenesis promotion in APP/PS1 transgenic mice and Aβ-induced cell model of AD. METHODS In the present study, 9-month-old male APP/PS1 mice were injected with 6D11. Then, the Morris water maze was used to examine the spatial learning and memory abilities of the mice in both groups, and immunostained was used to assess the level of Aβ, neurogenesis, and neural stem cells (NSCs) differentiation. RESULTS 6D11 attenuated cognitive deficits in APP/PS1 transgenic mice, which was accompanied by a decrease of the deposition of Aβ. In addition, 6D11 treatment promoted differentiation of the existing hippocampal cells to neurons. CONCLUSIONS Our findings confirmed that 6D11 has a therapeutic effect in APP/PS1 transgenic AD mouse model and Aβ-induced AD cell model, and the effect exerted via increase of neurogenesis and cell differentiation by transduction of Aβ peptide signal.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, China
| | - Ming Ren
- Department of neurology, Shanghai blue cross brain hospital, 2880 Qixin Road, Minhang District, Shanghai, 201101, China
| | - Yingxin Yu
- Department of Neurology, Chinese PLA General Hospital, 28th Fuxing Road, Haidian district, Beijing, 100048, China
| |
Collapse
|
10
|
Jankovska N, Olejar T, Matej R. Extracellular Protein Aggregates Colocalization and Neuronal Dystrophy in Comorbid Alzheimer's and Creutzfeldt-Jakob Disease: A Micromorphological Pilot Study on 20 Brains. Int J Mol Sci 2021; 22:ijms22042099. [PMID: 33672582 PMCID: PMC7924045 DOI: 10.3390/ijms22042099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) and sporadic Creutzfeldt–Jakob disease (sCJD) are both characterized by extracellular pathologically conformed aggregates of amyloid proteins—amyloid β-protein (Aβ) and prion protein (PrPSc), respectively. To investigate the potential morphological colocalization of Aβ and PrPSc aggregates, we examined the hippocampal regions (archicortex and neocortex) of 20 subjects with confirmed comorbid AD and sCJD using neurohistopathological analyses, immunohistochemical methods, and confocal fluorescent microscopy. Our data showed that extracellular Aβ and PrPSc aggregates tended to be, in most cases, located separately, and “compound” plaques were relatively rare. We observed PrPSc plaque-like structures in the periphery of the non-compact parts of Aβ plaques, as well as in tau protein-positive dystrophic structures. The AD ABC score according to the NIA-Alzheimer’s association guidelines, and prion protein subtype with codon 129 methionine–valine (M/V) polymorphisms in sCJD, while representing key characteristics of these diseases, did not correlate with the morphology of the Aβ/PrPSc co-aggregates. However, our data showed that PrPSc aggregation could dominate during co-aggregation with non-compact Aβ in the periphery of Aβ plaques.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 4-Krc, 14059 Prague, Czech Republic; (T.O.); (R.M.)
- Correspondence: ; Tel.: +420-261-083-102
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 4-Krc, 14059 Prague, Czech Republic; (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 4-Krc, 14059 Prague, Czech Republic; (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 4-Krc, 14059 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 4-Krc, 14059 Prague, Czech Republic
| |
Collapse
|
11
|
Jankovska N, Olejar T, Matej R. Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins? Int J Mol Sci 2020; 22:E7. [PMID: 33374972 PMCID: PMC7792617 DOI: 10.3390/ijms22010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by the deposition of specific protein aggregates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer's disease, in which plaques are composed of amyloid β-protein, while in prionoses, the same term "amyloid" refers to the amyloid prion protein. In this review, we focused on providing a detailed didactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer's disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 100 00 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
| |
Collapse
|
12
|
Toyos-Rodríguez C, García-Alonso FJ, de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer's Disease. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4748. [PMID: 32842632 PMCID: PMC7506792 DOI: 10.3390/s20174748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an untreatable neurodegenerative disease that initially manifests as difficulty to remember recent events and gradually progresses to cognitive impairment. The incidence of AD is growing yearly as life expectancy increases, thus early detection is essential to ensure a better quality of life for diagnosed patients. To reach that purpose, electrochemical biosensing has emerged as a cost-effective alternative to traditional diagnostic techniques, due to its high sensitivity and selectivity. Of special relevance is the incorporation of nanomaterials in biosensors, as they contribute to enhance electron transfer while promoting the immobilization of biological recognition elements. Moreover, nanomaterials have also been employed as labels, due to their unique electroactive and electrocatalytic properties. The aim of this review is to add value in the advances achieved in the detection of AD biomarkers, the strategies followed for the incorporation of nanomaterials and its effect in biosensors performance.
Collapse
Affiliation(s)
- Celia Toyos-Rodríguez
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006 Oviedo, Spain;
| | - Francisco Javier García-Alonso
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006 Oviedo, Spain;
- NanoBioAnalysis Group-Department of Organic and Inorganic Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006 Oviedo, Spain;
| |
Collapse
|
13
|
Lackie RE, Marques-Lopes J, Ostapchenko VG, Good S, Choy WY, van Oosten-Hawle P, Pasternak SH, Prado VF, Prado MAM. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2020; 8:143. [PMID: 32825842 PMCID: PMC7441634 DOI: 10.1186/s40478-020-01013-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023] Open
Abstract
Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer's Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3-42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD.
Collapse
Affiliation(s)
- Rachel E Lackie
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
- Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada
| | - Jose Marques-Lopes
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
| | - Valeriy G Ostapchenko
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
| | - Sarah Good
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, Medical Sciences Building, 1151 Richmond St. N, London, N6A 5B7, Canada
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen H Pasternak
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada
- St. Joseph's Health Care London-Parkwood Institute, St. Joseph's Hospital, 268 Grosvenor St Room A1-015, London, N6A 4V2, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, 1151 Richmond St, London, N6A 3K7, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada.
- Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Ontario, Canada.
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, N6A 5B7, Canada.
- Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Ontario, Canada.
| |
Collapse
|
14
|
Xu XE, Li MZ, Yao ES, Gong S, Xie J, Gao W, Xie ZX, Li ZF, Bai XJ, Liu L, Liu XH. Morin exerts protective effects on encephalopathy and sepsis-associated cognitive functions in a murine sepsis model. Brain Res Bull 2020; 159:53-60. [DOI: 10.1016/j.brainresbull.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
|
15
|
Gavín R, Lidón L, Ferrer I, del Río JA. The Quest for Cellular Prion Protein Functions in the Aged and Neurodegenerating Brain. Cells 2020; 9:cells9030591. [PMID: 32131451 PMCID: PMC7140396 DOI: 10.3390/cells9030591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Collapse
Affiliation(s)
- Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4031185
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Soheili M, Salami M. Lavandula angustifolia biological characteristics: An in vitro study. J Cell Physiol 2019; 234:16424-16430. [PMID: 30784075 DOI: 10.1002/jcp.28311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Lavender is an aromatic shrub belonging to the Lamiaceae family. The flowers and leaves in different forms of extracts are used as herbal medicine. The accumulation of amyloid beta (Aβ) plaques, reduction of acetylcholine due to hyperactivity of acetylcholinesterase, and glutamate neurotoxicity are known to be involved in decreased level of cognitive function. In our previous study, we proved that the aqueous extract of lavender improves learning and memory. This in vitro study was designed to evaluate antiaggregative, antioxidant, and antiacetylcholinesterase activities of the herbal medicine. METHODS Thin layer chromatography, high-performance liquid chromatography, thioflavin, atomic force microscope (AFM), Elleman,and 2,2-diphenyl-1-picryl hydrazyl techniques were used for qualitative analysis, quantitative analysis, antiaggregative characteristics, anti-acetylcholinestrase activity and antioxidant activity of the lavender extract, respectively. RESULTS We found chromatographic peaks of caffeic acid and luteolin-7-glycosid in the lavender extract. Our results indicated that aqueous extract of lavender dose-dependently inhibits the formation of Aβ aggregate. The AFM technique showed that lavender largely diminished the Aβ fibril formation. We also observed a considerable radical scavenging activity of the extract. CONCLUSIONS Prevention of Aβ plaque formation and antioxidant activity along with nontoxic features of the lavender extract promise possible effectiveness of this plant on improving some neurological disorders including Alzheimer's disease.
Collapse
Affiliation(s)
- Masoud Soheili
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | - Mahmoud Salami
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
17
|
Chang W, Huang D, Lo YM, Tee Q, Kuo P, Wu JS, Huang W, Shen S. Protective Effect of Caffeic Acid against Alzheimer's Disease Pathogenesis via Modulating Cerebral Insulin Signaling, β-Amyloid Accumulation, and Synaptic Plasticity in Hyperinsulinemic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7684-7693. [PMID: 31203623 DOI: 10.1021/acs.jafc.9b02078] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated the alleviative effect of caffeic acid (CA) on Alzheimer's disease (AD) pathogenesis and associated mechanisms in high-fat (HF) diet-induced hyperinsulinemic rats. The results of a Morris water maze indicated that, by administrating CA (30 mg/kg b.w./day) for 30 weeks, the memory and learning impairments in HF-induced hyperinsulinemic rats were significantly ameliorated. CA also enhanced superoxide dismutase and glutathione free radical scavenger activity in hyperinsulinemic rats. The Western blot data further confirmed that protein expressions of phosphorylated-glycogen synthase kinase 3β (GSK3β) were significantly increased, whereas the expression of phosphorylated-tau protein decreased in the hippocampus of rats administered with CA in comparison with the HF group. Moreover, the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme were attenuated, subsequently lowering the level of β-amyloid 1-42 (Aβ 1-42) in the hippocampus of CA-treated hyperinsulinemic rats. CA also significantly increased the expression of synaptic proteins in HF rats.
Collapse
Affiliation(s)
- Wenchang Chang
- Department of Food Science , National Chiayi University , No. 300, Syuefu Road , Chiayi City 60004 , Taiwan
| | - Dawei Huang
- Department of Biotechnology and Food Technology , Southern Taiwan University of Science and Technology , No. 1, Nan-Tai Street , Yungkang District, Tainan City 710 , Taiwan
| | - Y Martin Lo
- Institute for Advanced Study , Shenzhen University , 3688 Nanhai Blvd , Nanshan District, Shenzhen 518060 , China
| | - Qinqiao Tee
- Graduate Program of Nutrition Science , National Taiwan Normal University , No. 162, Sec. 1, Heping East Road , Taipei 10610 , Taiwan
| | - Poling Kuo
- Graduate Program of Nutrition Science , National Taiwan Normal University , No. 162, Sec. 1, Heping East Road , Taipei 10610 , Taiwan
| | - James Swibea Wu
- Graduate Institute of Food Science and Technology , National Taiwan University , P.O. Box 23-14, Taipei 10672 , Taiwan
| | - Wenchung Huang
- Graduate Institute of Health Industry Technology , Chang Gung University of Science and Technology , No. 261, Wenhua First Road , Guishan District, Taoyuan 33303 , Taiwan
| | - Szuchuan Shen
- Graduate Program of Nutrition Science , National Taiwan Normal University , No. 162, Sec. 1, Heping East Road , Taipei 10610 , Taiwan
| |
Collapse
|
18
|
Mengel D, Hong W, Corbett GT, Liu W, DeSousa A, Solforosi L, Fang C, Frosch MP, Collinge J, Harris DA, Walsh DM. PrP-grafted antibodies bind certain amyloid β-protein aggregates, but do not prevent toxicity. Brain Res 2019; 1710:125-135. [PMID: 30593771 PMCID: PMC6431553 DOI: 10.1016/j.brainres.2018.12.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND The prion protein (PrP) is known to bind certain soluble aggregates of the amyloid β-protein (Aβ), and two regions of PrP, one centered around residues 19-33, and the other around 87-112, are thought to be particularly important for this interaction. When either of these sequences are grafted into a human IgG the resulting antibodies react with disease-associated PrP conformers, whereas the parental b12 IgG does not. METHODS Human antibodies containing grafts of PrP 19-33 or 87-112 were prepared as before (Solforosi et al., 2007) and tested for their ability to recognize synthetic and Alzheimer's disease (AD) brain-derived Aβ. Since aqueous extracts of AD brain contain a complex mixture of active and inactive Aβ species, we also assessed whether PrP-grafted antibodies could protect against neuritotoxicity mediated by AD brain-derived Aβ. For these experiments, human iPSC-derived neurons were grown in 96-well plates at 5000 cells per well and on post-induction day 21, AD brain extracts were added +/- test antibodies. Neurons were imaged for 3 days using an IncuCyte live-cell imaging system, and neurite number and density quantified. RESULTS Grafted antibodies bound a significant portion of aggregated Aβ in aqueous AD extracts, but when these antibodies were co-incubated with neurons treated with brain extracts they did not reduce toxicity. By contrast, the PrP fragment N1 did protect against Aβ. CONCLUSIONS These results further demonstrate that not all Aβ oligomers are toxic and suggest that PrP derivatives may allow development of agents that differentially recognize toxic and innocuous Aβ aggregates.
Collapse
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura Solforosi
- Laboratory of Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - Cheng Fang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John Collinge
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; MRC Prion Unit at UCL, UCL Institute of Prion Diseases and NHS National Prion Clinic, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer's disease associated phenotypes. PLoS One 2018; 13:e0209150. [PMID: 30557391 PMCID: PMC6296660 DOI: 10.1371/journal.pone.0209150] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Human mini-brains (MB) are cerebral organoids that recapitulate in part the complexity of the human brain in a unique three-dimensional in vitro model, yielding discrete brain regions reminiscent of the cerebral cortex. Specific proteins linked to neurodegenerative disorders are physiologically expressed in MBs, such as APP-derived amyloids (Aβ), whose physiological and pathological roles and interactions with other proteins are not well established in humans. Here, we demonstrate that neuroectodermal organoids can be used to study the Aβ accumulation implicated in Alzheimer’s disease (AD). To enhance the process of protein secretion and accumulation, we adopted a chemical strategy of induction to modulate post-translational pathways of APP using an Amyloid-β Forty-Two Inducer named Aftin-5. Secreted, soluble Aβ fragment concentrations were analyzed in MB-conditioned media. An increase in the Aβ42 fragment secretion was observed as was an increased Aβ42/Aβ40 ratio after drug treatment, which is consistent with the pathological-like phenotypes described in vivo in transgenic animal models and in vitro in induced pluripotent stem cell-derived neural cultures obtained from AD patients. Notably in this context we observe time-dependent Aβ accumulation, which differs from protein accumulation occurring after treatment. We show that mini-brains obtained from a non-AD control cell line are responsive to chemical compound induction, producing a shift of physiological Aβ concentrations, suggesting that this model can be used to identify environmental agents that may initiate the cascade of events ultimately leading to sporadic AD. Increases in both Aβ oligomers and their target, the cellular prion protein (PrPC), support the possibility of using MBs to further understand the pathophysiological role that underlies their interaction in a human model. Finally, the potential application of MBs for modeling age-associated phenotypes and the study of neurological disorders is confirmed.
Collapse
|
20
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Aβ42 Peptide Promotes Proliferation and Gliogenesis in Human Neural Stem Cells. Mol Neurobiol 2018; 56:4023-4036. [PMID: 30259399 DOI: 10.1007/s12035-018-1355-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Amyloid-β 42 [Aβ1-42 (Aβ42)] is one of the main Aβ peptide isoforms found in amyloid plaques of brains with Alzheimer's disease (AD). Although Aβ42 is associated with neurotoxicity, it might mediate several normal physiological processes during embryonic brain development and in the adult brain. However, due to the controversy that exists in the field, relatively little is known about its physiological function. In the present work, we have analyzed the effects of different concentrations of monomeric Aβ42 on cell death, proliferation, and cell fate specification of human neural stem cells (hNSCs), specifically the hNS1 cell line, undergoing differentiation. Our results demonstrate that at higher concentrations (1 μM), Aβ42 increases apoptotic cell death and DNA damage, indicating that prolonged exposure of hNS1 cells to higher concentrations of Aβ42 is neurotoxic. However, at lower concentrations, Aβ42 significantly promotes cell proliferation and glial cell specification of hNS1 cells by increasing the pool of proliferating glial precursors, without affecting neuronal differentiation, in a concentration-dependent manner. At the molecular level, these effects could be mediated, at least in part, by GSK3β, whose expression is increased by treatment with Aβ42 and whose inhibition prevents the glial specification induced by Aβ42. Since the cellular and molecular effects are known to appear decades before the first clinical symptoms, these types of studies are important in discovering the underlying pathophysiological processes involved in the development of AD. This knowledge could then be used in diagnosing the disease at early stages and be applied to the development of new treatment options.
Collapse
|
22
|
Kulawik A, Heise H, Zafiu C, Willbold D, Bannach O. Advancements of the
sFIDA
method for oligomer‐based diagnostics of neurodegenerative diseases. FEBS Lett 2018; 592:516-534. [DOI: 10.1002/1873-3468.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Andreas Kulawik
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Henrike Heise
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Christian Zafiu
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Oliver Bannach
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| |
Collapse
|
23
|
Doliroside A from Dolichos falcata Klein suppressing amyloid β-protein 42 fibrillogenesis: An insight at molecular level. PLoS One 2017; 12:e0186590. [PMID: 29084238 PMCID: PMC5662078 DOI: 10.1371/journal.pone.0186590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022] Open
Abstract
A bioactive chemical constituent, doliroside A, from Chinese traditional herbal medicine Dolichos falcata Klein was isolated, purified and identified by 60% ethanol extraction, thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. Molecular interaction mechanism between doliroside and amyloid β42 protein was evaluated by thioflavin T fluorescence (ThT), circular dichroism (CD), atomic force microscope (AFM), and differential scanning calorimeter (DSC) from the aspects of kinetics, secondary structure, morphology, and thermodynamics, respectively. Results show that the purity of doliroside A is 99.9% by HPLC, and its chemical structure is identified by 1H- and 13C-NMR. Doliroside A is observed to be concentration-dependent inhibiting the fibrillation of Aβ42 with the IC50 value of 26.57 ± 1.6 μM. CD and DSC results imply that doliroside A can bind to the nuclei and oligomers of Aβ42 to form a stable complex and suppress Aβ42 fibrillation. AFM images show that doliroside A, after bound to the nuclei and oligomers, redirect Aβ42 into off-pathway, amorphous oligomers. These findings not only provide a full insight into the molecular interaction mechanisms between Aβ42 and doliroside A, but also facilitate the development of new native anti-AD drug of doliroside A compound.
Collapse
|
24
|
Monzón M. Approaches to therapy against prion diseases focused on the individual defence system. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114:41-58. [DOI: 10.1016/j.ejmech.2016.02.065] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
|
26
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal neurodegenerative disorders characterised by long incubation period, short clinical duration, and transmissibility to susceptible species. Neuronal loss, spongiform changes, gliosis and the accumulation in the brain of the misfolded version of a membrane-bound cellular prion protein (PrP(C)), termed PrP(TSE), are diagnostic markers of these diseases. Compelling evidence links protein misfolding and its accumulation with neurodegenerative changes. Accordingly, several mechanisms of prion-mediated neurotoxicity have been proposed. In this paper, we provide an overview of the recent knowledge on the mechanisms of neuropathogenesis, the neurotoxic PrP species and the possible therapeutic approaches to treat these devastating disorders.
Collapse
|
27
|
Stroylova YY, Kiselev GG, Schmalhausen EV, Muronetz VI. Prions and chaperones: friends or foes? BIOCHEMISTRY (MOSCOW) 2015; 79:761-75. [PMID: 25365486 DOI: 10.1134/s0006297914080045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review highlights the modern perception of anomalous folding of the prion protein and the role of chaperones therein. Special attention is paid to prion proteins from mammalian species, which are prone to amyloid-like prion diseases due to a unique aggregation pathway. Despite being a significantly popular current subject of investigations, the etiology, structure, and function of both normal and anomalous prion proteins still hold many mysteries. The most interesting of those are connected to the interaction with chaperone system, which is responsible for stabilizing protein structure and disrupting aggregates. In the case of prion proteins the following question is of the most importance - can chaperones influence different stages of the formation of pathological aggregates (these vary from intermediate oligomers to mature amyloid-like fibrils) and the whole transition from native prion protein to its amyloid-like fibril-enriched form? The existing inconsistencies and ambiguities in the observations made so far can be attributed to the fact that most of the investigations did not take into account the type and functional state of the chaperones. This review discusses in detail our previous works that have demonstrated fundamental differences between eukaryotic and prokaryotic chaperones in the action exerted on the amyloid-like transformation of the prion protein along with the dependence of the observed effects on the functional state of the chaperone.
Collapse
Affiliation(s)
- Y Y Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | |
Collapse
|
28
|
Li Y, Wang J, Zhang S, Liu Z. Neprilysin gene transfer: A promising therapeutic approach for Alzheimer's disease. J Neurosci Res 2015; 93:1325-9. [PMID: 26096375 DOI: 10.1002/jnr.23564] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/19/2014] [Accepted: 01/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanli Li
- Department of Rehabilitation and Physiotherapy; Tangdu Hospital, The Fourth Military Medical University; Xi'an China
| | - Junqing Wang
- Department of Rehabilitation and Physiotherapy; Tangdu Hospital, The Fourth Military Medical University; Xi'an China
| | - Shenghao Zhang
- Department of Neurosurgery; Tangdu Hospital, The Fourth Military Medical University; Xi'an China
| | - Zhaohui Liu
- Department of Rehabilitation and Physiotherapy; Tangdu Hospital, The Fourth Military Medical University; Xi'an China
| |
Collapse
|
29
|
Zeng L, Zou W, Wang G. Cellular prion protein (PrP(C)) and its role in stress responses. Int J Clin Exp Med 2015; 8:8042-50. [PMID: 26221369 PMCID: PMC4509314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/05/2015] [Indexed: 05/18/2024]
Abstract
Investigation of the physiological function of cellular prion protein (PrP(C)) has been developed by the generation of transgenic mice, however, the pathological mechanisms related to PrP(C) in prion diseases such as transmissible spongiform encephalopathies (TSEs) are still abstruse. Regardless of some differences, most studies describe the neuroprotective role of PrP(C) in environmental stresses. In this review, we will update the current knowledge on the responses of PrP(C) to various stresses, especially those correlated with cell signaling and neural degeneration, including ischemia, oxidative stress, inflammation and autophagy.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Wenquan Zou
- Department of Neurology, National Prion Disease Pathology Surveillance Center, National Center for Regenerative Medicine, Case Western Reserve University2085 Adelbert Road, Cleveland, Ohio 44106, USA
- Department of Urology Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Gongxian Wang
- Department of Urology Surgery, First Affiliated Hospital, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| |
Collapse
|
30
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
31
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
32
|
Verwilst P, Sunwoo K, Kim JS. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun (Camb) 2015; 51:5556-71. [DOI: 10.1039/c4cc10366a] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper ions are crucial to life, and some fundamental roles of copper in pathophysiology have been elucidated using fluorescent sensors.
Collapse
Affiliation(s)
- Peter Verwilst
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Kyoung Sunwoo
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| |
Collapse
|
33
|
Peters C, Espinoza MP, Gallegos S, Opazo C, Aguayo LG. Alzheimer's Aβ interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity. Neurobiol Aging 2014; 36:1369-77. [PMID: 25599875 DOI: 10.1016/j.neurobiolaging.2014.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/06/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022]
Abstract
A major feature of Alzheimer's disease is the accumulation of β-amyloid (Aβ) peptide in the brain. Recent studies have indicated that Aβ oligomers (Aβo) can interact with the cellular prion protein (PrPc). Therefore, this interaction might be driving some of Aβ toxic effects in the synaptic region. In the present study, we report that Aβo binds to PrPc in the neuronal membrane playing a role on toxic effects induced by Aβ. Phospholipase C-enzymatic cleavage of PrPc from the plasma membrane attenuated the association of Aβo to the neurons. Furthermore, an anti-PrP antibody (6D11) decreased the association of Aβo to hippocampal neurons with a concomitant reduction in Aβo and PrPc co-localization. Interestingly, this antibody blocked the increase in membrane conductance and intracellular calcium induced by Aβo. Thus, the data indicate that PrPc plays a role on the membrane perforations produced by Aβo, the increase in calcium ions and the release of synaptic vesicles that subsequently leads to synaptic failure. Future studies blocking Aβo interaction with PrPc could be important for the discovery of new therapeutic strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - María Paz Espinoza
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Scarlet Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Carlos Opazo
- Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
34
|
Roucou X. Regulation of PrP(C) signaling and processing by dimerization. Front Cell Dev Biol 2014; 2:57. [PMID: 25364762 PMCID: PMC4207009 DOI: 10.3389/fcell.2014.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein present at the cell surface. PrPC N-terminal moiety is intrinsically disordered and is able to interact with a variety of ligands. Physiological ligands have neurotrophic activity, whilst others, including protein toxic oligomers, have neurotoxic functions. These two opposite activities involve different interacting partners and result from different PrPC-activated signaling pathways. Remarkably, PrPC may be inactivated either by physiological endoproteolysis and release of the N-terminal domain, or by ectodomain shedding. Ligand-induced PrPC dimerization or enforced dimerization of PrPC indicate that PrPC dimerization represents an important molecular switch for both intracellular signaling and inactivation by the release of PrPC N-terminal domain or shedding. In this review, we summarize evidence that cell surface receptor activity of PrPC is finely regulated by dimerization.
Collapse
Affiliation(s)
- Xavier Roucou
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke Sherbrooke, QC, Canada
| |
Collapse
|
35
|
Bobkova NV, Medvinskaya NI, Kamynina AV, Aleksandrova IY, Nesterova IV, Samokhin AN, Koroev DO, Filatova MP, Nekrasov PV, Abramov AY, Leonov SV, Volpina OM. Immunization with either prion protein fragment 95-123 or the fragment-specific antibodies rescue memory loss and neurodegenerative phenotype of neurons in olfactory bulbectomized mice. Neurobiol Learn Mem 2013; 107:50-64. [PMID: 24239620 DOI: 10.1016/j.nlm.2013.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/17/2013] [Accepted: 10/25/2013] [Indexed: 12/12/2022]
Abstract
Epidemiological studies demonstrated association between head injury (HI) and the subsequent development of Alzheimer's disease (AD). Certain hallmarks of AD, e.g. amyloid-β (Aβ) containing deposits, may be found in patients following traumatic BI (TBI). Recent studies uncover the cellular prion protein, PrP(C), as a receptor for soluble polymeric forms of Aβ (sAβ) which are an intermediate of such deposits. We aimed to test the hypothesis that targeting of PrP(C) can prevent Aβ related spatial memory deficits in olfactory bulbectomized (OBX) mice utilized here to resemble some clinical features of AD, such as increased level of Aβ, memory loss and deficit of the CNS cholin- and serotonin-ergic systems. We demonstrated that immunization with the a.a. 95-123 fragment of cellular prion (PrP-I) recovered cortical and hippocampus neurons from OBX induced degeneration, rescued spatial memory loss in Morris water maze test and significantly decrease the Aβ level in brain tissue of these animals. Affinity purified anti-PrP-I antibodies rescued pre-synaptic biomarker synaptophysin eliciting similar effect on memory of OBX mice, and protected hippocampal neurones from Aβ25-35-induced toxicity in vitro. Immunization OBX mice with a.a. 200-213 fragment of cellular prion (PrP-II) did not reach a significance in memory protection albeit having similar to PrP-I immunization impact on Aβ level in brain tissue. The observed positive effect of targeting the PrP-I by either active or passive immunization on memory of OBX mice revealed the involvement of the PrP(C) in AD-like pathology induced by olfactory bulbectomy. This OBX model may be a useful tool for mechanistic and preclinical therapeutic investigations into the association between PrP(C) and AD.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - N I Medvinskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A V Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - I Y Aleksandrova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - I V Nesterova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A N Samokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - D O Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - M P Filatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - P V Nekrasov
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia.
| | - A Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK.
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3. Pushchino, Russia; Department of Biology, Chemical Diversity Research Institute (CDRI), Rabochaya St., 2-A, 141400 Khimki, Moscow Region, Russia; BioBusiness Incubator, Moscow Institute of Physics and Technology, Institutsky pereulok, 9, Dolgoprudny, Moscow Region 141700, Russia.
| | - O M Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| |
Collapse
|
36
|
Myelin damage due to local quantitative abnormalities in normal prion levels: evidence from subacute combined degeneration and multiple sclerosis. J Neurol 2013; 261:1451-60. [DOI: 10.1007/s00415-013-7152-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
37
|
Calderón-Garcidueñas L, Cross JV, Franco-Lira M, Aragón-Flores M, Kavanaugh M, Torres-Jardón R, Chao CK, Thompson C, Chang J, Zhu H, D'Angiulli A. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci 2013; 7:183. [PMID: 24133408 PMCID: PMC3794301 DOI: 10.3389/fnins.2013.00183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Department of Biomedical Sciences, The Center for Structural and Functional Neurosciences, The University of Montana Missoula, MT, USA ; Hospital Central Militar, Secretaria de la Defensa Nacional Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Weinstein JD, Gonzalez ER, Egleton RD, Hunt DA. A Paradigm Shift for Evaluating Pharmacotherapy for Alzheimer's Disease: The 10-Patient Screening Protocol. ACTA ACUST UNITED AC 2013; 28:443-54. [DOI: 10.4140/tcp.n.2013.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Is AD a homogeneous nosologic entity? Yes. J Neural Transm (Vienna) 2013; 120:1467-73. [PMID: 23828739 DOI: 10.1007/s00702-013-1059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/20/2011] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD), the most prevalent disorder causing dementia, is considered a neurodegenerative disease. The cause is unknown for over 95% of the cases who do not have a genetic disease and the pathogenetic mechanisms are incompletely known. The main hypotheses to explain the lesions and the decline in brain functioning are the amyloid cascade and the abnormal phosphorylation of tau protein, which are the grounds for the typical AD lesions: senile plaques and neurofibrillary tangles. Some observations, however, indicate that the relationship between those mechanisms, structural changes, and cognitive state is not univocal or specific. On the other hand, age at onset and clinical presentation are quite variable, as is the duration of the disease. As a matter of fact, a wide differential diagnosis may be necessary and, in the absence of a reliable diagnostic marker, the adscription to widely accepted criteria is compulsory. Nonetheless, the accuracy of the usually applied diagnostic criteria is around 80-90%. From a nosologic perspective, the current clinicopathological concept of AD, with unknown etiology, hypothetically variable pathogenesis, and wide clinical variability, justifies considering AD in a comprehensive manner. Therefore, a disorder primarily affecting structures in medial temporal lobe, with accumulation of amyloid β and abnormal tau, neuritic plaques and tangles, progressive loss of memory and/or other cognitive deficits, ultimately resulting in dementia should be classified as AD. Hopefully, scientific advances (in genetics, proteomics, metabolomics, etc.) will allow a more precise definition of the disease in the future.
Collapse
|
40
|
Huang P, Lian F, Wen Y, Guo C, Lin D. Prion protein oligomer and its neurotoxicity. Acta Biochim Biophys Sin (Shanghai) 2013; 45:442-51. [PMID: 23557632 DOI: 10.1093/abbs/gmt037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prion diseases, also known as transmissible spongiform encephalopathies, are fatal neurodegenerative disorders. According to the 'protein only' hypothesis, the key molecular event in the pathogenesis of prion disease is the conformational conversion of the host-derived cellular prion protein (PrP(C)) into a misfolded form (scrapie PrP, PrP(Sc)). Increasing evidence has shown that the most infectious factor is the smaller subfibrillar oligomers formed by prion proteins. Both the prion oligomer and PrP(Sc) are rich in β-sheet structure and resistant to the proteolysis of proteinase K. The prion oligomer is soluble in physiologic environments whereas PrP(Sc) is insoluble. Various prion oligomers are formed in different conditions. Prion oligomers exhibited more neurotoxicity both in vitro and in vivo than the fibrillar forms of PrP(Sc), implying that prion oligomers could be potential drug targets for attacking prion diseases. In this article, we describe recent experimental evidence regarding prion oligomers, with a special focus on prion oligomer formation and its neurotoxicity.
Collapse
Affiliation(s)
- Pei Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 21009, China
| | | | | | | | | |
Collapse
|
41
|
Abstract
Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, β-rich oligomers that bind to PrP(C).
Collapse
|
42
|
Younan ND, Sarell CJ, Davies P, Brown DR, Viles JH. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers. FASEB J 2013; 27:1847-58. [PMID: 23335053 DOI: 10.1096/fj.12-222588] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is now strong evidence to show that the presence of the cellular prion protein (PrP(C)) mediates amyloid-β (Aβ) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrP(C) and Aβ and discover that substoichiometric amounts of PrP(C), as little as 1/20, relative to Aβ will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrP(C). Electron microscopy indicates PrP(C) is able to trap Aβ in an oligomeric form. Unlike fibers, this oligomeric Aβ contains antiparallel β sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrP(C), notably residues 95-113, binds to Aβ oligomers, but only once Aβ misfolds. The ability of PrP(C) to trap and concentrate Aβ in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrP(C) might confer Aβ toxicity in AD, as oligomers are thought to be the toxic form of Aβ. Identification of a specific recognition site on PrP(C) that traps Aβ in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Nadine D Younan
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
| | | | | | | | | |
Collapse
|
43
|
Pradines E, Hernandez-Rapp J, Villa-Diaz A, Dakowski C, Ardila-Osorio H, Haik S, Schneider B, Launay JM, Kellermann O, Torres JM, Mouillet-Richard S. Pathogenic prions deviate PrP(C) signaling in neuronal cells and impair A-beta clearance. Cell Death Dis 2013; 4:e456. [PMID: 23303130 PMCID: PMC3563983 DOI: 10.1038/cddis.2012.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subversion of the normal function exerted by the cellular prion protein (PrPC) in neurons by pathogenic prions is assumed to have a central role in the pathogenesis of transmissible spongiform encephalopathies. Using two murine models of prion infection, the 1C11 neuronal cell line and neurospheres, we document that prion infection is associated with the constitutive activation of signaling targets normally coupled with PrPC, including the Fyn kinase, the mitogen-associated protein kinases ERK1/2 and the CREB transcription factor. PrPC-dependent signaling overactivation in infected cells is associated with the recruitment of p38 and JNK stress-associated kinases. Downstream from CREB, prion-infected cells exhibit reduced activity of the matrix metalloprotease (MMP)-9. As MMP-9 catalyzes the degradation of the amyloid A-beta peptide, the decrease in MMP-9 activity in prion-infected cells causes a significant impairment of the clearance of A-beta, leading to its accumulation. By exploiting two 1C11-infected clones accumulating high or moderate levels of prions, we show that the prion-induced changes are correlated with the level of infectivity. Of note, a dose-dependent increase in A-beta levels was also found in the cerebrospinal fluid of mice inoculated with these infected clones. By demonstrating that pathogenic prions trigger increases in A-beta levels through the deviation of PrPC signaling, our data argue that A-beta may exacerbate prion-induced toxicity.
Collapse
Affiliation(s)
- E Pradines
- Cellules Souches, Signalisation et Prions, INSERM UMR-S747, 75006, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Benestad SL, Austbø L, Tranulis MA, Espenes A, Olsaker I. Healthy goats naturally devoid of prion protein. Vet Res 2012; 43:87. [PMID: 23249298 PMCID: PMC3542104 DOI: 10.1186/1297-9716-43-87] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/23/2012] [Indexed: 11/10/2022] Open
Abstract
Prion diseases such as scrapie in small ruminants, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in man, are fatal neurodegenerative disorders. These diseases result from the accumulation of misfolded conformers of the host-encoded prion protein (PrP) in the central nervous system. To date naturally-occurring PrP free animals have not been reported. Here we describe healthy non-transgenic animals, Norwegian Dairy Goats, lacking prion protein due to a nonsense mutation early in the gene. These animals are predicted to be resistant to prion disease and will be valuable for research and for production of prion-free products.
Collapse
Affiliation(s)
- Sylvie L Benestad
- Norwegian Veterinary Institute, P,O,Box 750, Sentrum, Oslo, 0106, Norway.
| | | | | | | | | |
Collapse
|
45
|
Kaiser DM, Acharya M, Leighton PLA, Wang H, Daude N, Wohlgemuth S, Shi B, Allison WT. Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development. PLoS One 2012; 7:e51305. [PMID: 23236467 PMCID: PMC3517466 DOI: 10.1371/journal.pone.0051305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 01/12/2023] Open
Abstract
Genetic and biochemical mechanisms linking onset or progression of Alzheimer Disease and prion diseases have been lacking and/or controversial, and their etiologies are often considered independent. Here we document a novel, conserved and specific genetic interaction between the proteins that underlie these diseases, amyloid-β precursor protein and prion protein, APP and PRP, respectively. Knockdown of APP and/or PRNP homologs in the zebrafish (appa, appb, prp1, and prp2) produces a dose-dependent phenotype characterized by systemic morphological defects, reduced cell adhesion and CNS cell death. This genetic interaction is surprisingly exclusive in that prp1 genetically interacts with zebrafish appa, but not with appb, and the zebrafish paralog prp2 fails to interact with appa. Intriguingly, appa & appb are largely redundant in early zebrafish development yet their abilities to rescue CNS cell death are differentially contingent on prp1 abundance. Delivery of human APP or mouse Prnp mRNAs rescue the phenotypes observed in app-prp-depleted zebrafish, highlighting the conserved nature of this interaction. Immunoprecipitation revealed that human APP and PrP(C) proteins can have a physical interaction. Our study reports a unique in vivo interdependence between APP and PRP loss-of-function, detailing a biochemical interaction that considerably expands the hypothesized roles of PRP in Alzheimer Disease.
Collapse
Affiliation(s)
- Darcy M. Kaiser
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Moulinath Acharya
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L. A. Leighton
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - W. Ted Allison
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Borlikova GG, Trejo M, Mably AJ, Mc Donald JM, Sala Frigerio C, Regan CM, Murphy KJ, Masliah E, Walsh DM. Alzheimer brain-derived amyloid β-protein impairs synaptic remodeling and memory consolidation. Neurobiol Aging 2012. [PMID: 23182244 DOI: 10.1016/j.neurobiolaging.2012.10.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of the amyloid β-protein (Aβ) is believed to play a central role in initiating the molecular cascade that culminates in Alzheimer-type dementia (AD), a disease which in its early stage is characterized by synaptic loss and impairment of episodic memory. Here we show that intracerebroventricular injection of Aβ-containing water-soluble extracts of AD brain inhibits consolidation of the memory of avoidance learning in the rat and that this effect is highly dependent on the interval between learning and administration. When injected at 1 hour post training extracts from 2 different AD brains significantly impaired recall tested at 48 hours. Ultrastructural examination of hippocampi from animals perfused after 48 hours revealed that Aβ-mediated impairment of avoidance memory was associated with lower density of synapses and altered synaptic structure in the dentate gyrus and CA1 fields. These behavioral and ultrastructural data suggest that human brain-derived Aβ impairs formation of long-term memory by compromising the structural plasticity essential for consolidation and that Aβ targets processes initiated very early in the consolidation pathway.
Collapse
Affiliation(s)
- Gilyana G Borlikova
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Republic of Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.05.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Mariante RM, Nóbrega A, Martins RAP, Areal RB, Bellio M, Linden R. Neuroimmunoendocrine regulation of the prion protein in neutrophils. J Biol Chem 2012; 287:35506-35515. [PMID: 22910907 DOI: 10.1074/jbc.m112.394924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prion protein (PrP(C)) is a cell surface protein expressed mainly in the nervous system. In addition to the role of its abnormal conformer in transmissible spongiform encephalopathies, normal PrP(C) may be implicated in other degenerative conditions often associated with inflammation. PrP(C) is also present in cells of hematopoietic origin, including T cells, dendritic cells, and macrophages, and it has been shown to modulate their functions. Here, we investigated the impact of inflammation and stress on the expression and function of PrP(C) in neutrophils, a cell type critically involved in both acute and chronic inflammation. We found that systemic injection of LPS induced transcription and translation of PrP(C) in mouse neutrophils. Up-regulation of PrP(C) was dependent on the serum content of TGF-β and glucocorticoids (GC), which, in turn, are contingent on the activation of the hypothalamic-pituitary-adrenal axis in response to systemic inflammation. GC and TGF-β, either alone or in combination, directly up-regulated PrP(C) in neutrophils, and accordingly, the blockade of GC receptors in vivo curtailed the LPS-induced increase in the content of PrP(C). Moreover, GC also mediated up-regulation of PrP(C) in neutrophils following noninflammatory restraint stress. Finally, neutrophils with up-regulated PrP(C) presented enhanced peroxide-dependent cytotoxicity to endothelial cells. The data demonstrate a novel interplay of the nervous, endocrine, and immune systems upon both the expression and function of PrP(C) in neutrophils, which may have a broad impact upon the physiology and pathology of various organs and systems.
Collapse
Affiliation(s)
- Rafael M Mariante
- Institutes of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Alberto Nóbrega
- Institutes of Microbiology, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Rodrigo A P Martins
- Institutes of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Rômulo B Areal
- Institutes of Microbiology, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Maria Bellio
- Institutes of Microbiology, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Rafael Linden
- Institutes of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
49
|
Abstract
Although the precise cause of Alzheimer's disease is not known, the β-amyloid peptide chains of 40-42 amino acids are suspected to contribute to the disease. The β-amyloid precursor protein is found on many types of cell membranes, and the action of secretases (β and γ) on this precursor protein normally releases the β-amyloids at a high rate into the plasma and the cerebrospinal fluid. However, the concentrations of the β-amyloids in the plasma and the spinal fluid vary considerably between laboratories. The β-amyloids adsorb in the nanomolar concentration range to receptors on neuronal and glial cells. The β-amyloids are internalized, become folded in the β-folded or β-pleated shape, and then stack on each other to form long fibrils and aggregates known as plaques. The β-amyloids likely act as monomers, dimers, or multimers on cell membranes to interfere with neurotransmission and memory before the plaques build up. Treatment strategies include inhibitors of β- and γ-secretase, as well as drugs and physiological compounds to prevent aggregation of the amyloids. Several immune approaches and a cholesterol-lowering strategy are also being tested to remove the β-amyloids.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
50
|
Jellinger KA. Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med 2012; 16:1166-83. [PMID: 22176890 PMCID: PMC3823071 DOI: 10.1111/j.1582-4934.2011.01507.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Abstract
The misfolding and progressive aggregation of specific proteins in selective regions of the nervous system is a seminal occurrence in many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic and experimental differences, increasing evidence indicates considerable overlap between synucleinopathies, tauopathies and other protein-misfolding diseases. Inclusions, often characteristic hallmarks of these disorders, suggest interactions of pathological proteins enganging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Alzheimer, Parkinson, Huntington and prion diseases, have confirmed correlations/overlaps between these and other neurodegenerative disorders. Emerging evidence, in addition to synergistic effects of tau protein, amyloid-β, α-synuclein and other pathologic proteins, suggests that prion-like induction and spreading, involving secreted proteins, are major pathogenic mechanisms in various neurodegenerative diseases, depending on genetic backgrounds and environmental factors. The elucidation of the basic molecular mechanisms underlying the interaction and spreading of pathogenic proteins, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, is a major challenge for modern neuroscience, to provide a deeper insight into their pathogenesis as a basis of effective diagnosis and treatment.
Collapse
|