1
|
Toppila-Salmi S, Reitsma S, Hox V, Gane S, Eguiluz-Gracia I, Shamji M, Maza-Solano J, Jääskeläinen B, Väärä R, Escribese MM, Chaker A, Karavelia A, Rudenko M, Gevaert P, Klimek L. Endotyping in Chronic Rhinosinusitis-An EAACI Task Force Report. Allergy 2024. [PMID: 39641584 DOI: 10.1111/all.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Chronic rhinosinusitis (CRS) is a clinical syndrome defined by typical sinonasal symptoms persisting for at least 12 weeks. CRS is divided into two distinct phenotypes, CRS with nasal polyps (CRSwNP) and without (CRSsNP). The aim of the review is to provide an update on the current knowledge in CRS endotypes. The prevailing hypothesis regarding the pathogenesis of CRS suggests that dysfunctional interactions between the host and environmental stressors at the mucosal surface drive the diverse inflammatory mechanisms. Genetic and epigenetic variations in the mucosal immune system are believed to play a significant role in the pathomechanisms of CRS. Various environmental agents (such as microbes and irritants) have been implicated in CRS. In a healthy state, the sinonasal mucosa acts as a barrier, modulating environmental stimulation and mounting appropriate immune responses against pathogens with minimal tissue damage. Different endotypes may exist based on the specific mechanistic pathways driving the chronic tissue inflammation of CRS. There is a need to understand endotypes in order to better predict, diagnose, and treat CRS. This literature review provides an update on the role of the endotypes in CRS and the limitations of endotyping CRS in clinical practice. Understanding of the pathogenesis and optimal management of CRS has progressed significantly in the last decades; however, there still are several unmet needs in endotype research.
Collapse
Affiliation(s)
- Sanna Toppila-Salmi
- Department of Otorhinolaryngology, University of Eastern Finland, Kuopio, Finland
- Department of Otorhinolaryngology, Wellbeing Services County of Pohjois-Savo, Kuopio, Finland
- Inflammation Center, Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sietze Reitsma
- Department of Otorhinolaryngology/Head-Neck Surgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Valérie Hox
- Department of Otorhinolaryngology, Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Simon Gane
- Royal National Ear, Nose and Throat and Eastman Dental Hospital, University College London Hospitals NHS Trust, London, UK
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga. IBIMA-Plataforma BIONAND. RICORS Enfermedades Inflamatorias, Malaga, Spain
| | - Mohamed Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Juan Maza-Solano
- Rhinology and Skull Base Unit, Department of Otolaryngology, University Hospital Virgen Macarena, Seville, Spain
- Department of Surgery, University of Seville, Seville, Spain
| | | | - Risto Väärä
- Department of Otorhinolaryngology, University of Eastern Finland, Kuopio, Finland
| | - Maria M Escribese
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Adam Chaker
- Department of Otorhinolaryngology and Center for Allergy and Environment, Technische Universität München, München, Germany
| | - Aspasia Karavelia
- Department of Otorhinolaryngology, General Hospital of Nafplio, Nafplio, Greece
| | | | - Philippe Gevaert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| |
Collapse
|
2
|
Wang X, Wang JD, Li X, Wang T, Yao J, Deng R, Ma W, Liu S, Zhu Z. Tas2R143 regulates the expression of the Blood-Testis Barrier tight junction protein in TM4 cells through the NF-κB signaling pathway. Theriogenology 2024; 227:120-127. [PMID: 39059123 DOI: 10.1016/j.theriogenology.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Although bitter receptors, known as Tas2Rs, have been identified in the testes and mature sperm, their expression in testicular Sertoli cells (SCs) and their role in recognizing harmful substances to maintain the immune microenvironment remain unknown. To explore their potential function in spermatogenesis, this study utilized TM4 cells and discovered the high expression of the bitter receptor Tas2R143 in the cells. Interestingly, when the Tas2R143 gene was knocked down for 24 and 48 h, there was a significant downregulation (P < 0.05) in the expression of tight junction proteins (occludin and ZO-1) and NF-κB. Additionally, Western blot results demonstrated that the siRNA-133+NF-κB co-treatment group displayed a significant downregulation (P < 0.05) in the expression of occludin and ZO-1 compared to both the siRNA-133 transfection group and the NF-κB inhibitors treatment group. These findings suggest that Tas2R143 likely regulates the expression of occludin and ZO-1 through the NF-κB signaling pathway and provides a theoretical basis for studying the regulatory mechanism of bitter receptors in the reproductive system, aiming to attract attention to the chemical perception mechanism of spermatogenesis.
Collapse
Affiliation(s)
- Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Jin Dan Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Tianrun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Jiaqi Yao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Ruxue Deng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Wenchang Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Shengjun Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China.
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
3
|
Liu S, Shi T, Yu J, Li R, Lin H, Deng K. Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review. Int J Mol Sci 2024; 25:9844. [PMID: 39337334 PMCID: PMC11432553 DOI: 10.3390/ijms25189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| |
Collapse
|
4
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
5
|
Santin A, Spedicati B, Pecori A, Nardone GG, Concas MP, Piatti G, Menini A, Tirelli G, Boscolo-Rizzo P, Girotto G. The Bittersweet Symphony of COVID-19: Associations between TAS1Rs and TAS2R38 Genetic Variations and COVID-19 Symptoms. Life (Basel) 2024; 14:219. [PMID: 38398728 PMCID: PMC10890446 DOI: 10.3390/life14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The innate immune system is crucial in fighting SARS-CoV-2 infection, which is responsible for coronavirus disease 2019 (COVID-19). Therefore, deepening our understanding of the underlying immune response mechanisms is fundamental for the development of novel therapeutic strategies. The role of extra-oral bitter (TAS2Rs) and sweet (TAS1Rs) taste receptors in immune response regulation has yet to be fully understood. However, a few studies have investigated the association between taste receptor genes and COVID-19 symptom severity, with controversial results. Therefore, this study aims to deepen the relationship between COVID-19 symptom presence/severity and TAS1R and TAS2R38 (TAS2Rs member) genetic variations in a cohort of 196 COVID-19 patients. Statistical analyses detected significant associations between rs307355 of the TAS1R3 gene and the following COVID-19-related symptoms: chest pain and shortness of breath. Specifically, homozygous C/C patients are exposed to an increased risk of manifesting severe forms of chest pain (OR 8.11, 95% CI 2.26-51.99) and shortness of breath (OR 4.83, 95% CI 1.71-17.32) in comparison with T/C carriers. Finally, no significant associations between the TAS2R38 haplotype and the presence/severity of COVID-19 symptoms were detected. This study, taking advantage of a clinically and genetically characterised cohort of COVID-19 patients, revealed TAS1R3 gene involvement in determining COVID-19 symptom severity independently of TAS2R38 activity, thus providing novel insights into the role of TAS1Rs in regulating the immune response to viral infections.
Collapse
Affiliation(s)
- Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (B.S.); (G.G.N.); (G.T.); (P.B.-R.); (G.G.)
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (B.S.); (G.G.N.); (G.T.); (P.B.-R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Alessandro Pecori
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giuseppe Giovanni Nardone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (B.S.); (G.G.N.); (G.T.); (P.B.-R.); (G.G.)
| | - Maria Pina Concas
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gioia Piatti
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Unit of Bronchopneumology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy;
| | - Giancarlo Tirelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (B.S.); (G.G.N.); (G.T.); (P.B.-R.); (G.G.)
| | - Paolo Boscolo-Rizzo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (B.S.); (G.G.N.); (G.T.); (P.B.-R.); (G.G.)
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (B.S.); (G.G.N.); (G.T.); (P.B.-R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy;
| |
Collapse
|
6
|
Franks ZG, Nandakumar K, Santhanam L, Lester L, Walsh JM, Dalesio NM. ACE2 and TAS2R38 receptor expression in pediatric and adult patients in the nasal and oral cavity. Laryngoscope Investig Otolaryngol 2024; 9:e1207. [PMID: 38362187 PMCID: PMC10866583 DOI: 10.1002/lio2.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 02/17/2024] Open
Abstract
Objective To investigate differences in angiotensin-converting-enzyme-2 (ACE2) and bitter taste receptor (TAS2R38) expression between patient age groups and comorbidities to characterize the pathophysiology of coronavirus 19(COVID-19) pandemic. ACE2 is the receptor implicated to facilitate SARS-CoV-2 infections and levels of expression may correlate to the severity of COVID-19 infection. TAS2R38 has many non-gustatory roles in disease, with some evidence of severe COVID-19 disease in certain receptor phenotypes. Methods We conducted a prospective cohort study and collected nasal and lingual tissue from healthy pediatric (n = 22) and adult (n = 25) patients undergoing general anesthesia for elective procedures. RNA isolation and qPCR were performed with primers targeting ACE2 and TAS2R38. Results A total of 25 adult (52% male; 44% obese) and 22 pediatric (50% male; 36% obese) patients were enrolled, pediatric tissue had 43% more nasal ACE2 RNA expression than adults with a median fold change of 0.69 (IQR 0.37, 0.98) in adults and 0.99 (IQR 0.74, 1.43) in children (p < .05). There were no differences between the age groups in ACE2 expression of lingual tissue (p = .14) or TAS2R38 expression collected from either nasal (p = 049) or lingual tissue (p = .49). Stratifying for obesity yielded similar differences between nasal ACE2 expression between adults and children with median fold change of 0.56 (IQR 0.32, 0.87) in adults and 1.0 (IQR 0.82, 1.52) in children (p < .05). Conclusions ACE2 receptor expression is higher in nasal tissue collected from children compared to adults, suggesting COVID-19 infectivity is more complicated than ACE2 and TAS2R38 mRNA expression. Level of Evidence NA.
Collapse
Affiliation(s)
- Zechariah G. Franks
- Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Laeben Lester
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jonathan M. Walsh
- Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicholas M. Dalesio
- Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Jiang RS, Shih KH, Liang KL. Effect of Functional Endoscopic Sinus Surgery on Gustatory Function in Patients With Chronic Rhinosinusitis. EAR, NOSE & THROAT JOURNAL 2023; 102:538-546. [PMID: 33977765 DOI: 10.1177/01455613211015754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES In this study, we investigated the effect of functional endoscopic sinus surgery (FESS) on gustatory function in patients with chronic rhinosinusitis (CRS). METHODS Forty-three patients with CRS who underwent FESS were included in this study. Prior to FESS and 3 months after surgery, the severity of rhinosinusitis was assessed using the Taiwanese version of the 22-item SNOT (SNOT-22), endoscopic examination, and acoustic rhinometry. The olfactory function was evaluated using the phenylethyl alcohol odor detection threshold test and the traditional Chinese version of the University of Pennsylvania Smell Identification Test, and the gustatory function was evaluated using the whole mouth suprathreshold taste test (WMTT) and the taste quad test (TQT). Subgroup analyses were performed based on CRS phenotypes and endotypes. RESULTS The SNOT-22 significantly improved 3 months after FESS for all patients with CRS. The endoscopic score and olfactory function significantly improved in patients with eosinophilic CRS and in patients with nasal polyps (CRSwNP). The WMTT sweet and bitter scores were significantly lower after FESS in CRSwNP, but the TQT sweet score was significantly higher in patients without nasal polyps. In addition, patients with noneosinophilic CRS had significantly decreased WMTT and salty scores 3 months after FESS. CONCLUSION Our results showed that the effect of FESS on gustatory function of patients with CRS was different with the different testing procedures, the association with nasal polyps, and the underlying inflammatory patterns.
Collapse
Affiliation(s)
- Rong-San Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung
- Department of Otolaryngology, Taichung Veterans General Hospital, Taichung
- School of Medicine, Chung Shan Medical University, Taichung
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung
| | - Kai-Hsiang Shih
- Department of Otolaryngology, Taichung Veterans General Hospital, Taichung
| | - Kai-Li Liang
- Department of Otolaryngology, Taichung Veterans General Hospital, Taichung
- School of Medicine, Chung Shan Medical University, Taichung
- Faculty of Medicine, National Yang-Ming University, Taipei
| |
Collapse
|
8
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
9
|
Jiang RS, Lin HJ, Wei CY, Hsiao TH. Genetic variations in bitter and sweet taste receptors in Taiwanese patients with chronic rhinosinusitis. Int Forum Allergy Rhinol 2023; 13:265-268. [PMID: 36070352 DOI: 10.1002/alr.23074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Rong-San Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Otolaryngology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsueh-Ju Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Yi Wei
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Research Center for Biomedical Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Akishino M, Aoki Y, Baba H, Asakawa M, Hama Y, Mitsutake S. Red algae-derived isofloridoside activates the sweet taste receptor T1R2/T1R3. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Yuan Y, Fang X, Ye W. Acrid and Bitter Chinese Herbs in Decoction Effectively Relieve Lung Inflammation and Regulation of TRPV1/TAS2R14 Channels in a Rat Asthmatic Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8061740. [PMID: 36045655 PMCID: PMC9423947 DOI: 10.1155/2022/8061740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
Abstract
Background Shegan Mahuang decoction (SGMHD) was widely used as a classic prescription of traditional Chinese medicine to treat asthma. However, there is no research on the acrid and bitter Chinese herbs in the SGMHD to treat asthma. This study aimed to investigate the effects of SGMHD and its acrid-bitter Chinese herbs composition on airway inflammation and the expression of TRPV1 and TAS2R14 genes and proteins in asthmatic rats. Methods SD (Sprague Dawley) rats of asthma were induced by ovalbumin and aluminum hydroxide, then randomly divided into the Normal group, Model group, SGMHD group, Dexamethasone (Dex) group, Guilongkechuangning (GLKC) group, The Acrid Chinese Herbs group (ACH), and The Bitter Chinese Herbs group (BCH). The rats were given intragastric gavage after 21 days for 4 weeks. The bronchoalveolar lavage fluid (BALF) was collected, and the levels of IL-4, IL-13, nerve factors SP, CGRP, PGE2, and serum of IgE were determined by ELISA. Pathological changes in the lungs were determined by hematoxylin-eosin (HE) staining. The expression of TRPV1 and TAS2R14 in the rat lung group was detected by immunofluorescence (IF). The expression levels of TRPV1 and TAS2R14 were measured using western blotting. The mRNA levels of TRPV1 and TAS2R14 were measured using RT-qPCR. Results The levels of serum IgE in treated rats and the cytokines IL-4, IL-13, SP, CGRP, and PGE2 were all decreased. HE-staining showed that significantly reduced inflammatory cell infiltration in lung tissue. IF-staining showed the expression levels except those of the normal group were enhanced. Acrid Chinese herbs inhibited TRPV1, and bitter Chinese herbs activated the gene and protein expression of TAS2R in the lung. Conclusion The acrid Chinese herbs regulate TRPV1, and bitter Chinese herbs regulate the gene and protein expression of TAS2R14, through nerve and immune-inflammatory factors, reduced airway inflammation, reduced airway reactivity, promoted airway remodeling, and the combination of acrid-bitter Chinese herbs can enhance the above effects. This will lay a foundation for further in vivo study of specific compounds of acrid-bitter Chinese herbs.
Collapse
Affiliation(s)
- Yamei Yuan
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Xiangming Fang
- Clinical College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Weidong Ye
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
12
|
Margulis E, Slavutsky Y, Lang T, Behrens M, Benjamini Y, Niv MY. BitterMatch: recommendation systems for matching molecules with bitter taste receptors. J Cheminform 2022; 14:45. [PMID: 35799226 PMCID: PMC9261901 DOI: 10.1186/s13321-022-00612-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Bitterness is an aversive cue elicited by thousands of chemically diverse compounds. Bitter taste may prevent consumption of foods and jeopardize drug compliance. The G protein-coupled receptors for bitter taste, TAS2Rs, have species-dependent number of subtypes and varying expression levels in extraoral tissues. Molecular recognition by TAS2R subtypes is physiologically important, and presents a challenging case study for ligand-receptor matchmaking. Inspired by hybrid recommendation systems, we developed a new set of similarity features, and created the BitterMatch algorithm that predicts associations of ligands to receptors with ~ 80% precision at ~ 50% recall. Associations for several compounds were tested in-vitro, resulting in 80% precision and 42% recall. The encouraging performance was achieved by including receptor properties and integrating experimentally determined ligand-receptor associations with chemical ligand-to-ligand similarities. BitterMatch can predict off-targets for bitter drugs, identify novel ligands and guide flavor design. The novel features capture information regarding the molecules and their receptors, which could inform various chemoinformatic tasks. Inclusion of neighbor-informed similarities improves as experimental data mounts, and provides a generalizable framework for molecule-biotarget matching.
Collapse
Affiliation(s)
- Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuli Slavutsky
- Department of Statistics and Data Science, Faculty of Social Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Yuval Benjamini
- Department of Statistics and Data Science, Faculty of Social Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
13
|
Lindemann CB. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity. Bioessays 2021; 44:e2100143. [PMID: 34967029 DOI: 10.1002/bies.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration.
Collapse
|
14
|
Caretta A, Mucignat-Caretta C. Are Multiple Chemosensory Systems Accountable for COVID-19 Outcome? J Clin Med 2021; 10:5601. [PMID: 34884303 PMCID: PMC8658083 DOI: 10.3390/jcm10235601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Chemosensory systems (olfaction, taste, trigeminus nerve, solitary chemoreceptor cells, neuroendocrine pulmonary cells, and carotid body, etc.) detect molecules outside or inside our body and may share common molecular markers. In addition to the impairment of taste and olfaction, the detection of the internal chemical environment may also be incapacitated by COVID-19. If this is the case, different consequences can be expected. (1) In some patients, hypoxia does not trigger distressing dyspnea ("silent" hypoxia): Long-term follow-up may determine whether silent hypoxia is related to malfunctioning of carotid body chemoreceptors. Moreover, taste/olfaction and oxygen chemoreceptors may be hit simultaneously: Testing olfaction, taste, and oxygen chemoreceptor functions in the early stages of COVID-19 allows one to unravel their connections and trace the recovery path. (2) Solitary chemosensory cells are also involved in the regulation of the innate mucosal immune response: If these cells are affected in some COVID-19 patients, the mucosal innate immune response would be dysregulated, opening one up to massive infection, thus explaining why COVID-19 has lethal consequences in some patients. Similar to taste and olfaction, oxygen chemosensory function can be easily tested with a non-invasive procedure in humans, while functional tests for solitary chemosensory or pulmonary neuroendocrine cells are not available, and autoptic investigation is required to ascertain their involvement.
Collapse
Affiliation(s)
- Antonio Caretta
- Department of Food and Drug Science, University of Parma, 43100 Parma, Italy;
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Carla Mucignat-Caretta
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
15
|
Martens K, Steelant B, Bullens DMA. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021; 10:cells10112889. [PMID: 34831117 PMCID: PMC8616034 DOI: 10.3390/cells10112889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Taste receptors are well known for their role in the sensation of taste. Surprisingly, the expression and involvement of taste receptors in chemosensory processes outside the tongue have been recently identified in many organs including the airways. Currently, a clear understanding of the airway-specific function of these receptors and the endogenous activating/inhibitory ligands is lagging. The focus of this review is on recent physiological and clinical data describing the taste receptors in the airways and their activation by secreted bacterial compounds. Taste receptors in the airways are potentially involved in three different immune pathways (i.e., the production of nitric oxide and antimicrobial peptides secretion, modulation of ciliary beat frequency, and bronchial smooth muscle cell relaxation). Moreover, genetic polymorphisms in these receptors may alter the patients’ susceptibility to certain types of respiratory infections as well as to differential outcomes in patients with chronic inflammatory airway diseases such as chronic rhinosinusitis and asthma. A better understanding of the function of taste receptors in the airways may lead to the development of a novel class of therapeutic molecules that can stimulate airway mucosal immune responses and could treat patients with chronic airway diseases.
Collapse
Affiliation(s)
- Katleen Martens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
| | - Dominique M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Clinical Division of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
16
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|
17
|
Moreira M, Sarraguça M. How can oral paediatric formulations be improved? A challenge for the XXI century. Int J Pharm 2020; 590:119905. [DOI: 10.1016/j.ijpharm.2020.119905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
|
18
|
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 2020; 472:1667-1691. [PMID: 33030576 DOI: 10.1007/s00424-020-02467-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel "alternative pathway" that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.
Collapse
|
19
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Zborowska-Piskadło K, Stachowiak M, Rusetska N, Sarnowska E, Siedlecki J, Dżaman K. The expression of bitter taste receptor TAS2R38 in patients with chronic rhinosinusitis. Arch Immunol Ther Exp (Warsz) 2020; 68:26. [PMID: 32909159 DOI: 10.1007/s00005-020-00593-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Chronic rhinosinusitis (CRS) is a frequent disease with high social impact and multifactorial pathogenesis. Recently, the bitter taste receptor TAS2R38 has been described to play a role in upper airway innate mucosal defense. The aim was to determine the localization and expression of the TAS2R38 in the selected cell lines and tissue collected from patient suffered from CRS as well as to correlate the results with clinical data. Moreover, the purpose was the estimation of the TAS2R38 distribution changes during acute and CRS. Forty-two patients undergoing nasal surgery were enrolled in the study. The TAS2R38 expression was assessed in the collected tissues using immunohistochemistry and immunocytochemistry methods. The western blot analysis was performed on human cell lines HeLa, MCF7, MDA-MB-231 to assess the location of the TAS2R38 protein. Moreover, the HeLa cell line was used as a model of acute inflammation induces by lipopolysaccharide. Immunohistochemistry analysis displayed a statistically significant difference of TAS2R38 level in the patients with CRS compared to healthy control and was different in CRS with and without nasal polyps. The results showed the abundance of TAS2R38 receptor in the cell nucleus in patients with CRS and cell lines. The variance in TAS2R38 receptor expression in two CRS types suggests their different pathogenesis. The first time in literature, we confirmed the presence of plasma membrane TAS2R38 receptor in the cell nuclei in CRS as well as in cell lines, what strongly suggests the different than membrane TAS2R38 function.
Collapse
Affiliation(s)
| | - Małgorzata Stachowiak
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Natalia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Elżbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Janusz Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Karolina Dżaman
- Department of Otolaryngology, Miedzyleski Hospital, Warsaw, Poland.
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Kondratowicza 8, 03-242, Warsaw, Poland.
| |
Collapse
|
21
|
Dalesio NM, Aksit MA, Ahn K, Raraigh KS, Collaco JM, McGrath-Morrow S, Zeitlin PL, An SS, Cutting GR. Cystic fibrosis transmembrane conductance regulator function, not TAS2R38 gene haplotypes, predict sinus surgery in children and young adults with cystic fibrosis. Int Forum Allergy Rhinol 2020; 10:748-754. [PMID: 32282124 DOI: 10.1002/alr.22548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Chronic rhinosinusitis symptomatology begins in early childhood individuals with cystic fibrosis (CF). Cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to sinus development and disease. Genetic variants of the bitter taste receptor TAS2R38 have been suggested to contribute to sinus disease severity in individuals without CF. Our objective was to explore whether functional TAS2R38 haplotypes and CFTR function are associated with sinus disease or the need for sinus surgery in individuals with CF. METHODS We conducted a retrospective study using prospectively collected data from the CF Twin-Sibling Study. The function of CFTR was assessed via chloride conductance. Genotyping of the TAS2R38 gene identified patients who were homozygous for the functional haplotype, heterozygous, or homozygous for nonfunctional haplotypes. Clustered multivariate logistic regression was performed, controlling for sex and family relationship. RESULTS A total of 1291 patients were evaluated. Patients with ≤1% CFTR function were 1.56 times more likely to require sinus surgery than those with >1% CFTR function (p = 0.049). CFTR function did not correlate significantly with the presence of sinus disease (p = 0.30). In addition, there were no statistically significant differences in diagnosis of sinus disease or need for sinus surgery between patients with functional and nonfunctional TAS2R38 haplotypes. CONCLUSION CFTR function correlates with need for sinus surgery, whereas TAS2R38 function does not appear to contribute to sinus disease or the need for sinus surgery in patients with CF.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- Division of Pediatric Anesthesia/Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD.,Department of Otolaryngology/Head & Neck Surgery, Johns Hopkins University, Baltimore, MD
| | - Melis A Aksit
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Kwangmi Ahn
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD
| | - Karen S Raraigh
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Joseph M Collaco
- Department of Pediatric Pulmonology, Johns Hopkins University, Baltimore, MD
| | | | | | - Steven S An
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ.,Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ
| | - Garry R Cutting
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
22
|
Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases. Front Cell Dev Biol 2020; 8:204. [PMID: 32292784 PMCID: PMC7118214 DOI: 10.3389/fcell.2020.00204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.
Collapse
Affiliation(s)
- Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sanna Katriina Toppila-Salmi
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Annika Luukkainen
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland
| | - Robert Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
23
|
Liu DT, Besser G, Oeller F, Mueller CA, Renner B. Bitter Taste Perception of the Human Tongue Mediated by Quinine and Caffeine Impregnated Taste Strips. Ann Otol Rhinol Laryngol 2020; 129:813-820. [PMID: 32028784 PMCID: PMC7357182 DOI: 10.1177/0003489420906187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Tests for gustatory function have become increasingly important in diagnosis and treatment of patients with taste disorders. While caffeine and quinine hydrochloride solutions have been used for global testing of bitter perception, only quinine has been used to test regional bitter perception by means of taste strips. The aim of the present study was to validate caffeine impregnated taste strips as an alternative to quinine taste strips for assessment of regional bitter perception. Methods: A total of 46 healthy volunteers (mean age/range, 23/19-27 years) were included in this study. Quinine and caffeine impregnated taste strips were pairwise presented at different parts of the tongue. Perceived intensity and hedonic dislike were evaluated using labeled magnitude scales. Additionally, gustatory function was assessed using the taste strips test and overall sense of taste was rated using visual analog scales. Results: Assessment of gustatory function demonstrated scores within the normogeusic range in most included subjects (mean/SD, 13.1/2.5). Notably, equally concentrated quinine and caffeine impregnated taste strips placed on different regions of the tongue did not lead to significant differences in perceived intensity or hedonic dislike, whereas quinine and caffeine impregnated taste strips of different concentrations placed on the same region on the tongue led to significant differences of perceived intensity and hedonic dislike. Furthermore, no correlation was found between self-assessment of gustatory function and taste strips scores. Conclusion: Caffeine seems to be a valid bitter compound for regional testing using taste strips and may be used alternatively to quinine.
Collapse
Affiliation(s)
- David T Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerold Besser
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Oeller
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian A Mueller
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Bertold Renner
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Smail HO. The roles of genes in the bitter taste. AIMS GENETICS 2020; 6:88-97. [PMID: 31922012 PMCID: PMC6949464 DOI: 10.3934/genet.2019.4.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The aims of this review were to understand the roles of bitter taste genes in humans. Some of the peoples have the capacity to taste some chemical substance such as phenylthiocarbamide (PTC) while others cant not based on the dietary hazards and food preferences. There are two alleles responsible to express these phenotypes which are homozygous recessive. In human TAS2R38 genes located on the chromosome number 7 and consist of different nucleotide polymorphism that related to detection of the phenotype of different chemical compounds such as 6-n-propylthiouracil (PROP) and phenylthiocarbamide bitterness and this Gene is the member of the TAS2R genes which are eleven pseudogenes and twenty that has roles in many biological processes. There are many factors that affect the bitter taste such as food, age, sex, and different diseases. The mechanism of food bitter taste and genotype of TAS2R38 until know not well understood due to that the proof of relation between bitter taste sensitivity and food is harmful. there are many different diseases can impact the influence of taste such as neoplasm and lifestyle such as consumption of alcohol along with the use of medication, head trauma, upper tract infections. On the other hand, A relation between TAS2R38 genotype and meal preferences has been observed among children, however, no associations have been mentioned among older adults. Some previous research proved some vital points that show an association between type 1 of diabetes and phenylthiocarbamide (PTC) but other studies cannot demonstrate that. However, of other disease such as obesity is controversial but other studies reported to the relationship between them.
Collapse
Affiliation(s)
- Harem Othman Smail
- Department of Biology, Faculty of science and health, Koya University Koya KOY45, Kurdistan Region-F.R. Iraq
| |
Collapse
|
25
|
Borgonovo G, Zimbaldi N, Guarise M, Bedussi F, Winnig M, Vennegeerts T, Bassoli A. Glucosinolates in Sisymbrium officinale (L.) Scop.: Comparative Analysis in Cultivated and Wild Plants and in Vitro Assays with T2Rs Bitter Taste Receptors. Molecules 2019; 24:molecules24244572. [PMID: 31847178 PMCID: PMC6943552 DOI: 10.3390/molecules24244572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Sisymbrium officinale (L.) Scop., commonly known as "hedge mustard" or "the singer's plant" is a wild plant common in Eurasian regions. Its cultivation is mainly dedicated to herboristic applications and it has only recently been introduced into Italy. The active botanicals in S. officinale are glucosinolates, generally estimated by using UV or high-performance liquid chromatography (HPLC). Using both techniques, we measured the total glucosinolates from S. officinale in different parts of the plant as roots, leaves, seeds, and flowers. A comparison was made for cultivated and wild samples, and for samples obtained with different pre-treatment and fresh, frozen, and dried storage conditions. Cultivated and wild plants have a comparable amount of total glucosinolates, while drying procedures can reduce the final glucosinolates content. The content in glucoputranjivin, which is the chemical marker for glucosinolates in S. officinale, has been determined using HPLC and a pure reference standard. Glucoputranjivin and two isothiocyanates from S. officinale have been submitted to in vitro assays with the platform of bitter taste receptors of the T2Rs family. The results show that glucoputranjivin is a selective agonist of receptor T2R16.
Collapse
Affiliation(s)
- Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
| | - Nathan Zimbaldi
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
| | - Marta Guarise
- Department of Agricultural and Environmental Sciences-DISAA, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (M.G.); (F.B.)
| | - Floriana Bedussi
- Department of Agricultural and Environmental Sciences-DISAA, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (M.G.); (F.B.)
| | - Marcel Winnig
- IMAX Discovery GmbH, Otto-Hahn-Straße, 15, 44227 Dortmund, Germany; (M.W.); (T.V.)
- Axxam S.p.A. Via Meucci, 3, 20091 Bresso, Italy
| | - Timo Vennegeerts
- IMAX Discovery GmbH, Otto-Hahn-Straße, 15, 44227 Dortmund, Germany; (M.W.); (T.V.)
- Axxam S.p.A. Via Meucci, 3, 20091 Bresso, Italy
| | - Angela Bassoli
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
- Correspondence: ; Tel.: +39-025-031-6815
| |
Collapse
|
26
|
Hamdard E, Lv Z, Jiang J, Wei Q, Shi Z, Malyar RM, Yu D, Shi F. Responsiveness Expressions of Bitter Taste Receptors Against Denatonium Benzoate and Genistein in the Heart, Spleen, Lung, Kidney, and Bursa Fabricius of Chinese Fast Yellow Chicken. Animals (Basel) 2019; 9:E532. [PMID: 31390726 PMCID: PMC6719124 DOI: 10.3390/ani9080532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023] Open
Abstract
The present study was conducted to investigate the responsiveness expressions of ggTas2Rs against denatonium benzoate (DB) and genistein (GEN) in several organs of the Chinese Fast Yellow Chicken. A total of 300 one-day-old chicks that weighed an average of 32 g were randomly allocated into five groups with five replicates for 56 consecutive days. The dietary treatments consisted of basal diet, denatonium benzoate (5 mg/kg, 20 mg/kg, and 100 mg/kg), and genistein 25 mg/kg. The results of qRT-PCR indicated significantly (p < 0.05) high-level expressions in the heart, spleen, and lungs in the starter and grower stages except for in bursa Fabricius. The responsiveness expressions of ggTas2Rs against DB 100 mg/kg and GEN 25 mg/kg were highly dose-dependent in the heart, spleen, lungs, and kidneys in the starter and grower stages, but dose-independent in the bursa Fabricius in the finisher stage. The ggTas2Rs were highly expressed in lungs and the spleen, but lower in the bursa Fabricius among the organs. However, the organ growth performance significantly (p < 0.05) increased in the groups administered DB 5 mg/kg and GEN 25 mg/kg; meanwhile, the DB 20 mg/kg and DB 100 mg/kg treatments significantly reduced the growth of all the organs, respectively. These findings indicate that responsiveness expressions are dose-dependent, and bitterness sensitivity consequently decreases in aged chickens. Therefore, these findings may improve the production of new feedstuffs for chickens according to their growing stages.
Collapse
Affiliation(s)
- Enayatullah Hamdard
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhicheng Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rahmani Mohammad Malyar
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Lasconi C, Pifferi S, Hernandez-Clavijo A, Merigo F, Cecchini MP, Gonzalez-Velandia KY, Agostinelli E, Sbarbati A, Menini A. Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Sci Rep 2019; 9:8834. [PMID: 31222082 PMCID: PMC6586933 DOI: 10.1038/s41598-019-45456-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Bitter and sweet receptors (T2Rs and T1Rs) are expressed in many extra-oral tissues including upper and lower airways. To investigate if bitter tastants and artificial sweeteners could activate physiological responses in tracheal epithelial cells we performed confocal Ca2+ imaging recordings on acute tracheal slices. We stimulated the cells with denatonium benzoate, a T2R agonist, and with the artificial sweeteners sucralose, saccharin and acesulfame-K. To test cell viability we measured responses to ATP. We found that 39% of the epithelial cells responding to ATP also responded to bitter stimulation with denatonium benzoate. Moreover, artificial sweeteners activated different percentages of the cells, ranging from 5% for sucralose to 26% for saccharin, and 27% for acesulfame-K. By using carbenoxolone, a gap junction blocker, we excluded that responses were mainly mediated by Ca2+ waves through cell-to-cell junctions. Pharmacological experiments showed that both denatonium and artificial sweeteners induced a PLC-mediated release of Ca2+ from internal stores. In addition, bitter tastants and artificial sweeteners activated a partially overlapping subpopulation of tracheal epithelial cells. Our results provide new evidence that a subset of ATP-responsive tracheal epithelial cells from rat are activated by both bitter tastants and artificial sweeteners.
Collapse
Affiliation(s)
- Chiara Lasconi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy.
| | | | - Flavia Merigo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy.
| | | | - Emilio Agostinelli
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
28
|
Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M. Dual binding mode of "bitter sugars" to their human bitter taste receptor target. Sci Rep 2019; 9:8437. [PMID: 31186454 PMCID: PMC6560132 DOI: 10.1038/s41598-019-44805-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
The 25 human bitter taste receptors (hTAS2Rs) are responsible for detecting bitter molecules present in food, and they also play several physiological and pathological roles in extraoral compartments. Therefore, understanding their ligand specificity is important both for food research and for pharmacological applications. Here we provide a molecular insight into the exquisite molecular recognition of bitter β-glycopyranosides by one of the members of this receptor subclass, hTAS2R16. Most of its agonists have in common the presence of a β-glycopyranose unit along with an extremely structurally diverse aglycon moiety. This poses the question of how hTAS2R16 can recognize such a large number of "bitter sugars". By means of hybrid molecular mechanics/coarse grained molecular dynamics simulations, here we show that the three hTAS2R16 agonists salicin, arbutin and phenyl-β-D-glucopyranoside interact with the receptor through a previously unrecognized dual binding mode. Such mechanism may offer a seamless way to fit different aglycons inside the binding cavity, while maintaining the sugar bound, similar to the strategy used by several carbohydrate-binding lectins. Our prediction is validated a posteriori by comparison with mutagenesis data and also rationalizes a wealth of structure-activity relationship data. Therefore, our findings not only provide a deeper molecular characterization of the binding determinants for the three ligands studied here, but also give insights applicable to other hTAS2R16 agonists. Together with our results for other hTAS2Rs, this study paves the way to improve our overall understanding of the structural determinants of ligand specificity in bitter taste receptors.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biotechnology, University of Verona, Verona, Italy
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
29
|
Sylvetsky AC, Hiedacavage A, Shah N, Pokorney P, Baldauf S, Merrigan K, Smith V, Long MW, Black R, Robien K, Avena N, Gaine C, Greenberg D, Wootan MG, Talegawkar S, Colon‐Ramos U, Leahy M, Ohmes A, Mennella JA, Sacheck J, Dietz WH. From biology to behavior: a cross-disciplinary seminar series surrounding added sugar and low-calorie sweetener consumption. Obes Sci Pract 2019; 5:203-219. [PMID: 31275594 PMCID: PMC6587329 DOI: 10.1002/osp4.334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION This report presents a synopsis of a three-part, cross-sector, seminar series held at the George Washington University (GWU) in Washington, DC from February-April, 2018. The overarching goal of the seminar series was to provide a neutral forum for diverse stakeholders to discuss and critically evaluate approaches to address added sugar intake, with a key focus on the role of low-calorie sweeteners (LCS). METHODS During three seminars, twelve speakers from academic institutions, federal agencies, non-profit organizations, and the food and beverage industries participated in six interactive panel discussions to address: 1) Do Farm Bill Policies Impact Population Sugar Intake? 2) What is the Impact of Sugar-sweetened Beverage (SSB) Taxes on Health and Business? 3) Is Sugar Addictive? 4) Product Reformulation Efforts: Progress, Challenges, and Concerns? 5) Low-calorie Sweeteners: Helpful or Harmful, and 6) Are Novel Sweeteners a Plausible Solution? Discussion of each topic involved brief 15-minute presentations from the speakers, which were followed by a 25-minute panel discussion moderated by GWU faculty members and addressed questions generated by the audience. Sessions were designed to represent opposing views and stimulate meaningful debate. Given the provocative nature of the seminar series, attendee questions were gathered anonymously using Pigeonhole™, an interactive, online, question and answer platform. RESULTS This report summarizes each presentation and recapitulates key perspectives offered by the speakers and moderators. CONCLUSIONS The seminar series set the foundation for robust cross-sector dialogue necessary to inform meaningful future research, and ultimately, effective policies for lowering added sugar intakes.
Collapse
Affiliation(s)
- A. C. Sylvetsky
- Milken Institute School of Public HealthThe George Washington University
| | - A. Hiedacavage
- Milken Institute School of Public HealthThe George Washington University
| | - N. Shah
- Milken Institute School of Public HealthThe George Washington University
| | - P. Pokorney
- Milken Institute School of Public HealthThe George Washington University
| | - S. Baldauf
- Milken Institute School of Public HealthThe George Washington University
| | - K. Merrigan
- Milken Institute School of Public HealthThe George Washington University
- Swette Center for Sustainable Food SystemsArizona State University
| | - V. Smith
- Department of Agricultural EconomicsMontana State University
| | - M. W. Long
- Milken Institute School of Public HealthThe George Washington University
| | - R. Black
- Quadrant D Consulting, LLCTufts University Friedman School of Nutrition Science & Policy
| | - K. Robien
- Milken Institute School of Public HealthThe George Washington University
| | - N. Avena
- Department of NeuroscienceMount Sinai School of Medicine
- Department of PsychologyPrinceton University
| | | | - D. Greenberg
- PepsiCo Inc. (Current affiliation NutriSci Inc.)
| | | | - S. Talegawkar
- Milken Institute School of Public HealthThe George Washington University
| | - U. Colon‐Ramos
- Milken Institute School of Public HealthThe George Washington University
| | - M. Leahy
- Food, Nutrition & Policy Solutions LLC
| | | | | | - J. Sacheck
- Milken Institute School of Public HealthThe George Washington University
| | - W. H. Dietz
- Milken Institute School of Public HealthThe George Washington University
| |
Collapse
|
30
|
Purnell PR, Addicks BL, Zalzal HG, Shapiro S, Wen S, Ramadan HH, Setola V, Siderovski DP. Single Nucleotide Polymorphisms in Chemosensory Pathway Genes GNB3, TAS2R19, and TAS2R38 Are Associated with Chronic Rhinosinusitis. Int Arch Allergy Immunol 2019; 180:72-78. [PMID: 31137020 PMCID: PMC6715503 DOI: 10.1159/000499875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a multifaceted disease with a significant genetic component. The importance of taste receptor signaling has recently been highlighted in CRS; single nucleotide polymorphisms (SNPs) of bitter tastant-responsive G-protein-coupled receptors have been linked with CRS and with altered innate immune responses to multiple bacterially derived signals. OBJECTIVE To determine in CRS the frequency of six SNPs in genes with known bitter tastant signaling function. METHODS Genomic DNA was isolated from 74 CRS volunteers in West Virginia, and allele frequency was determined and compared with demographically matched data from the 1,000 Genomes database. RESULTS For two SNPs in a gene recently associated with bitterant signaling regulation, RGS21, there were no associations with CRS (although the frequency of the minor allele of RGS21, rs7528947, was seen to increase with increasing Lund-Mackay CT staging score). Two TAS2R bitter taste receptor gene variants (TAS2R19 rs10772420 and TAS2R38 rs713598), identified in prior CRS genetics studies, were found to have similar associations in this study. CONCLUSION Unique to our study is the establishment of an association between CRS in this patient population and GNB3 SNP rs5443, a variation in an established G protein component downstream of bitterant receptor signal transduction.
Collapse
Affiliation(s)
- Phillip R Purnell
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Benjamin L Addicks
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Habib G Zalzal
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Scott Shapiro
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Hassan H Ramadan
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Vincent Setola
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - David P Siderovski
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, USA,
| |
Collapse
|
31
|
Marozkina N, Bosch J, Cotton C, Smith L, Seckler J, Zaman K, Rehman S, Periasamy A, Gaston H, Altawallbeh G, Davis M, Jones DR, Schilz R, Randell SH, Gaston B. Cyclic compression increases F508 Del CFTR expression in ciliated human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2019; 317:L247-L258. [PMID: 31116581 DOI: 10.1152/ajplung.00020.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which transepithelial pressure changes observed during exercise and airway clearance can benefit lung health are challenging to study. Here, we have studied 117 mature, fully ciliated airway epithelial cell filters grown at air-liquid interface grown from 10 cystic fibrosis (CF) and 19 control subjects. These were exposed to cyclic increases in apical air pressure of 15 cmH2O for varying times. We measured the effect on proteins relevant to lung health, with a focus on the CF transmembrane regulator (CFTR). Immunoflourescence and immunoblot data were concordant in demonstrating that air pressure increased F508Del CFTR expression and maturation. This effect was in part dependent on the presence of cilia, on Ca2+ influx, and on formation of nitrogen oxides. These data provide a mechanosensory mechanism by which changes in luminal air pressure, like those observed during exercise and airway clearance, can affect epithelial protein expression and benefit patients with diseases of the airways.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jürgen Bosch
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Calvin Cotton
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura Smith
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James Seckler
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Khalequz Zaman
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shagufta Rehman
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | | | - Ghaith Altawallbeh
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael Davis
- Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - David R Jones
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Schilz
- Pulmonology and Critical Care Medicine University Hospitals, Cleveland, Ohio
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin Gaston
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Pediatric Pulmonology Division, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
32
|
Abstract
This chapter summarizes the available data about taste receptor functions and their role in perception of food with emphasis on the human system. In addition we illuminate the widespread presence of these receptors throughout the body and discuss some of their extraoral functions. Finally, we describe clinical aspects where taste receptor signaling could be relevant.
Collapse
Affiliation(s)
- Jonas C Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
33
|
Dalesio NM, Barreto Ortiz SF, Pluznick JL, Berkowitz DE. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front Physiol 2018; 9:1673. [PMID: 30542293 PMCID: PMC6278613 DOI: 10.3389/fphys.2018.01673] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
Sensory receptors that detect and respond to light, taste, and smell primarily belong to the G-protein-coupled receptor (GPCR) superfamily. In addition to their established roles in the nose, tongue, and eyes, these sensory GPCRs have been found in many ‘non-sensory' organs where they respond to different physicochemical stimuli, initiating signaling cascades in these extrasensory systems. For example, taste receptors in the airway, and photoreceptors in vascular smooth muscle cells, both cause smooth muscle relaxation when activated. In addition, olfactory receptors are present within the vascular system, where they play roles in angiogenesis as well as in modulating vascular tone. By better understanding the physiological and pathophysiological roles of sensory receptors in non-sensory organs, novel therapeutic agents can be developed targeting these receptors, ultimately leading to treatments for pathological conditions and potential cures for various disease states.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Otolaryngology/Head & Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Sebastian F Barreto Ortiz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
34
|
Masuda H, Nakamuta N, Yamamoto Y. Morphology of GNAT3-immunoreactive chemosensory cells in the rat larynx. J Anat 2018; 234:149-164. [PMID: 30467855 DOI: 10.1111/joa.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
The upper airways play important roles in respiratory defensive reflexes. Although solitary chemosensory cells and chemosensory cell clusters have been reported in the laryngeal mucosa of mammalian species, the distribution and cellular morphology of chemosensory cells remain unclear. In the present study, the distribution and morphology of solitary chemosensory cells and chemosensory cell clusters were examined by immunofluorescence for GNAT3 on whole-mount preparations of the rat laryngeal mucosa. Electrophysiological experiments were performed to analyze the respiratory reflexes evoked by bitter stimuli to the laryngeal cavity. In the whole area of the laryngeal mucosa, the numbers of GNAT3-immunoreactive solitary chemosensory cells and chemosensory clusters were 421.0 ± 20.3 and 62.7 ± 6.9, respectively. GNAT3-immunoreactive solitary chemosensory cells were mainly distributed in the mucosa overlying epiglottic and arytenoid cartilage, and chemosensory clusters were mainly distributed on the edge of the epiglottis and aryepiglottic fold. GNAT3-immunoreactive solitary chemosensory cells were slender with elongated processes or had a flask-like/columnar shape. The number of GNAT3-immunoreactive cells in chemosensory clusters was 6.1 ± 0.4, ranging between 2 and 14 cells. GNAT3-immunoreactive cells in the cluster were variform and the tips of apical processes gathered at one point at the surface of the epithelium. The tips of apical cytoplasmic processes in solitary chemosensory cells and cells in the cluster were immunoreactive for espin, and faced the laryngeal cavity. Physiological experiments showed that the application of 10 mm quinine hydrochloride to the laryngeal cavity decreased respiratory frequency. The present results revealed the chemosensory field of the larynx and the morphological characteristics of the laryngeal chemosensory system for respiratory depression.
Collapse
Affiliation(s)
- Haruka Masuda
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
35
|
Maina IW, Patel NN, Cohen NA. Understanding the Role of Biofilms and Superantigens in Chronic Rhinosinusitis. CURRENT OTORHINOLARYNGOLOGY REPORTS 2018; 6:253-262. [PMID: 30859016 PMCID: PMC6407876 DOI: 10.1007/s40136-018-0212-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review explores recent discoveries in our understanding of how biofilms and superantigens contribute to the pathogenesis of chronic rhinosinusitis (CRS). It also examines clinical implications and novel treatment approaches for biofilm associated CRS. RECENT FINDINGS While the role of biofilms in CRS has been studied for 14 years, research interest has now turned toward elucidating new methods of biofilm detection, microbial diversity, and novel treatment approaches. Recent studies on biofilm superantigens aim to clarify the immunological mechanisms of upper airway inflammation, particularly the type-2 response seen in nasal polyposis. SUMMARY Biofilms are a topic of research interest for their role in the pathogenesis of chronic rhinosinusitis, particularly when they elute superantigens. New studies on this topic focus on the molecular and cellular mechanisms at play.
Collapse
Affiliation(s)
- Ivy W Maina
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA
| | - Neil N Patel
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA
- Monell Chemical Senses Center, Philadelphia, PA
| |
Collapse
|
36
|
Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR, Jiang P, Lee RJ. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem 2018; 293:9824-9840. [PMID: 29748385 DOI: 10.1074/jbc.ra117.001005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Bitter taste receptors (taste family 2 bitter receptor proteins; T2Rs), discovered in many tissues outside the tongue, have recently become potential therapeutic targets. We have shown previously that airway epithelial cells express several T2Rs that activate innate immune responses that may be important for treatment of airway diseases such as chronic rhinosinusitis. It is imperative to more clearly understand what compounds activate airway T2Rs as well as their full range of functions. T2R isoforms in airway motile cilia (T2R4, -14, -16, and -38) produce bactericidal levels of nitric oxide (NO) that also increase ciliary beating, promoting clearance of mucus and trapped pathogens. Bacterial quorum-sensing acyl-homoserine lactones activate T2Rs and stimulate these responses in primary airway cells. Quinolones are another type of quorum-sensing molecule used by Pseudomonas aeruginosa To elucidate whether bacterial quinolones activate airway T2Rs, we analyzed calcium, cAMP, and NO dynamics using a combination of fluorescent indicator dyes and FRET-based protein biosensors. T2R-transfected HEK293T cells, several lung epithelial cell lines, and primary sinonasal cells grown and differentiated at the air-liquid interface were tested with 2-heptyl-3-hydroxy-4-quinolone (known as Pseudomonas quinolone signal; PQS), 2,4-dihydroxyquinolone, and 4-hydroxy-2-heptylquinolone (HHQ). In HEK293T cells, PQS activated T2R4, -16, and -38, whereas HHQ activated T2R14. 2,4-Dihydroxyquinolone had no effect. PQS and HHQ increased calcium and decreased both baseline and stimulated cAMP levels in cultured and primary airway cells. In primary cells, PQS and HHQ activated levels of NO synthesis previously shown to be bactericidal. This study suggests that airway T2R-mediated immune responses are activated by bacterial quinolones as well as acyl-homoserine lactones.
Collapse
Affiliation(s)
- Jenna R Freund
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | | | | | - Nithin D Adappa
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - James N Palmer
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - David W Kennedy
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - Danielle R Reed
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Peihua Jiang
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Robert J Lee
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and .,Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
37
|
De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators Inflamm 2018; 2018:1309746. [PMID: 29849481 PMCID: PMC5911336 DOI: 10.1155/2018/1309746] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the CFTR gene, whereas chronic obstructive pulmonary disease (COPD) is mainly caused by environmental factors (mostly cigarette smoking) on a genetically susceptible background. Although the etiology and pathogenesis of these diseases are different, both are associated with progressive airflow obstruction, airway neutrophilic inflammation, and recurrent exacerbations, suggesting common mechanisms. The airway epithelium plays a crucial role in maintaining normal airway functions. Major molecular and morphologic changes occur in the airway epithelium in both CF and COPD, and growing evidence suggests that airway epithelial dysfunction is involved in disease initiation and progression in both diseases. Structural and functional abnormalities in both airway and alveolar epithelium have a relevant impact on alteration of host defences, immune/inflammatory response, and the repair process leading to progressive lung damage and impaired lung function. In this review, we address the evidence for a critical role of dysfunctional airway epithelial cells in chronic airway inflammation and remodelling in CF and COPD, highlighting the common mechanisms involved in the epithelial dysfunction as well as the similarities and differences of the two diseases.
Collapse
Affiliation(s)
- Virginia De Rose
- Department of Clinical and Biological Sciences, University of Torino, A.O.U. S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Sophie Gohy
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| |
Collapse
|
38
|
Freund JR, Lee RJ. Taste receptors in the upper airway. World J Otorhinolaryngol Head Neck Surg 2018; 4:67-76. [PMID: 30035264 PMCID: PMC6051256 DOI: 10.1016/j.wjorl.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Taste receptors were named for their originally-identified expression on the tongue and role in the sensation of taste (gustation). They are now known to be involved in many chemosensory processes outside the tongue. Expression of the receptors for bitter, sweet, and umami was recently identified in many organs, including the brain, airway, gastrointestinal tract, and reproductive systems. We do not yet know the full roles of these receptors in all of these tissues, nor do we know all of the endogenous ligands that activate them. However, taste receptors are emerging as potentially important therapeutic targets. Moreover, they may mediate some off target effects of drugs, as many medications in common clinical use are known to be bitter. The focus of this review is on recent basic and clinical data describing the expression of bitter (T2R) and sweet (T1R) receptors in the airway and their activation by secreted bacterial compounds. These receptors play important roles in innate immune nitric oxide production and antimicrobial peptide secretion, and may be useful targets for stimulating immune responses in the upper respiratory tract via topical therapies. Moreover, genetic variation in these receptors may play a role in the differential susceptibility of patients to certain types of respiratory infections as well as to differential outcomes in patients with chronic rhinosinusitis (CRS). CRS is a syndrome of chronic upper respiratory infection and inflammation and has a significant detrimental impact on patient quality of life. CRS treatment accounts for approximately 20% of adult antibiotic prescriptions and is thus a large driver of the public health crisis of antibiotic resistance. Taste receptors represent a novel class of therapeutic target to potentially stimulate endogenous immune responses and treat CRS patients without conventional antibiotics.
Collapse
Affiliation(s)
- Jenna R Freund
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Behrens M, Meyerhof W. Vertebrate Bitter Taste Receptors: Keys for Survival in Changing Environments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2204-2213. [PMID: 28013542 DOI: 10.1021/acs.jafc.6b04835] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on bitter taste receptors has made enormous progress during recent years. Although in the early period after the discovery of this highly interesting receptor family special emphasis was placed on the deorphanization of mainly human bitter taste receptors, the research focus has shifted to sophisticated structure-function analyses, the discovery of small-molecule interactors, and the pharmacological profiling of nonhuman bitter taste receptors. These findings allowed novel perspectives on, for example, evolutionary and ecological questions that have arisen and that are discussed.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| |
Collapse
|
40
|
Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun 2018; 10:487-501. [PMID: 29439264 DOI: 10.1159/000487057] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract.
Collapse
Affiliation(s)
- Dominik Hartl
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, .,Roche Pharma Research and Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Basel,
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - David Habiel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
41
|
Di Pizio A, Shy N, Behrens M, Meyerhof W, Niv MY. Molecular Features Underlying Selectivity in Chicken Bitter Taste Receptors. Front Mol Biosci 2018; 5:6. [PMID: 29445727 PMCID: PMC5797744 DOI: 10.3389/fmolb.2018.00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Chickens sense the bitter taste of structurally different molecules with merely three bitter taste receptors (Gallus gallus taste 2 receptors, ggTas2rs), representing a minimal case of bitter perception. Some bitter compounds like quinine, diphenidol and chlorpheniramine, activate all three ggTas2rs, while others selectively activate one or two of the receptors. We focus on bitter compounds with different selectivity profiles toward the three receptors, to shed light on the molecular recognition complexity in bitter taste. Using homology modeling and induced-fit docking simulations, we investigated the binding modes of ggTas2r agonists. Interestingly, promiscuous compounds are predicted to establish polar interactions with position 6.51 and hydrophobic interactions with positions 3.32 and 5.42 in all ggTas2rs; whereas certain residues are responsible for receptor selectivity. Lys3.29 and Asn3.36 are suggested as ggTas2r1-specificity-conferring residues; Gln6.55 as ggTas2r2-specificity-conferring residue; Ser5.38 and Gln7.42 as ggTas2r7-specificity conferring residues. The selectivity profile of quinine analogs, quinidine, epiquinidine and ethylhydrocupreine, was then characterized by combining calcium-imaging experiments and in silico approaches. ggTas2r models were used to virtually screen BitterDB compounds. ~50% of compounds known to be bitter to human are likely to be bitter to chicken, with 25, 20, 37% predicted to be ggTas2r1, ggTas2r2, ggTas2r7 agonists, respectively. Predicted ggTas2rs agonists can be tested with in vitro and in vivo experiments, contributing to our understanding of bitter taste in chicken and, consequently, to the improvement of chicken feed.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University, Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| | - Nitzan Shy
- The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University, Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| | - Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Masha Y Niv
- The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University, Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
42
|
Liu S, Lu S, Xu R, Atzberger A, Günther S, Wettschureck N, Offermanns S. Members of Bitter Taste Receptor Cluster Tas2r143/Tas2r135/Tas2r126 Are Expressed in the Epithelium of Murine Airways and Other Non-gustatory Tissues. Front Physiol 2017; 8:849. [PMID: 29163195 PMCID: PMC5670347 DOI: 10.3389/fphys.2017.00849] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
The mouse bitter taste receptors Tas2r143, Tas2r135, and Tas2r126 are encoded by genes that cluster on chromosome 6 and have been suggested to be expressed under common regulatory elements. Previous studies indicated that the Tas2r143/Tas2r135/Tas2r126 cluster is expressed in the heart, but other organs had not been systematically analyzed. In order to investigate the expression of this bitter taste receptor gene cluster in non-gustatory tissues, we generated a BAC (bacterial artificial chromosome) based transgenic mouse line, expressing CreERT2 under the control of the Tas2r143 promoter. After crossing this line with a mouse line expressing EGFP after Cre-mediated recombination, we were able to validate the Tas2r143-CreERT2 transgenic mouse line and monitor the expression of Tas2r143. EGFP-positive cells, indicating expression of members of the cluster, were found in about 47% of taste buds, and could also be found in several other organs. A population of EGFP-positive cells was identified in thymic epithelial cells, in the lamina propria of the intestine and in vascular smooth muscle cells of cardiac blood vessels. EGFP-positive cells were also identified in the epithelium of organs readily exposed to pathogens including lower airways, the gastrointestinal tract, urethra, vagina, and cervix. With respect to the function of cells expressing this bitter taste receptor cluster, RNA-seq analysis in EGFP-positive cells isolated from the epithelium of trachea and stomach showed expression of genes related to innate immunity. These data further support the concept that bitter taste receptors serve functions outside the gustatory system.
Collapse
Affiliation(s)
- Shuya Liu
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shun Lu
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Xu
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- Flow Cytometry Service Facility, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
43
|
Hariri BM, McMahon DB, Chen B, Adappa ND, Palmer JN, Kennedy DW, Lee RJ. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa. PLoS One 2017; 12:e0185203. [PMID: 28931063 PMCID: PMC5607194 DOI: 10.1371/journal.pone.0185203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO) production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious.
Collapse
Affiliation(s)
- Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Derek B. McMahon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bei Chen
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David W. Kennedy
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Behrens M, Gu M, Fan S, Huang C, Meyerhof W. Bitter substances from plants used in traditional Chinese medicine exert biased activation of human bitter taste receptors. Chem Biol Drug Des 2017; 91:422-433. [PMID: 28834122 DOI: 10.1111/cbdd.13089] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/22/2022]
Abstract
The number and variety of bitter compounds originating from plants are vast. Whereas some bitter chemicals are toxic and should not be ingested, other compounds exhibit health beneficial effects, which is manifest in the cross-cultural believe that the bitterness of medicine is correlated with the desired medicinal activity. The bitter taste receptors in the oral cavity serve as sensors for bitter compounds and, as they are expressed in numerous extraoral tissues throughout the body, may also be responsible for some physiological effects exerted by bitter compounds. Chinese herbal medicine uses bitter herbs since ancient times for the treatment of various diseases; however, the routes by which these herbs modify physiology are frequently not well understood. We therefore screened 26 bitter substances extracted from medical herbs for the activation of the 25 human bitter taste receptors. We identified six receptors activated by in total 17 different bitter compounds. Interestingly, we observed a bias in bitter taste receptor activation with 10 newly identified agonists for the broadly tuned receptor TAS2R46, seven agonists activating the TAS2R14 and two compounds activating narrowly tuned receptors, suggesting that these receptors play dominant roles in the evaluation and perhaps physiological activities of Chinese herbal medicines.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ming Gu
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Drug Discovery Lab, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
45
|
Walliczek-Dworschak U, Pellegrino R, Taube F, Mueller CA, Stuck BA, Dworschak P, Güldner C, Steinbach S. Chemosensory function before and after multimodal treatment in chronic rhinosinusitis patients. Laryngoscope 2017; 128:E86-E90. [PMID: 28895150 DOI: 10.1002/lary.26873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/02/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Olfactory dysfunction is common among the general population, with chronic rhinosinusitis (CRS) as one of the leading causes. Patients affected by CRS often report changes in taste sensations; however, quantitative measurements have not been performed to date. Therefore, the present study aimed to investigate gustatory and olfactory function in CRS patients prior to and after multimodal treatment. STUDY DESIGN Prospective cohort study. METHODS Twenty-one patients suffering from CRS with nasal polyps (14 male, seven female) with a mean age of 48 ± 15 years were included in the study. Chemosensory function was assessed prior to and approximately 190 days after multimodal treatment, which included endoscopic sinus surgery, oral antibiotics for 5 days, oral steroids for 12 days, and at least 6 weeks of topical nasal steroids. Olfactory function was tested with the Sniffin' Sticks test battery, whereas gustatory function was measured with taste strips. A clinically relevant change in olfactory function was defined as a change of ≥5 points in the threshold, discrimination, and identification scores. RESULTS Compared to normative data, patients baseline gustatory and olfactory function was impaired. After multimodal treatment, improvements were seen in olfactory function for eight patients (42%), remained stable in 10 patients (53%), and deteriorated in one patient (5%). Taste function remained unchanged following sinus surgery. CONCLUSIONS Patients suffering from CRS with polyps exhibit olfactory and taste dysfunctions. Multimodal treatment leads to an improvement in olfactory, but not gustatory functionality. LEVEL OF EVIDENCE 4. Laryngoscope, 128:E86-E90, 2018.
Collapse
Affiliation(s)
- Ute Walliczek-Dworschak
- Department of Otorhinolaryngology-Head and Neck Surgery, Philipps University Marburg, Marburg, Germany.,Smell and Taste Clinic, Department of Otorhinolaryngology, Dresden Technical University, Dresden, Germany
| | - Robert Pellegrino
- Center of Orthopedics and Traumatology, Philipps University Marburg, Marburg, Germany.,Smell and Taste Clinic, Department of Otorhinolaryngology, Dresden Technical University, Dresden, Germany
| | - Franziska Taube
- Department of Otorhinolaryngology-Head and Neck Surgery, Philipps University Marburg, Marburg, Germany
| | - Christian A Mueller
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| | - Boris Alexander Stuck
- Department of Otorhinolaryngology-Head and Neck Surgery, Philipps University Marburg, Marburg, Germany
| | - Philipp Dworschak
- Department of Otorhinolaryngology-Head and Neck Surgery, Philipps University Marburg, Marburg, Germany.,Center of Orthopedics and Traumatology, Philipps University Marburg, Marburg, Germany
| | - Christian Güldner
- Department of Otorhinolaryngology-Head and Neck Surgery, Philipps University Marburg, Marburg, Germany.,Department of Phoniatrics and Pediatric Audiology, Philipps University Marburg, Marburg, Germany.,Department of Otorhinolaryngology-Head and Neck Surgery, Chemnitz Hospital GmbH, Chemnitz, Germany
| | - Silke Steinbach
- Center of Orthopedics and Traumatology, Philipps University Marburg, Marburg, Germany.,Department of Phoniatrics and Pediatric Audiology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
46
|
Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Front Mol Biosci 2017; 4:63. [PMID: 28932739 PMCID: PMC5592726 DOI: 10.3389/fmolb.2017.00063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Human G-protein coupled receptors (hGPCRs) constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany
| | - Eda Suku
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Biotechnology, University of VeronaVerona, Italy
| | - Sven Cichon
- Institute of Neuroscience and Medicine INM-1, Forschungszentrum JülichJülich, Germany.,Institute for Human Genetics, Department of Genomics, Life&Brain Center, University of BonnBonn, Germany.,Division of Medical Genetics, Department of Biomedicine, University of BaselBasel, Switzerland
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule AachenAachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National UniversityHanoi, Vietnam
| |
Collapse
|
47
|
Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Jiang P, Margolskee RF, Cohen NA. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci Signal 2017; 10:10/495/eaam7703. [PMID: 28874606 DOI: 10.1126/scisignal.aam7703] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the upper respiratory epithelium, bitter and sweet taste receptors present in solitary chemosensory cells influence antimicrobial innate immune defense responses. Whereas activation of bitter taste receptors (T2Rs) stimulates surrounding epithelial cells to release antimicrobial peptides, activation of the sweet taste receptor (T1R) in the same cells inhibits this response. This mechanism is thought to control the magnitude of antimicrobial peptide release based on the sugar content of airway surface liquid. We hypothesized that d-amino acids, which are produced by various bacteria and activate T1R in taste receptor cells in the mouth, may also activate T1R in the airway. We showed that both the T1R2 and T1R3 subunits of the sweet taste receptor (T1R2/3) were present in the same chemosensory cells of primary human sinonasal epithelial cultures. Respiratory isolates of Staphylococcus species, but not Pseudomonas aeruginosa, produced at least two d-amino acids that activate the sweet taste receptor. In addition to inhibiting P. aeruginosa biofilm formation, d-amino acids derived from Staphylococcus inhibited T2R-mediated signaling and defensin secretion in sinonasal cells by activating T1R2/3. d-Amino acid-mediated activation of T1R2/3 also enhanced epithelial cell death during challenge with Staphylococcus aureus in the presence of the bitter receptor-activating compound denatonium benzoate. These data establish a potential mechanism for interkingdom signaling in the airway mediated by bacterial d-amino acids and the mammalian sweet taste receptor in airway chemosensory cells.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin M Hariri
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Laurel Doghramji
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Philadelphia Veterans Affairs Medical Center Surgical Service, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Ekstrand B, Young JF, Rasmussen MK. Taste receptors in the gut - A new target for health promoting properties in diet. Food Res Int 2017; 100:1-8. [PMID: 28888429 DOI: 10.1016/j.foodres.2017.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/17/2022]
Abstract
In this review we describe a new target for food functionality, the taste receptors in the gastrointestinal tract. These receptors are involved in an intricate signalling network for monitoring of taste and nutrient intake, homeostasis and energy metabolism, and they are also an early warning system for toxic substances in our diet. Especially the receptors for bitter taste provide a new possibility to activate a number of health related signalling pathways, already at low concentrations of the active substance, without requiring uptake into the body and transport via the circulation. When ligands bind to these receptors, signalling is induced either via peptide hormones into the circulation to other organs in the body, or via nerve fibers directly to the brain.
Collapse
Affiliation(s)
- Bo Ekstrand
- Chalmers University of Technology, Department of Biology and Biological Engineering, Food and Nutrition Science, SE-412 96 Gothenburg, Sweden
| | | | | |
Collapse
|
49
|
Dmytrenko G, Castro ME, Sales ME. Denatonium and Naringenin Promote SCA-9 Tumor Growth and Angiogenesis: Participation of Arginase. Nutr Cancer 2017; 69:780-790. [DOI: 10.1080/01635581.2017.1328605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ganna Dmytrenko
- Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET, CABA, Argentina
| | - María E. Castro
- Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET, CABA, Argentina
| | - María E. Sales
- Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET, CABA, Argentina
| |
Collapse
|
50
|
Lee AA, Owyang C. Sugars, Sweet Taste Receptors, and Brain Responses. Nutrients 2017; 9:nu9070653. [PMID: 28672790 PMCID: PMC5537773 DOI: 10.3390/nu9070653] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Allen A Lee
- 1500 East Medical Center Drive, Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109-5362, USA.
| | - Chung Owyang
- 3912 Taubman Center, SPC 5362, Ann Arbor, MI 48109-5362, USA.
| |
Collapse
|