1
|
Dong Q, Dai G, Quan N, Tong Q. Role of natural products in cardiovascular disease. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/09/2024] [Indexed: 01/03/2025]
|
2
|
Schmid A, Pankuweit S, Vlacil AK, Koch S, Berge B, Gajawada P, Richter M, Troidl K, Schieffer B, Schäffler A, Grote K. Decreased circulating CTRP3 levels in acute and chronic cardiovascular patients. J Mol Med (Berl) 2024; 102:667-677. [PMID: 38436713 PMCID: PMC11055757 DOI: 10.1007/s00109-024-02426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
C1q/TNF-related protein 3 (CTRP3) represents an adipokine with various metabolic and immune-regulatory functions. While circulating CTRP3 has been proposed as a potential biomarker for cardiovascular disease (CVD), current data on CTRP3 regarding coronary artery disease (CAD) remains partially contradictory. This study aimed to investigate CTRP3 levels in chronic and acute settings such as chronic coronary syndrome (CCS) and acute coronary syndrome (ACS). A total of 206 patients were classified into three groups: CCS (n = 64), ACS having a first acute event (ACS-1, n = 75), and ACS having a recurrent acute event (ACS-2, n = 67). The control group consisted of 49 healthy individuals. ELISA measurement in peripheral blood revealed decreased CTRP3 levels in all patient groups (p < 0.001) without significant differences between the groups. This effect was exclusively observed in male patients. Females generally exhibited significantly higher CTRP3 plasma levels than males. ROC curve analysis in male patients revealed a valuable predictive potency of plasma CTRP3 in order to identify CAD patients, with a proposed cut-off value of 51.25 ng/mL. The sensitivity and specificity of prediction by CTRP3 were congruent for the subgroups of CCS, ACS-1, and ACS-2 patients. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings, with male mice exhibiting higher circulating CTRP3 levels than females. We conclude that circulating CTRP3 levels are decreased in both male CCS and ACS patients. Therefore, CTRP3 might be useful as a biomarker for CAD but not for distinguishing an acute from a chronic setting. KEY MESSAGES: CTRP3 levels were found to be decreased in both male CCS and ACS patients compared to healthy controls. Plasma CTRP3 has a valuable predictive potency in order to identify CAD patients among men and is therefore proposed as a biomarker for CAD but not for distinguishing between acute and chronic settings. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings in men.
Collapse
Affiliation(s)
- Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany.
| | - Sabine Pankuweit
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | | | - Sören Koch
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Benedikt Berge
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Praveen Gajawada
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Kerstin Troidl
- Department of Life Sciences and Engineering, TH Bingen, University of Applied Sciences, Bingen Am Rhein, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | | | - Andreas Schäffler
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Liu N, Gong Z, Li Y, Xu Y, Guo Y, Chen W, Sun X, Yin X, Liu W. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats. J Hypertens 2024; 42:315-328. [PMID: 37850974 DOI: 10.1097/hjh.0000000000003591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND PURPOSE Reducing hypertensive myocardial fibrosis is the fundamental approach to preventing hypertensive ventricular remodelling. C1q/TNF-related protein-3 (CTRP3) is closely associated with hypertension. However, the role and mechanism of CTRP3 in hypertensive myocardial fibrosis are unclear. In this study, we aimed to explore the effect of CTRP3 on hypertensive myocardial fibrosis and the potential mechanism. METHODS AND RESULTS WKY and SHR rats were employed, blood pressure, body weight, heart weight, H/BW were measured, and fibrotic-related proteins, CTRP3 and Collagen I were tested in myocardium at 12 and 20 weeks by immunohistochemical staining and Western blotting, respectively. The results showed that compared with the WKY, SBP, DBP, mean arterial pressure and heart rate (HR) were all significantly increased in SHR at 12 and 20 weeks, while heart weight and H/BW were only increased at 20 weeks. Meanwhile, CTRP3 decreased, while Collagen I increased significantly in the SHR rat myocardium at 20 weeks, which compared to the WKY. Moreover, the expression of α-SMA increased from 12 weeks, Collagen I/III and MMP2/9 increased and TIMP-2 decreased until 20 weeks. In order to explore the function and mechanism of CTRP3 in hypertensive fibrosis, Angiotensin II (Ang II) was used to induce hypertension in primary neonatal rat cardiac fibroblasts in vitro . CTRP3 significantly inhibited the Ang II induced activation of fibrotic proteins, purinergic 2X7 receptor (P2X7R)-NLRP3 inflammasome pathway. The P2X7R agonist BzATP significantly exacerbated Ang II-induced NLRP3 inflammasome activation, which was decreased by the P2X7R antagonists A43079, CTRP3 and MCC950. CONCLUSION CTRP3 expression was decreased in the myocardium of SHR rats, and exogenous CTRP3 inhibited Ang II-induced fibrosis in cardiac fibroblasts by regulating the P2X7R-NLRP3 inflammasome pathway, suggesting that CTRP3 is a potential drug for alleviating myocardial fibrosis in hypertensive conditions.
Collapse
Affiliation(s)
- Na Liu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Zhaowei Gong
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University
| | - Yang Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yang Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Yutong Guo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Wenjia Chen
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xue Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Wenxiu Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang
| |
Collapse
|
4
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
6
|
Lin H, Yi J. CTRP3 regulates NF-κB and TGFβ1/Smad3 pathways to alleviate airway inflammation and remodeling in asthmatic mice induced by OVA. Allergol Immunopathol (Madr) 2023; 51:31-39. [PMID: 37422777 DOI: 10.15586/aei.v51i4.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Asthma is a common illness with chronic airway inflammation. C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) plays a vital role ininflammatory response, but its effect on asthma is imprecise. Herein, we analyzed the functions of CTRP3 in asthma. METHODS The BALB/c mice were randomized into four groups: control, ovalbumin (OVA), OVA+vector, and OVA+CTRP3. The asthmatic mice model was established by OVA stimulation. Overexpression of CTRP3 was implemented by the transfection of corresponding adeno-associated virus 6 (AAV6). The contents of CTRP3, E-cadherin, N-cadherin, smooth muscle alpha-actin (α-SMA), phosphorylated (p)-p65/p65, transforming growth factor-beta 1 (TGFβ1), and p-Smad3/Smad3 were determined by Western blot analysis. The quantity of total cells, eosinophils, neutrophils, and lymphocytes in bronchoalveolar lavage fluid (BALF) was assessed by using a hemocytometer. The contents of tumor necrosis factor-α and interleukin-1β in BALF were examined by enzyme-linked immunesorbent serologic assay. The lung function indicators and airway resistance (AWR) were measured. The bronchial and alveolar structures were evaluated by hematoxylin and eosin staining and sirius red staining. RESULTS The CTRP3 was downregulated in mice of OVA groups; however, AAV6-CTRP3 treatment markedly upregulated the expression of CTRP3. Upregulation of CTRP3 diminished asthmatic airway inflammation by decreasing the number of inflammatory cells and the contents of proinflammatory factors. CTRP3 markedly lessened AWR and improved lung function in OVA-stimulated mice. Histological analysis found that CTRP3 alleviated OVA-induced airway remodeling in mice. Moreover, CTRP3 modulated NF-κB and TGFβ1/Smad3 pathways in OVA-stimulated mice. CONCLUSION CTRP3 alleviated airway inflammation and remodeling in OVA-induced asthmatic mice via regulating NF-κB and TGFβ1/Smad3 pathways.
Collapse
Affiliation(s)
- Hai Lin
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinrong Yi
- Department of Anesthesiology, Ganzhou Women and Children's Health Care Hospital, Ganzhou, Jiangxi, China;
| |
Collapse
|
7
|
Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling. Biomedicines 2023; 11:biomedicines11020559. [PMID: 36831095 PMCID: PMC9952994 DOI: 10.3390/biomedicines11020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.
Collapse
|
8
|
He L, Zhu C, Dou H, Yu X, Jia J, Shu M. Keloid Core Factor CTRP3 Overexpression Significantly Controlled TGF- β1-Induced Propagation and Migration in Keloid Fibroblasts. DISEASE MARKERS 2023; 2023:9638322. [PMID: 37091895 PMCID: PMC10115533 DOI: 10.1155/2023/9638322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 04/25/2023]
Abstract
Purpose Keloid is a type of benign fibrous proliferative tumor characterized by excessive scarring. C1q/TNF-related protein 3 (CTRP3) has been proven to possess antifibrotic effect. Here, we explored the role of CTRP3 in keloid. In the current research, we examined the influence of CTRP3 on keloid fibroblasts (KFs) and investigated the potential molecular mechanism. Methods KF tissue specimens and adjacent normal fibroblast (NF) tissues were collected cultured from 10 keloid participants. For the TGF-β1 stimulation group, KFs were processed with human recombinant TGF-β1. Cell transfection of pcDNA3.1-CTRP3 or pcDNA3.1 was performed. The siRNA of CTRP3 (si-CTRP3) or negative control siRNA (si-scramble) was transfected into KFs. Results CTRP3 was downregulated in keloid tissues and KFs. CTRP3 overexpression significantly controlled TGF-β1-induced propagation and migration in KFs. Col I, α-SMA, and fibronectin mRNA and protein levels were enhanced by TGF-β1 stimulation, whereas they were inhibited by CTRP3 overexpression. In contrast, CTRP3 knockdown exhibited the opposite effect. In addition, CTRP3 attenuated TGF-β receptors TRI and TRII in TGF-β1-induced KFs. Furthermore, CTRP3 prevented TGF-β1-stimulated nuclear translocation of smad2 and smad3 and suppressed the expression levels of p-smad2 and p-smad3 in KFs. Conclusion CTRP3 exerted an antifibrotic role through inhibiting proliferation, migration, and ECM accumulation of KFs via regulating TGF-β1/Smad signal path.
Collapse
Affiliation(s)
- Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chan Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huicong Dou
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueyuan Yu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Jia
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Maoguo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
9
|
Yu H, Zhang Z, Li G, Feng Y, Xian L, Bakhsh F, Xu D, Xu C, Vong T, Wu B, Selaru FM, Wan F, Donowitz M, Wong GW. Adipokine C1q/Tumor Necrosis Factor- Related Protein 3 (CTRP3) Attenuates Intestinal Inflammation Via Sirtuin 1/NF-κB Signaling. Cell Mol Gastroenterol Hepatol 2022; 15:1000-1015. [PMID: 36592863 PMCID: PMC10040965 DOI: 10.1016/j.jcmgh.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS The adipokine CTRP3 has anti-inflammatory effects in several nonintestinal disorders. Although serum CTRP3 is reduced in patients with inflammatory bowel disease (IBD), its function in IBD has not been established. Here, we elucidate the function of CTRP3 in intestinal inflammation. METHODS CTRP3 knockout (KO) and overexpressing transgenic (Tg) mice, along with their corresponding wild-type littermates, were treated with dextran sulfate sodium for 6-10 days. Colitis phenotypes and histologic data were analyzed. CTRP3-mediated signaling was examined in murine and human intestinal mucosa and mouse intestinal organoids derived from CTRP3 KO and Tg mice. RESULTS CTRP3 KO mice developed more severe colitis, whereas CTRP3 Tg mice developed less severe colitis than wild-type littermates. The deletion of CTRP3 correlated with decreased levels of Sirtuin-1 (SIRT1), a histone deacetylase, and increased levels of phosphorylated/acetylated NF-κB subunit p65 and proinflammatory cytokines tumor necrosis factor-α and interleukin-6. Results from CTRP3 Tg mice were inverse to those from CTRP3 KO mice. The addition of SIRT1 activator resveratrol to KO intestinal organoids and SIRT1 inhibitor Ex-527 to Tg intestinal organoids suggest that SIRT1 is a downstream effector of CTRP3-related inflammatory changes. In patients with IBD, a similar CTRP3/SIRT1/NF-κB relationship was observed. CONCLUSIONS CTRP3 expression levels correlate negatively with intestinal inflammation in acute mouse colitis models and patients with IBD. CTRP3 may attenuate intestinal inflammation via SIRT1/NF-κB signaling. The manipulation of CTRP3 signaling, including through the use of SIRT1 activators, may offer translational potential in the treatment of IBD.
Collapse
Affiliation(s)
- Huimin Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Zixin Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gangping Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yan Feng
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital, Penn Medicine, Philadelphia, Pennsylvania
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fatemeh Bakhsh
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tyrus Vong
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bin Wu
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Bi J, Duan Y, Wang M, He C, Li X, Zhang X, Tao Y, Du Y, Liu H. Deletion of large-conductance calcium-activated potassium channels promotes vascular remodelling through the CTRP7-mediated PI3K/Akt signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-11. [PMID: 36514218 PMCID: PMC10157624 DOI: 10.3724/abbs.2022179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The large-conductance calcium-activated potassium (BK) channel is a critical regulator and potential therapeutic target of vascular tone and architecture, and abnormal expression or dysfunction of this channel is linked to many vascular diseases. Vascular remodelling is the early pathological basis of severe vascular diseases. Delaying the progression of vascular remodelling can reduce cardiovascular events, but the pathogenesis remains unclear. To clarify the role of BK channels in vascular remodelling, we use rats with BK channel α subunit knockout (BK α ‒/‒). The results show that BK α ‒/‒ rats have smaller inner and outer diameters, thickened aortic walls, increased fibrosis, and disordered elastic fibers of the aortas compared with WT rats. When the expression and function of BK α are inhibited in human umbilical arterial smooth muscle cells (HUASMCs), the expressions of matrix metalloproteinase 2 (MMP2), MMP9, and interleukin-6 are enhanced, while the expressions of smooth muscle cell contractile phenotype proteins are reduced. RNA sequencing, bioinformatics analysis and qPCR verification show that C1q/tumor necrosis factor-related protein 7 ( CTRP7) is the downstream target gene. Furthermore, except for that of MMPs, a similar pattern of IL-6, smooth muscle cell contractile phenotype proteins expression trend is observed after CTRP7 knockdown. Moreover, knockdown of both BK α and CTRP7 in HUASMCs activates PI3K/Akt signaling. Additionally, CTRP7 is expressed in vascular smooth muscle cells (VSMCs), and BK α deficiency activates the PI3K/Akt pathway by reducing CTRP7 level. Therefore, we first show that BK channel deficiency leads to vascular remodelling. The BK channel and CTRP7 may serve as potential targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Bi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Chunyu He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xiaoyue Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yan Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yunhui Du
- Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| |
Collapse
|
11
|
Wang SX, Feng YN, Feng S, Wu JM, Zhang M, Xu WL, Zhang YY, Zhu HB, Xiao H, Dong ED. IMM-H007 attenuates isoprenaline-induced cardiac fibrosis through targeting TGFβ1 signaling pathway. Acta Pharmacol Sin 2022; 43:2542-2549. [PMID: 35354962 PMCID: PMC9525664 DOI: 10.1038/s41401-022-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Upon chronic stress, β-adrenergic receptor activation induces cardiac fibrosis and leads to heart failure. The small molecule compound IMM-H007 has demonstrated protective effects in cardiovascular diseases via activation of AMP-activated protein kinase (AMPK). This study aimed to investigate IMM-H007 effects on cardiac fibrosis induced by β-adrenergic receptor activation. Because adenosine analogs also exert AMPK-independent effects, we assessed AMPK-dependent and -independent IMM-H007 effects in murine models of cardiac fibrosis. Continual subcutaneous injection of isoprenaline for 7 days caused cardiac fibrosis and cardiac dysfunction in mice in vivo. IMM-H007 attenuated isoprenaline-induced cardiac fibrosis, diastolic dysfunction, α-smooth muscle actin expression, and collagen I deposition in both wild-type and AMPKα2-/- mice. Moreover, IMM-H007 inhibited transforming growth factor β1 (TGFβ1) expression in wild-type, but not AMPKα2-/- mice. By contrast, IMM-H007 inhibited Smad2/3 signaling downstream of TGFβ1 in both wild-type and AMPKα2-/- mice. Surface plasmon resonance and molecular docking experiments showed that IMM-H007 directly interacts with TGFβ1, inhibits its binding to TGFβ type II receptors, and downregulates the Smad2/3 signaling pathway downstream of TGFβ1. These findings suggest that IMM-H007 inhibits isoprenaline-induced cardiac fibrosis via both AMPKα2-dependent and -independent mechanisms. IMM-H007 may be useful as a novel TGFβ1 antagonist.
Collapse
Affiliation(s)
- Shuai-Xing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ye-Nan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Shan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ji-Min Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Mi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wen-Li Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Hai-Bo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| |
Collapse
|
12
|
Decreased Epicardial CTRP3 mRNA Levels in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease Undergoing Elective Cardiac Surgery: A Possible Association with Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms23179988. [PMID: 36077376 PMCID: PMC9456433 DOI: 10.3390/ijms23179988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.
Collapse
|
13
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
14
|
Micallef P, Vujičić M, Wu Y, Peris E, Wang Y, Chanclón B, Ståhlberg A, Cardell SL, Wernstedt Asterholm I. C1QTNF3 is Upregulated During Subcutaneous Adipose Tissue Remodeling and Stimulates Macrophage Chemotaxis and M1-Like Polarization. Front Immunol 2022; 13:914956. [PMID: 35720277 PMCID: PMC9202579 DOI: 10.3389/fimmu.2022.914956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023] Open
Abstract
The adipose tissue undergoes substantial tissue remodeling during weight gain-induced expansion as well as in response to the mechanical and immunological stresses from a growing tumor. We identified the C1q/TNF-related protein family member C1qtnf3 as one of the most upregulated genes that encode secreted proteins in tumor-associated inguinal adipose tissue - especially in high fat diet-induced obese mice that displayed 3-fold larger tumors than their lean controls. Interestingly, inguinal adipose tissue C1qtnf3 was co-regulated with several macrophage markers and chemokines and was primarily expressed in fibroblasts while only low levels were detected in adipocytes and macrophages. Administration of C1QTNF3 neutralizing antibodies inhibited macrophage accumulation in tumor-associated inguinal adipose tissue while tumor growth was unaffected. In line with this finding, C1QTNF3 exerted chemotactic actions on both M1- and M2-polarized macrophages in vitro. Moreover, C1QTNF3 treatment of M2-type macrophages stimulated the ERK and Akt pathway associated with increased M1-like polarization as judged by increased expression of M1-macrophage markers, increased production of nitric oxide, reduced oxygen consumption and increased glycolysis. Based on these results, we propose that macrophages are recruited to adipose tissue sites with increased C1QTNF3 production. However, the impact of the immunomodulatory effects of C1QTNF3 in adipose tissue remodeling warrants future investigations.
Collapse
Affiliation(s)
- Peter Micallef
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ying Wang
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Belén Chanclón
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
15
|
Song Y, Zhang Y, Wan Z, Pan J, Gao F, Li F, Zhou J, Chen J. CTRP3 alleviates myocardial ischemia/reperfusion injury in mice through activating LAMP1/JIP2/JNK pathway. Int Immunopharmacol 2022; 107:108681. [PMID: 35278832 DOI: 10.1016/j.intimp.2022.108681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Myocardial ischemia reperfusion (I/R) injury is an important complication of myocardial infarction reperfusion therapy, and no effective treatment has been identified. Based on preexisting evidence, C1q/tumor necrosis factor-related protein 3 (CTRP3) has been reported to be closely associated with myocardial dysfunction. In this study, we found that CTRP3 was downregulated in acute coronary syndrome (ACS) patients and myocardial I/R mice. Silence of CTRP3 aggravated cardiac systolic function due to I/R of mice, while CTRP3 overexpression ameliorated cardiac function. Moreover, overexpression of CTRP3 improved I/R inhibitory effects on the levels of creatinine phosphokinase (CPK), lactate dehydrogenase (LDH) and cardiac troponin-I (cTn-I), myocardial infarction area, the intensity of the 3-nitrotyrosine (3-NT), apoptosis and protein levels of LAMP1, JNK-Interacting Protein-2 (JIP-2) and JNK, while these effects could be exacerbated by downregulation of CTRP3. Co-IP experiments could identify physical interactions between CTRP3 and lysosomal-associated membrane protein 1 (LAMP1) and Numb and JIP2. LAMP1 silence aggravated the inhibition effects of I/R on JIP2 and JNK protein expression, CPK, LDH and cTn-I levels and caspase-3 activity, while overexpression of LAMP1 recovered these inhibition effects of I/R. JNK inhibitor (SP600125) could reverse the inhibitory effects of CTRP3 overexpression on CPK, LDH, cTn-I, myocardial infarction, strong positive staining for 3-NT and apoptosis. These findings demonstrated that CTRP3 protected against injury caused by myocardial I/R through activating LAMP1/JIP2/JNK pathway to attenuate myocardial injury, improve left ventricular function, decrease myocardial infarction, and reduce myocardial apoptosis.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China.
| | - Yunqing Zhang
- Department of Pathology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Zhaofei Wan
- Department of Cardiology, the Second AffiliatedHospital of Xi'an Jiaotong University, Xi'an 710038, China
| | - Junqiang Pan
- Department of Cardiology, Xi'an Central Hospital, Xi'an 710061, China
| | - Feng Gao
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Fei Li
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Jing Zhou
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Junmin Chen
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| |
Collapse
|
16
|
Xue K, Shao S, Fang H, Ma L, Li C, Lu Z, Wang G. Adipocyte-Derived CTRP3 Exhibits Anti-Inflammatory Effects via LAMP1-STAT3 Axis in Psoriasis. J Invest Dermatol 2022; 142:1349-1359.e8. [PMID: 34687744 DOI: 10.1016/j.jid.2021.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022]
Abstract
Psoriasis is a systemic disease that is associated with metabolic disorders, which may contribute to abnormal adipokine levels. However, the underlying mechanism is largely unknown. Here, we investigated the role of the adipokine CTRP3 in the pathogenesis of psoriasis and comorbidities. The circulating CTRP3 level in patients with psoriasis was significantly lower than that in healthy controls and negatively correlated with metabolic risk factors. Rescuing CTRP3 levels with the GLP-1 receptor agonist exendin-4 in diet-induced obese mice could alleviate its more severe psoriatic symptoms in an imiquimod-induced mouse model. Topical application of CTRP3 also exerted a protective effect on imiquimod-induced normal diet mice. Moreover, CTRP3 could directly inhibit the inflammatory responses of psoriatic keratinocytes by blocking phosphorylation of signal transducer and activator of transcription 3 via LAMP1 in vitro. We identified the critical psoriatic cytokines, including IL-17A and TNF-α, that impaired adipocyte differentiation and sufficient CTRP3 secretion. In sum, our study reveals that adipocyte dysfunction and low level of CTRP3 caused by IL-17A exacerbates psoriasis progression and related metabolic syndrome, implying a mechanism underlying the vicious cycle between psoriasis and metabolic disorders. Pharmacological agents that improve CTRP3 level in obese patients with psoriasis may be considered as a potential strategy for psoriasis treatment.
Collapse
Affiliation(s)
- Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lirong Ma
- College of Life Sciences, Northwest University, Xi'an, China
| | - Caixia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Zhang L, Ding H, Shi Y, Zhang D, Yang X. CTRP9 decreases high glucose‑induced trophoblast cell damage by reducing endoplasmic reticulum stress. Mol Med Rep 2022; 25:185. [PMID: 35348185 PMCID: PMC8985207 DOI: 10.3892/mmr.2022.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
C1q/TNF-α-related protein 9 (CTRP9) is downregulated in gestational diabetes mellitus (GDM) and may exert a protective effect against GDM, although its mechanism of action is yet to be elucidated. To investigate the specific role of CTRP9 in GDM, the human placental trophoblast cell line HTR8/SVneo was treated with high glucose (HG) to simulate the environment of GDM in vitro. The effects of CTRP9 on the HTR8/SVneo cells and endoplasmic reticulum (ER) stress were analyzed before and after CTRP9 overexpression using reverse transcription-quantitative PCR and western blotting. The results obtained demonstrated that CTRP9 alleviated ER stress in the trophoblast cell line. After treating with the ER-stress inducer tunicamycin, cell viability was investigated by performing Cell Counting Kit-8, TUNEL and western blotting assays, which revealed that CTRP9 increased the activity of HTR8/SVneo cells induced by HG through the alleviation of ER stress. Subsequently, ELISA and western blotting assay results demonstrated that CTRP9 inhibited HG-induced inflammation of the HTR8/SVneo cells by the reduction in ER stress. Finally, the detection of reactive oxygen species, nitric oxide (NO) synthase and NO levels confirmed that CTRP9 inhibited the oxidative stress of HTR8/SVneo cells induced by HG through the reduction of ER stress. Collectively, the results of the present study suggested that CTRP9 may decrease trophoblast cell damage caused by HG through the suppression of ER stress, and therefore, CTRP9 may potentially be a therapeutic target in the treatment of GDM.
Collapse
Affiliation(s)
- Lianxiao Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yubo Shi
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Duoyi Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue Yang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
18
|
Yildirim A, Kucukosmanoglu M, Sumbul HE, Koc M. Reduced CTRP3 Levels in Patients with Stable Coronary Artery Disease and Related with the Presence of Paroxysmal Atrial Fibrillation. Arq Bras Cardiol 2022; 118:52-58. [PMID: 35195208 PMCID: PMC8959053 DOI: 10.36660/abc.20200669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Serum Complement C1q/tumor necrosis factor-related protein-3 (CTRP3) levels and the relationship with atrial fibrillation (AF) in stable coronary artery disease (CAD) are not clearly known. OBJECTIVE The aim of this study was to investigate the change in serum CTRP3 levels and its relationship with paroxysmal AF in stable CAD. METHOD The study included 252 patients with CAD and 50 age-sex matched healthy control subjects. Serum CTRP3 levels were measured in addition to routine anamnesis, physical examination, laboratory and echocardiography examinations. The patients were divided into groups with and without CAD and CAD patients with and without paroxysmal AF. Statistical significance was accepted as p<0.05. RESULTS Serum CTRP3 levels were found to be significantly lower in patients with CAD than in the control group (p<0.001). AF was detected in 38 patients (15.08%) in the CAD group. The frequency of hypertension and female gender, hs-CRP, blood urea nitrogen, creatinine levels and left atrial end-diastolic (LAd) diameter were higher (p<0.05 for each one), and CTRP3 levels were lower in patients with AF (p <0.001). In the logistic regression analysis, serum CTRP3 levels and LAd diameters were independently determined the patients with AF (p<0.01 for each one). In this analysis, we found that every 1 ng/mL reduction in CTRP3 levels increased the risk of AF by 10.7%. In the ROC analysis of CTRP3 values for detecting patients with AF, the area under the ROC curve for CTRP3 was 0.971 (0.951-991) and was statistically significant (p<0.001). When the CTRP3 cut-off value was taken as 300 ng/mL, it was found to predict the presence of AF with 87.9% sensitivity and 86.8% specificity. CONCLUSION Serum CTRP3 levels were significantly reduced in patients with stable CAD and decreased CTRP3 levels were closely related to the presence of paroxysmal AF in these patients.
Collapse
Affiliation(s)
- Arafat Yildirim
- Departamento de Cardiologia , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| | - Mehmet Kucukosmanoglu
- Departamento de Cardiologia , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| | - Hilmi Erdem Sumbul
- Departamento de Medicina Interna , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| | - Mevlut Koc
- Departamento de Cardiologia , University of Health Sciences - Adana Health Practice and Research Center , Adana - Turquia
| |
Collapse
|
19
|
Mourilhe-Rocha R, Bittencourt MI. CTRP-3 Levels in Patients with Stable Coronary Artery Disease and Paroxysmal Atrial Fibrillation: A New Potential Biomarker in Cardiovascular Diseases. Arq Bras Cardiol 2022; 118:59-60. [PMID: 35195209 PMCID: PMC8959052 DOI: 10.36660/abc.20210940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ricardo Mourilhe-Rocha
- Universidade do Estado do Rio de Janeiro - Cardiologia, Rio de Janeiro, RJ - Brasil.,Hospital Pró-Cardíaco - Américas Serviços Médicos, Rio de Janeiro, RJ - Brasil
| | | |
Collapse
|
20
|
Zhang J, Lin X, Xu J, Tang F, Tan L. CTRP3 protects against uric acid-induced endothelial injury by inhibiting inflammation and oxidase stress in rats. Exp Biol Med (Maywood) 2022; 247:174-183. [PMID: 34601891 PMCID: PMC8777481 DOI: 10.1177/15353702211047183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia, which contributes to vascular endothelial damage, plays a key role in multiple cardiovascular diseases. This study was designed to investigate whether C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) has a protective effect on endothelial damage induced by uric acid and its underlying mechanisms. Animal models of hyperuricemia were established in Sprague-Dawley (SD) rats through the consumption of 10% fructose water for 12 weeks. Then, the rats were given a single injection of Ad-CTRP3 or Ad-GFP. The animal experiments were ended two weeks later. In vitro, human umbilical vein endothelial cells (HUVECs) were first infected with Ad-CTRP3 or Ad-GFP. Then, the cells were stimulated with 10 mg/dL uric acid for 48 h after pretreatment with or without a Toll-like receptor 4 (TLR4)-specific inhibitor. Hyperuricemic rats showed disorganized intimal structures, increased endothelial apoptosis rates, increased inflammatory responses and oxidative stress, which were accompanied by reduced CTRP3 and elevated TLR4 protein levels in the thoracic aorta. In contrast, CTRP3 overexpression decreased TLR4 protein levels and ameliorated inflammatory responses and oxidative stress, thereby improving the morphology and apoptosis of the aortic endothelium in rats with hyperuricemia. Similarly, CTRP3 overexpression decreased TLR4-mediated inflammation, reduced oxidative stress, and rescued endothelial damage induced by uric acid in HUVECs. In conclusion, CTRP3 ameliorates uric acid-induced inflammation and oxidative stress, which in turn protects against endothelial injury, possibly by inhibiting TLR4-mediated inflammation and downregulating oxidative stress.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Xue Lin
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
| | - Jinxiu Xu
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Feng Tang
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- School of Medicine, Wuhan University of Science and Technology,
Wuhan 430065, China
| | - Lupin Tan
- Department of Endocrinology, Central Theater Command General
Hospital of the Chinese PLA, Wuhan 430070, China
- The First School of Clinical Medicine, Southern Medical
University, Guangzhou 510515, China
| |
Collapse
|
21
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
22
|
Ghosh AK. Acetyltransferase p300 Is a Putative Epidrug Target for Amelioration of Cellular Aging-Related Cardiovascular Disease. Cells 2021; 10:cells10112839. [PMID: 34831061 PMCID: PMC8616404 DOI: 10.3390/cells10112839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the leading cause of accelerated as well as chronological aging-related human morbidity and mortality worldwide. Genetic, immunologic, unhealthy lifestyles including daily consumption of high-carb/high-fat fast food, lack of exercise, drug addiction, cigarette smoke, alcoholism, and exposure to environmental pollutants like particulate matter (PM)-induced stresses contribute profoundly to accelerated and chronological cardiovascular aging and associated life threatening diseases. All these stressors alter gene expression epigenetically either through activation or repression of gene transcription via alteration of chromatin remodeling enzymes and chromatin landscape by DNA methylation or histone methylation or histone acetylation. Acetyltransferase p300, a major epigenetic writer of acetylation on histones and transcription factors, contributes significantly to modifications of chromatin landscape of genes involved in cellular aging and cardiovascular diseases. In this review, the key findings those implicate acetyltransferase p300 as a major contributor to cellular senescence or aging related cardiovascular pathologies including vascular dysfunction, cardiac hypertrophy, myocardial infarction, cardiac fibrosis, systolic/diastolic dysfunction, and aortic valve calcification are discussed. The efficacy of natural or synthetic small molecule inhibitor targeting acetyltransferase p300 in amelioration of stress-induced dysregulated gene expression, cellular aging, and cardiovascular disease in preclinical study is also discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Zhang R, Guo C, Liu T, Li W, Chen X. MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3). Bioengineered 2021; 12:6902-6912. [PMID: 34516334 PMCID: PMC8806502 DOI: 10.1080/21655979.2021.1973878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a type of lethal cancer in the world and its treatment options produce limited and unsatisfactory effectiveness. MicroRNAs (miRNAs) that play critical roles in tumorigenesis have shown promising clinical therapeutic potential. Here, we reported that miRNA-495 (miR-495) plays important roles in inhibiting HCC cell growth via its regulation of cell-cycle progression as well as senescence. MiR-495 showed low levels in human HCC tissues and cells. Overexpressing miR-495 in HCC cells caused strong cell growth inhibition, which results from cell-cycle arrest and senescence. CTRP3 functioned as a possible target of miR-495 in HCC cells by bioinformatics prediction and biological assay. By inhibiting the expression of CTRP3 with siRNA, HCC cells also showed similar growth inhibition as miR-495 overexpression. The re-expression of CTRP3 in HCC cells with high-level miR-495 abolished miR-495 and caused cell growth inhibition. These results strongly suggested that CTRP3 was the functional target that weakened the effects of miR-495 in HCC cells. The in vivo experiment demonstrated miR-495 overexpression had great therapeutic effects on HCC in xenograft. Above all, this research revealed that miR-495 is essential in suppressing HCC growth, and its application serves as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City Province, Hubei, China
| | - Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City Province, Hubei, China
| | - Ting Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City Province, Hubei, China
| | - Wenting Li
- Department of Infectious Disease, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xiliu Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City Province, Hubei, China
| |
Collapse
|
24
|
Koteliukh M. Features of Changes in the Structural and Functional State of the Myocardium in
Patients with Acute Myocardial Infarction Depending on Body Mass Index Considering FABP4
and CTRP3 Levels. GALICIAN MEDICAL JOURNAL 2021. [DOI: 10.21802/gmj.2021.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction. Adipokines such as fatty acid-binding protein 4 (FABP4) and C1q
tumor necrosis factor-related protein 3 (CTRP3) can affect the structural and functional
state of the myocardium in patients with acute myocardial infarction and obesity.
The objective of the research was to determine the relationship between FABP4, CTRP3 and
echocardiographic parameters of the left ventricular myocardium in patients with acute
myocardial infarction depending on body mass index.
Materials and Methods. The
observational cross-sectional study examined 189 patients with acute myocardial
infarction depending on body mass index, who were divided into the following groups:
Group 1 included 60 patients with acute myocardial infarction and normal body mass
index; Group 2 comprised 68 patients with acute myocardial infarction and excess body
weight; Group 3 included 61 patients with acute myocardial infarction and obesity.
Results. In Group 1, the statistical significance correlations were found: between FABP4
and end-diastolic dimension (EDD; r = -0.458), end-systolic dimension (ESD; r = -0.460),
end-diastolic volume (EDV; r = -0.452), left ventricular myocardial mass (LVMM; r =
-0.411), LVMM/body surface area index (LVMMI2; r = -0.419); between CTRP3 and EDV (r =
0.425), EDD (r = 0.469), left ventricular relative posterior wall thickness (LVRPWT; r =
-0.469). In Group 2, there were found the statistical significance relationships
between: FABP4 and EDD (r = 0.461), ESD (r = 0.467), EDV (r = 0.449), end-systolic
volume (ESV; r = 0.485), LVMM (r = 0.487), LVMMI1 (r = 0.406); between CTRP3 and EDD (r
= -0.440), EDV (r = -0.413), LVMM (r = -0.430), LVMM/height2.7 index (LVMMI1; r =
-0.483). In Group 3, the statistical significance correlations were found between: FABP4
and EDV (r = 0.481), ESD (r = 0.411), ESV (r = 0.490), LVMMI1 (r = 0.403); between CTRP3
and EDV (r = -0.326), ESD (r = -0.367), ESV (r = -0.453), LVMMI1 (r = -0.415).
Conclusions. In patients with acute myocardial infarction and overweight/obesity,
echocardiographic parameters had a significant low positive correlation with FABP4 and a
low negative correlation with CTRP3. On the contrary, in patients with acute myocardial
infarction and normal body mass index, echocardiographic parameters had a significant
low negative correlation with FABP4 and a low positive correlation with CTRP3.
Collapse
|
25
|
CTRP3 promotes TNF-α-induced apoptosis and barrier dysfunction in salivary epithelial cells. Cell Signal 2021; 85:110042. [PMID: 33991612 DOI: 10.1016/j.cellsig.2021.110042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND C1q/tumour necrosis factor-related protein 3 (CTRP3) plays important roles in metabolism and inflammatory responses in various cells and tissues. However, the expression and function of CTRP3 in salivary glands have not been explored. METHODS The expression and distribution of CTRP3 were detected by western blot, polymerase chain reaction, immunohistochemical and immunofluorescence staining. The effects of CTRP3 on tumour necrosis factor (TNF)-α-induced apoptosis and barrier dysfunction were detected by flow cytometry, western blot, co-immunoprecipitation, and measurement of transepithelial resistance and paracellular tracer flux. RESULTS CTRP3 was distributed in both acinar and ductal cells of human submandibular gland (SMG) and was primarily located in the ducts of rat and mouse SMGs. TNF-α increased the apoptotic rate, elevated expression of cleaved caspase 3 and cytochrome C, and reduced B cell lymphoma-2 (Bcl-2) levels in cultured human SMG tissue and SMG-C6 cells, and CTRP3 further enhanced TNF-α-induced apoptosis response. Additionally, CTRP3 aggravated TNF-α-increased paracellular permeability. Mechanistically, CTRP3 promoted TNF-α-enhanced TNF type I receptor (TNFR1) expression, inhibited the expression of cellular Fas-associated death domain (FADD)-like interleukin-1β converting enzyme inhibitory protein (c-FLIP), and increased the recruitment of FADD with receptor-interacting protein kinase 1 and caspase 8. Moreover, CTRP3 was significantly increased in the labial gland of Sjögren's syndrome patients and in the serum and SMG of nonobese diabetic mice. CONCLUSIONS These findings suggest that the salivary glands are a novel source of CTRP3 synthesis and secretion. CTRP3 might promote TNF-α-induced cell apoptosis through the TNFR1-mediated complex II pathway.
Collapse
|
26
|
CTRP3 ameliorates cerulein-induced severe acute pancreatitis in mice via SIRT1/NF-κB/p53 axis. Biosci Rep 2021; 40:222486. [PMID: 32219332 PMCID: PMC7560515 DOI: 10.1042/bsr20200092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute pancreatitis (SAP) is a common and life-threatening clinical acute abdominal disease. C1q/tumor necrosis factor-related protein 3 (CTRP3), a novel paralog of adiponectin, has been identified as a crucial regulator in multiple types of inflammatory disorders. However, the biological role of CTRP3 in SAP remains poorly understood. The present study aimed to characterize the role of CTRP3 in SAP and illuminate the potential mechanisms involved. In the current study, SAP mouse models were induced by seven hourly intraperitoneal injection of cerulein (50 μg/kg) and an immediate intraperitoneal injection of lipopolysaccharide (10 mg/kg) after the last cerulein administration. Histological examination and serological analysis demonstrated that SAP mouse models were successfully established. Herein, we found that CTRP3 expression was significantly decreased in the pancreatic tissues of SAP mice compared with normal control mice. Furthermore, we explored the effects of CTRP3 rescue in SAP mice and discovered that CTRP3 overexpression attenuated pathological lesions, inhibited inflammatory mediator release and repressed acinar cell apoptosis. Notably, mechanistic studies revealed that CTRP3 overexpression suppressed NF-κB p65 phosphorylation and p53 acetylation to alleviate cerulein-induced SAP in mouse models through activation of silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent protein deacetylase. Collectively, our data indicate that CTRP3 may exert its protective effects in SAP mice via regulation of SIRT1-mediated NF-κB and p53 signaling pathways, implying a promising therapeutic strategy against SAP.
Collapse
|
27
|
C1q Complement/Tumor Necrosis Factor-Associated Proteins in Cardiovascular Disease and COVID-19. Proteomes 2021; 9:proteomes9010012. [PMID: 33804408 PMCID: PMC7931048 DOI: 10.3390/proteomes9010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
With continually improving treatment strategies and patient care, the overall mortality of cardiovascular disease (CVD) has been significantly reduced. However, this success is a double-edged sword, as many patients who survive cardiovascular complications will progress towards a chronic disorder over time. A family of adiponectin paralogs designated as C1q complement/tumor necrosis factor (TNF)-associated proteins (CTRPs) has been found to play a role in the development of CVD. CTRPs, which are comprised of 15 members, CTRP1 to CTRP15, are secreted from different organs/tissues and exhibit diverse functions, have attracted increasing attention because of their roles in maintaining inner homeostasis by regulating metabolism, inflammation, and immune surveillance. In particular, studies indicate that CTRPs participate in the progression of CVD, influencing its prognosis. This review aims to improve understanding of the role of CTRPs in the cardiovascular system by analyzing current knowledge. In particular, we examine the association of CTRPs with endothelial cell dysfunction, inflammation, and diabetes, which are the basis for development of CVD. Additionally, the recently emerged novel coronavirus (COVID-19), officially known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has been found to trigger severe cardiovascular injury in some patients, and evidence indicates that the mortality of COVID-19 is much higher in patients with CVD than without CVD. Understanding the relationship of CTRPs and the SARS-CoV-2-related damage to the cardiovascular system, as well as the potential mechanisms, will achieve a profound insight into a therapeutic strategy to effectively control CVD and reduce the mortality rate.
Collapse
|
28
|
Li X, Yang Y, Chen S, Zhou J, Li J, Cheng Y. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci 2021; 271:119186. [PMID: 33577852 DOI: 10.1016/j.lfs.2021.119186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is a reactive remodeling process in response to myocardial injury. It is mainly manifested by the proliferation of cardiac muscle fibroblasts and secreting extracellular matrix (ECM) proteins to replace damaged tissue. However, the excessive production and deposition of extracellular matrix, and the rising proportion of type I and type III collagen lead to pathological fibrotic remodeling, thereby facilitating the development of cardiac dysfunction and eventually causing heart failure with heightened mortality. Currently, the molecular mechanisms of MF are still not fully understood. With the development of epigenetics, it is found that epigenetics controls the transcription of pro-fibrotic genes in MF by DNA methylation, histone modification and noncoding RNAs. In this review, we summarize and discuss the research progress of the mechanisms underlying MF from the perspective of epigenetics, including the newest m6A modification and crosstalk between different epigenetics in MF. We also offer a succinct overview of promising molecules targeting epigenetic regulators, which may provide novel therapeutic strategies against MF.
Collapse
Affiliation(s)
- Xuping Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sixuan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jingyan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
29
|
Chen L, Liu S, Xu W, Zhang Y, Bai J, Li L, Cui M, Sun L. Association of Plasma C1q/TNF-Related Protein 3 (CTRP3) in Patients with Atrial Fibrillation. Mediators Inflamm 2020; 2020:8873152. [PMID: 33424438 PMCID: PMC7781729 DOI: 10.1155/2020/8873152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/12/2020] [Indexed: 01/03/2023] Open
Abstract
Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia characterized by atrial remodeling. Complement C1q tumor necrosis factor-related protein 3 (CTRP3) is one of the adipokines associated with obesity, diabetes, and coronary heart disease. The association between plasma CTRP3 levels and AF is uncertain. The aim of this study was to investigate whether plasma CTRP3 concentrations were correlated with AF. Our study included 75 AF patients who underwent catheter ablation at our hospital and 47 sinus rhythm patients to determine the difference in plasma CTRP3 concentrations. Blood samples before the ablation were collected, and ELISA was used to measure the concentrations of CTRP3. Plasma CTRP3 concentrations were significantly lower in AF patients compared with control group (366.9 ± 105.2 ng/ml vs. 429.1 ± 100.1 ng/ml, p = 0.002). In subgroup studies, patients with persistent AF had lower plasma CTRP3 concentrations than those with paroxysmal AF (328.3 ± 83.3 ng/ml vs. 380.0 ± 109.2 ng/ml, p = 0.037). The concentrations of plasma CTRP3 in the recurrence group after radiofrequency catheter ablation of AF were lower than those in the nonrecurrence group (337.9 ± 77.3 ng/ml vs. 386.6 ± 108.1 ng/ml, p = 0.045). Multivariate regression analysis revealed the independent correlation between plasma CTRP3 level and AF. Plasma CTRP3 concentrations were correlated with the presence of AF and AF recurrence.
Collapse
Affiliation(s)
- Liwen Chen
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Shuwang Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Wei Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yuan Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jin Bai
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lei Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ming Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lijie Sun
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
30
|
Guo B, Zhuang T, Xu F, Lin X, Li F, Shan SK, Wu F, Zhong JY, Wang Y, Zheng MH, Xu QS, Ehsan UMH, Yuan LQ. New Insights Into Implications of CTRP3 in Obesity, Metabolic Dysfunction, and Cardiovascular Diseases: Potential of Therapeutic Interventions. Front Physiol 2020; 11:570270. [PMID: 33343381 PMCID: PMC7744821 DOI: 10.3389/fphys.2020.570270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue, as the largest endocrine organ, secretes many biologically active molecules circulating in the bloodstream, collectively termed adipocytokines, which not only regulate the metabolism but also play a role in pathophysiological processes. C1q tumor necrosis factor (TNF)-related protein 3 (CTRP3) is a member of C1q tumor necrosis factor-related proteins (CTRPs), which is a paralog of adiponectin. CTRP3 has a wide range of effects on glucose/lipid metabolism, inflammation, and contributes to cardiovascular protection. In this review, we comprehensively discussed the latest research on CTRP3 in obesity, diabetes, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tongtian Zhuang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ullah Muhammad Hasnain Ehsan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Zhao Q, Zhang CL, Xiang RL, Wu LL, Li L. CTRP15 derived from cardiac myocytes attenuates TGFβ1-induced fibrotic response in cardiac fibroblasts. Cardiovasc Drugs Ther 2020; 34:591-604. [PMID: 32424654 DOI: 10.1007/s10557-020-06970-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Cardiac fibrosis is characterized by net accumulation of extracellular matrix (ECM) components in the myocardium and facilitates the development of heart failure. C1q/tumor necrosis factor-related protein 15 (CTRP15) is a novel member of the CTRP family, and its gene expression is detected in adult mouse hearts. The present study was performed to determine the effect of CTRP15 on pressure overload-induced fibrotic remodeling. METHODS Mice were subjected to transverse aortic constriction (TAC) surgery, and adeno-associated virus serotype 9 (AAV9)-carrying mouse CTRP15 gene was injected into mice to achieve CTRP15 overexpression in the myocardium. Adenovirus carrying the gene encoding CTRP15 or small interfering RNA (siRNA) of interest was infected into cultured neonatal mouse ventricular cardiomyocytes (NMVCs) or cardiac fibroblasts (CFs). Gene expression was measured by quantitative real-time PCR, and protein expression and distribution were determined by Western blotting, immunocytochemistry, and immunofluorescence staining. RESULTS CTRP15 was predominantly produced by cardiac myocytes. CTRP15 expression in the left ventricles was downregulated in mice that underwent TAC. AAV9-mediated CTRP15 overexpression alleviated ventricular remodeling and dysfunction in the pressure-overloaded mice. Treatment of CFs with recombinant CTRP15 or the conditioned medium containing CTRP15 inhibited transforming growth factor (TGF)-β1-induced Smad3 activation and myofibroblast differentiation. CTRP15 increased phosphorylation of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and Akt. Blockade of IR/IRS-1/Akt pathway reversed the inhibitory effect of CTRP15 on TGF-β1-induced Smad3 activation. CONCLUSION CTRP15 exerts an anti-fibrotic effect on pressure overload-induced cardiac remodeling. The activation of IR/IRS-1/Akt pathway contributes to the anti-fibrotic effect of CTRP15 through targeting Smad3.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
32
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
34
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
35
|
Wang P, Chen W, Ma T, Lin Z, Liu C, Liu Y, Hou FF. lncRNA lnc-TSI Inhibits Metastasis of Clear Cell Renal Cell Carcinoma by Suppressing TGF-β-Induced Epithelial-Mesenchymal Transition. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1-16. [PMID: 32882480 PMCID: PMC7479258 DOI: 10.1016/j.omtn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/14/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
Abstract
The transforming growth factor-β (TGF-β)/Smads signal plays an important role in cancer metastasis by mediating the epithelial-mesenchymal transition (EMT) in cancer cells. lnc-TSI is a recently identified long noncoding RNA that negatively regulates the TGF-β/Smads signal. The present study was conducted to test the hypothesis that lnc-TSI inhibits metastasis in clear cell renal cell carcinoma (ccRCC) by regulating the TGF-β/Smad3 pathway. Herein, we show that lnc-TSI was upregulated in ccRCC cells and tissue and was associated with activation of the TGF-β/Smads signal. Depleting lnc-TSI enhanced tumor cell invasion and metastasis in vitro and ccRCC lung metastasis in vivo, whereas overexpressing lnc-TSI inhibited ccRCC cell invasion and tumor metastasis. Mechanistic studies indicated that lnc-TSI specifically inhibited the phosphorylation of Smad3 and subsequent EMT by binding with the MH2 domain of Smad3 to block the interaction between Smad3 and TGF-β receptor I in ccRCC cells. In a cohort of 150 patients with ccRCC, expression of lnc-TSI in tumors was negatively correlated with phosphorylated (p)Smad3 and activated EMT markers. Patients with expression of tumor lnc-TSI greater than or equal to the median at radical nephrectomy had a higher survival rate compared to those with lnc-TSI below the median during follow-up. These findings reveal a new regulatory mechanism of ccRCC metastasis and suggest a potential molecular target for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Peng Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Weixiong Chen
- Department of Stomatology, Longgang District Central Hospital, Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518116, China
| | - Tongtong Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhaoyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chongbin Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.
| |
Collapse
|
36
|
Abstract
Purpose of Review In recent years, a family of adiponectin paralogs designated as C1q/TNF-related protein (CTRP) has attracted increasing attention. They are inflammatory adipocytokines mostly secreted from epicardial adipose tissue, which modulate the development and prognosis of coronary artery disease (CAD). This review summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of CAD. Recent Findings Recent studies have revealed how members of the CTRP family, CTRP1, CTRP3, CTRP5, CTRP9, CTRP12, and CTRP13, can influence both development and progression of CAD by modulating metabolic pathways, influencing immuno-inflammatory response, and regulating cardiovascular functions. Summary Research to date has not been sufficient to answer the specific mechanism of the CTRP family in the occurrence and development of CAD. This review explores the evidence of CTRP superfamily regulating different pathophysiology stages of CAD through the immuno-inflammation, glucose and lipid metabolism, and vascular endothelial function.
Collapse
Affiliation(s)
- Yueqiao Si
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Wenjun Fan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
37
|
Ma ZG, Yuan YP, Zhang X, Xu SC, Kong CY, Song P, Li N, Tang QZ. C1q-tumour necrosis factor-related protein-3 exacerbates cardiac hypertrophy in mice. Cardiovasc Res 2020; 115:1067-1077. [PMID: 30407523 DOI: 10.1093/cvr/cvy279] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/11/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS C1q-tumour necrosis factor-related protein-3 (CTRP3) is an adipokine and a paralog of adiponectin. Our previous study showed that CTRP3 attenuated diabetes-related cardiomyopathy. However, the precise role of CTRP3 in cardiac hypertrophy remains unclear. This study was aimed to clarify the role of CTRP3 involved in cardiac hypertrophy. METHODS AND RESULTS Cardiomyocyte-specific CTRP3 overexpression was achieved using an adeno-associated virus system, and cardiac CTRP3 expression was knocked down using gene delivery of specific short hairpin RNAs in vivo. CTRP3 expression was upregulated in murine hypertrophic hearts and failing human hearts. Increased CTRP3 was mainly derived from cardiomyocytes and induced by the production of reactive oxygen species (ROS) during the hypertrophic response. CTRP3-overexpressing mice exhibited exacerbated cardiac hypertrophy and cardiac dysfunction in response to pressure overload. Conversely, Ctrp3 deficiency in the heart resulted in an alleviated hypertrophic phenotype. CTRP3 induced hypertrophy in cardiomyocytes, which could be blocked by the addition of CTRP3 antibody in the media. Detection of signalling pathways showed that pressure overload-induced activation of the transforming growth factor β-activated kinase 1 (TAK1)-c-Jun N-terminal kinase (JNK) pathway was enhanced by CTRP3 overexpression and inhibited by CTRP3 disruption. Furthermore, we found that CTRP3 lost its pro-hypertrophic effects in cardiomyocyte-specific Tak1 knockout mice. Protein kinase A (PKA) was involved in the activation of TAK1 by CTRP3. CONCLUSION In conclusion, our results suggest that CTRP3 promotes pressure overload-induced cardiac hypertrophy via activation of the TAK1-JNK axis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
38
|
Mohamadinarab M, Ahmadi R, Gholamrezayi A, Rahvar F, Naghdalipour M, Setayesh L, Moradi N, Fadaei R, Chamani E, Tavakoli T, Esteghamati A. Serum levels of C1q/TNF-related protein-3 in inflammatory bowel disease patients and its inverse association with inflammatory cytokines and insulin resistance. IUBMB Life 2020; 72:1698-1704. [PMID: 32311832 DOI: 10.1002/iub.2293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are two major forms of inflammatory bowel disease (IBD), which is an inflammatory disease. Studies have shown that adipose tissue and inflammation play important roles in the pathogenesis of IBD. C1q/TNF-related protein-3 (CTRP3) is a newly discovered adipokine playing a substantial role during inflammatory process, and for the first time in the present study, serum levels of this adipokine were measured in the UC and CD patients. This case-control study included 70 control, 50 UC, and 50 CD patients who were diagnosed by standard criteria. Serum levels of adiponectin, IL-6, TNF-α, TGF-β, and CTRP3 were evaluated using ELISA kits. Serum levels of IL-6, TNF-α, and TGF-β elevated in the UC and CD patients compared with the controls while adiponectin and CTRP3 diminished in the patient's groups compared with the control. Furthermore, decrease in CTRP3 serum levels was associated with the risk of UC and CD diseases. Moreover, CTRP3 indicated negative correlation with BMI, FBS, insulin, homeostasis model assessment of insulin resistance, IL-6, TNF-α, and TGF-β and also a positive correlation with adiponectin in both the UC and CD patients. For the first time, the present study demonstrated lower levels of CTRP3 in the UC and CD patients. Decreased serum levels of CTRP3 and its inverse relationship with inflammatory cytokines and TGF-β levels suggested a possible role for CTRP3 in the pathogenesis of UC and CD diseases.
Collapse
Affiliation(s)
- Maryam Mohamadinarab
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Afsane Gholamrezayi
- Department of Nutrition, School of Public Health-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rahvar
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehri Naghdalipour
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Chamani
- Cardiovascular Diseases Research Centre, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahmine Tavakoli
- Cardiovascular Diseases Research Centre, Birjand University of Medical Sciences, Birjand, Iran.,Department of Internal Medicine, Gastroenterology Section, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Abdoulreza Esteghamati
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Rodriguez S, Little HC, Daneshpajouhnejad P, Shepard BD, Tan SY, Wolfe A, Cheema MU, Jandu S, Woodward OM, Talbot CC, Berkowitz DE, Rosenberg AZ, Pluznick JL, Wong GW. Late-onset renal hypertrophy and dysfunction in mice lacking CTRP1. FASEB J 2020; 34:2657-2676. [PMID: 31908037 PMCID: PMC7739198 DOI: 10.1096/fj.201900558rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Local and systemic factors that influence renal structure and function in aging are not well understood. The secretory protein C1q/TNF-related protein 1 (CTRP1) regulates systemic metabolism and cardiovascular function. We provide evidence here that CTRP1 also modulates renal physiology in an age- and sex-dependent manner. In mice lacking CTRP1, we observed significantly increased kidney weight and glomerular hypertrophy in aged male but not female or young mice. Although glomerular filtration rate, plasma renin and aldosterone levels, and renal response to water restriction did not differ between genotypes, CTRP1-deficient male mice had elevated blood pressure. Echocardiogram and pulse wave velocity measurements indicated normal heart function and vascular stiffness in CTRP1-deficient animals, and increased blood pressure was not due to greater salt retention. Paradoxically, CTRP1-deficient mice had elevated urinary sodium and potassium excretion, partially resulting from reduced expression of genes involved in renal sodium and potassium reabsorption. Despite renal hypertrophy, markers of inflammation, fibrosis, and oxidative stress were reduced in CTRP1-deficient mice. RNA sequencing revealed alterations and enrichments of genes in metabolic processes in CTRP1-deficient animals. These results highlight novel contributions of CTRP1 to aging-associated changes in renal physiology.
Collapse
Affiliation(s)
- Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C. Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Blythe D. Shepard
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y. Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad Umar Cheema
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Owen M. Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan E. Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Zhu H, Ding Y, Zhang Y, Ding X, Zhao J, Ouyang W, Gong J, Zou Y, Liu X, Wu W. CTRP3 induces an intermediate switch of CD14 ++CD16 + monocyte subset with anti-inflammatory phenotype. Exp Ther Med 2020; 19:2243-2251. [PMID: 32104290 PMCID: PMC7027268 DOI: 10.3892/etm.2020.8467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) evokes a temporally coordinated immune response, in which monocytes are critically involved in the clearance of cell debris; however, excessive inflammation induced by the classical sub-population of monocytes frequently limits the endogenous reparative process. In the present study, the potential of the anti-inflammatory adipokine complement C1q tumor necrosis factor (TNF)-related protein-3 (CTRP3) to induce intermediate switch of monocytes to an anti-inflammatory phenotype was explored. Circulating monocytes were isolated from patients with AMI at various time-points (3–5 h, 3 days and 7 days) and categorized by flow cytometry/immunostaining into three sub-divisions based on the expression of CD14 and CD16 epitopes: Classical (CD14++/CD16−), non-classical (CD14+/CD16++) and intermediate populations (CD14++/CD16+). The phagocytic activity was evaluated by the ingestion of FITC-Zymosan and 19F-nanoemulsion and the migratory activity using Thin Cert™ Transwell assay. Monocytes were cultured using autologous serum in the presence of CTRP3 (1 µg/ml) for 24 h and the expression of interleukin 6 (IL-6) and TNF-α was quantified by reverse-transcription quantitative PCR. In addition, SB203580, a p38 mitogen-activated protein kinase (MAPK)/ERK inhibitor, was used to examine the downstream pathways of CTRP3. AMI evoked a transient increase in monocyte counts of the classical subset after onset of the ischemic insult, while the non-classical and intermediate subsets persistently expanded (P<0.01). The monocytes from patients at 3 days after AMI displayed enhanced phagocytic and migratory activities in comparison with those from healthy volunteers (P<0.01). Of note, addition of CTRP3 induced an intermediate switch of monocyte subsets and antagonized the enhanced expression of cytokines, particularly IL-6, in monocytes stressed by lipopolysaccharides, likely by blunting the ERK1/2 and P38 MAPK signaling pathway. In conclusion, the present study demonstrated a dynamic fluctuation of monocyte subsets and enhanced phagocytic and migratory activities in patients with AMI. Furthermore, the ‘proof-of-concept’ evidence pinpoints CTRP3 as an alternative candidate to modulate the ‘uncontrolled’ inflammatory response and thus to augment cardiac reparative processes in patients with AMI.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Yuan Ding
- Department of Clinical Laboratory, Danyang Hospital for Chinese Traditional Medicine, Danyang, Jiangsu 212300, P.R. China
| | - Youming Zhang
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xiaojun Ding
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Jianfeng Zhao
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Weili Ouyang
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Junhui Gong
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Yuqin Zou
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xueqing Liu
- Department of Cardiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Weidong Wu
- Department of Anesthesiology, People's Hospital of Danyang, The Affiliated Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| |
Collapse
|
41
|
Gao L, Wang LY, Liu ZQ, Jiang D, Wu SY, Guo YQ, Tao HM, Sun M, You LN, Qin S, Cheng XC, Xie JS, Chang GL, Zhang DY. TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways. Cell Death Dis 2020; 11:44. [PMID: 31969558 PMCID: PMC6976710 DOI: 10.1038/s41419-020-2243-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Tissue nonspecific alkaline phosphatase (TNAP) is expressed widely in different tissues, modulating functions of metabolism and inflammation. However, the effect of TNAP on cardiac fibrosis remains controversial and needs to be further studied. The present study aims to investigate the role of TNAP on myocardial infarction (MI)-induced fibrosis and its mechanism. TNAP was upregulated in patients with MI, both in serum and injured hearts, and predicted in-hospital mortality. TNAP was also significantly upregulated after MI in rats, mostly in the border zone of the infarcted hearts combined with collagen synthesis. Administration of TNAP inhibitor, tetramisole, markedly improved cardiac function and fibrosis after MI. In the primary cultures of neonatal rat cardiac fibroblasts (CFs), TNAP inhibition significantly attenuated migration, differentiation, and expression of collagen-related genes. The TGF-β1/Smads signaling suppression, and p-AMPK and p53 upregulation were involved in the process. When p53 inhibitor was administered, the antifibrotic effect of TNAP inhibition can be blocked. This study provides a direct evidence that inhibition of TNAP might be a novel regulator in cardiac fibrosis and exert an antifibrotic effect mainly through AMPK-TGF-β1/Smads and p53 signals.
Collapse
Affiliation(s)
- Lei Gao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li-You Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Qiang Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dan Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shi-Yong Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Qian Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong-Mei Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Min Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin-Na You
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shu Qin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao-Cheng Cheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Shi Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guang-Lei Chang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Dong-Ying Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
42
|
Potential targets for intervention against doxorubicin-induced cardiotoxicity based on genetic studies: a systematic review of the literature. J Mol Cell Cardiol 2020; 138:88-98. [DOI: 10.1016/j.yjmcc.2019.11.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
43
|
Meng J, Wang DM, Luo LL. CTRP3 acts as a novel regulator in depressive-like behavior associated inflammation and apoptosis by meditating p38 and JNK MAPK signaling. Biomed Pharmacother 2019; 120:109489. [PMID: 31629950 DOI: 10.1016/j.biopha.2019.109489] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022] Open
Abstract
Depression is a complicated etiological pattern, and its pathology and effective treatments are highly limited.C1q-tumor necrosis factor-related protein-3 (CTRP3) is an adipokine, playing crucial roles in metabolic regulatory properties. However, the effects of CTRP3 on depression are largely unknown. In the present study, we found that CTRP3 expression levels were markedly reduced in hippocampus of mice with depression induced by chronic unpredictable mild stress (CUMS). In mouse model with depression, CTRP3-deficient mice aggravated depression-associated behaviors, as evidenced by the reduced locomotor activity and sucrose consumption, while the elevated immobility time in the tail suspension test (TST) and forced swimming test (FST). Moreover, CUMS-induced neuron death and increased expression of cleaved Caspase-3 were significantly accelerated by CTRP3 knockout. Furthermore, CTRP3 deletion intensified pro-inflammatory response in CUMS-exposed mice, which was associated with the activation of nuclear factor-κB(NF-κB) signaling. The activity of mitogen-activated protein kinases (MAPKs), including p38 and JNK, was further promoted in hippocampus of CTRP3-knockout mice with CUMS exposure. In contrast,CTRP3 over-expression showed anti-apoptotic and anti-inflammatory effects in lipopolysaccharide (LPS)-treated microglial cells. Importantly, the in vitro experiments demonstrated that CTRP3 knockdown-exacerbated apoptosis and inflammatory responsewere remarkably abrogated by the blockage of p38 and JNK signaling pathways in microglia stimulated by LPS. Next, in CUMS-exposed mice with CTRP3 deficiency, suppressing p38 and JNK markedly alleviated depressive-like behavior,hippocampal neuron death, apoptosis and inflammation. Therefore, CTRP3 may be an innovative therapeutic target for treating patients with depression through regulating p38 and JNK signaling.
Collapse
Affiliation(s)
- Jing Meng
- Department of Geriatrics, Wuhan Mental Health Center, Wuhan, 430022, China
| | - Dong-Ming Wang
- Department of Geriatric Psychiatry, Qingdao Mental Heath Center, Qingdao, 266034, China
| | - Li-Ling Luo
- Department of Psychosomatic, The Fourth People's Hospital of Shaanxi, Xi'an, 710043, China.
| |
Collapse
|
44
|
Berberine inhibits epithelial-mesenchymal transition and promotes apoptosis of tumour-associated fibroblast-induced colonic epithelial cells through regulation of TGF-β signalling. J Cell Commun Signal 2019; 14:53-66. [PMID: 31399854 DOI: 10.1007/s12079-019-00525-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Tumour-associated fibroblasts (TAFs) mediate the differentiation of adjacent stromal cells. Berberine (BBR), a monomer of traditional Chinese herbs, exhibits a potent therapeutic effect against cancer. However, the effects of BBR on the differentiation of normal colonic epithelial cells induced by TAFs have not been determined. In the present study, we selected the TAF-like myofibroblast cell line CCD-18Co. CCD-18Co-derived conditioned medium (CM) and co-culture induced epithelial-mesenchymal transition (EMT) changes in colonic epithelial HCoEpiC cells with decreased E-cadherin and increased vimentin and α-SMA expression. In addition, CCD-18Co stimulated the expression of ZEB1 and Snail and promoted motility. We used LY364947, a TGF-β receptor kinase type I (TβRI) inhibitor, and BBR. Our results showed that LY364947 and BBR inhibited these phenomena. BBR decreased the expression of ZEB1 and Snail, and this effect was concentration dependent. BBR also downregulated the expression of TβRI, TβRII, Smad2/p-Smad2 and Smad3/p-Smad3. In addition, BBR induced apoptosis in EMT-like HCoEpiC cells in a concentration-dependent manner with upregulation of Bax and downregulation of Bcl-2. However, VX-702, an inhibitor of p38 MAPK, significantly suppressed the apoptosis rate. BBR promoted the expression of p38 MAPK and phosphorylated p38 MAPK. In conclusion, berberine inhibits EMT and promotes apoptosis in TAF-induced colonic epithelial cells through mediation of the Smad-dependent and SMAD-independent TGF-β signalling pathways.
Collapse
|
45
|
CTRP3 Protects against High Glucose-Induced Cell Injury in Human Umbilical Vein Endothelial Cells. Anal Cell Pathol (Amst) 2019; 2019:7405602. [PMID: 31428552 PMCID: PMC6681575 DOI: 10.1155/2019/7405602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022] Open
Abstract
Aims Inflammation was closely associated with diabetes-related endothelial dysfunction. C1q/tumor necrosis factor-related protein 3 (CTRP3) is a member of the CTRP family and can provide cardioprotection in many cardiovascular diseases via suppressing the production of inflammatory factors. However, the role of CTRP3 in high glucose- (HG-) related endothelial dysfunction remains unclear. This study evaluates the effects of CTRP3 on HG-induced cell inflammation and apoptosis. Materials and Methods To prevent high glucose-induced cell injury, human umbilical vein endothelial cells (HUVECs) were pretreated with recombinant CTRP3 for 1 hour followed by normal glucose (5.5 mmol/l) or high glucose (33 mmol/l) treatment. After that, cell apoptosis and inflammatory factors were determined. Results Our results demonstrated that CTRP3 mRNA and protein expression were significantly decreased after HG exposure in HUVECs. Recombinant human CTRP3 inhibited HG-induced accumulation of inflammatory factors and cell loss in HUVECs. CTRP3 treatment also increased the phosphorylation levels of protein kinase B (AKT/PKB) and the mammalian target of rapamycin (mTOR) in HUVECs. CTRP3 lost its inhibitory effects on HG-induced cell inflammation and apoptosis after AKT inhibition. Knockdown of endogenous CTRP3 in HUVECs resulted in increased inflammation and decreased cell viability in vitro. Conclusions Taken together, these findings indicated that CTRP3 treatment blocked the accumulation of inflammatory factors and cell loss in HUVECs after HG exposure through the activation of AKT-mTOR signaling pathway. Thus, CTRP3 may be a potential therapeutic drug for the prevention of diabetes-related endothelial dysfunction.
Collapse
|
46
|
Yang Y, Chen S, Tao L, Gan S, Luo H, Xu Y, Shen X. Inhibitory Effects of Oxymatrine on Transdifferentiation of Neonatal Rat Cardiac Fibroblasts to Myofibroblasts Induced by Aldosterone via Keap1/Nrf2 Signaling Pathways In Vitro. Med Sci Monit 2019; 25:5375-5388. [PMID: 31325292 PMCID: PMC6662943 DOI: 10.12659/msm.915542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Radix Sophorae flavescentis, has widely reported pharmacological efficacy in treating cardiovascular dysfunction-related diseases. However, the underlying mechanism has been unclear. Here, we investigated the potential inhibitory effects and mechanism of OMT on transdifferentiation of cardiac fibroblast to myofibroblasts induced by aldosterone in vitro. Material/Methods The cardiac fibroblasts (CFBs) proliferation and migration capacity were evaluated by MTT assay, cell cycle assay, and scratch analysis, respectively. The protein expression of the Nrf2/Keap1 signal pathway, FN, Collagen I, Collagen III, α-SMA, CTGF, and mineralocorticoid receptor (MR) protein was detected by Western blot analysis. The mRNA expression of Nrf2 was detected by qRT-PCR. Immunofluorescence staining was used to observe the expression of α-SMA protein. Nrf2 siRNA was used to explore the role of Nrf2 in OMT-treated CFBs. GSH, SOD, and MDA levels and hydroxyproline content were measured by colorimetric assay with commercial kits. The DCFH-DA fluorescent probe was used to assess cellular ROS levels. Results OMT and Curcumin (an Nrf2 agonist) attenuated aldosterone (ALD)-induced proliferation and migration in CFBs, as well as the fibrosis-associated protein expression levels. Moreover, OMT activated Nrf2 and promoted the nucleus translocation of Nrf2. OMT alleviated the elevated levels of α-SMA, Collagen I, Collagen III, and CTGF, which were abrogated by the Nrf2 siRNA transfection. We also found that OMT decreased oxidative stress levels. Conclusions Our results confirm that OMT alleviates transdifferentiation of cardiac fibroblasts to myofibroblasts induced by aldosterone via activating the Nrf2/Keap1 pathway in vitro.
Collapse
Affiliation(s)
- Yu Yang
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Shiping Chen
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Shiquan Gan
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Hong Luo
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Yini Xu
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Xiangchun Shen
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
47
|
Zhang Z, Zhu L, Feng P, Tan Y, Zhang B, Gao E, Wang X, Fan C, Wang X, Yi W, Sun Y. C1q/tumor necrosis factor-related protein-3-engineered mesenchymal stromal cells attenuate cardiac impairment in mice with myocardial infarction. Cell Death Dis 2019; 10:530. [PMID: 31296837 PMCID: PMC6624206 DOI: 10.1038/s41419-019-1760-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) transplantation offers an attractive alternative in myocardial infarctive therapy. However, poor cell engraftment and survival limit their restorative capacity. C1q/tumor necrosis factor-related protein-3 (CTRP3) inhibits reverse remodeling after myocardial infarction (MI) and was found to be secreted by MSCs in our preliminary experiments. We examined whether the overexpression of CTRP3 improved the survival of transplanted MSCs and augmented their efficacy on MI and whether silencing CTRP3 attenuated these effects. For gain-of-function analysis, MSCs overexpressing CTRP3 (LvC3-MSCs), control virus-transfected MSCs (LvNull-MSCs), MSCs alone, or phosphate-buffered saline (PBS) were injected into the peripheral areas of the infarction immediately after coronary artery ligation. For loss-of-function analysis, mice subjected to MI were randomized into groups and administered CTRP3-knockdown MSCs (LvshC3-MSCs), Lvshctrl-MSCs, MSCs, or PBS. Survival rates, cardiac function, and myocardial remodeling in mice were evaluated after 4 weeks. Injection of MSCs or LvNull-MSCs improved the left ventricular ejection fraction, inhibited cardiac fibrosis, and regulated cellular profiles of the infarction border zone 4 weeks after MI compared with those in the PBS group. Furthermore, overexpression of hCTRP3 promoted the efficacy of MSCs in the treatment of MI. However, knocking down CTRP3 impaired that. Coculture experiments confirmed that hCTRP3-enriched conditioned medium (CM) promoted MSCs migration and protected against H2O2-induced cell damage. Conversely, CM from C3−/− MSCs (CTRP3 knock out) significantly reduced the migration and antioxidative effects of MSCs. CTRP3 protein alone promoted MSCs proliferation and migration by upregulating matrix metalloproteinase 9 (MMP9) and protecting against oxidation by increasing superoxide dismutase 2 (SOD2) and metallothionein 1/2 (MT1/2) expression; and these effects were blocked by pretreatment with the extracellular signal-regulated kinase (ERK1/2) inhibitor U0126. Overexpression of CTRP3 significantly improved the MSCs-based efficacy on MI by increasing cell survival and retention via a mechanism involving ERK1/2-MMP9 and ERK1/2-SOD2/MT1/2 signaling.
Collapse
Affiliation(s)
- Zhengbin Zhang
- Department of Geriatric, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Liwen Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China.,Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, 710077, Xi'an, China
| | - Pan Feng
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 19140, Philadelphia, PA, USA
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Chongxi Fan
- Department of Biomedical Engineering, the Fourth Military Medical University, 710032, Xían, China
| | - Xiaoming Wang
- Department of Geriatric, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China.
| | - Yang Sun
- Department of Geriatric, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
48
|
C1q-TNF-related protein-3 attenuates pressure overload-induced cardiac hypertrophy by suppressing the p38/CREB pathway and p38-induced ER stress. Cell Death Dis 2019; 10:520. [PMID: 31285424 PMCID: PMC6614451 DOI: 10.1038/s41419-019-1749-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
C1q-tumor necrosis factor-related protein-3 (CTRP3) is an adipokine, which exerts protective function in ischemic or diabetic heart injury. However, the role of CTRP3 in cardiac hypertrophy remains unclear. The aim of this study was to investigate the pharmacological effects of CTRP3 on pathological cardiac hypertrophy induced by hypertension. Male C57BL/6 J wild-type (WT) mice, Ctrp3 knockout mice, and mice infected with lentivirus overexpressing mouse Ctrp3 underwent sham surgery or transverse aortic constriction (TAC) surgery. After 4 weeks, cardiac hypertrophy, fibrosis, and cardiac function were examined. Compared with WT mice, Ctrp3 deficiency substantially impaired contractile dysfunction, exacerbated the enlargement of cardiomyocytes and myocardial fibrosis, and reprogramed the expression of pathological genes after TAC. Conversely, CTRP3 overexpression played a role in restoring the left ventricular cardiac contractile function, alleviating cardiac hypertrophy and fibrosis, and inhibiting the expression of hypertrophic and fibrotic signaling in mice after TAC. Furthermore, CTRP3 regulated the expression of the p38/CREB pathway and of the primary modulating factors of the endoplasmic reticulum stress, i.e., GRP78 and the downstream molecules eukaryotic translation inhibition factor 2 submit α, C/EBP homologous protein, and inositol-requiring enzyme-1. Further, inhibition of p38 MAPK by SB203580 blunted the ER stress intensified by Ctrp3 deficiency. In vitro, CTRP3 protected neonatal rat cardiac myocytes against phenylephrine-induced cardiomyocyte hypertrophy. We conclude that CTRP3 protects the host against pathological cardiac remodeling and left ventricular dysfunction induced by pressure overload largely by inhibiting the p38/CREB pathway and alleviating p38-induced ER stress.
Collapse
|
49
|
Ge W, Zhang W, Gao R, Li B, Zhu H, Wang J. IMM-H007 improves heart function via reducing cardiac fibrosis. Eur J Pharmacol 2019; 857:172442. [PMID: 31181209 DOI: 10.1016/j.ejphar.2019.172442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023]
Abstract
Cardiac dysfunction is a pathological state characterized by damaged ability of the left ventricle (LV) to either eject or fill blood accompanied by cardiac hypertrophy and fibrosis. IMM-H007, an adenosine derivative, is an activator of AMP-Activated Protein Kinase (AMPK). AMPK can decrease the transforming growth factor-β1 (TGF-β1) expression during fibrosis. Therefore, we hypothesized that IMM-H007 contributed to cardiac dysfunction by mediating cardiac fibrosis. To test this hypothesis, we used angiotensin II (AngII)-induced cardiac remodeling model treated with IMM-H007 or vehicle. Echocardiography measurements showed that IMM-H007 significantly improved heart function indicated by increased LV ejection fraction (%LVEF) and LV fractional shortening (%LVFS). Histological staining and qRT-PCR analysis revealed that IMM-H007 markedly reduced AngII-induced cardiac fibroblast activation (α-smooth muscle actin and periostin) and matrix protein production (Collagen I and Collagen III). However, IMM-H007 did not affect AngII-induced cardiac hypertrophy. Immunoblotting analysis revealed that IMM-H007 activated AMPK, decreased the expression of TGF-β1, and inhibited the activation of Smad2 in heart tissues. In mouse primary cultured cardiac fibroblasts, pharmacological activation of AMPK by IMM-H007 significantly reduced AngII-induced TGF-β1 expression as well. Consistently, in human cardiac fibroblasts-adult ventricular (HCF-av), IMM-H007 activated AMPK and markedly suppressed AngII-induced TGF-β1 expression. These results together reveal that IMM-H007 improves heart function, and alleviates AngII-induced cardiac fibrosis by regulating AMPK-TGF-β1 signaling. These findings suggest IMM-H007 as a potential drug for treating cardiac dysfunction.
Collapse
Affiliation(s)
- Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| |
Collapse
|
50
|
Chen X, Wu Y, Diao Z, Han X, Li D, Ruan X, Liu W. C1q/tumor necrosis factor‐related protein‐3 improves renal fibrosis via inhibiting notch signaling pathways. J Cell Physiol 2019; 234:22352-22364. [PMID: 31074042 DOI: 10.1002/jcp.28801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xinpan Chen
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Yiru Wu
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Zongli Diao
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Xue Han
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Dishan Li
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Xiongzhong Ruan
- Department of Nephrology, John Moorhead Research Laboratory, University College London Medical School, Royal Free Campus University College London London United Kingdom
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| |
Collapse
|