1
|
Ge Q, Zhang T, Yu J, Lu X, Xiao S, Zhang T, Qing T, Xiao Z, Zeng L, Luo L. A new perspective on targeting pulmonary arterial hypertension: Programmed cell death pathways (Autophagy, Pyroptosis, Ferroptosis). Biomed Pharmacother 2024; 181:117706. [PMID: 39581144 DOI: 10.1016/j.biopha.2024.117706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease characterized by elevated pulmonary vascular resistance, progressive increases in pulmonary artery pressures, ultimately leading to right-sided heart failure, and potentially mortality. Pulmonary vascular remodeling is pivotal in PAH onset and progression. While targeted drug therapies have notably ameliorated PAH prognosis, current medications primarily focus on vascular vasodilation, with limited ability to reverse pulmonary vascular remodeling fundamentally, resulting in suboptimal patient prognoses. Cellular death in pulmonary vasculature, once thought to be confined to apoptosis and necrosis, has evolved with the identification of pyroptosis, autophagy, and ferroptosis, revealing their association with vascular injury in PAH. These novel forms of regulated cellular death impact reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, leading to pulmonary vascular cell loss, exacerbating vascular injury, and mediating adverse remodeling, inflammation, immune anomalies, and current emerging mechanisms (such as endothelial-mesenchymal transition, abnormal energy metabolism, and epigenetic regulation) in the pathogenesis of PAH. This review comprehensively delineates the roles of autophagy, pyroptosis, and ferroptosis in PAH, elucidating recent advances in their involvement and regulation of vascular injury. It juxtaposes their distinct functions in PAH and discusses the interplay of these programmed cell deaths in pulmonary vascular injury, highlighting the benefits of combined targeted therapies in mitigating pulmonary arterial hypertension-induced vascular injury, providing novel insights into targeted treatments for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Jiangbiao Yu
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Xuelin Lu
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Sijie Xiao
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Ting Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Tao Qing
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China.
| |
Collapse
|
2
|
Zhao G, Hu Y. Mechanistic insights into intrauterine adhesions. Semin Immunopathol 2024; 47:3. [PMID: 39613882 DOI: 10.1007/s00281-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Intrauterine adhesions (IUA), also known as Asherman's syndrome, arise from damage to the basal layer of the endometrium, frequently caused by intrauterine interventions. This damage leads to nonregenerative healing of endometrium resulting in replacement by fibrous connective tissue, which bring about the adherence of opposing endometrium to render the uterine cavity and/or cervical canal partially or completely obliterated. IUA is a common cause of the refractory uterine infertility. Hysteroscopy is the gold standard for diagnosis of IUA. However, the method of accurately predicting the likelihood of achieving a live birth in the future remains established. Classical treatments have shown limited success, particularly in severe cases. Therefore, utilizing new research methods to deepen the understanding of the pathogenesis of IUA will facilitate the new treatment approaches to be found. In this article we briefly described the advances in the pathogenesis of IUA, with focus on inflammation and parenchymal cellular homeostasis disruption, defects in autophagy and the role of ferroptosis, and we also outlined the progress in IUA therapy.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
4
|
Cannarella R, Crafa A, Curto R, Mongioì LM, Garofalo V, Cannarella V, Condorelli RA, La Vignera S, Calogero AE. Human sperm RNA in male infertility. Nat Rev Urol 2024:10.1038/s41585-024-00920-9. [PMID: 39256514 DOI: 10.1038/s41585-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 09/12/2024]
Abstract
The function and value of specific sperm RNAs in apparently idiopathic male infertility are currently poorly understood. Whether differences exist in the sperm RNA profile between patients with infertility and fertile men needs clarification. Similarly, the utility of sperm RNAs in predicting successful sperm retrieval and assisted reproductive technique (ART) outcome is unknown. Patients with infertility and fertile individuals seem to have differences in the expression of non-coding RNAs that regulate genes controlling spermatogenesis. Several RNAs seem to influence embryo quality and development. Also, RNA types seem to predict successful sperm retrieval in patients with azoospermia. These findings suggest that sperm RNAs could influence decision-making during the management of patients with infertility. This evidence might help to identify possible therapeutic approaches aimed at modulating the expression of dysregulated genes in patients with infertility. Performing prospective studies with large sample sizes is necessary to investigate cost-effective panels consisting of proven molecular targets to ensure that this evidence can be translated to clinical practice.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vittorio Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Kumari S, Singh P, Singh R. Repeated Silica exposures lead to Silicosis severity via PINK1/PARKIN mediated mitochondrial dysfunction in mice model. Cell Signal 2024; 121:111272. [PMID: 38944258 DOI: 10.1016/j.cellsig.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Silicosis, one of the occupational health illnesses is caused by inhalation of crystalline silica. Deposition of extracellular matrix and fibroblast proliferation in lungs are linked to silicosis development. Mitochondrial dysfunction plays critical role in some diseases, but how these processes progress and regulated in silicosis, remains limited. Detailed study of silica induced pulmonary fibrosis in mouse model, its progression and severity may be helpful in designing future therapeutic strategies. METHODS In present study, mice model of silicosis has been developed after repeated silica exposures which may closely resemble clinical symptoms of silicosis in human. In addition to efficiently mimicking the acute/chronic transformation processes of silicosis, this is practical and efficient in terms of time and output, which avoids mechanical injury to the upper respiratory tract due to surgical interventions. Sonicated sterile silica suspension (120 mg/kg) was administered through intranasal route thrice a week at regular intervals (21, 28 and 35 days). RESULTS Presence of minute to larger silicotic nodules in H&E-stained lung sections were observed in all silica induced model groups. Enhanced ECM deposition was noted in MT stained lung sections of silica exposure groups as compared to control which were confirmed by significantly higher MMP9 expression levels and hydroxyproline content in silica 35 days group. Increase in Reactive oxygen species (ROS), inflammatory cell recruitment mainly, neutrophils and macrophage were observed in all three silica exposure groups. Transmission electron microscopic analysis has confirmed presence of many aberrant shaped mitochondria (swollen, round shape) in 35 days model where autophagosomes were minimum. Western blot analysis of mitophagy and autophagy markers such as Pink1, Parkin, Cytochrome c, SQSTM1/p62, the ratio of light chain LC3B II/LC3B I was found higher in 21 and 28 days which were significantly reduced in 35 days silica model. CONCLUSIONS Higher MMP9 activity and MMP9 /TIMP1 ratio demonstrate excessive extracellular matrix damage and deposition in 35 days model. Significantly reduced expressions of autophagy and mitophagy markers have also confirmed progression in fibrosis severity and its association with repeated silica exposures in 35 days model group.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
7
|
Jin H, Liu Y, Lei Y, Li G, Huang L, Zhang Z. Hsa_circ_0004214 involved in the epithelial-mesenchymal transition induced by beryllium sulfate through modulating JAK-STAT signaling pathway. Toxicol Res (Camb) 2024; 13:tfae067. [PMID: 38711927 PMCID: PMC11069455 DOI: 10.1093/toxres/tfae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/04/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Background Chronic beryllium disease is characterized by granulomas and pulmonary fibrosis. Recent studies have shown that microRNAs (miRNAs) and circular RNAs (circRNAs) play critical roles in the pathogenesis and development of many diseases. However, the role of miRNAs and circRNAs in pulmonary fibrosis induced by beryllium sulfate (BeSO4) has not been elucidated. Methods Previous studies demonstrated hsa-miR-663b was down-regulated in the 150 μmol/L BeSO4-treated 16HBE cells, while hsa_circ_ 0004214 was up-regulated. Here we found epithelial-mesenchymal transition (EMT) involved in pulmonary fibrosis induced by BeSO4 (4, 8, and 12 mg/kg·BW) in SD rats. Results Elevated expression of hsa-miR-663b blocked the EMT progression of 16HBE cells induced by 150 μmol/L BeSO4. Notably, the overexpression of hsa-miR-663b decreased the expression of leukemia inhibitory factor (LIF), which was predicted as a target gene of hsa-miR-663b by bioinformatics tools. Furthermore, elevated miR-663b inhibited the activation of the downstream Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway induced by BeSO4 in 16HBE cells. Previous study suggested that hsa_circ_0004214 had binding sites for hsa-miR-663b. The results indicated hsa_circ_0004214 alleviated the BeSO4-induced EMT via JAK-STAT pathway in 16HBE cells. Conclusions Collectively, the overexpression of hsa-miR-663b and knockdown of hsa_circ_0004214 attenuated the EMT induced by BeSO4 through the inhibition of JAK-STAT signaling pathway. The aberrant expressed hsa-miR-663b and hsa_circ_0004214 stimulated by BeSO4 may exert an important function in the toxic mechanism of beryllium exposure to 16HBE cells, providing the potential therapeutic targets in chronic beryllium disease.
Collapse
Affiliation(s)
- Huiyun Jin
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Yanping Liu
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Yuandi Lei
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Guilan Li
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Lian Huang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Zhaohui Zhang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| |
Collapse
|
8
|
Sun W, Zhou S, Peng L, Liu Y, Cheng D, Wang Y, Ni C. CircZNF609 regulates pulmonary fibrosis via miR-145-5p/KLF4 axis and its translation function. Cell Mol Biol Lett 2023; 28:105. [PMID: 38105235 PMCID: PMC10726587 DOI: 10.1186/s11658-023-00518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a growing clinical problem that develops as a result of abnormal wound healing, leading to breathlessness, pulmonary dysfunction and ultimately death. However, therapeutic options for pulmonary fibrosis are limited because the underlying pathogenesis remains incompletely understood. Circular RNAs, as key regulators in various diseases, remain poorly understood in pulmonary fibrosis induced by silica. METHODS We performed studies with fibroblast cell lines and silica-induced mouse pulmonary fibrosis models. The expression of circZNF609, miR-145-5p, and KLF4 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RNA immunoprecipitation (RIP) assays and m6A RNA immunoprecipitation assays (MeRIP), Western blotting, immunofluorescence assays, and CCK8 were performed to investigate the role of the circZNF609/miR-145-5p/KLF4 axis and circZNF609-encoded peptides in fibroblast activation. RESULTS Our data showed that circZNF609 was downregulated in activated fibroblasts and silica-induced fibrotic mouse lung tissues. Overexpression of circZNF609 could inhibit fibroblast activation induced by transforming growth factor-β1 (TGF-β1). Mechanically, we revealed that circZNF609 regulates pulmonary fibrosis via miR-145-5p/KLF4 axis and circZNF609-encoded peptides. Furthermore, circZNF609 was highly methylated and its expression was controlled by N6-methyladenosine (m6A) modification. Lastly, in vivo studies revealed that overexpression of circZNF609 attenuates silica-induced lung fibrosis in mice. CONCLUSIONS Our data indicate that circZNF609 is a critical regulator of fibroblast activation and silica-induced lung fibrosis. The circZNF609 and its derived peptides may represent novel promising targets for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 320700, China.
| |
Collapse
|
9
|
Gong H, Lyu X, Liu Y, Peng N, Tan S, Dong L, Zhang X. Eupatilin inhibits pulmonary fibrosis by activating Sestrin2/PI3K/Akt/mTOR dependent autophagy pathway. Life Sci 2023; 334:122218. [PMID: 37918625 DOI: 10.1016/j.lfs.2023.122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive chronic inflammatory disease with poor clinical outcomes and ineffective drug treatment options. Eupatilin is a major component extracted from the traditional herbal medicine Artemisia asiatica Nakai. Notably, it was demonstrated to have an anti-fibrosis effect in endometrial fibrosis, vocal fold, and hepatic fibrosis. Its role and mechanism in IPF remain unclear. METHODS This study used the TGF-β1-induced human embryonic lung fibroblasts (MRC-5) activation, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model. Western blot, immunofluorescence staining, quantitative real time-PCR, hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry were used to evaluate the effects of eupatilin on fibroblast activation, pulmonary fibrosis, and autophagy. The autophagosomes were observed with a transmission electron microscope (TEM). RNA sequencing was used to determine the signaling pathway and key regulator related to autophagy. RESULTS Eupatilin significantly decreased the expression of Col1A1, fibronectin, α-SMA, and SQSTM1/p62. In contrast, it increased the expression of LC3B II/I and the number of autophagosomes in TGF-β1 treated MRC-5, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model; it also alleviated bleomycin-induced lung fibrosis. The KEGG pathway mapping displayed that PI3K/Akt and Sestrin2 were associated with the enhanced fibrogenic process. Eupatilin suppressed the phosphorylation of PI3K/Akt/mTOR. Autophagy inhibitor 3-methyladenine (3-MA) and Akt activator SC-79 abrogated the anti-fibrotic effect of eupatilin. Sestrin2 expression was also downregulated in TGF-β1 treated lung fibroblasts and lung tissues of the bleomycin-induced pulmonary fibrosis mice model. Furthermore, eupatilin promoted Sestrin2 expression, and the knockdown of Sestrin2 significantly aggravated the degree of fibrosis, increased the phosphorylation of PI3K/Akt/mTOR, and decreased autophagy. CONCLUSION These findings indicate that eupatilin ameliorates pulmonary fibrosis through Sestrin2/PI3K/Akt/mTOR-dependent autophagy pathway.
Collapse
Affiliation(s)
- Hui Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yang Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Naling Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China.
| |
Collapse
|
10
|
Peng X, Zhu Y, Wang T, Wang S, Sun J. Integrative analysis links autophagy to intrauterine adhesion and establishes autophagy-related circRNA-miRNA-mRNA regulatory network. Aging (Albany NY) 2023; 15:8275-8297. [PMID: 37616056 PMCID: PMC10497020 DOI: 10.18632/aging.204969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a troublesome complication characterized with endometrial fibrosis after endometrial trauma. Increasing number of investigations focused on autophagy and non-coding RNA in the pathogenesis of uterine adhesion, but the underlying mechanism needs to be further studied. METHODS mRNA expression profile and miRNA expression profile were obtained from Gene Expression Omnibus database. The autophagy related genes were low. Venn diagram was used to set the intersection of autophagy genes and DEGs to obtain ARDEGs. Circbank was used to select hub autophagy-related circRNAs based on ARDEMs. Then, the differentially expressed autophagy-related genes, miRNAs and circRNAs were analyzed by functional enrichment analysis, and protein-protein interaction network analysis. Finally, the expression levels of hub circRNAs and hub miRNAs were validated through RT-PCR of clinical intrauterine adhesion samples. In vitro experiments were investigated to explore the effect of hub ARCs on cell autophagy, myofibroblast transformation and collagen deposition. RESULTS 11 autophagy-related differentially expressed genes (ARDEGs) and 41 differentially expressed miRNA (ARDEMs) compared between normal tissues and IUA were identified. Subsequently, the autophagy-related miRNA-mRNA network was constructed and hub ARDEMs were selected. Furthermore, the autophagy-related circRNA-miRNA-mRNA network was established. According to the ranking of number of regulated ARDEMs, hsa-circ-0047959, hsa-circ-0032438, hsa-circ-0047301 were regarded as the hub ARCs. In comparison of normal endometrial tissue, all three hub ARCs were upregulated in IUA tissue. All hub ARDEMs were downregulated except has-miR-320c. CONCLUSIONS In the current study, we firstly constructed autophagy-related circRNA-miRNA-mRNA regulatory network and identified hub ARCs and ARDEMs had not been reported in IUA.
Collapse
Affiliation(s)
- Xiaotong Peng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiping Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Ma J, Xie Y, Xu Y, Gu P, Zhang Y, Fan L, Zhou Y, Wang H, Zhou T, He J, Wang D, Chen W. Neutralization of interleukin-11 attenuates silica particles-induced pulmonary inflammation and fibrosis in vivo. J Environ Sci (China) 2023; 126:772-783. [PMID: 36503802 DOI: 10.1016/j.jes.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 06/17/2023]
Abstract
Environmental exposure to crystalline silica particles can lead to silicosis, which is one of the most serious pulmonary interstitial fibrosis around the world. Unfortunately, the exact mechanism on silicosis is unclear, and the effective treatments are lacking to date. In this study, we aim to explore the molecular mechanism by which interleukin-11 (IL-11) affects silica particles-induced lung inflammation and fibrosis. We observed that IL-11 expressions in mouse lungs were significantly increased after silica exposure, and maintained at high levels across both inflammation and fibrosis phase. Immunofluorescent dual staining further revealed that the overexpression of IL-11 mainly located in mouse lung epithelial cells and fibroblasts. Using neutralizing anti-IL-11 antibody could effectively alleviate the overexpression of pro-inflammatory cytokines (i.e., interleukin-6 and tumor necrosis factor-α) and fibrotic proteins (i.e., collagen type I and matrix metalloproteinase-2) induced by silica particles. Most importantly, the expressions of IL-11 receptor subunit α (IL-11Rα), Glycoprotein 130 (GP130), and phosphorylated extracellular signal-regulated kinase (p-ERK) were significantly increased in response to silica, whereas blocking of IL-11 markedly reduced their levels. All findings suggested that the overexpression of IL-11 was involved in the pathological of silicosis, while neutralizing IL-11 antibody could effectively alleviate the silica-induced lung inflammation and fibrosis by inhibiting the IL-11Rα/GP130/ERK signaling pathway. IL-11 might be a promising therapeutic target for lung inflammation and fibrosis caused by silica particles exposure.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiju Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haijiao Wang
- National Center of Occupational Safety and Health, National Health Commission, Beijing 102300, China
| | - Ting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jintong He
- Zhuhai Center for Chronic Disease Control, Zhuhai 519000, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Fang XD, He JK, Chen YX, Ke B, Zhu SY, Fan CQ, Tu WP, Li P. MiR-449a downregulation alleviates the progression of renal interstitial fibrosis by mediating the KLF4/MFN2 axis. Int Urol Nephrol 2023:10.1007/s11255-023-03503-6. [PMID: 36781680 DOI: 10.1007/s11255-023-03503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) seriously threatens the health of individuals. MiRNAs regulate the progression of fibrosis. Nevertheless, the detailed function of miR-449a in RIF is largely unknown. METHODS In vitro and in vivo models of RIF were developed to evaluate the function of miR-449a. The relationship among miR-449a, KLF4, and MFN2 was explored using a dual-luciferase reporter assay and chromatin immunoprecipitation. Additionally, the pathological changes in the mice were detected using Masson staining. The mRNA and protein expressions were assessed using quantitative reverse transcription polymerase chain reaction and western blot, respectively. RESULTS TGF-β1 downregulated the expressions of KLF4 and MFN2 in TCMK-1 cells, but upregulated the level of miR-449a. The downregulation of miR-449a significantly inhibited TGF-β1-induced upregulation of fibrotic proteins in TCMK-1 cells. Meanwhile, miR-449a directly targeted KLF4. Moreover, KLF4 overexpression activated MFN2 transcription and reversed TGF-β1-induced fibrosis by positively regulating MFN2. Furthermore, the downregulation of miR-449a could obviously alleviate the symptoms of RIF in mice with unilateral ureteral obstruction. CONCLUSION MiR-449a downregulation attenuated the development of RIF by mediating the KLF4/MFN2 axis. Therefore, miR-449a might act as a target in treating RIF.
Collapse
Affiliation(s)
- Xiang-Dong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Jia-Ke He
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Shu-Ying Zhu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Chu-Qiao Fan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Wei-Ping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| | - Ping Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
13
|
Identification of circRNA expression profiles and the potential role of hsa_circ_0006916 in silicosis and pulmonary fibrosis. Toxicology 2023; 483:153384. [PMID: 36403901 DOI: 10.1016/j.tox.2022.153384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) are emerging as novel regulators in the biological development of various diseases, but their expression profiles, functions and mechanisms in silicosis and pulmonary fibrosis remain largely unexplored. In this study, we constructed a mouse model of pulmonary fibrosis by intratracheal injection of silica particles and then performed transcriptome RNA sequencing of lung tissues. The results showed that 78 circRNAs, 39 miRNAs and 262 mRNAs were differentially expressed. Among them, five circRNAs, three miRNAs and four mRNAs were further selected, and their abnormal expression was verified in mouse fibrotic lung tissues by RT-qPCR assay. The circRNA-associated ceRNA network including 206 ceRNA triplets was constructed based on abnormally expressed circRNAs, miRNAs and mRNAs, and miR-199b-5p, miR-296-5p and miR-708-5p were identified as hub miRNAs connected to circRNAs and mRNAs. Subsequently, GO and KEGG pathway enrichment analyses were performed to detect the potential roles of differentially expressed mRNAs in pulmonary fibrosis, which were mainly involved in immune response, Th17 cell differentiation, NF-κB signaling pathway and PI3K-Akt signaling pathway. Furthermore, we identified that hsa_circ_0006916 was up-regulated in pulmonary fibrosis. To characterize the potential role of hsa_circ_0006916, we transfected siRNA targeting hsa_circ_0006916 into alveolar macrophages and found that knockdown of hsa_circ_0006916 significantly increased the expression levels of M1 molecules IL-1β and TNF-α and reduced the expression level of M2 molecule TGF-β1, indicating that hsa_circ_0006916 may play an important role in the activation of M1-M2 polarization effect in macrophages. Our results provided important evidence on the possible contribution of these abnormal circRNAs to the development of silicosis and pulmonary fibrosis.
Collapse
|
14
|
Yin H, Xie Y, Gu P, Li W, Zhang Y, Yao Y, Chen W, Ma J. The emerging role of epigenetic regulation in the progression of silicosis. Clin Epigenetics 2022; 14:169. [PMID: 36494831 PMCID: PMC9737765 DOI: 10.1186/s13148-022-01391-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Silicosis is one of the most severe occupational diseases worldwide and is characterized by silicon nodules and diffuse pulmonary fibrosis. However, specific treatments for silicosis are still lacking at present. Therefore, elucidating the pathogenesis of silicosis plays a significant guiding role for its treatment and prevention. The occurrence and development of silicosis are accompanied by many regulatory mechanisms, including epigenetic regulation. The main epigenetic regulatory mechanisms of silicosis include DNA methylation, non-coding RNA (ncRNA), and histone modifications. In recent years, the expression and regulation of genes related to silicosis have been explored at epigenetic level to reveal its pathogenesis further, and the identification of aberrant epigenetic markers provides new biomarkers for prediction and diagnosis of silicosis. Here, we summarize the studies on the role of epigenetic changes in the pathogenesis of silicosis to give some clues for finding specific therapeutic targets for silicosis.
Collapse
Affiliation(s)
- Haoyu Yin
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yujia Xie
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Pei Gu
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wei Li
- grid.417303.20000 0000 9927 0537Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Yingdie Zhang
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yuxin Yao
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Weihong Chen
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Jixuan Ma
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
15
|
Zhang J, Wang H, Chen H, Li H, Xu P, Liu B, Zhang Q, Lv C, Song X. ATF3 -activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofibroblast differentiation by blocking autophagy depending on ELAVL1/HuR in pulmonary fibrosis. Autophagy 2022; 18:2636-2655. [PMID: 35427207 PMCID: PMC9629064 DOI: 10.1080/15548627.2022.2046448] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by lung scarring and has no effective treatment. Fibroblast-to-myofibroblast differentiation and myofibroblast proliferation and migration are major clinical manifestations of this disease; hence, blocking these processes is a practical treatment strategy. Here, highly upregulated LINC00941/lncIAPF was found to accelerate pulmonary fibrosis by promoting fibroblast-to-myofibroblast differentiation and myofibroblast proliferation and migration. Assay for transposase-accessible chromatin using sequencing and chromatin immunoprecipitation experiments elucidated that histone 3 lysine 27 acetylation (H3K27ac) activated the chromosome region opening in the LINC00941 promoter. As a consequence, the transcription factor ATF3 (activating transcription factor 3) bound to this region, and LINC00941 transcription was enhanced. RNA affinity isolation, RNA immunoprecipitation (RIP), RNase-RIP, half-life analysis, and ubiquitination experiments unveiled that LINC00941 formed a RNA-protein complex with ELAVL1/HuR (ELAV like RNA binding protein 1) to exert its pro-fibrotic function. Dual-fluorescence mRFP-GFP-MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) adenovirus monitoring technology, human autophagy RT2 profiler PCR array, and autophagic flux revealed that the LINC00941-ELAVL1 axis inhibited autophagosome fusion with a lysosome. ELAVL1 RIP-seq, RIP-PCR, mRNA stability, and rescue experiments showed that the LINC00941-ELAVL1 complex inhibited autophagy by controlling the stability of the target genes EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), STAT1 (signal transducer and activators of transcription 1) and FOXK1 (forkhead box K1). Finally, the therapeutic effect of LINC00941 was confirmed in a mouse model and patients with IPF. This work provides a therapeutic target and a new effective therapeutic strategy related to autophagy for IPF.Abbreviations: ACTA2/a-SMA: actin alpha 2, smooth muscle; ATF3: activating transcription factor 3; ATG: autophagy related; Baf-A1: bafilomycin A1; BLM: bleomycin; CDKN: cyclin dependent kinase inhibitor; CLN3: CLN3 lysosomal/endosomal transmembrane protein, battenin; COL1A: collagen type I alpha; COL3A: collagen type III alpha; CXCR4: C-X-C motif chemokine receptor 4; DRAM2: DNA damage regulated autophagy modulator 2; ELAVL1/HuR: ELAV like RNA binding protein 1; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; FADD: Fas associated via death domain; FAP/FAPα: fibroblast activation protein alpha; FOXK1: forkhead box K1; FVC: forced vital capacity; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; IGF1: insulin like growth factor 1; IPF: idiopathic pulmonary fibrosis; LAMP: lysosomal associated membrane protein; lncRNA: long noncoding RNA; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPC1: NPC intracellular cholesterol transporter 1; RGS: regulator of G protein signaling; RPLP0: ribosomal protein lateral stalk subunit P0; ROC: receiver operating characteristic; S100A4: S100 calcium binding protein A4; SQSTM1/p62: sequestosome 1; STAT1: signal transducers and activators of transcription 1; TGFB1/TGF-β1: transforming growth factor beta 1; TNF: tumor necrosis factor; UIP: usual interstitial pneumonia; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Medical Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Haixia Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Hongbin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Pan Xu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Bo Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China,Changjun Lv Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China,CONTACT Xiaodong Song Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai264003, Shandong, China
| |
Collapse
|
16
|
Li H, Wu M, Guo C, Zhai R, Chen J. Tanshinone IIA Regulates Keap1/Nrf2 Signal Pathway by Activating Sestrin2 to Restrain Pulmonary Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2125-2151. [PMID: 36309810 DOI: 10.1142/s0192415x22500914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tanshinone IIA (Tan-IIA) is a major component extracted from the traditional herbal medicine Danshen, which has shown antipulmonary fibrosis by suppress reactive oxygen species-mediated activation of myofibroblast. However, the exact mechanism of Tan-IIA against pulmonary fibrosis (PF) remains unclear. This work aimed to explore the underlying mechanism of the protective effects of Tan-IIA on PF. By using high-throughput RNA-Seq analysis, we have compared the genome-wide gene expression profiles and pathway enrichment of Tan-IIA-treated NIH-3T3 cells with or without transforming growth factor beta 1 (TGF-[Formula: see text]1) induction. In normal NIH-3T3 cells, Tan-IIA treatment up-regulated 181 differential expression genes (DEGs) and down-regulated 137 DEGs. In TGF-[Formula: see text]1-induced NIH-3T3 cells, Tan-IIA treatment up-regulated 709 DEGs and down-regulated 1075 DEGs, and these DEGs were enriched in extracellular matrix organization, collagen fibril organization, cell adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway and P53 signaling pathway. Moreover, there were 207 co-expressed DEGs between Tan-IIA treatment vs. the Control and TGF-[Formula: see text]1 plus Tan-IIA treatment vs. TGF-[Formula: see text]1 alone treatment, some of which were related to anti-oxidative stress. In both normal and TGF-[Formula: see text]1-induced NIH-3T3 cells, protein-protein interaction network analysis indicated that Tan-IIA can regulate the expression of several common anti-oxidant genes including Heme oxygenase 1 (Ho-1, also known as Homx1), Sestrin2 (Sesn2), GCL modifier subunit (Gclm), GCL catalytic subunit (Gclc) and Sequestosome-1 (Sqstm1). Quantitative Real-time polymerase chain reaction analysis confirmed some DEGs specifically expressing on Tan-IIA treated cells, which provided new candidates for further functional studies of Tan-IIA. In both in vitro and in vivo PF models, the protein expression of Sesn2 was significantly enhanced by Tan-IIA treatment. Overexpression and knockdown experiments showed that Sesn2 is required for Tan-IIA against TGF-[Formula: see text]1-induced myofibroblast activation by reinforcing nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated anti-oxidant response via downregulation of kelch-like ECH-associated protein 1 (Keap1). These results suggest Tan-IIA inhibits myofibroblast activation by activating Sesn2-Nrf2 signaling pathway, and provide a new insight into the essential role of Sesn2 in PF.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Jiangsu 210009, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Mingyu Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Jiangsu 210009, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Congying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Jiangsu 210009, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Rao Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Jiangsu 210009, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Jiangsu 210009, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| |
Collapse
|
17
|
Wildung M, Herr C, Riedel D, Wiedwald C, Moiseenko A, Ramírez F, Tasena H, Heimerl M, Alevra M, Movsisyan N, Schuldt M, Volceanov-Hahn L, Provoost S, Nöthe-Menchen T, Urrego D, Freytag B, Wallmeier J, Beisswenger C, Bals R, van den Berge M, Timens W, Hiemstra PS, Brandsma CA, Maes T, Andreas S, Heijink IH, Pardo LA, Lizé M. miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly. Int J Mol Sci 2022; 23:ijms23147749. [PMID: 35887096 PMCID: PMC9320302 DOI: 10.3390/ijms23147749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449−/− mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449−/− mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449−/− mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449−/− cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.
Collapse
Affiliation(s)
- Merit Wildung
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Christian Herr
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany;
| | - Cornelia Wiedwald
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Alena Moiseenko
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Fidel Ramírez
- Global Computational Biology and Digital Sciences Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
| | - Hataitip Tasena
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Maren Heimerl
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Mihai Alevra
- Institute of Neuro- and Sensory Physiology, Goettingen University, 37073 Goettingen, Germany;
| | - Naira Movsisyan
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Maike Schuldt
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Larisa Volceanov-Hahn
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Sharen Provoost
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Diana Urrego
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Bernard Freytag
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
| | - Julia Wallmeier
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; (T.N.-M.); (J.W.)
| | - Christoph Beisswenger
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, 2333 Leiden, The Netherlands;
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.P.); (T.M.)
| | - Stefan Andreas
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; (H.T.); (W.T.); (C.-A.B.); (I.H.H.)
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands;
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; (N.M.); (D.U.); (L.A.P.)
| | - Muriel Lizé
- Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; (M.W.); (C.W.); (M.H.); (L.V.-H.); (S.A.)
- Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; (M.S.); (B.F.)
- Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany;
- Correspondence:
| |
Collapse
|
18
|
Kumari S, Singh R. Protective effects of intranasal curcumin on silica-induced lung damage. Cytokine 2022; 157:155949. [PMID: 35764024 DOI: 10.1016/j.cyto.2022.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Being anti-inflammatory and an antioxidant in nature, curcumin has been studied for its anti-asthmatic effects, but its impact on silicosis has not been investigated before. It is a form of occupational lung illness caused by inhaling crystalline silica. It is particularly common among those who work in construction-related sectors. Therefore, present study has been undertaken to investigate impact of intranasal curcumin on silica induced lung damage in mice model of silicosis. MATERIALS AND METHODS Mice model of silicosis was developed by intranasal silica instillation (2.5 mg/mice) for different durations mainly 7, 14 and 21 days, where the longest duration of silica exposure (21 days) mimics chronic occupational exposure of silica dust leading to silicosis. Curcumin (5 mg/kg,i.n) and /or dexamethasone, a known corticosteroid (10 mg/kg,i.p) was administered an hour prior to silica administration. RESULTS Present study revealed silica induced lung damage in the mice model of silicosis characterized by airway inflammation, collagen deposition and enhanced expression of fibrosis markers (MMP-9, α-SMA, Hydroxyproline), which were significantly reduced in curcumin treatment groups. Inhibitory effects of curcumin were compared with standard drug, dexamethasone, a corticosteroid and was found better in protecting structural alterations in the lung. Damaged and abnormal mitochondria (enlarged and irregular shapes) were observed in silicosis group which were reduced in curcumin and dexamethasone treatment groups as revealed in transmission electron microscopic studies. CONCLUSIONS Present study shows protective effects of intranasal curcumin on silica-induced airway inflammation and structural changes thereby lung damage. Hence, it can be considered as an alternative and complementary medication for silicosis.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
19
|
Exosomes derived from human hypertrophic scar fibroblasts induces smad and TAK1 signaling in normal dermal fibroblasts. Arch Biochem Biophys 2022; 722:109215. [DOI: 10.1016/j.abb.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
20
|
He C, Xiao J, Ye Y, Huang S, Zhong Y, Liu L, Liu W, Liu S. Long non-coding RNA-small nucleolar RNA host gene 7 regulates inflammatory responses following spinal cord injury by regulating the microRNA-449a/TNF-α-induced protein 3-interacting protein 2 axis. Bioengineered 2022; 13:10215-10226. [PMID: 35443851 PMCID: PMC9162020 DOI: 10.1080/21655979.2022.2061294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The current study aimed to explore the anti-inflammatory effects of long non-coding RNA-small nucleolar RNA host gene 7 (lncRNA-SNHG7) and its mechanism in spinal cord injury (SCI) models. SCI models were established both in vivo and in vitro. Reverse transcription-quantitative PCR was performed to determine the expression levels of lncRNA-SNHG7 in SCI models. Bioinformatics analysis and dual-luciferase reporter assays were carried out to confirm the interaction between lncRNA-SNHG7 with microRNA (miR)-499a and TNF-α-induced protein 3-interacting protein 2 (TNIP2). In addition, cell viability, apoptosis, and the secretion of inflammatory cytokines were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, flow cytometric analysis, and enzyme linked immunosorbent assay (ELISA), respectively. The results showed that lncRNA-SNHG7 was markedly downregulated in the SCI model group. LncRNA-SNHG7 directly bound to miR-499a, which in turn directly targeted TNIP2. In addition, TNIP2 was significantly decreased in SCI rats and lipopolysaccharide (LPS)-treated PC-12 cells. The in vitro results in PC-12 cells revealed that lncRNA-SNHG7 overexpression attenuated neuronal cell death and SCI-mediated inflammatory responses by regulating miR-449a expression. Furthermore, miR-499a knockdown inhibited LPS-induced PC-12 cell injury by targeting TNIP2. In conclusion, lncRNA-SNHG7 modulates the apoptosis and inflammation of PC-12 cells by regulating the miR-449a/TNIP2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Jianhua Xiao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Yongjun Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Shiqiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Yanchun Zhong
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Lulin Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Wuyang Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
21
|
Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022; 49:37. [PMID: 35088880 PMCID: PMC8815412 DOI: 10.3892/ijmm.2022.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
Collapse
Affiliation(s)
- Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiaying Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
22
|
Li Y, Cheng Z, Fan H, Hao C, Yao W. Epigenetic Changes and Functions in Pneumoconiosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2523066. [PMID: 35096264 PMCID: PMC8794660 DOI: 10.1155/2022/2523066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Pneumoconiosis is one of the most common occupational diseases in the world, and specific treatment methods of pneumoconiosis are lacking at present, so it carries great social and economic burdens. Pneumoconiosis, coronavirus disease 2019, and idiopathic pulmonary fibrosis all have similar typical pathological changes-pulmonary fibrosis. Pulmonary fibrosis is a chronic lung disease characterized by excessive deposition of the extracellular matrix and remodeling of the lung tissue structure. Clarifying the pathogenesis of pneumoconiosis plays an important guiding role in its treatment. The occurrence and development of pneumoconiosis are accompanied by epigenetic factors (e.g., DNA methylation and noncoding RNA) changes, which in turn can promote or inhibit the process of pneumoconiosis. Here, we summarize epigenetic changes and functions in the several kinds of evidence classification (epidemiological investigation, in vivo, and in vitro experiments) and main types of cells (macrophages, fibroblasts, and alveolar epithelial cells) to provide some clues for finding specific therapeutic targets for pneumoconiosis and even for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiping Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan Province, China
| | - Zhiwei Cheng
- Department of Case Management, The Third Affiliated Hospital of Zhengzhou University, China
| | - Hui Fan
- Ultrasonography Department, The Third Affiliated Hospital of Zhengzhou University, China
| | - Changfu Hao
- Department of Child and Adolecence Health, School of Public Health, Zhengzhou University, Henan, 450001, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan Province, China
| |
Collapse
|
23
|
Integrative transcriptomic and proteomic analysis reveals mechanisms of silica-induced pulmonary fibrosis in rats. BMC Pulm Med 2022; 22:13. [PMID: 34991559 PMCID: PMC8740005 DOI: 10.1186/s12890-021-01807-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Silicosis is a systemic disease characterized by persistent inflammation and incurable pulmonary fibrosis. Although great effort has been made to understand the pathogenesis of the disease, molecular mechanism underlying silicosis is not fully elucidated. This study was aimed to explore proteomic and transcriptomic changes in rat model of silicosis. Methods Twenty male Wistar rats were randomly divided into two groups with 10 rats in each group. Rats in the model group were intratracheally instilled with 50 mg/mL silicon dioxide (1 mL per rat) and rats in the control group were treated with 1.0 mL saline (1 mL per rat). Twenty-eight days later, transcriptomic analysis by microarray and tandem mass tags (TMT)-based proteomic analysis were performed to reveal the expression of mRNAs and proteins in lung tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyze the altered genes and proteins. The integrated analysis was performed between transcriptome and proteome. The data were further verified by RT-qPCR and parallel reaction monitoring (PRM). Results In total, 1769 differentially expressed genes (DEGs) and 650 differentially expressed proteins (DEPs) were identified between the silicosis model and control groups. The integrated analysis showed 250 DEPs were correlated to the corresponding DEGs (cor-DEPs-DEGs), which were mainly enriched in phagosome, leukocyte transendothelial migration, complement and coagulation cascades and cellular adhesion molecule (CAM). These pathways are interrelated and converged at common points to produce an effect. GM2a, CHI3L1, LCN2 and GNAI1 are involved in the extracellular matrix (ECM) and inflammation contributing to fibrosis. Conclusion Our comprehensive transcriptome and proteome data provide new insights into the mechanisms of silicosis and helpful information for more targeted prevention and treatment of silicosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01807-w.
Collapse
|
24
|
Natarelli L, Virgili F, Weber C. SARS-CoV-2, Cardiovascular Diseases, and Noncoding RNAs: A Connected Triad. Int J Mol Sci 2021; 22:12243. [PMID: 34830125 PMCID: PMC8620514 DOI: 10.3390/ijms222212243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is characterized by important respiratory impairments frequently associated with severe cardiovascular damages. Moreover, patients with pre-existing comorbidity for cardiovascular diseases (CVD) often present a dramatic increase in inflammatory cytokines release, which increases the severity and adverse outcomes of the infection and, finally, mortality risk. Despite this evident association at the clinical level, the mechanisms linking CVD and COVID-19 are still blurry and unresolved. Noncoding RNAs (ncRNAs) are functional RNA molecules transcribed from DNA but usually not translated into proteins. They play an important role in the regulation of gene expression, either in relatively stable conditions or as a response to different stimuli, including viral infection, and are therefore considered a possible important target in the design of specific drugs. In this review, we introduce known associations and interactions between COVID-19 and CVD, discussing the role of ncRNAs within SARS-CoV-2 infection from the perspective of the development of efficient pharmacological tools to treat COVID-19 patients and taking into account the equally dramatic associated consequences, such as those affecting the cardiovascular system.
Collapse
Affiliation(s)
- Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany;
| | - Fabio Virgili
- Research Center for Food and Nutrition, Council for Agricultural Research and Economics, 00178 Rome, Italy;
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, 81377 Munich, Germany
| |
Collapse
|
25
|
Abstract
Autophagy is an evolutionarily conserved process where long-lived and damaged organelles are degraded. Autophagy has been widely associated with several ageing-process as well in diseases such as neurodegeneration, cancer and fibrosis, and is now being utilised as a target in these diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive, interstitial lung disease with limited treatment options available. It is characterised by abnormal extracellular matrix (ECM) deposition by activated myofibroblasts. It is understood that repetitive micro-injuries to aged-alveolar epithelium combined with genetic factors drive the disease. Several groups have demonstrated that autophagy is altered in IPF although whether autophagy has a protective effect or not is yet to be determined. Autophagy has also been shown to influence many other processes including epithelial-mesenchymal transition (EMT) and endothelial-mesenchymal transition (EndMT) which are known to be key in the pathogenesis of IPF. In this review, we summarise the findings of evidence of altered autophagy in IPF lungs, as well as examine its roles within lung fibrosis. Given these findings, together with the growing use of autophagy manipulation in a clinical setting, this is an exciting area for further research in the study of lung fibrosis.
Collapse
|
26
|
miR-138 inhibits epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by regulating ZEB2. Toxicology 2021; 461:152925. [PMID: 34481903 DOI: 10.1016/j.tox.2021.152925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Silica dust is a common pollutant in the occupational environment, such as coal mines. Inhalation of silica dust can cause progressive pulmonary fibrosis and then silicosis. Silicosis is still one of the most harmful occupational diseases in the world, so the study of its pathogenesis is necessary for the treatment of silicosis. In this study, we constructed a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles and identified the decreased expression of miR-138 in fibrotic lung tissues of mice. Moreover, the overexpression of miR-138 retarded the process of epithelial-mesenchymal transition (EMT) in a mouse model of silica particles exposure and epithelial cells stimulated by silica particles. Further studies showed that ZEB2 was one of the potential targets of miR-138, and the up-regulation of miR-138 reduced ZEB2 levels in mouse lung tissues and in epithelial cells. We next found that the expression levels of ɑ-SMA and Vimentin were significantly increased and E-cadherin levels were decreased after transfection with miR-138 inhibitor in epithelial cells. However, these effects were abated by the knockdown of ZEB2. Consistently, the increased migration ability of epithelial cells by miR-138 inhibitor transfection was also reversed by the knockdown of ZEB2. Collectively, we revealed that miR-138 significantly targeted ZEB2, thus inhibited the EMT process and mitigated the development of pulmonary fibrosis. miR-138 may be a potential target for the treatment of pulmonary fibrosis.
Collapse
|
27
|
Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, Wei D, Mo Y, Zhang Q, Chen J, Ni C. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112372. [PMID: 34082245 DOI: 10.1016/j.ecoenv.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-β1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-β1-treated MRC-5 cells. Transforming growth factor-β receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-β1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ping Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Honghong Pan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Dong Wei
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jingyu Chen
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
28
|
Zhu L, Chen Y, Chen M, Wang W. Mechanism of miR-204-5p in exosomes derived from bronchoalveolar lavage fluid on the progression of pulmonary fibrosis via AP1S2. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1068. [PMID: 34422980 PMCID: PMC8339838 DOI: 10.21037/atm-20-8033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 11/06/2022]
Abstract
Background Exosomes are nanoscale vesicles secreted by various types of cells that are responsible for intracellular communication. Despite that bronchoalveolar lavage fluid (BALF) has been proven to involve in tumor development, more efforts are required to investigate the impact of BALF on pulmonary fibrosis (PF). This study aimed to investigate the mechanism of how exosomal miR-204-5p from BALF facilitates PF progression in rats. Methods PF rat model was established by intratracheal injection of bleomycin. BALF-derived exosomes (Exo) were extracted from normal and PF rats. PF-Exo (BALF-derived Exo from PF rats) and miR-204-5p antagomir were injected into rats to investigate the effect of exosomal miR-204-5p on PF. Collagen content in lung tissues of rats was assessed by Masson staining, hydroxyproline (HYP) content assay and immunohistochemistry (IHC). Primary lung fibroblasts were isolated, and treated by TGF-β1. After co-transfection of PF-Exo, miR-204-5p inhibitor and sh-AP1S2, cell proliferation, levels of miR-204-5p, fibrotic markers α-SMA and collagen 1 (Col 1), and proteins of autophagy markers LC3II, LC3I and P62 were measured. The interaction between miR-204-5p and AP1S2 was determined by bioinformatics online software TargetScan and dual-luciferase reporter assay. Results miR-204-5p was abundantly expressed in the PF-Exo group. PF-Exo injection potentiated PF progression and proliferation ability of lung fibroblasts in vivo and in vitro. Injection with PF-Exo and miR-204-5p antagomir significantly increased the LC3II/I ratio and decreased the HYP content, proteins of α-SMA, Col 1 and P62, collagen content in rat lung tissues of PF rats. TGF-β1 induction elevated the LC3II/LC3I ratio, suppressed the cell proliferation rate, and decreased the levels of α-SMA, Col 1 and P62. Additionally, AP1S2 was a direct target of miR-204-5p. miR-204-5p inhibitor can counteract the effect of PF-Exo in proliferation of lung fibroblasts, while sh-AP1S2 eliminated the effect of miR-204-5p inhibitor. Conclusions Exosomal miR-204-5p from BALF inhibits autophagy to promote the progression of PF rats by targeting AP1S2.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yahui Chen
- Department of Rheumatism Immunology, Ningbo Sixth Hospital, Ningbo, China
| | - Mo Chen
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Wang
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis. Int J Mol Sci 2021; 22:ijms22158110. [PMID: 34360876 PMCID: PMC8348676 DOI: 10.3390/ijms22158110] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Silicosis remains one of the most severe pulmonary fibrotic diseases worldwide, caused by chronic exposure to silica dust. In this review, we have proposed that programmed cell death (PCD), including autophagy, apoptosis, and pyroptosis, is closely associated with silicosis progression. Furthermore, some autophagy, apoptosis, or pyroptosis-related signaling pathways or regulatory proteins have also been summarized to contribute greatly to the formation and development of silicosis. In addition, silicosis pathogenesis depends on the crosstalk among these three ways of PCD to a certain extent. In summary, more profound research on these mechanisms and effects may be expected to become promising targets for intervention or therapeutic methods of silicosis in the future.
Collapse
|
30
|
Xu X, Hong P, Wang Z, Tang Z, Li K. MicroRNAs in Transforming Growth Factor-Beta Signaling Pathway Associated With Fibrosis Involving Different Systems of the Human Body. Front Mol Biosci 2021; 8:707461. [PMID: 34381815 PMCID: PMC8350386 DOI: 10.3389/fmolb.2021.707461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, a major cause of morbidity and mortality, is a histopathological manifestation of many chronic inflammatory diseases affecting different systems of the human body. Two types of transforming growth factor beta (TGF-β) signaling pathways regulate fibrosis: the canonical TGF-β signaling pathway, represented by SMAD-2 and SMAD-3, and the noncanonical pathway, which functions without SMAD-2/3 participation and currently includes TGF-β/mitogen-activated protein kinases, TGF-β/SMAD-1/5, TGF-β/phosphatidylinositol-3-kinase/Akt, TGF-β/Janus kinase/signal transducer and activator of transcription protein-3, and TGF-β/rho-associated coiled-coil containing kinase signaling pathways. MicroRNA (miRNA), a type of non-coding single-stranded small RNA, comprises approximately 22 nucleotides encoded by endogenous genes, which can regulate physiological and pathological processes in fibrotic diseases, particularly affecting organs such as the liver, the kidney, the lungs, and the heart. The aim of this review is to introduce the characteristics of the canonical and non-canonical TGF-β signaling pathways and to classify miRNAs with regulatory effects on these two pathways based on the influenced organ. Further, we aim to summarize the limitations of the current research of the mechanisms of fibrosis, provide insights into possible future research directions, and propose therapeutic options for fibrosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Pengyu Hong
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhefu Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Kun Li
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
31
|
Xie Y, Ma J, Yang M, Fan L, Chen W. Extracellular signal-regulated kinase signaling pathway and silicosis. Toxicol Res (Camb) 2021; 10:487-494. [PMID: 34141162 DOI: 10.1093/toxres/tfaa109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Silicosis is a scarring lung disease caused by inhaling fine particles of crystalline silica in the workplace of many industries. Due to the lack of effective treatment and management, the continued high incidence of silicosis remains a major public health concern worldwide, especially in the developing countries. Till now, related molecular mechanisms underlying silicosis are still not completely understood. Multiple pathways have been reported to be participated in the pathological process of silicosis, and more complex signaling pathways are receiving attention. The activated extracellular signal-regulated kinase (ERK) signaling pathway has been recognized to control some functions in the cell. Recent studies have identified that the ERK signaling pathway contributes to the formation and development of silicosis through regulating the processes of oxidative stress, inflammatory response, proliferation and activation of fibroblasts, epithelial-mesenchymal transformation, autophagy, and apoptosis of cells. In this review article, we summarize the latest findings on the role of ERK signaling pathway in silica-induced experimental models of silicosis, as well as clinical perspectives.
Collapse
Affiliation(s)
- Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Adamcakova J, Mokra D. New Insights into Pathomechanisms and Treatment Possibilities for Lung Silicosis. Int J Mol Sci 2021; 22:ijms22084162. [PMID: 33920534 PMCID: PMC8072896 DOI: 10.3390/ijms22084162] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Inhalation of silica particles is an environmental and occupational cause of silicosis, a type of pneumoconiosis. Development of the lung silicosis is a unique process in which the vicious cycle of ingestion of inhaled silica particles by alveolar macrophages and their release triggers inflammation, generation of nodular lesions, and irreversible fibrosis. The pathophysiology of silicosis is complex, and interactions between the pathomechanisms have not been completely understood. However, elucidation of silica-induced inflammation cascades and inflammation-fibrosis relations has uncovered several novel possibilities of therapeutic targeting. This article reviews new information on the pathophysiology of silicosis and points out several promising treatment approaches targeting silicosis-related pathways.
Collapse
|
33
|
Li Y, Sun W, Pan H, Yuan J, Xu Q, Xu T, Li P, Cheng D, Liu Y, Ni C. LncRNA-PVT1 activates lung fibroblasts via miR-497-5p and is facilitated by FOXM1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112030. [PMID: 33601175 DOI: 10.1016/j.ecoenv.2021.112030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
It is little known about the lncRNA-PVT1 effect on occupational pulmonary fibrosis, although researches show it plays an essential role in cancer. Studies reveal that lung fibroblast activation is one of the key events in silica-induced fibrosis. Here, we found that lncRNA-PVT1 promoted the proliferation, activation, and migration of lung fibroblasts. The isolation of cytoplasmic and nuclear RNA assay and fluorescence in situ hybridization experiment showed that lncRNA-PVT1 was abundantly expressed in the cytoplasm. Luciferase reporter gene assay and RNA pull-down experiment indicated that the cytoplasmic-localized lncRNA-PVT1 could competitively bind miR-497-5p. MiR-497-5p was further observed to attenuate silica-induced pulmonary fibrosis by targeting Smad3 and Bcl2. Moreover, the transcription factor FOXM1 acted as a profibrotic factor by elevating lncRNA-PVT1 transcription in lung fibroblasts. Inhibition of FOXM1 expression with thiostrepton alleviated silica-induced pulmonary fibrosis in vivo. Collectively, we revealed that FOXM1-facilitated lncRNA-PVT1 activates lung fibroblasts via miR-497-5p during silica-induced pulmonary fibrosis, which may provide potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yan Li
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenqing Sun
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honghong Pan
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiali Yuan
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Xu
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tiantian Xu
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Demin Cheng
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Natarelli L, Parca L, Mazza T, Weber C, Virgili F, Fratantonio D. MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2. Noncoding RNA 2021; 7:14. [PMID: 33670580 PMCID: PMC7931055 DOI: 10.3390/ncrna7010014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory system is one of the most affected targets of SARS-CoV-2. Various therapies have been utilized to counter viral-induced inflammatory complications, with diverse success rates. Pending the distribution of an effective vaccine to the whole population and the achievement of "herd immunity", the discovery of novel specific therapies is to be considered a very important objective. Here, we report a computational study demonstrating the existence of target motifs in the SARS-CoV-2 genome suitable for specific binding with endogenous human micro and long non-coding RNAs (miRNAs and lncRNAs, respectively), which can, therefore, be considered a conceptual background for the development of miRNA-based drugs against COVID-19. The SARS-CoV-2 genome contains three motifs in the 5'UTR leader sequence recognized by selective nucleotides within the seed sequence of specific human miRNAs. The seed of 57 microRNAs contained a "GGG" motif that promoted leader sequence-recognition, primarily through offset-6mer sites able to promote microRNAs noncanonical binding to viral RNA. Similarly, lncRNA H19 binds to the 5'UTR of the viral genome and, more specifically, to the transcript of the viral gene Spike, which has a pivotal role in viral infection. Notably, some of the non-coding RNAs identified in our study as candidates for inhibiting SARS-CoV-2 gene expression have already been proposed against diverse viral infections, pulmonary arterial hypertension, and related diseases.
Collapse
Affiliation(s)
- Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany
| | - Luca Parca
- IRCCS Casa sollievo della Sofferenza, Laboratory of Bioinformatics, 71013 San Giovanni Rotondo (FG), Italy; (L.P.); (T.M.)
| | - Tommaso Mazza
- IRCCS Casa sollievo della Sofferenza, Laboratory of Bioinformatics, 71013 San Giovanni Rotondo (FG), Italy; (L.P.); (T.M.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fabio Virgili
- Council for Agricultural Research and Economics, Research Center for Food and Nutrition, 00178 Rome, Italy;
| | - Deborah Fratantonio
- Biotechnology and Biopharmaceutics, Department of Biosciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| |
Collapse
|
35
|
Zhang X, Mao Y, Peng W, Liu H, Liang L, Wang D, Liu L, Zhou Y, Zhang F, Xiao Y, Shi M, Shao S, Wang Y, Guo B, Zhang X. Autophagy-related protein EI24 delays the development of pulmonary fibrosis by promoting autophagy. Life Sci 2020; 264:118664. [PMID: 33127511 DOI: 10.1016/j.lfs.2020.118664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Etoposide-induced protein 2.4 (EI24) is an autophagy-associated protein and acts as a tumor suppressor. However, its role in tissue fibrosis remains unknown. Herein, a downregulation of EI24 levels in the lungs from mouse pulmonary fibrosis (PF) model and lung epithelial cells was observed in response to bleomycin (BLM) or transforming growth factor-β1 (TGF-β1). Then, the role of EI24 in PF was investigated through the upregulation of EI24 in vitro and in vivo. EI24 inhibited epithelial-mesenchymal transition (EMT) process and extracellular matrix (ECM) production in EI24-overexpressing cells after stimulation with BLM or TGF-β1. The overexpression of EI24 at 14 days after the establishment of the PF model through tail vein injection delayed the progression of PF. Moreover, the administration of EI24-overexpressing plasmid promoted the autophagy level in the lungs of the PF mouse model. In addition, the inhibition of autophagy by 3-methyladenine limited the role of EI24 in these processes. Thus, the current data indicated that EI24 attenuates PF through inhibition of EMT process and ECM production by promoting autophagy.
Collapse
Affiliation(s)
- Xiaohuan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanwen Mao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huiming Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Songjun Shao
- Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xiangyan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
36
|
Lv MQ, Zhou L, Ge P, Li YX, Zhang J, Zhou DX. Over-expression of hsa_circ_0000116 in patients with non-obstructive azoospermia and its predictive value in testicular sperm retrieval. Andrology 2020; 8:1834-1843. [PMID: 32735753 DOI: 10.1111/andr.12874] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Non-obstructive azoospermia (NOA), identified in approximately 10% of infertile males, is a multifactorial disease whose molecular mechanisms remain unknown. OBJECTIVES The aim of this study was to identify the role of hsa_circ_0000116 in NOA and illustrate its predictive value in testicular sperm retrieval. MATERIALS AND METHODS The study included 78 individuals, 58 with NOA and 20 with obstructive azoospermia (OA). Serum hormones including testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and estradiol II (E2) were measured. Testicular histopathology was analyzed by at least two pathologists. The expression of hsa_circ_0000116 in testicular tissue samples was detected using real-time PCR, and the circRNA-miRNA-mRNA networks were predicted using bioinformatics analysis. RESULTS Our study illustrated that the expression of hsa_circ_0000116 was significantly higher in testicular tissue samples of NOA patients than in that of OA patients. Moreover, hsa_circ_0000116 was aberrantly expressed in three different pathological types of NOA: It was significantly up-regulated in patients with Sertoli cell-only syndrome (SCOS) when compared to patients with hypospermatogenesis (HS). In addition, the expression of hsa_circ_0000116 was negatively correlated with Johnsen score, while it was positively correlated with serum FSH level. A multivariate logistic regression model demonstrated that a high level of hsa_circ_0000116 was associated with a low rate of successful testicular sperm retrieval. Bioinformatics analysis and verification experiments showed that one of the most probable potential target miRNA for hsa_circ_0000116 was hsa-miR-449a. Further analysis indicated that hsa_circ_0000116 may be affecting the fertility function through a hsa_circ_0000116-miR-449-autophagy-related competing endogenous RNA (ceRNA) network. DISCUSSION AND CONCLUSION We report for the first time that hsa_circ_0000116 may play pivotal roles in regulating spermatogenesis and may also be a potential biomarker for the diagnosis and treatment of NOA, while acting as a predictive tool for the rate of successful testicular sperm retrieval in NOA patients.
Collapse
Affiliation(s)
- Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Liang Zhou
- Reproductive Center Medicine, Maternal and Child Care Hospital of Shaanxi Province, Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Li
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
37
|
He J, Peng H, Wang M, Liu Y, Guo X, Wang B, Dai L, Cheng X, Meng Z, Yuan L, Cai F, Tang Y. Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:810-820. [PMID: 32638014 DOI: 10.1093/abbs/gmaa067] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid derived from the root of liquorice, has been reported to possess anti-inflammatory and antioxidant activities. Previous studies have found that ISL plays a crucial role in anti-fibrosis of adipose tissue and renal tissue; however, its effect on pulmonary fibrogenesis has not been demonstrated. In this study, we aimed to explore the roles and the underlying mechanisms of ISL in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell proliferation and migration were determined by MTT and wound healing assay, respectively. The expression levels of alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 (COLIA1) and fibronectin (FN), microtubule-associated protein light chain 3 (LC3) and related signaling molecules were detected by quantitative real-time PCR, western blot and immunofluorescence assay, correspondingly. EGFP-LC3 transfection was used for autophagy analysis. The results showed that ISL inhibited the TGF-β1-induced proliferation and migration, and down-regulated the expressions of α-SMA, COLIA1 and FN. ISL treatment led to up-regulation of LC3 in TGF-β1-treated MRC-5 cells, accompanied by significant decrease in the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In addition, the inhibitory effects of ISL on TGF-β1-induced fibrogenic features in MRC-5 cells were enhanced by pretreatment with autophagy activator Rapmycin and PI3K/AKT inhibitor LY294002 and reversed by autophagy inhibitor 3-methyladenine and PI3K/AKT activator IGF-1. Taken together, our results demonstrated that ISL could attenuate the fibrogenesis of TGF-β1-treated MRC-5 cells by activating autophagy via suppressing the PI3K/AKT/mTOR pathway. Therefore, ISL holds a great potential to be developed as a novel therapeutic agent for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinjuan He
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Bin Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xueqin Cheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Leyong Yuan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Fenglin Cai
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yijun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
38
|
Li Y, Liu R, Wu J, Li X. Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Am J Cancer Res 2020; 10:7993-8017. [PMID: 32724454 PMCID: PMC7381749 DOI: 10.7150/thno.47826] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs in most human organs including the liver, lung, heart and kidney, and is crucial for the progression of most chronic diseases. As an indispensable catabolic process for intracellular quality control and homeostasis, autophagy occurs in most mammalian cells and is implicated in many biological processes including fibrogenesis. Although advances have been made in understanding autophagy process, the potential role of autophagy in fibrotic diseases remains controversial and has recently attracted a great deal of attention. In the current review, we summarize the commonalities of autophagy affecting different types of fibrosis in different organs, including the liver, lung, heart, and kidney as well as in cystic fibrosis, systematically outline the contradictory results and highlight the distinct role of autophagy during the various stages of fibrosis. In summary, the exact role autophagy plays in fibrogenesis depends on specific cell types and different stimuli, and identifying and evaluating the pathogenic contribution of autophagy in fibrogenesis will promote the discovery of novel therapeutic strategies for the clinical management of these fibrotic diseases.
Collapse
|
39
|
Wang L, Wang N, Zhang R, Dong D, Liu R, Zhang L, Ji W, Yu M, Zhang F, Niu R, Zhou Y. TGFβ regulates NK1R-Tr to affect the proliferation and apoptosis of breast cancer cells. Life Sci 2020; 256:117674. [PMID: 32380077 DOI: 10.1016/j.lfs.2020.117674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES TGFβ promotes cancer aggressiveness in advanced stages. NK1R-Tr expression in advanced breast cancer has a pro-carcinogenic effect. In this study, we aimed to investigate the effect of the association of TGFβ with NK1R-Tr expression on the proliferation and apoptosis of breast cancer cells. METHODS Immunohistochemical staining and Western blot analysis were used to detect TGFβ and NK1R-Tr in breast cancer and paracancerous tissue samples. MDA-MB-231 and BT549 cells were stimulated with TGFβ after NK1R knockdown or treated with the NK1R antagonist aprepitant, and the effects of TGFβ and NK1R-Tr on proliferation and apoptosis were detected by CCK-8, colony formation and flow cytometry assays. In vivo xenograft models were used to further verify the effects of NK1R-Tr and TGFβ. The regulatory effects of Smad4 on NK1R promoter activity were confirmed by ChIP and dual-luciferase reporter assays. RESULTS The expression levels of TGFβ and NK1R-Tr were higher in breast cancer tissues than in adjacent tissues and were positively correlated in human breast cancer tissues. NK1R knockdown or aprepitant treatment in MDA-MB-231 and BT549 cells attenuated the effects of TGFβ on cell proliferation. The proportion of cells in G2/M phase significantly increased, the expression of cyclin B1 decreased, and the expression of P21 increased; these effects were weakened by TGFβ treatment. Apoptosis in breast cancer cells was significantly increased. In vivo xenograft models were used to further verify that NK1R-Tr and TGFβ promoted tumour growth. After TGFβ treatment, the binding capacity of Smad4 to the NK1R promoter, as well as luciferase activity, was enhanced. CONCLUSIONS The expression levels of TGFβ and NK1R-Tr were higher in breast cancer tissues than in normal tissues, and both were correlated with a poor patient prognosis. TGFβ and NK1R-Tr promoted cell proliferation and inhibited apoptosis, and TGFβ regulated the expression of NK1R-Tr via Smad4.
Collapse
Affiliation(s)
- Lushan Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China; Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin, China
| | - Ning Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Runshi Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Dong Dong
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lufang Zhang
- Department of Laboratory, Aviation General Hospital, Beijing, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
40
|
Guan S, Wu Y, Zhang Q, Zhou J. TGF‑β1 induces CREB1‑mediated miR‑1290 upregulation to antagonize lung fibrosis via Napsin A. Int J Mol Med 2020; 46:141-148. [PMID: 32319530 PMCID: PMC7255477 DOI: 10.3892/ijmm.2020.4565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
The pathologic mechanisms of pulmonary fibrosis (PF), one of the most common chronic pulmonary diseases, remain unclear. Napsin A is an aspartic proteinase that has been regarded as a hallmark of pulmonary adenocarcinoma. The present study aimed to investigate the specific function and molecular mechanisms of Napsin A in PF from the perspective of microRNA (miRNA or miR) regulation. In the present study, it was found that miR-1290 downregulated the expression of Napsin A by binding to its 3′-UTR. Cell viability was examined by MTT assay. The protein levels of α-smooth muscle actin (α-SMA), Collagen I and Napsin A were examined by western blot analysis. The predicted targeting of Napsin A by miR-1290 was validated by luciferase reporter assay. The protein content of α-SMA was examined by immunofluorescence staining. miR-1290 was found to be upregulated in blood samples from patients with PF and in TGF-β1-stimulated A549 cells. miR-1290 was found to directly target Napsin A. miR-1290 overexpression also significantly promoted A549 cell proliferation and increased the protein levels of markers of fibrosis. Napsin A knockdown exerted effects on A549 cell proliferation and TGF-β1-induced fibrosis that were similar to those induced by miR-1290 overexpression; more importantly, Napsin A knockdown significantly reversed the effects of miR-1290 inhibition, indicating that miR-1290 promotes TGF-β1-induced fibrosis by targeting Napsin A. Moreover, TGF-β1-induced CAMP responsive element binding protein 1 (CREB1) overexpression promoted the transcription of miR-1290 in A549 cells. On the whole, the findings of the present study demonstrate that TGF-β1-induced CREB1 over-expression induces the significant upregulation of miR-1290 expression, thus aggravating TGF-β1-induced fibrotic changes in A549 cells via the miR-1290 downstream target, Napsin A.
Collapse
Affiliation(s)
- Shuhong Guan
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Yudi Wu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Qiudi Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
41
|
Racanelli AC, Choi AMK, Choi ME. Autophagy in chronic lung disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:135-156. [PMID: 32620240 DOI: 10.1016/bs.pmbts.2020.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of chronic lung disease occurs as a consequence of multiple cellular events that involve an initial insult which often leads to the development of chronic inflammation, and the dysregulation of cellular proliferation and cell death mechanisms. Multiple cell types in the lung are key to the respiratory and protective/barrier functions necessary to manage the chronic exposures to environmental, mechanical, and oxidative stressors. Autophagy is essential to lung development and homeostasis, as well as the prevention and development of disease. The cellular process involves the collection and removal of unwanted organelles and proteins through lysosomal degradation. In recent years, investigations have addressed the roles of autophagy and selective autophagy in numerous chronic lung diseases. Here, we highlight recent advances on the role of autophagy in the pathogenesis of asthma, chronic obstructive pulmonary disease and emphysema, pulmonary arterial hypertension, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Alexandra C Racanelli
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States; NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States; NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Mary E Choi
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
42
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
43
|
He X, Chen S, Li C, Ban J, Wei Y, He Y, Liu F, Chen Y, Chen J. Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages. Cells 2020; 9:cells9010122. [PMID: 31947943 PMCID: PMC7016807 DOI: 10.3390/cells9010122] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/16/2022] Open
Abstract
Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.
Collapse
Affiliation(s)
- Xiu He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Shi Chen
- School of Medicine, Hunan Normal University, No.36 Lushan Road, Changsha 410013, China;
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Yungeng Wei
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Yangyang He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
- Correspondence: ; Tel.: +86-24-31939079
| |
Collapse
|
44
|
Autophagy and Pulmonary Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:569-579. [DOI: 10.1007/978-981-15-4272-5_40] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Zhao D, Wu N, Wang L, Pang X, Liu X, Zhang X. Role of microRNA-449a in the progress of inflammatory bowel disease in children. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1724828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Dandan Zhao
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Na Wu
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Libo Wang
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaoli Pang
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xuehua Liu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaohong Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
46
|
Zhao H, Wang Y, Qiu T, Liu W, Yao P. Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta 2019; 502:139-147. [PMID: 31877297 DOI: 10.1016/j.cca.2019.12.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
As an evolutionarily conserved intracellular degradation pathway, autophagy is essential to cellular homeostasis. Several studies have demonstrated that autophagy showed an important effect on some pulmonary fibrosis diseases, including idiopathic pulmonary fibrosis (IPF), cystic fibrosis lung disease, silicosis and smoking-induced pulmonary fibrosis. For example, autophagy mitigates the pathological progression of IPF by regulating the apoptosis of fibroblasts and the senescence of alveolar epithelial cells. In addition, autophagy ameliorates cystic fibrosis lung disease via rescuing transmembrane conductance regulators (CFTRs) to the plasma membrane. Furthermore, autophagy alleviates the silica-induced pulmonary fibrosis by decreasing apoptosis of alveolar epithelial cells in silicosis. However, excessive macrophage autophagy aggravates the pathogenesis of silicosis fibrosis by promoting the proliferation and migration of lung fibroblasts in silicosis. Autophagy is also involved in smoking-induced pulmonary fibrosis, coal workers' pneumoconiosis, ionizing radiation-mediated pulmonary fibrosis and heavy metal nanoparticle-mediated pulmonary fibrosis. In this review, the role and signalling mechanisms of autophagy in the progression of pulmonary fibrosis diseases have been systematically analysed. It has provided a new insight into the therapeutic potential associated with autophagy in pulmonary fibrosis diseases. In conclusion, the targeting of autophagy might prove to be a prospective avenue for the therapeutic intervention of pulmonary fibrosis diseases.
Collapse
Affiliation(s)
- Hong Zhao
- Nursing College, University of South China, Hengyang, 421001, China
| | - Yiqun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Tingting Qiu
- Nursing College, University of South China, Hengyang, 421001, China
| | - Wei Liu
- Department of Intensive Care Units, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China.
| | - Pingbo Yao
- Department of Clinical Technology, Changsha Health Vocational College, Changsha 410100, China.
| |
Collapse
|
47
|
Ren L, Liu J, Zhang J, Wang J, Wei J, Li Y, Guo C, Sun Z, Zhou X. Silica nanoparticles induce spermatocyte cell autophagy through microRNA-494 targeting AKT in GC-2spd cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113172. [PMID: 31541822 DOI: 10.1016/j.envpol.2019.113172] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Researches had shown that silica nanoparticles (SiNPs) could reduce the quantity and quality of sperms. However, chronic effects of SiNPs have not been well addressed. In this study, mice spermatocyte cells (GC-2spd cells) were continuously exposed to SiNPs (5 μg/mL) for 30 passages and then the changes of microRNA (miRNA) profile and mRNA profile were detected. The function of miRNAs was verified by inhibitors to explore the regulation role of miRNAs in reproductive toxicity induced by SiNPs. The results showed that SiNPs induced cytotoxicity, and activated autophagy in GC-2spd cells. SiNPs led to a total of 1604 mRNAs (697 up-regulated and 907 down-regulated) and 15 miRNAs (6 up-regulated such as miRNA-138 and miRNA-494 and 9 down-regulated) with different expression in GC-2spd cells. The combined miRNA profile and mRNA profile showed that 415 mRNAs with different expression in 5 μg/mL SiNPs group were regulated by miRNA. Furthermore, our study demonstrated that SiNPs decreased the expressions of AKT mRNAs. Moreover, SiNPs had an activation effect on the AMPK/TSC/mTOR pathway. However, inhibitor of miRNA-494 could attenuate the expression levels of AMPK, TSC, LC3Ⅱ and alleviate the decreased of AKT, mTOR, p-mTOR induced by SiNPs. The above results suggested that the low-dose SiNPs exposure could promote autophagy by miRNA-494 targeting AKT, thereby activating AMPK/TSC/mTOR pathway in GC-2spd cells. MiRNA-494 is an important regulator of autophagy by targeting AKT, which provides new evidence for the male reproductive toxicity mechanism of SiNPs.
Collapse
Affiliation(s)
- Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; School of Nursing, Peking University, Beijing, 100191, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
48
|
Xu T, Yan W, Wu Q, Xu Q, Yuan J, Li Y, Li P, Pan H, Ni C. MiR-326 Inhibits Inflammation and Promotes Autophagy in Silica-Induced Pulmonary Fibrosis through Targeting TNFSF14 and PTBP1. Chem Res Toxicol 2019; 32:2192-2203. [DOI: 10.1021/acs.chemrestox.9b00194] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tiantian Xu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwen Yan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi Xu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiali Yuan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ping Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Honghong Pan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
49
|
Liu H, Yu H, Cao Z, Gu J, Pei L, Jia M, Su M. Kaempferol Modulates Autophagy and Alleviates Silica-Induced Pulmonary Fibrosis. DNA Cell Biol 2019; 38:1418-1426. [PMID: 31560574 DOI: 10.1089/dna.2019.4941] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Silicosis is an occupational disease characterized as inflammatory cells infiltration and severe progressive pulmonary fibrosis. Kaempferol (Kae), a flavonoid that exists in many plants and fruits, has been proved to have anti-inflammatory and antifibrosis functions. However, the effects of Kae on silicosis remain unclear. In the present study, we analyzed the therapeutic effects of Kae in 1-, 7-, and 28-day silicosis models, respectively. In the 1-day model, Kae treatment did not vary the wet-to-dry weight ratios of the lung, apoptotic rate, autophagy, or the expression of inflammatory factors. In contrast, Kae significantly inhibited pulmonary inflammation in the 7-day silicosis models and inhibited silica-induced pulmonary fibrosis in the 28-day models. Besides, we found that Kae partially restored silica-induced LC3 lipidation without increasing the p62 levels. Blocking autophagy with chloroquine antagonized the inhibitory effects of Kae on inflammation, suggesting that autophagy might be required in the therapeutic effects of Kae on silicosis. These findings indicated that Kae inhibits the progression of silica-induced pulmonary fibrosis, which may provide experimental evidences for Kae in the treatment of silicosis.
Collapse
Affiliation(s)
- Hangqi Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - He Yu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhenju Cao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Junxu Gu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
50
|
Cao H, Zhang Y, Chu Z, Zhao B, Wang H, An L. MAP‑1B, PACS‑2 and AHCYL1 are regulated by miR‑34A/B/C and miR‑449 in neuroplasticity following traumatic spinal cord injury in rats: Preliminary explorative results from microarray data. Mol Med Rep 2019; 20:3011-3018. [PMID: 31432119 PMCID: PMC6755151 DOI: 10.3892/mmr.2019.10538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Spinal cord injury (SCI) is a specific type of damage to the central nervous system causing temporary or permanent changes in its function. The present aimed to identify the genetic changes in neuroplasticity following SCI in rats. The GSE52763 microarray dataset, which included 15 samples [3 sham (1 week), 4 injury only (1 week), 4 injury only (3 weeks), 4 injury + treadmill (3 weeks)] was downloaded from the Gene Expression Omnibus database. An empirical Bayes linear regression model in limma package was used to identify the differentially expressed genes (DEGs) in injury vs. sham and treadmill vs. non‑treadmill comparison groups. Subsequently, time series and enrichment analyses were performed using pheatmap and clusterProfile packages, respectively. Additionally, protein‑protein interaction (PPI) and transcription factor (TF)‑microRNA (miRNA)‑target regulatory networks were constructed using Cytoscape software. In total, 159 and 105 DEGs were identified in injury vs. sham groups and treadmill vs. non‑treadmill groups, respectively. There were 40 genes in cluster 1 that presented increased expression levels in the injury (1 week/3 weeks) groups compared with the sham group, and decreased expression levels in the injury + treadmill group compared with the injury only groups; conversely, 52 genes in cluster 2 exhibited decreased expression levels in the injury (1 week/3 weeks) groups compared with the sham group, and increased expression levels in the injury + treadmill group compared with the injury only groups. Enrichment analysis indicated that clusters 1 and 2 were associated with immune response and signal transduction, respectively. Furthermore, microtubule associated protein 1B, phosphofurin acidic cluster sorting protein 2 and adenosylhomocysteinase‑like 1 exhibited the highest degrees in the regulatory network, and were regulated by miRNAs including miR‑34A, miR‑34B, miR‑34C and miR‑449. These miRNAs and their target genes may serve important roles in neuroplasticity following traumatic SCI in rats. Nevertheless, additional in‑depth studies are required to confirm these data.
Collapse
Affiliation(s)
- Hongshi Cao
- School of Nursing, Jilin University, Jilin 130021, P.R. China
| | - Yu Zhang
- Department of Neurovascular Disease, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhe Chu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bolun Zhao
- School of Nursing, Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Haiyan Wang
- Department of Neurotrauma Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Libin An
- School of Nursing, Dalian University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|