1
|
Duan Y, Huang P, Sun L, Wang P, Cai Y, Shi T, Li Y, Zhou Y, Yu S. Dehydroandrographolide ameliorates doxorubicin-mediated cardiotoxicity by regulating autophagy through the mTOR-TFEB pathway. Chem Biol Interact 2024; 399:111132. [PMID: 38964637 DOI: 10.1016/j.cbi.2024.111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The clinical application of doxorubicin (DOX) was limited by the serious cardiotoxicity. The traditional Chinese medicine Andrographis paniculata and its principal active component (Dehydroandrographolide, DA) have been well known for their diverse cardiovascular protective effects. However, the effects of DA on DOX-induced cardiotoxicity (DIC) were still unknown. In this study, we evaluated the effects and revealed the potential mechanisms of DA on DIC both in vivo and in vitro. The effects of DA on DIC were systematically assessed by echocardiography and histological assays. Western blot and flow cytometry were used to measure apoptosis of cardiomyocytes. Transmission electron microscopy and StubRFP-SensGFP-LC3 lentivirus were further used to assay autophagic flux. Our results showed that DA administration significantly improved cardiac function and attenuated DOX-induced cardiomyocyte apoptosis. Mechanically, DA restored autophagic flux and lysosome functions via inhibiting DOX-induced mTOR signal pathway activation and increasing the translocation of TFEB to the nucleus. However, activation of mTOR or knockdown of TFEB significantly inhibited the protective effects of DA against DIC by impacting lysosomal functions and autophagic flux. In conclusion, our results revealed that DA might be a potential cardioprotective agent against DIC.
Collapse
Affiliation(s)
- Yongzhen Duan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Peixian Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; Department of Pharmacy, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Lu Sun
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China.
| | - Panxia Wang
- Guangzhou Medical University, School of Pharmaceutical Sciences, Guangzhou, China.
| | - Yi Cai
- Guangzhou Medical University, School of Pharmaceutical Sciences, Guangzhou, China.
| | - Tingting Shi
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Yuliang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Yuhua Zhou
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
2
|
Pang X, Guan Q, Lin X, Chang N. Knockdown of HDAC6 alleviates ventricular remodeling in experimental dilated cardiomyopathy via inhibition of NLRP3 inflammasome activation and promotion of cardiomyocyte autophagy. Cell Biol Toxicol 2023; 39:2365-2379. [PMID: 35764897 DOI: 10.1007/s10565-022-09727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Histone deacetylases (HDACs) has been implicated in cardiac diseases, while the role of HDAC6 in dilated cardiomyopathy (DCM) remains obscure. The in silico analyses predicted potential association of HDAC6 with autophagy-related genes and DCM. Thus, we evaluated the functional relevance of HDAC6 in DCM in vivo and in vitro. We developed a rat model in vivo and a cell model in vitro by doxorubicin (DOX) induction to simulate DCM. HDAC6 expression was determined in myocardial tissues of DCM rats. DCM rats exhibited elevated HDAC6 mRNA and protein expression as compared to sham-operated rats. We knocked HDAC6 down and/or overexpressed NLRP3 in vivo and in vitro to characterize their roles in cardiomyocyte autophagy. It was established that shRNA-mediated HDAC6 silencing augmented cardiomyocyte autophagy and suppressed NLRP3 inflammasome activation, thus ameliorating cardiac injury in myocardial tissues of DCM rats. Besides, in DOX-injured cardiomyocytes, HDAC6 silencing also diminished NLRP3 inflammasome activation and cell apoptosis but enhanced cell autophagy, whereas ectopic NLRP3 expression negated the effects of HDAC6 silencing. Since HDAC6 knockdown correlates with enhanced cardiomyocyte autophagy and suppressed NLRP3 inflammasome activation through an interplay with NLRP3, it is expected to be a potential biomarker and therapeutic target for DCM. 1. HDAC6 was up-regulated in DCM rats. 2. HDAC6 knockdown promoted cardiomyocyte autophagy to relieve cardiac dysfunction. 3. HDAC6 knockdown inhibited NLRP3 inflammasome and promoted cardiomyocyte autophagy. 4. Silencing HDAC6 promoted autophagy and repressed apoptosis in cardiomyocytes. 5. This study provides novel therapeutic targets for DCM.
Collapse
Affiliation(s)
- Xuefeng Pang
- Department of Cardiovascular Medicine, the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Qigang Guan
- Department of Cardiovascular Medicine, the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xue Lin
- Department of Cardiovascular Medicine, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Ning Chang
- Department of Digestive Diseases, the First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
3
|
Selyutina OY, Babenko SV, Slepneva IA, Polyakov NE, Kontoghiorghes GJ. Increased Free Radical Generation during the Interaction of a Quinone-Quinoline Chelator with Metal Ions and the Enhancing Effect of Light. Pharmaceuticals (Basel) 2023; 16:1116. [PMID: 37631031 PMCID: PMC10459951 DOI: 10.3390/ph16081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Schiff bases and similar molecules forming metal complexes may cause redox effects, which may also be influenced by light. Anthraquinones such as doxorubicin and idarubicin are widely used antitumor agents, which can generate reactive oxygen species (ROS), stimulated by both the presence of iron and copper ions and also by light. The generated ROS can cause DNA scission, cell membrane oxidation, and many other toxic effects. The redox activity of the quinone-quinoline chelator 2-phenyl-4-(butylamino)naphtho [2,3-h]quinoline-7,12-dione (Q1) was investigated in the presence of iron, copper, and zinc. The influence of light in these interactions was also examined. The chemically induced dynamic nuclear polarization (CIDNP), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) methods were used to elucidate the molecular changes and ROS generation effects of the Q1 metal interactions. A model electron transfer reaction system between 1,4-dihydropyridine and Q1 was utilized to demonstrate that the chelate complexes of Q1 with both Fe(III) and Cu(II) ions were more redox active than Q1 itself. Similarly, CIDNP and NMR data showed that the concentration dependence of the free radicals yield is much higher in the presence of Fe(III) and Cu(II) ions, in comparison to Zn(II), and also that it increased in the presence of light. These findings underline the role of transition metal ions and Q1 in cyclic redox chain reactions and increase the prospect of the development of copper- and iron-based chelating agents, including Q1 and its derivatives, for anticancer therapy. Furthermore, these findings also signify the effect of light on enhancing ROS formation by Q1 and the prospect of utilizing such information for designing target specific anticancer drugs for photodynamic therapy.
Collapse
Affiliation(s)
- Olga Yu. Selyutina
- Institute of Chemical Kinetics & Combustion, Novosibirsk 630090, Russia; (O.Y.S.); (S.V.B.); (I.A.S.); (N.E.P.)
| | - Simon V. Babenko
- Institute of Chemical Kinetics & Combustion, Novosibirsk 630090, Russia; (O.Y.S.); (S.V.B.); (I.A.S.); (N.E.P.)
- International Tomography Center, Novosibirsk 630090, Russia
| | - Irina A. Slepneva
- Institute of Chemical Kinetics & Combustion, Novosibirsk 630090, Russia; (O.Y.S.); (S.V.B.); (I.A.S.); (N.E.P.)
| | - Nikolay E. Polyakov
- Institute of Chemical Kinetics & Combustion, Novosibirsk 630090, Russia; (O.Y.S.); (S.V.B.); (I.A.S.); (N.E.P.)
| | - George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol CY-3021, Cyprus
| |
Collapse
|
4
|
Zhang S, Wei X, Zhang H, Wu Y, Jing J, Huang R, Zhou T, Hu J, Wu Y, Li Y, You Z. Doxorubicin downregulates autophagy to promote apoptosis-induced dilated cardiomyopathy via regulating the AMPK/mTOR pathway. Biomed Pharmacother 2023; 162:114691. [PMID: 37060659 DOI: 10.1016/j.biopha.2023.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
The broad-spectrum antineoplastic drug doxorubicin (DOX) has one of the most serious chronic side effects on the heart, dilated cardiomyopathy, but the precise molecular mechanisms underlying disease progression subsequent to long latency periods remain puzzling. Here, we established a model of DOX-induced dilated cardiomyopathy. In a cardiac cytology exploration, we found that differentially expressed genes in the KEGG signaling pathway enrichment provided a novel complex network of mTOR bridging autophagy and oxidative stress. Validation results showed that DOX caused intracellular reactive oxygen species accumulation in cardiomyocytes, disrupted mitochondria, led to imbalanced intracellular energy metabolism, and triggered cardiomyocyte apoptosis. Apoptosis showed a negative correlation with DOX-regulated cardiomyocyte autophagy. To evaluate whether the inhibition of mTOR could upregulate autophagy to protect cardiomyocytes, we used rapamycin to restore autophagy depressed by DOX. Rapamycin increased cardiomyocyte survival by easing the autophagic flux blocked by DOX. In addition, rapamycin reduced oxidative stress, prevented mitochondrial damage, and restored energy metabolic homeostasis in DOX-treated cardiomyocytes. In vivo, we used metformin (Met) which is an AMPK activator to protect cardiac tissue to alleviate DOX-induced dilated cardiomyopathy. In this study, Met significantly attenuated the oxidative stress response of myocardial tissue caused by DOX and activated cardiomyocyte autophagy to maintain cardiomyocyte energy metabolism and reduce cardiomyocyte apoptosis by downregulating mTOR activity. Overall, our study revealed the role of autophagy and apoptosis in DOX-induced dilated cardiomyopathy and demonstrated the potential role of regulation of the AMPK/mTOR axis in the treatment of DOX-induced dilated cardiomyopathy.
Collapse
Affiliation(s)
- Sheng Zhang
- Center for Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Xueping Wei
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Haijin Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Youping Wu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junsong Jing
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Rongrong Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Ting Zhou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Jingjin Hu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yueguo Wu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China.
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China.
| | - Zhenqiang You
- School of Public Health, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
5
|
Wu J, Li K, Liu Y, Feng A, Liu C, Adu-Amankwaah J, Ji M, Ma Y, Hao Y, Bu H, Sun H. Daidzein ameliorates doxorubicin-induced cardiac injury by inhibiting autophagy and apoptosis in rats. Food Funct 2023; 14:934-945. [PMID: 36541083 DOI: 10.1039/d2fo03416f] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Backgrounds: Doxorubicin (Dox) is a classical antitumor antibiotic widely restricted for use due to its cardiotoxicity. Daidzein (Daid) is a soy isoflavone that enhances antioxidant enzyme systems and inhibits apoptosis to prevent cardiovascular diseases. In this study, we intended to assess whether Daid protects against Dox-induced cardiotoxicity and explored its underlying mechanisms. Methods: Male Sprague-Dawley (SD) rats were divided into five groups: control (Ctrl), 40 mg per kg per day Daidzein (Daid), 3 mg per kg per week doxorubicin (Dox), 20 mg per kg per day Daidzein + 3 mg per kg per week doxorubicin (Daid20 + Dox) and 40 mg per kg per day Daidzein + 3 mg per kg per week doxorubicin (Daid40 + Dox) groups. Cardiac function assessments, immunohistochemistry (IHC) and immunofluorescence (IF) analyses were initially performed in each group of rats. Secondly, the cell proliferative capacity analysis, AO staining, and LC3 puncta analysis were employed to evaluate the cellular response to Dox in H9c2 cells. Ultimately, the protein expressions of cleaved caspase3, LC3 II, Bcl-2, Bax, Akt, p-Akt, and cyclin D1 were examined by western blotting. Results: Pretreatment with a low dose of Daid rather than a high dose significantly enhanced cardiac function and alleviated histopathological deterioration of cardiomyocytes induced by Dox. Daid downregulated the protein levels of Bax, LC3 II, cleaved caspase3 and p-Akt, while up-regulating Bcl-2 and cyclin D1. The Akt agonist SC79 could invalidate all the protective effects of Daid both in vivo and in vitro. Conclusions: Daid reduced autophagy and apoptosis by inhibiting the PI3K/Akt pathway, thereby protecting the hearts from Dox-induced cardiac damage.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yan Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Ailu Feng
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Chunyang Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Miaojin Ji
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yanhong Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yanling Hao
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Huimin Bu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
6
|
Qian H, Qian Y, Liu Y, Cao J, Wang Y, Yang A, Zhao W, Lu Y, Liu H, Zhu W. Identification of novel biomarkers involved in doxorubicin-induced acute and chronic cardiotoxicity, respectively, by integrated bioinformatics. Front Cardiovasc Med 2023; 9:996809. [PMID: 36712272 PMCID: PMC9874088 DOI: 10.3389/fcvm.2022.996809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background The mechanisms of doxorubicin (DOX) cardiotoxicity were complex and controversial, with various contradictions between experimental and clinical data. Understanding the differences in the molecular mechanism between DOX-induced acute and chronic cardiotoxicity may be an ideal entry point to solve this dilemma. Methods Mice were injected intraperitoneally with DOX [(20 mg/kg, once) or (5 mg/kg/week, three times)] to construct acute and chronic cardiotoxicity models, respectively. Survival record and ultrasound monitored the cardiac function. The corresponding left ventricular (LV) myocardium tissues were analyzed by RNA-seq to identify differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) found the key biological processes and signaling pathways. DOX cardiotoxicity datasets from the Gene expression omnibus (GEO) database were combined with RNA-seq to identify the common genes. Cytoscape analyzed the hub genes, which were validated by quantitative real-time PCR. ImmuCo and ImmGen databases analyzed the correlations between hub genes and immunity-relative markers in immune cells. Cibersort analyzed the immune infiltration and correlations between the hub genes and the immune cells. Logistic regression, receiver operator characteristic curve, and artificial neural network analysis evaluated the diagnosis ability of hub genes for clinical data in the GEO dataset. Results The survival curves and ultrasound monitoring demonstrated that cardiotoxicity models were constructed successfully. In the acute model, 788 DEGs were enriched in the activated metabolism and the suppressed immunity-associated signaling pathways. Three hub genes (Alas1, Atp5g1, and Ptgds) were upregulated and were negatively correlated with a colony of immune-activating cells. However, in the chronic model, 281 DEGs showed that G protein-coupled receptor (GPCR)-related signaling pathways were the critical events. Three hub genes (Hsph1, Abcb1a, and Vegfa) were increased in the chronic model. Furthermore, Hsph1 combined with Vegfa was positively correlated with dilated cardiomyopathy (DCM)-induced heart failure (HF) and had high accuracy in the diagnosis of DCM-induced HF (AUC = 0.898, P = 0.000). Conclusion Alas1, Atp5g1, and Ptgds were ideal biomarkers in DOX acute cardiotoxicity. However, Hsph1 and Vegfa were potential biomarkers in the myocardium in the chronic model. Our research, first, provided bioinformatics and clinical evidence for the discovery of the differences in mechanism and potential biomarkers of DOX-induced acute and chronic cardiotoxicity to find a therapeutic strategy precisely.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Jiaxin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yuhang Wang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Aihua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Wenjing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Huanxin Liu
- Shanghai Labway Medical Laboratory, Shanghai, China
| | - Weizhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,*Correspondence: Weizhong Zhu, ; orcid.org/0000-0002-8740-3210
| |
Collapse
|
7
|
Selyutina OY, Mastova AV, Polyakov NE. The Interaction of Anthracycline Based Quinone-Chelators with Model Lipid Membranes: 1H NMR and MD Study. MEMBRANES 2023; 13:membranes13010061. [PMID: 36676868 PMCID: PMC9861344 DOI: 10.3390/membranes13010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/01/2023]
Abstract
Anthracycline antibiotics, e.g., doxorubicin, daunomycin, and other anthraquinones, are an important family of antitumor agents widely used in chemotherapy, which is currently the principal method for treating many malignancies. Thus, development of improved antitumor drugs with enhanced efficacy remains a high priority. Interaction of anthraquinone-based anticancer drugs with cell membranes attracts significant attention due to its importance in the eventual overcoming of multidrug resistance (MDR). The use of drugs able to accumulate in the cell membrane is one of the possible ways of overcoming MDR. In the present work, the aspects of interaction of anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione) (Q1) with a model membrane were studied by means of NMR and molecular dynamics simulations. A fundamental shortcoming of anthracycline antibiotics is their high cardiotoxicity caused by reactive oxygen species (ROS). The important feature of Q1 is its ability to chelate transition metal ions responsible for ROS generation in vivo. In the present study, we have shown that Q1 and its chelating complexes penetrated into the lipid membrane and were located in the hydrophobic part of the bilayer near the bilayer surface. The chelate complex formation of Q1 with metal ions increased its penetration ability. In addition, it was found that the interaction of Q1 with lipid molecules could influence lipid mobility in the bilayer. The obtained results have an impact on the understanding of molecular mechanisms of Q1 biological activity.
Collapse
|
8
|
Liu Y, Xu Y, Yao Y, Cao Y, Chen G, Cai Y, Chen W, Chen X, Qiu Z. I-κB kinase-ε deficiency improves doxorubicin-induced dilated cardiomyopathy by inhibiting the NF-κB pathway. Front Physiol 2022; 13:934899. [PMID: 35991177 PMCID: PMC9386238 DOI: 10.3389/fphys.2022.934899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Dilated cardiomyopathy (DCM) can lead to heart expansion and severe heart failure, but its specific pathogenesis is still elusive. In many cardiovascular diseases, I-κB kinase-ε (IKKε) has been recognized as a pro-inflammatory molecule. In this study, wild-type mice (WT, n = 14) and IKKε knockout mice (IKKε-KO, n = 14) were intraperitoneally injected with a cumulative dose of 25 mg/kg with Dox or Saline five times in 30 days. Finally, the experimental mice were divided into WT + Saline group、WT + DOX group、IKKε-KO + Saline group and IKKε-KO + Dox group. Echocardiography was performed to assess cardiac structure and function. Moreover, the mechanism was validated by immunohistochemistry and western blotting. Our results demonstrated that compared to WT + Dox mice, IKKε-KO + Dox mice exhibited attenuation of dilated cardiomyopathy-related morphological changes and alleviation of heart failure. Additionally, compared to the WT mice after Dox-injected, the expression of fibrosis and proinflammatory were decreased in IKKε-KO mice, and the expression of cardiac gap junction proteins was much higher in IKKε-KO mice. Further testing found that pyroptosis and apoptosis in the myocardium were also ameliorated in IKKε-KO mice compared to WT mice after Dox was injected. Mechanistically, our results showed that deficiency of IKKε might inhibit the phosphorylation of IκBα, p65, RelB, and p100 in mouse heart tissues after Dox stimulation. In summary, our research suggests that IKKε might play an essential role in the development of Dox-induced dilated cardiomyopathy and may be a potential target for the treatment of dilated cardiomyopathy in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Chen
- *Correspondence: Xin Chen, ; Zhibing Qiu,
| | | |
Collapse
|
9
|
Cinnamamide derivatives with 4-hydroxypiperidine moiety enhance effect of doxorubicin to cancer cells and protect cardiomyocytes against drug-induced toxicity through CBR1 inhibition mechanism. Life Sci 2022; 305:120777. [DOI: 10.1016/j.lfs.2022.120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/06/2022]
|
10
|
CD47 antibody protects mice from doxorubicin-induced myocardial damage by suppressing cardiomyocyte apoptosis. Exp Ther Med 2022; 23:350. [PMID: 35493436 PMCID: PMC9019770 DOI: 10.3892/etm.2022.11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
Cluster of differentiation 47 (CD47) is upregulated in mouse models of doxorubicin (Dox)-induced dilated cardiomyopathy (DCM). To explore the role of CD47 in the development of DCM, in the present study, CD47 signaling was blocked by an anti-CD47 neutralizing antibody (aCD47) in mice with Dox-induced DCM. Intraperitoneal (i.p.) administration of 10 mg/kg Dox once a week significantly induced the development of DCM after 4 weeks, which was accompanied by the upregulation of CD47 expression in heart tissues. However, co-administration of Dox with 7 mg/kg aCD47 once a week significantly reduced the severity of DCM, with lower numbers of disordered and broken myofibers, reduced cardiomyocytes and infiltration of macrophages in the heart tissues of treated mice. The beneficial effects were associated with the reduced population of Annexin V+7-AAD- apoptotic cells, and the attenuated formation of interstitial fibrosis and release of lactate dehydrogenase (LDH) in the aCD47-treated mice. In addition, co-administration with aCD47 effectively reduced the expression of Bax, collagen I, interleukin (IL)-6 and tumor necrosis factor (TNF)-α in murine DCM. These results were further supported by an in vitro study, in which aCD47 pre-treatment significantly reduced the Dox-induced early apoptosis of cardiomyocytes and suppressed the expression of Bax, cleaved caspase-1/3 and phosphorylation of p38 MAPK. Therefore, aCD47 attenuated DCM in mice, possibly by suppressing cardiomyocyte early apoptosis and p38 MAPK signaling. CD47 may be a useful therapeutic target in the treatment of DCM.
Collapse
|
11
|
Chen DS, Yan J, Yang PZ. Cardiomyocyte Atrophy, an Underestimated Contributor in Doxorubicin-Induced Cardiotoxicity. Front Cardiovasc Med 2022; 9:812578. [PMID: 35282350 PMCID: PMC8913904 DOI: 10.3389/fcvm.2022.812578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Left ventricular (LV) mass loss is prevalent in doxorubicin (DOX)-induced cardiotoxicity and is responsible for the progressive decline of cardiac function. Comparing with the well-studied role of cell death, the part of cardiomyocyte atrophy (CMA) playing in the LV mass loss is underestimated and the knowledge of the underlying mechanism is still limited. In this review, we summarized the recent advances in the DOX-induced CMA. We found that the CMA caused by DOX is associated with the upregulation of FOXOs and “atrogenes,” the activation of transient receptor potential canonical 3-NADPH oxidase 2 (TRPC3-Nox2) axis, and the suppression of IGF-1-PI3K signaling pathway. The imbalance of anabolic and catabolic process may be the common final pathway of these mechanisms. At last, we provided some strategies that have been demonstrated to alleviate the DOX-induced CMA in animal models.
Collapse
Affiliation(s)
- De-Shu Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Jing Yan
| | - Ping-Zhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- *Correspondence: Ping-Zhen Yang
| |
Collapse
|
12
|
Selyutina OY, Kononova PA, Koshman VE, Fedenok LG, Polyakov NE. The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity. Antioxidants (Basel) 2022; 11:antiox11020376. [PMID: 35204258 PMCID: PMC8869476 DOI: 10.3390/antiox11020376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence of ascorbic acid on lipid peroxidation in a model system that mimics the cell membrane, namely micelles of linoleic acid (LA), induced by chelate complexes of iron and copper ions with quinone-chelator 2-phenyl-4-(butylamino)-naphtholquinoline-7,12-dione (Q1). This quinone effectively generates reactive oxygen species and semiquinone radicals inside cancer cells via a cycling redox reaction. Here it was demonstrated that in the absence of quinone-chelator ascorbic acid significantly accelerates the lipid peroxidation induced by both Fe(II) and Cu(II) ions. It has been shown also that Q1 chelate complexes with Fe(II) and Cu(II) ions are redox active in the LA micelles oxidation. No effect of ascorbate was detected on the reactivity of chelate complex with Fe(II) ions. On the other hand, ascorbate performs pro-oxidant activity in Q1-Cu(II) complex induced reaction. We can conclude that ascorbate-driven redox cycling of Q1 may promote its anti-tumor activity.
Collapse
|
13
|
Yao T, Fujimura T, Murayama K, Okumura K, Seko Y. Oxidative stress-responsive apoptosis inducing protein (ORAIP) plays a critical role in doxorubicin-induced apoptosis in rat cardiac myocytes. Int J Cardiol 2021; 348:119-124. [PMID: 34864083 DOI: 10.1016/j.ijcard.2021.11.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of doxorubicin-induced apoptosis in cardiac myocytes. However, the precise mechanism remains uncertain. We identified an apoptosis-inducing humoral factor, in a conditioned medium from cardiac myocytes subjected to hypoxia/reoxygenation, to be 69th tyrosine-sulfated eukaryotic translation initiation factor 5A (eIF5A). We named this novel secreted form of eIF5A, Oxidative stress-Responsive Apoptosis Inducing Protein (ORAIP). We confirmed that ischemia/reperfusion, ultraviolet-irradiation, and ionizing radiation significantly increased plasma levels of ORAIP in vivo, supporting that secretion of ORAIP is specific to the oxidative stress. To investigate the role of ORAIP in doxorubicin-induced apoptosis of cardiac myocytes. METHODS We analyzed plasma levels of ORAIP in rats treated with doxorubicin (10 mg/Kg) in vivo, and the effects of neutralizing anti-ORAIP monoclonal antibody (mAb) on doxorubicin-induced apoptosis of cardiac myocytes in vitro. RESULTS The (mean ± SE) plasma ORAIP levels before doxorubicin administration were (13.7 ± 2.7) ng/mL, they markedly increased with peak levels ([178.6 ± 6.5] ng/mL, p < 0.00001, vs. before administration) at 20 to 60 min after doxorubicin administration, then gradually decreased to (118.0 ± 4.8) ng/mL at 120 min. Treatment with a neutralizing anti-ORAIP mAb significantly (nearly 50%) suppressed doxorubicin-induced apoptosis of cardiac myocytes. CONCLUSIONS These data indicate that doxorubicin induces oxidative stress resulting in the strong expression of ORAIP in cardiac myocytes and marked secretion of ORAIP into peripheral circulation. This strongly suggests that ORAIP can be a novel sensitive biomarker as well as a possible therapeutic target for doxorubicin-induced cell injury in anti-cancer therapy.
Collapse
Affiliation(s)
- Takako Yao
- Division of Cardiovascular Medicine, Institute for Adult Diseases, Asahi Life Foundation, Tokyo 103-0002, Japan
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai 981-0905, Japan
| | - Kimie Murayama
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yoshinori Seko
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
| |
Collapse
|
14
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin Alleviates Doxorubicin-Induced Heart Failure and Excessive Accumulation of Ceramides. Front Cardiovasc Med 2021; 8:732554. [PMID: 34869633 PMCID: PMC8639694 DOI: 10.3389/fcvm.2021.732554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin-driven cardiotoxicity could result in dilated cardiomyopathy and heart failure (HF). Previously, we showed that periplocymarin exerted a cardiotonic role by promoting calcium influx and attenuating myocardial fibrosis induced by isoproterenol (ISO) by improving the metabolism of cardiomyocytes. However, the impact of periplocymarin on doxorubicin (DOX)-triggered cardiomyopathy has not been investigated. In the current study, C57BL/6 mice were randomly divided into three groups, namely, the control, DOX, and DOX+periplocymarin groups. The cardiac function and apoptosis were measured. Our results revealed that periplocymarin administration greatly improved the DOX-induced cardiac dysfunction manifested by the ejection fraction (EF%), fractional shortening (FS%), left ventricular posterior wall thickness (LVPW), left ventricular anterior wall thickness (LVAW), left ventricular (LV) mass, and attenuated DOX-induced cardiomyocyte apoptosis assessed by hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blotting. Further study using H9c2 cells revealed that the pretreatment of periplocymarin suppressed DOX-induced apoptosis evidenced by annexin V staining. Moreover, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that DOX lead to an accumulation in serum ceramide, and the pre-treatment of periplocymarin could reverse this phenomenon. Network pharmacology also demonstrated that ceramide metabolism was involved in the process. Consistently, real-time PCR showed that periplocymarin significantly abolished the induction of the genes involved in the de novo synthesis of ceramide, i.e., CerS2, CerS4, CerS5, and CerS6, and the induction was attributed to the treatment of DOX. Collectively, these results suggested that periplocymarin reduced cardiomyocyte apoptosis to protect hearts from DOX-induced cardiotoxicity and the de novo synthesis of ceramides was involved in this process.
Collapse
Affiliation(s)
| | | | | | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Zhang Y, Ni L, Lin B, Hu L, Lin Z, Yang J, Wang J, Ma H, Liu Y, Yang J, Lin J, Xu L, Wu L, Shi D. SNX17 protects the heart from doxorubicin-induced cardiotoxicity by modulating LMOD2 degradation. Pharmacol Res 2021; 169:105642. [PMID: 33933636 DOI: 10.1016/j.phrs.2021.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Anthracyclines including doxorubicin (DOX) are still the most widely used and efficacious antitumor drugs, although their cardiotoxicity is a significant cause of heart failure. Despite considerable efforts being made to minimize anthracycline-induced cardiac adverse effects, little progress has been achieved. In this study, we aimed to explore the role and underlying mechanism of SNX17 in DOX-induced cardiotoxicity. We found that SNX17 was downregulated in cardiomyocytes treated with DOX both in vitro and in vivo. DOX treatment combined with SNX17 interference worsened the damage to neonatal rat ventricular myocytes (NRVMs). Furthermore, the rats with SNX17 deficiency manifested increased susceptibility to DOX-induced cardiotoxicity (myocardial damage and fibrosis, impaired contractility and cardiac death). Mechanistic investigation revealed that SNX17 interacted with leiomodin-2 (LMOD2), a key regulator of the thin filament length in muscles, via its C-TERM domain and SNX17 deficiency exacerbated DOX-induced cardiac systolic dysfunction by promoting aberrant LMOD2 degradation through lysosomal pathway. In conclusion, these findings highlight that SNX17 plays a protective role in DOX-induced cardiotoxicity, which provides an attractive target for the prevention and treatment of anthracycline induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zheyi Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinyu Wang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Honghui Ma
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi Liu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yang
- Jinzhou Medical University, Liaoning 121000, China
| | - Jianghua Lin
- Jinzhou Medical University, Liaoning 121000, China
| | - Liang Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Liqun Wu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
16
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
17
|
Ma ZG, Kong CY, Wu HM, Song P, Zhang X, Yuan YP, Deng W, Tang QZ. Toll-like receptor 5 deficiency diminishes doxorubicin-induced acute cardiotoxicity in mice. Am J Cancer Res 2020; 10:11013-11025. [PMID: 33042267 PMCID: PMC7532690 DOI: 10.7150/thno.47516] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Clinical application of doxorubicin (DOX) is limited by its toxic cardiovascular side effects. Our previous study found that toll-like receptor (TLR) 5 deficiency attenuated cardiac fibrosis in mice. However, the role of TLR5 in DOX-induced cardiotoxicity remains unclear. Methods: To further investigate this, TLR5-deficient mice were subjected to a single intraperitoneal injection of DOX to mimic an acute model. Results: Here, we reported that TLR5 expression was markedly increased in response to DOX injection. Moreover, TLR5 deficiency exerted potent protective effects against DOX-related cardiac injury, whereas activation of TLR5 by flagellin exacerbated DOX injection-induced cardiotoxicity. Mechanistically, the effects of TLR5 were largely attributed to direct interaction with spleen tyrosine kinase to activate NADPH oxidase (NOX) 2, increasing the production of superoxide and subsequent activation of p38. The toxic effects of TLR5 activation in DOX-related acute cardiac injury were abolished by NOX2 deficiency in mice. Our further study showed that neutralizing antibody-mediated TLR5 depletion also attenuated DOX-induced acute cardiotoxicity. Conclusion: These findings suggest that TLR5 deficiency attenuates DOX-induced cardiotoxicity in mice, and targeting TLR5 may provide feasible therapies for DOX-induced acute cardiotoxicity.
Collapse
|
18
|
Peroxiredoxin-1 Overexpression Attenuates Doxorubicin-Induced Cardiotoxicity by Inhibiting Oxidative Stress and Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2405135. [PMID: 32802259 PMCID: PMC7411498 DOI: 10.1155/2020/2405135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023]
Abstract
Background. Previous research has shown that peroxiredoxin 1 (Prdx1) is an important modulator of physiological and pathophysiological cardiovascular events. This study is aimed at investigating the role and underlying mechanism of Prdx1 in doxorubicin- (DOX-) induced cardiotoxicity. Cardiac-specific expression of Prdx1 was induced in mice, and the mice received a single dose of DOX (15 mg/kg) to generate cardiotoxicity. First, our study demonstrated that Prdx1 expression was upregulated in the heart and in cardiomyocytes after DOX treatment. Second, we provided direct evidence that Prdx1 overexpression ameliorated DOX-induced cardiotoxicity by attenuating oxidative stress and cardiomyocyte apoptosis. Mechanistically, we found that DOX treatment increased the phosphorylation level of apoptosis signal-regulating kinase-1 (ASK1) and the downstream protein p38 in the heart and in cardiomyocytes, and these effects were decreased by Prdx1 overexpression. In contrast, inhibiting Prdx1 promoted DOX-induced cardiac injury via the ASK1/p38 pathway. These results suggest that Prdx1 may be an effective therapeutic option to prevent DOX-induced cardiotoxicity.
Collapse
|
19
|
Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, Qiu Z. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep 2020; 22:948-956. [PMID: 32468049 PMCID: PMC7339405 DOI: 10.3892/mmr.2020.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/15/2020] [Indexed: 01/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease that can lead to heart expansion and severe heart failure, but the specific pathogenesis remains unclear. Sox5 is a member of the Sox family with a key role in cardiac function. However, the role of Sox5 in DCM remains unclear. In the present study, wild-type mice were intraperitoneally injected with doxorubicin (Dox) to induce DCM, and heart specimens from human patients with DCM were used to investigate the preliminary role of Sox5 in DCM. The present study demonstrated that, compared with control human hearts, the hearts of patients with DCM exhibited high expression levels of Sox5 and activation of the wnt/β-catenin pathway. This result was consistent with Dox-induced DCM in mice. Furthermore, in Dox-treated mice, apoptosis was activated during the development of DCM. Inflammation and collagen deposition also increased in DCM mice. The results of the present study indicate that Sox5 may be associated with the development of DCM. Sox5 may be a novel potential factor that regulates DCM.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ben Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Li Yin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
20
|
Irigenin treatment alleviates doxorubicin (DOX)-induced cardiotoxicity by suppressing apoptosis, inflammation and oxidative stress via the increase of miR-425. Biomed Pharmacother 2020; 125:109784. [DOI: 10.1016/j.biopha.2019.109784] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
|
21
|
Schwach V, Slaats RH, Passier R. Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assessment of Anticancer Drug-Induced Cardiotoxicity. Front Cardiovasc Med 2020; 7:50. [PMID: 32322588 PMCID: PMC7156610 DOI: 10.3389/fcvm.2020.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiotoxicity is a major cause of high attrition rates among newly developed drugs. Moreover, anti-cancer treatment-induced cardiotoxicity is one of the leading reasons of mortality in cancer survivors. Cardiotoxicity screening in vitro may improve predictivity of cardiotoxicity by novel drugs, using human pluripotent stem cell (hPSC)-derived-cardiomyocytes. Anthracyclines, including Doxorubicin, are widely used and highly effective chemotherapeutic agents for the treatment of different forms of malignancies. Unfortunately, anthracyclines cause many cardiac complications early or late after therapy. Anthracyclines exhibit their potent anti-cancer effect primarily via induction of DNA damage during the DNA replication phase in proliferative cells. In contrast, studies in animals and hPSC-cardiomyocytes have revealed that cardiotoxic effects particularly arise from (1) the generation of oxidative stress inducing mitochondrial dysfunction, (2) disruption of calcium homeostasis, and (3) changes in transcriptome and proteome, triggering apoptotic cell death. To increase the therapeutic index of chemotherapeutic Doxorubicin therapy several protective strategies have been developed or are under development, such as (1) reducing toxicity through modification of Doxorubicin (analogs), (2) targeted delivery of anthracyclines specifically to the tumor tissue or (3) cardioprotective agents that can be used in combination with Doxorubicin. Despite continuous progress in the field of cardio-oncology, cardiotoxicity is still one of the major complications of anti-cancer therapy. In this review, we focus on current hPSC-cardiomyocyte models for assessing anthracycline-induced cardiotoxicity and strategies for cardioprotection. In addition, we discuss latest developments toward personalized advanced pre-clinical models that are more closely recapitulating the human heart, which are necessary to support in vitro screening platforms with higher predictivity. These advanced models have the potential to reduce the time from bench-to-bedside of novel antineoplastic drugs with reduced cardiotoxicity.
Collapse
Affiliation(s)
- Verena Schwach
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Rolf H Slaats
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
22
|
Willis MS, Parry TL, Brown DI, Mota RI, Huang W, Beak JY, Sola M, Zhou C, Hicks ST, Caughey MC, D’agostino RB, Jordan J, Hundley WG, Jensen BC. Doxorubicin Exposure Causes Subacute Cardiac Atrophy Dependent on the Striated Muscle-Specific Ubiquitin Ligase MuRF1. Circ Heart Fail 2019; 12:e005234. [PMID: 30871347 PMCID: PMC6422170 DOI: 10.1161/circheartfailure.118.005234] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023]
Abstract
Background Anthracycline chemotherapeutics, such as doxorubicin, are used widely in the treatment of numerous malignancies. The primary dose-limiting adverse effect of anthracyclines is cardiotoxicity that often presents as heart failure due to dilated cardiomyopathy years after anthracycline exposure. Recent data from animal studies indicate that anthracyclines cause cardiac atrophy. The timing of onset and underlying mechanisms are not well defined, and the relevance of these findings to human disease is unclear. Methods and Results Wild-type mice were sacrificed 1 week after intraperitoneal administration of doxorubicin (1-25 mg/kg), revealing a dose-dependent decrease in cardiac mass ( R2=0.64; P<0.0001) and a significant decrease in cardiomyocyte cross-sectional area (336±29 versus 188±14 µm2; P<0.0001). Myocardial tissue analysis identified a dose-dependent upregulation of the ubiquitin ligase, MuRF1 (muscle ring finger-1; R2=0.91; P=0.003) and a molecular profile of muscle atrophy. To investigate the determinants of doxorubicin-induced cardiac atrophy, we administered doxorubicin 20 mg/kg to mice lacking MuRF1 (MuRF1-/-) and wild-type littermates. MuRF1-/- mice were protected from cardiac atrophy and exhibited no reduction in contractile function. To explore the clinical relevance of these findings, we analyzed cardiac magnetic resonance imaging data from 70 patients in the DETECT-1 cohort and found that anthracycline exposure was associated with decreased cardiac mass evident within 1 month and persisting to 6 months after initiation. Conclusions Doxorubicin causes a subacute decrease in cardiac mass in both mice and humans. In mice, doxorubicin-induced cardiac atrophy is dependent on MuRF1. These findings suggest that therapies directed at preventing or reversing cardiac atrophy might preserve the cardiac function of cancer patients receiving anthracyclines.
Collapse
Affiliation(s)
- Monte S. Willis
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN
| | - Traci L. Parry
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - David I. Brown
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - Roberto I. Mota
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - Ju Youn Beak
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - Michael Sola
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - Cynthia Zhou
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - Sean T Hicks
- McAllister Heart Institute, University of North Carolina School of Medicine
| | - Melissa C. Caughey
- Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine
| | | | - Jennifer Jordan
- Section on Cardiovascular Medicine, Wake Forest Health Sciences
| | | | - Brian C. Jensen
- McAllister Heart Institute, University of North Carolina School of Medicine
- Department of Pharmacology, University of North Carolina School of Medicine
- Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine
| |
Collapse
|
23
|
Takemura G, Onoue K, Nakano T, Nakamura T, Sakaguchi Y, Tsujimoto A, Miyazaki N, Watanabe T, Kanamori H, Okada H, Kawasaki M, Fujiwara T, Fujiwara H, Saito Y. Possible mechanism for disposal of degenerative cardiomyocytes in human failing hearts: phagocytosis by a neighbour. ESC Heart Fail 2018; 6:208-216. [PMID: 30478956 PMCID: PMC6351884 DOI: 10.1002/ehf2.12383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
The index case was a 51‐year‐old woman suffering from doxorubicin cardiomyopathy. In her endomyocardial biopsy specimen, we observed under electron microscopy six scenes in which degenerative cardiomyocytes were engulfed by neighbouring cardiomyocytes. The enclosed cardiomyocytes appeared more degenerative than the enclosing ones in every pair: the myofibrils were more severely damaged. At more degenerative stages, some desmosomes of the intercalated discs on the enclosed cardiomyocyte had disappeared. The membranes between the cardiomyocytes were occasionally disrupted, and there appeared to be sharing of cellular contents between the cells. One pair of such a phagocytosis‐like figure was observed in one case with 5‐fluorouracil cardiomyopathy (a 68‐year‐old man) among eight other chemotherapy‐induced cardiomyopathies but none among 30 non‐drug‐induced dilated cardiomyopathies. The findings suggest a mechanism for disposal of degenerative cardiomyocytes in human failing hearts: phagocytosis by a neighbour, although alternative interpretations remain (e.g. giant autophagic vacuoles or two cardiomyocytes with degenerative intercalated discs).
Collapse
Affiliation(s)
- Genzou Takemura
- Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Nakano
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| | - Takuya Nakamura
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| | - Yasuhiro Sakaguchi
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| | - Akiko Tsujimoto
- Department of Cardiology, Gifu University School of Medicine, Gifu, Japan
| | - Nagisa Miyazaki
- Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Japan
| | - Takatomo Watanabe
- Department of Cardiology, Gifu University School of Medicine, Gifu, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Gifu University School of Medicine, Gifu, Japan
| | - Takako Fujiwara
- Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | | | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
24
|
Affiliation(s)
- Philippe Hantson
- Department of Intensive Care, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium
- Louvain Centre for Toxicology and Applied Pharmacology, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Yan J, Song B, Hu W, Meng Y, Niu F, Han X, Ge Y, Li N. Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells. Cancer Biother Radiopharm 2018; 33:125-130. [PMID: 29763376 DOI: 10.1089/cbr.2017.2348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) can be used to treat malignant tumors, but with multiple adverse effects. Graphene oxide-polyethylene glycol (GO-PEG) is a novel nanoscale carrier material and can elevate solubility and biocompatibility of drugs. This study prepared a GO-PEG-DOX complex, whose toxicity and antitumor effects were evaluated on mouse EMT-6 breast cancer cells. MATERIALS AND METHODS GO-PEG-DOX complex was prepared for calculating the drug carrier rate of DOX on GO-PEG by MV approach. EMT-6 cells were treated with 40 μg/mL GO-PEG, 1 μg/mL DOX, or 40 μg/mL +1 μg/mL GO-PEG-DOX for 72 h of incubation. Cells without treatment were considered the control group. Cell survival rate and apoptotic rate were tested at different time points. RESULTS GO-PEG and GO-PEG-DOX complex were successfully prepared with satisfactory solubility. After 72 h of incubation, EMT-6 cells after GO-PEG-DOX treatment had significantly higher survival rate than GO-PEG group (p < 0.05). All three treatment groups had significantly elevated apoptotic rates than control group (p < 0.05). GO-PEG-DOX group had much more apoptosis (p < 0.05 compared with DOX group). Moreover, with elongated treatment time, all groups showed decreased survival rate (p < 0.05). CONCLUSION GO-PEG did not reduce the cytotoxicity of DOX on EMT-6 cells. GO-PEG-DOX complex can increase the water solubility and targeting sensitivity of DOX, with facilitating effects on DOX-induced tumor cell apoptosis.
Collapse
Affiliation(s)
- Jinyin Yan
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Bo Song
- 2 Breast Surgery Department, Shandong Tengzhou Maternity and Children Care Hospital , Tengzhou, China
| | - Wanning Hu
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Ying Meng
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Fengling Niu
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Xiaochen Han
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Yuhui Ge
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| | - Ning Li
- 1 Breast Surgery Department, Tangshan People's Hospital , Tangshan, China
| |
Collapse
|
26
|
Li J, Li L, Li X, Wu S. Long noncoding RNA LINC00339 aggravates doxorubicin-induced cardiomyocyte apoptosis by targeting MiR-484. Biochem Biophys Res Commun 2018; 503:3038-3043. [DOI: 10.1016/j.bbrc.2018.08.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/12/2018] [Indexed: 11/29/2022]
|
27
|
Polyakov N, Leshina T, Fedenok L, Slepneva I, Kirilyuk I, Furso J, Olchawa M, Sarna T, Elas M, Bilkis I, Weiner L. Redox-Active Quinone Chelators: Properties, Mechanisms of Action, Cell Delivery, and Cell Toxicity. Antioxid Redox Signal 2018; 28:1394-1403. [PMID: 29161882 DOI: 10.1089/ars.2017.7406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Chemotherapy is currently the principal method for treating many malignancies. Thus, the development of improved antitumor drugs with enhanced efficacy and selectivity remains a high priority. Recent Advances: Anthracycline antibiotics (AAs), for example, doxorubicin, daunomycin, and mitomycin C, belong to an important family of antitumor agents widely used in chemotherapy. These compounds are all quinones. They are, thus, capable of being reduced by appropriate chemicals or reductases. One of their important properties is that under aerobic conditions their reduced forms undergo oxidation, with concomitant generation of reactive oxygen species (ROS), namely, superoxide anion radicals, hydrogen peroxide, and hydroxyl radicals. The presence of metal ions is essential for the generation of ROS by AAs in biological systems. CRITICAL ISSUES A fundamental shortcoming of the AAs is their high cardiotoxicity. We have proposed, and experimentally realized, a new type of quinones that is capable of coordinating metal ions. We have demonstrated in vitro that they can be reduced by electron transfer chains and glutathione with concomitant generation of ROS. They can also produce ROS under photo-excitation. The mechanisms of these reactions have been characterized by using nuclear magnetic resonance and electron paramagnetic resonance. FUTURE DIRECTIONS To enhance their therapeutic effectiveness, and decrease cardiotoxicity and other side effects, we intend to conjugate the quinone chelators with monoclonal antibodies and peptide hormones that are specifically targeted to receptors on the cancer cell surface. Some such candidates have already been synthesized. An alternative approach for delivery of our compounds involves the use of specific peptide-based nanoparticles. In addition, our novel approach for treating malignancies is also suitable for photodynamic therapy. Antioxid. Redox Signal. 28, 1394-1403.
Collapse
Affiliation(s)
- Nikolay Polyakov
- 1 Institute of Chemical Kinetics and Combustion , Novosibirsk, Russia
| | - Tatyana Leshina
- 1 Institute of Chemical Kinetics and Combustion , Novosibirsk, Russia
| | - Lidiya Fedenok
- 1 Institute of Chemical Kinetics and Combustion , Novosibirsk, Russia
| | - Irina Slepneva
- 1 Institute of Chemical Kinetics and Combustion , Novosibirsk, Russia
| | - Igor Kirilyuk
- 2 Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk, Russia
| | - Justyna Furso
- 3 Department of Biophysics, Jagiellonian University , Kraków, Poland
| | - Magdalena Olchawa
- 3 Department of Biophysics, Jagiellonian University , Kraków, Poland
| | - Tadeusz Sarna
- 3 Department of Biophysics, Jagiellonian University , Kraków, Poland
| | - Martyna Elas
- 3 Department of Biophysics, Jagiellonian University , Kraków, Poland
| | - Itzhak Bilkis
- 4 Institute of Biochemistry, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem , Rehovot, Israel
| | - Lev Weiner
- 5 Department of Neurobiology, Faculty of Biology, Weizmann Institute of Science , Rehovot, Israel
| |
Collapse
|
28
|
Danilenko LM. Doxorubicin-associated Cardiomyopathy: New Approaches to Pharmacological Correction Using 3-(2,2,2-trimethylhydrazinium) Propionate Derivatives. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.25530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The search for new compounds with cardioprotective activity amongst the 3-(2,2,2-trimethylhydrazinium) propionate derivatives looks promising.
Research objectives: to study cardioprotective effects of the 3-(2,2,2-trimethylhydrazinium) propionate derivatives.
Methods: The cardioprotective effect of the derivatives (nicotinate, 5-hydroxynicotinate) of 3-(2,2,2-trimethylhydrazinium) propionate) and reference medicine meldonium in the case of doxorubicin (DOX) (20 mg/kg, intraperitoneally for 48 hours) cardiomyopathy was evaluated by the results of a functional test with high-frequency stimulation (480 bpm).
To provide integral validation for the development of the simulated pathological processes, biochemical and morphological studies of the heart were carried out. For a biochemical evaluation of myocardial damage in the homogenisate, the isoenzyme creatinine kinase MB (CK-MB) and lactate dehydrogenase (LDH) were determined.
Results: The derivatives nicotinate and 5-hydroxynicotinate of 3-(2,2,2-trimethylhydrazinium) propionate) exert a cardioprotective effect on a doxorubicin pathology model, which is expressed in a decreased coefficient of diastolic dysfunction (StTTI) to the level of 5.8±0.1 ru and 4.6±0.2 ru in comparison with that in the control group 8.3±0.1 ru and reference medicine meldonium 6.5±0.1 ru, respectively.
The cardioprotective effect was confirmed by decreased levels of markers of damage to CK-MB and LDH and a decreased diameter of cardiomyocytes compared to those in the control group.
Conclusion: The derivatives of 3-(2,2,2-trimethylhydrazinium) propionate (nicotinate, 5-hydroxynicotinate) 3-(2,2,2-trimethylhydrazinium) propionate reduce diastolic dysfunction and irreversible damage to cardiomyocytes in case of doxorubicin-associated cardiomyopathy.
Collapse
|
29
|
Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S, Urbanek K. Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1521020. [PMID: 29181122 PMCID: PMC5664340 DOI: 10.1155/2017/1521020] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
The production of reactive species is a core of the redox cycling profile of anthracyclines. However, these molecular characteristics can be viewed as a double-edged sword acting not only on neoplastic cells but also on multiple cellular targets throughout the body. This phenomenon translates into anthracycline cardiotoxicity that is a serious problem in the growing population of paediatric and adult cancer survivors. Therefore, better understanding of cellular processes that operate within but also go beyond cardiomyocytes is a necessary step to develop more effective tools for the prevention and treatment of progressive and often severe cardiomyopathy experienced by otherwise successfully treated oncologic patients. In this review, we focus on oxidative stress-triggered cellular events such as DNA damage, senescence, and cell death implicated in anthracycline cardiovascular toxicity. The involvement of progenitor cells of cardiac and extracardiac origin as well as different cardiac cell types is discussed, pointing to molecular signals that impact on cell longevity and functional competence.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Prezioso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
30
|
Gas signaling molecule hydrogen sulfide attenuates doxorubicin-induced dilated cardiomyopathy. Oncotarget 2017; 8:95425-95431. [PMID: 29221138 PMCID: PMC5707032 DOI: 10.18632/oncotarget.20729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence has revealed that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, whether H2S can attenuate the development of dilated cardiomyopathy (DCM) remains unclear. In this study, we generated a rat model of DCM induced by doxorubicin and investigated the protective effects of H2S against DCM. Cardiac structure and function were analyzed by two-dimensional echocardiography. Oxidative stress was evaluated by measuring malondialdehyde, superoxide dismutase, glutathione peroxidase and reactive oxygen species. Cardiomyocyte apoptosis was assessed by flow cytometry following Annexin V/PI staining. Our results showed that exogenous administration of H2S could improve left ventricular structure and function in DCM rats. H2S was found to suppress doxorubicin-induced oxidative stress by activating the Nrf2 pathway and upregulating the expression of antioxidant proteins NQO1 and GCLM. Moreover, H2S was also found to inhibit doxorubicin-induced cardiomyocyte apoptosis by activating the PI3K/Akt signaling pathway. In conclusion, our study demonstrates that H2S protects against doxorubicin-induced DCM via attenuation of oxidative stress and apoptosis.
Collapse
|
31
|
Prevention of Cardiovascular Disease Among Cancer Survivors: the Role of Pre-existing Risk Factors and Cancer Treatments. CURR EPIDEMIOL REP 2017. [DOI: 10.1007/s40471-017-0117-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
El-Ghawet HA, Gadallah AA, El-Mansi AA, Amin AH, El-Sayyad HIH. Markers of Heart, Lung and Dorsal Aorta Damage of Mother Rats and Their Neonates Post Therapeutic Treatment with Doxorubicin, Cisplatin and 5-Flurouracil. Chin Med 2017. [DOI: 10.4236/cm.2017.83007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|