1
|
Zhu Y, Ho QT, Dahl L, Azad AM, Bank MS, Boitsov S, Kjellevold M, Kögel T, Lien VS, Lundebye AK, Maage A, Markhus MW, Wiech M, Nilsen BM. Predicting essential and hazardous element concentrations in marine fish from the Northeast Atlantic Ocean: A Bayesian approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178748. [PMID: 39986028 DOI: 10.1016/j.scitotenv.2025.178748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/13/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Micronutrient deficiency or 'hidden hunger' is of growing importance regionally and globally. Marine fish have the potential to mitigate hidden hunger although certain contaminants they often contain may also pose a health risk. Understanding biological and environmental drivers behind essential and hazardous element concentrations is therefore important to develop evidence-based advice for adaptive management strategies. We use Bayesian models to predict concentrations of ten essential and two hazardous elements in fillets of 14 marine fish species in the Northeast Atlantic Ocean. Data from 15,709 individuals of six lean, five semi-fatty, and three fatty species were included. Fish length, fat content, ocean basin, sea temperature and salinity were used as predictor variables. We found good model predictability and identified some important trends in driver effects. Fish length was the most important driver of element concentrations for most species with a negative effect for calcium, copper, manganese, and arsenic, and a positive effect for mercury, suggesting that smaller individuals may be a safer and better source of essential elements. Ocean basin was also an important driver in most cases. For concentrations of selenium, zinc, and mercury, effect sizes of ocean basins increased from north to south for several species. Fat content exhibited a small negative effect on concentrations of calcium, iron, and mercury, and a small positive effect on phosphorus and arsenic concentrations in many species. Temperature showed a small negative effect on zinc concentration for most species, while the effect of salinity varied among species without an apparent trend. This is the first multi-species and multi-element study to investigate drivers of element concentrations in marine fish at a large spatial scale using a Bayesian approach. The robust model predictability indicates the models' potential to further understand nutrient yield dynamics from fisheries, thereby empowering the implementation of informed strategies against hidden hunger.
Collapse
Affiliation(s)
- Yiou Zhu
- Institute of Marine Research, Norway.
| | | | | | | | - Michael S Bank
- Institute of Marine Research, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Jia W, McCreanor C, Carey M, Holland J, Meharg C, Meharg AA. Mobilization of grassland soil arsenic stores due to agronomic management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177702. [PMID: 39577579 DOI: 10.1016/j.scitotenv.2024.177702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The fate of arsenic in mineral soil stores over time is poorly understood. Here we examined arsenic loss over five decades from a managed grassland soil profile through analysing archived material from a long-term slurry (LTS) experiment at Hillsborough, Northern Ireland. A randomized block experiment was established in 1970 where a perennial ryegrass sward was seeded onto the site and subjected to control (no fertilization) and fertilization treatments using conventional (i.e. at farmers recommended application rate) mineral NPK fertilizer, and pig and cow slurry treatments. Soil (0-5, 5-10 and 10-15 cm), slurry applied, and sward off-take was archived each year. A mass-balance calculation found that control soils lost no arsenic down the 15 cm depth soil profile, the NPK treatment had a 10 % loss, while cow slurry caused 25 % loss, and a 35 % loss was observed for pig slurry. For treatments with arsenic loss, removal was linear over the 50 years of study in 2 out of the 3 blocks, with the 3rd block showing little or no change. Principal Component Analysis (PCA) found that arsenic was most positively associated with soil magnesium, manganese and nickel, while negatively associated with pH, organic carbon, phosphorus and silicon. Laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) of soil found that arsenic association with lead mineralogy could potentially explain why there was a gradient in arsenic loss across the experimental plots. Slurry and atmospheric inputs, and sward off-take had little impact on the soil arsenic mass-balance. The findings suggest that leaching loss down the soil profile was the mechanism of loss of arsenic. The applicability of the LTS experimental site arsenic findings to other soils is discussed, as is the implication for the global biogeochemical cycling of those soils.
Collapse
Affiliation(s)
- Wanqi Jia
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| | - Coalain McCreanor
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland; Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, United Kingdom of Great Britain and Northern Ireland
| | - Manus Carey
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| | - Jonathan Holland
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, United Kingdom of Great Britain and Northern Ireland.
| | - Caroline Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland.
| | - Andrew A Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
3
|
Zhou S, Qi X, Tang Y, Yu W, Guan Q, Bu Y, Tan L, Gu G. Activated carbon-mediated arsenopyrite oxidation and arsenic immobilization: ROS formation and its role. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135917. [PMID: 39326147 DOI: 10.1016/j.jhazmat.2024.135917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The oxidative dissolution of arsenopyrite (FeAsS) is a significant source of arsenic contamination in nature. Activated biochar (AC), a widely used environmental remediation agent, is prevalent in ecosystems and participated in various geochemical processes of arsenic and iron-containing sulfide minerals. However, the impact of AC-arsenopyrite association on reactive oxidation species (ROS) generation and its contribution to As transformation were rarely explored. Here, ROS formation and the redox conversion of As during the interaction between AC and arsenopyrite were investigated. AC-mediated arsenopyrite oxidation was a two-stage process. At stage I, the heterogeneous electron transfer from arsenopyrite facilitated O2 reduction on AC, enhancing arsenopyrite dissolution and ROS formation. TBA, PBQ and catalase inhibited 86.40 %, 79.39 % and 49.66 % of As(III) oxidation, respectively, indicating indicated that HO˙, (O2•)- and H2O2 were responsible for As(III) oxidation. However, at stage II, the mobility of As was highly restricted, especially increasing AC addition. Besides adsorption, AC retained appreciable As through catalyzing insoluble ferric arsenate formation and growth by promoting Fe(II) and As(III) oxidation and functioning as nuclei. These findings deepen our understanding of the coupling behavior of AC-arsenopyrite and its influence on geochemical cycling of arsenic in mined surroundings, which has important implications for mitigating arsenic pollution.
Collapse
Affiliation(s)
- Shuang Zhou
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xianglong Qi
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weijian Yu
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qingjun Guan
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yongjie Bu
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ling Tan
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Shi YL, Chen WQ, Zhu YG. Direct, Embedded, and Embodied Trade of Arsenic: 1990-2019. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12008-12017. [PMID: 38920967 DOI: 10.1021/acs.est.4c04715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
International arsenic trade, physical and virtual, has resulted in considerable transfer of arsenic pollution across regions. However, no study has systematically captured, estimated, and compared physical and virtual arsenic trade and its relevant impacts. This study combines material flow analysis and embodied emission factors to estimate embedded (including direct and indirect trade) and embodied arsenic trade during 1990-2019, encompassing 18 arsenic-containing products among 244 countries. Global embedded arsenic trade increased considerably from 47 ± 7.3 to 450 ± 68 kilotonnes (kt) during this time and was dominated by indirect arsenic trade, contributing 94 and 90% to global arsenic trade in 1990 and 2019, respectively. Since the 1990s, global arsenic trade centers and the main flows have shifted from European and American markets to developing countries. The mass of arsenic involved in embodied trade increased from 87.5 ± 26 kt in 1990 to 800 ± 236 kt in 2019. Direct trade and indirect trade aggravate arsenic environmental emissions in major importing countries, like China, while embodied trade aggravates arsenic environmental emissions in major exporting countries, like Peru and Chile. The trade-related arsenic pollution transfer calls for a rational arsenic emission responsibility-sharing mechanism and corresponding policy recommendations for different trading countries.
Collapse
Affiliation(s)
- Ya-Lan Shi
- College of Tourism, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China
| | - Wei-Qiang Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
5
|
Caggìa V, Wälchli J, Deslandes-Hérold G, Mateo P, Robert CAM, Guan H, Bigalke M, Spielvogel S, Mestrot A, Schlaeppi K, Erb M. Root-exuded specialized metabolites reduce arsenic toxicity in maize. Proc Natl Acad Sci U S A 2024; 121:e2314261121. [PMID: 38513094 PMCID: PMC10990099 DOI: 10.1073/pnas.2314261121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/19/2024] [Indexed: 03/23/2024] Open
Abstract
By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.
Collapse
Affiliation(s)
- Veronica Caggìa
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | - Jan Wälchli
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | | | - Pierre Mateo
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
| | | | - Hang Guan
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
- Institute of Applied Geoscience, Technical University Darmstadt, DarmstadtD-64287, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität, Kiel24118, Germany
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich52425, Germany
| | - Adrien Mestrot
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
| |
Collapse
|
6
|
Monchanin C, Drujont E, Le Roux G, Lösel PD, Barron AB, Devaud JM, Elger A, Lihoreau M. Environmental exposure to metallic pollution impairs honey bee brain development and cognition. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133218. [PMID: 38113738 DOI: 10.1016/j.jhazmat.2023.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Laboratory studies show detrimental effects of metallic pollutants on invertebrate behaviour and cognition, even at low levels. Here we report a field study on Western honey bees exposed to metal and metalloid pollution through dusts, food and water at a historic mining site. We analysed more than 1000 bees from five apiaries along a gradient of contamination within 11 km of a former gold mine in Southern France. Bees collected close to the mine exhibited olfactory learning performances lower by 36% and heads smaller by 4%. Three-dimensional scans of bee brains showed that the olfactory centres of insects sampled close to the mine were also 4% smaller, indicating neurodevelopmental issues. Our study raises serious concerns about the health of honey bee populations in areas polluted with potentially harmful elements, particularly with arsenic, and illustrates how standard cognitive tests can be used for risk assessment.
Collapse
Affiliation(s)
- Coline Monchanin
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France; Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Erwann Drujont
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Philipp D Lösel
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; Department of Materials Physics, Research School of Physics, The Australian National University, ACT, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Jean-Marc Devaud
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France
| | - Arnaud Elger
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Mathieu Lihoreau
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France.
| |
Collapse
|
7
|
Yan X, Li Q, Huang X, Li B, Li S, Wang Q. Progress of gaseous arsenic removal from flue gas by adsorption: Experimental and theoretical calculations. J Environ Sci (China) 2024; 136:470-485. [PMID: 37923457 DOI: 10.1016/j.jes.2022.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 11/07/2023]
Abstract
Because of its high mobility and difficult capture, gaseous arsenic pollution control has become the focus of arsenic pollution control. It mainly exists in the form of highly toxic As2O3 in the flue gas. Therefore, removing gaseous As2O3 from flue gas is of great practical significance for arsenic pollution control. Stabilizing gaseous As2O3 on the surface of adsorbents by physical or chemical adsorption is an effective way to reduce the content of arsenic in the flue gas and alleviate arsenic pollution. Over the past few decades, various adsorbents have been developed to capture gaseous As2O3 in the flue gas, and their adsorption mechanisms have been studied in detail. Thus, it is necessary to review the strategies of arsenic removal from flue gas by adsorption, which can inspire further research. Based on summarizing the morphological distribution of gaseous As2O3 in the flue gas, this review further summarizes the removal of gaseous As2O3 by several adsorbents and the effect of temperature and the main components of the flue gas on arsenic adsorption. In addition, the mechanism of arsenic removal based on adsorption in the flue gas is discussed in depth through theoretical calculations, which is the particular focus of this review. Finally, prospects based on the present research state of arsenic removal by adsorption are proposed to provide ideas for developing effective and stable adsorbents for arsenic removal from flue gas.
Collapse
Affiliation(s)
- Xuelei Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China.
| | - Xiaowei Huang
- National Engineering Research Center for Rare Earth Materials, General Research Institute for Non-Ferrous Metals, Beijing 100088, China
| | - Bensheng Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengtu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Zhao Y, Zhang X, Jian Z, Gong Y, Meng X. Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5032-5042. [PMID: 38148459 DOI: 10.1007/s11356-023-31629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Arsenic contamination of groundwater has affected human health and environmental safety worldwide. Hundreds of millions of people in more than 100 countries around the world are directly or indirectly troubled by arsenic-contaminated groundwater. In addition, arsenic contamination of groundwater caused by leakage of leachate from municipal solid waste landfills has occurred in some countries and regions, which has attracted widespread attention. Understanding how domestic waste landfill leachate affects the arsenic's migration and transformation in shallow groundwater is crucial for accurate assessment of the distribution and ecological hazards of arsenic in groundwater. Based on literature review, this study systematically summarized and discussed the basic characteristics of landfill leachate, the mechanism of arsenic pollution in groundwater, and the effect of landfill leachate on the migration and transformation of arsenic in groundwater. Combined with relevant research findings and practical experience, countermeasures and suggestions to limit the impact of landfill leachate on the migration and transformation of arsenic in groundwater are put forward.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhiqiang Jian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yaping Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Meng
- Center for Environmental Systems, Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
9
|
Han L, Zhai Y, Chen R, Fan Y, Liu Z, Zhao Y, Li R, Xia L. Characteristics of Soil Arsenic Contamination and the Potential of Pioneer Plants for Arsenic Remediation in Gold Mine Tailings. TOXICS 2023; 11:1025. [PMID: 38133426 PMCID: PMC10747858 DOI: 10.3390/toxics11121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Arsenic (As) contamination of gold mine tailings poses major threats to the natural environment and human health, necessitating adequate management measures. To investigate the soil As contamination level and the potential of pioneer plants for As remediation, the soil and plants of an abandoned gold mine tailings in the Qinling Mountains were analyzed. The level of As contamination was assessed using the single-factor pollution index and potential ecological risk index, and its bioeffectiveness was analyzed. The enrichment capability of plants was investigated using the bioaccumulation factor and translocation factor. Redundancy analysis and partial least squares regression were employed to investigate factors affecting the distribution of As in soil and plants. The results show that As in soil mainly existed in the difficult-available state, with serious contamination and extremely high ecological risk. Lythrum salicaria L. and Equisetum ramosissimum Desf. are the preferred plants for remediation of As contamination through screening pioneer plants. Soil total nitrogen (STN) and available phosphorus (SAP) are the main factors influencing the characteristics of As distribution in the soil. Soil available potassium (SAK), water content (SWC), and SAP promote the accumulation of As by plants. This study provides plant materials and new ideas for mine ecological remediation.
Collapse
Affiliation(s)
- Lei Han
- School of Land Engineering, Chang’an University, Xi’an 710054, China; (Y.Z.); (Y.F.); (Z.L.); (Y.Z.)
| | - Yunmeng Zhai
- School of Land Engineering, Chang’an University, Xi’an 710054, China; (Y.Z.); (Y.F.); (Z.L.); (Y.Z.)
| | - Rui Chen
- School of Earth Science and Resources, Chang’an University, Xi’an 710054, China;
| | - Yamin Fan
- School of Land Engineering, Chang’an University, Xi’an 710054, China; (Y.Z.); (Y.F.); (Z.L.); (Y.Z.)
| | - Zhao Liu
- School of Land Engineering, Chang’an University, Xi’an 710054, China; (Y.Z.); (Y.F.); (Z.L.); (Y.Z.)
| | - Yonghua Zhao
- School of Land Engineering, Chang’an University, Xi’an 710054, China; (Y.Z.); (Y.F.); (Z.L.); (Y.Z.)
| | - Risheng Li
- Shaanxi Provincial Land Engineering Construction Group, Xi’an 710075, China; (R.L.); (L.X.)
| | - Longfei Xia
- Shaanxi Provincial Land Engineering Construction Group, Xi’an 710075, China; (R.L.); (L.X.)
| |
Collapse
|
10
|
Tournay RJ, Firrincieli A, Parikh SS, Sivitilli DM, Doty SL. Effect of Arsenic on EPS Synthesis, Biofilm Formation, and Plant Growth-Promoting Abilities of the Endophytes Pseudomonas PD9R and Rahnella laticis PD12R. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37256822 DOI: 10.1021/acs.est.2c08586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytoremediation, a cost-effective, eco-friendly alternative to conventional remediation, could expand efforts to remediate arsenic-contaminated soils. As with other pollutants, the plant microbiome may improve phytoremediation outcomes for arsenic-contaminated sites. We used in vitro and in silico methods to compare the arsenic resistance mechanisms, synthesis of extracellular polymeric substances (EPS), biofilm formation, and plant growth-promoting abilities of the endophytes Pseudomonas sp. PD9R and Rahnella laticis PD12R. PD12R, which tolerates arsenate (As(V)) and arsenite (As(III)) to concentrations fivefold greater than PD9R, synthesizes high volumes of EPS in response to arsenic, and sequesters arsenic in the capsular EPS and cells. While arsenic exposure induced EPS synthesis in both strains, only PD12R continued to form biofilms at high As(III) and As(V) concentrations. The effects of endophyte inoculation on Arabidopsis growth varied by strain and As(V) concentration, and PD9R had positive effect on plants exposed to low levels of arsenic. Comparative genomic analyses exploring the EPS synthesis and arsenic resistance mechanisms against other Pseudomonas and Rahnella strains suggest that both strains possess atypical arsenic resistance mechanisms from other plant-associated strains, while the configuration of the EPS synthesis systems appeared to be more broadly distributed among plant- and non-plant-associated strains.
Collapse
Affiliation(s)
- Robert J Tournay
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Andrea Firrincieli
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Shruti S Parikh
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Dominic M Sivitilli
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| | - Sharon L Doty
- School of Environmental and Forest Sciences, Anderson Hall, Box 352100, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Adsorption of butyl xanthate on arsenopyrite (001) and Cu2+-activated arsenopyrite (001) surfaces: A DFT study. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Frémont A, Sas E, Sarrazin M, Gonzalez E, Brisson J, Pitre FE, Brereton NJB. Phytochelatin and coumarin enrichment in root exudates of arsenic-treated white lupin. PLANT, CELL & ENVIRONMENT 2022; 45:936-954. [PMID: 34392550 DOI: 10.1111/pce.14163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination with toxic metalloids, such as arsenic, can represent a substantial human health and environmental risk. Some plants are thought to tolerate soil toxicity using root exudation, however, the nature of this response to arsenic remains largely unknown. Here, white lupin plants were exposed to arsenic in a semi-hydroponic system and their exudates were profiled using untargeted liquid chromatography-tandem mass spectrometry. Arsenic concentrations up to 1 ppm were tolerated and led to the accumulation of 12.9 μg As g-1 dry weight (DW) and 411 μg As g-1 DW in above-ground and belowground tissues, respectively. From 193 exuded metabolites, 34 were significantly differentially abundant due to 1 ppm arsenic, including depletion of glutathione disulphide and enrichment of phytochelatins and coumarins. Significant enrichment of phytochelatins in exudates of arsenic-treated plants was further confirmed using exudate sampling with strict root exclusion. The chemical tolerance toolkit in white lupin included nutrient acquisition metabolites as well as phytochelatins, the major intracellular metal-binding detoxification oligopeptides which have not been previously reported as having an extracellular role. These findings highlight the value of untargeted metabolite profiling approaches to reveal the unexpected and inform strategies to mitigate anthropogenic pollution in soils around the world.
Collapse
Affiliation(s)
- Adrien Frémont
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
| | - Eszter Sas
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
| | | | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G)-Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Microbiome Research Platform-McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Jacques Brisson
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
| | - Frédéric Emmanuel Pitre
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
- Montreal Botanical Garden, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Müller L, Soares GC, Josende ME, Monserrat JM, Ventura-Lima J. OUP accepted manuscript. Toxicol Res (Camb) 2022; 11:402-416. [PMID: 35782638 PMCID: PMC9244223 DOI: 10.1093/toxres/tfac010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 03/01/2021] [Indexed: 11/14/2022] Open
Abstract
Although arsenic (As) is a persistent contaminant in the environment, few studies have assessed its effects over generations, as it requires an animal model with a short lifespan and rapid development, such as the nematode Caenorhabditis elegans. Furthermore, few studies have evaluated the effects of As metabolites such as dimethylarsinic acid (DMAV), and several authors have considered DMA as a moderately toxic intermediate of As, although recent studies have shown that this chemical form can be more toxic than inorganic arsenic (iAs) even at low concentrations. In the present study, we compared the toxic effects of arsenate (AsV) and DMAV in C. elegans over 5 subsequent generations. We evaluated biochemical parameters such as reactive oxygen species (ROS) concentration, the activity of antioxidant defense system (ADS) enzymes such as catalase (CAT) and glutathione-S-transferase (GST), and nonenzymatic components of ADS such as reduced glutathione (GSH) and protein-sulfhydryl groups (P-SH). Exposure to 50 μg L-1 of AsV led to an increase in ROS generation and GSH levels together with a decrease in GST activity, while exposure to DMAV led to an increase in ROS levels, with an increase in lipid peroxidation, CAT activity, and a decrease in GSH levels. In addition, both treatments reduced animal growth from the third generation onward and caused disturbances in their reproduction throughout all 5 generations. This study shows that the accumulated effects of DMA need to be considered; it highlights the importance of this type of multigenerational approach for evaluating the effects of organic contaminants considered low or nontoxic.
Collapse
Affiliation(s)
- Larissa Müller
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália KM 8, RS 96203-900, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, RS, Brazil
| | - Gabriela Corrêa Soares
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália KM 8, RS 96203-900, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália KM 8, RS 96203-900, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália KM 8, RS 96203-900, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Corresponding author: Universidade Federal do Rio Grande—FURG, Instituto de Ciências Biológicas (ICB), Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil.
| |
Collapse
|
14
|
Zeng W, Wan X, Lei M, Gu G, Chen T. Influencing factors and prediction of arsenic concentration in Pteris vittata: A combination of geodetector and empirical models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118240. [PMID: 34619180 DOI: 10.1016/j.envpol.2021.118240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Phytoextraction using hyperaccumulator, Pteris vittata, to extract arsenic (As) from soil has been applied to large areas to achieve an As removal rate of 18% per year. However, remarkable difference among different studies and field practices has led to difficulties in the standardization of phytoextraction technology. In this study, data on As concentration in P. vittata and related environmental conditions were collected through literature search. A conceptual framework was proposed to guide the improvement of phytoextraction efficiency in the field. The following influencing factors of As concentration in this hyperaccumulator were identified: total As concentration in soil, soil available As, organic matter in soil, total potassium (K) concentration in soil, and annual rainfall. The geodetection results show that the main factors that affect As concentration in P. vittata include soil organic matter (q = 0.75), soil available As (q = 0.67), total K (q = 0.54), and rainfall (q = 0.42). The predictive models of As concentration in P. vittata were established separately for greenhouse and field conditions through multivariate linear stepwise regression method. Under greenhouse condition, soil available As was the most important influencing factor and could explain 41.4% of As concentration in P. vittata. Two dominant factors were detected in the field: soil available As concentration and average annual rainfall. The combination of these two factors gave better prediction results with R2 = 0.762. The establishment of the model might help predict phytoextraction efficiency and contribute to technological standardization. The strategies that were used to promote As removal from soil by P. vittata were summarized and analyzed. Intercropping with suitable plants or a combination of different measures (e.g., phosphate fertilizer and water retention) was recommended in practice to increase As concentration in P. vittata.
Collapse
Affiliation(s)
- Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| | - Gaoquan Gu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100089, China
| |
Collapse
|
15
|
Lin P, Guo Y, He L, Liao X, Chen X, He L, Lu Z, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Nanoplastics aggravate the toxicity of arsenic to AGS cells by disrupting ABC transporter and cytoskeleton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112885. [PMID: 34634601 DOI: 10.1016/j.ecoenv.2021.112885] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of nanoplastics (NPs) and pollutants such as arsenic (As) has become an unignorable environmental problem. However, there is still a considerable knowledge gap about the impact of NPs and pollutants on human health risks. In this study, the human gastric adenocarcinoma (AGS) cells were used as a model to investigate the toxicity of NPs with different particle sizes and As by MTT assay, western blotting, immunofluorescence and so on. The results showed that 20 nm (8 μg/mL), 50 nm (128 μg/mL), 200 nm (128 μg/mL), 500 nm (128 μg/mL), 1000 nm (128 μg/mL) polystyrene (PS) did not affect cell viability, ROS, intracellular calcium and activate apoptosis pathway in AGS cells. However, noncytotoxic concentration of NPs enhanced the cytotoxicity and intracellular accumulation of As. NPs destroys the fluidity of cell membrane and cytoskeleton, inhibits the activity of ABC transporter, and leads to the accumulation of As in cells. This work highlights that the damage caused by NPs, especially at the level of noncytotoxicity, joint with As cannot be ignored and provides a specific toxicological mechanism of NPs accompanied by exposure to As.
Collapse
Affiliation(s)
- Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yitao Guo
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiuchun Liao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xueru Chen
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Liuying He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| |
Collapse
|
16
|
Hong J, Liu L, Ning Z, Liu C, Qiu G. Synergistic oxidation of dissolved As(III) and arsenopyrite in the presence of oxygen: Formation and function of reactive oxygen species. WATER RESEARCH 2021; 202:117416. [PMID: 34284121 DOI: 10.1016/j.watres.2021.117416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
As an important source of arsenic (As) pollution in mine drainage, arsenopyrite undergoes redox and adsorption reactions with dissolved As, which further affects the fate of As in natural waters. This study investigated the interactions between dissolved As(III) and arsenopyrite and the factors influencing the geochemical behavior of As, including initial As(III) concentration, dissolved oxygen and pH. The hydrogen peroxide (H2O2) and hydroxyl radical (OH•) generated from the interaction between Fe(II) on arsenopyrite surface and oxygen were found to facilitate the rapid oxidation of As(III), and the production of As(V) in the reaction system increased with increasing initial As(III) concentration. An increase of pH from 3.0 to 7.0 led to a gradual decrease in the oxidation rate of As(III). At pH 3.0, the presence of As(III) accelerated the oxidation rate of arsenopyrite; while at pH 5.0 and 7.0, As(III) inhibited the oxidative dissolution of arsenopyrite. This work reveals the potential environmental process of the interaction between dissolved As(III) and arsenopyrite, and provides important implications for the prevention and control of As(III) pollution in mine drainage.
Collapse
Affiliation(s)
- Jun Hong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
17
|
Advanced Drinking Groundwater As Phytofiltration by the Hyperaccumulating Fern Pteris vittata. WATER 2021. [DOI: 10.3390/w13162187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The reuse of Pteris vittata plants for multiple phytofiltration cycles is a main issue to allow an efficient phytoremediation of arsenic (As)-contaminated groundwater. Here, we assessed the capacity of phytofiltration of P. vittata plants grown for two cycles on naturally As-contaminated drinking water (collected in Central Italy), spaced by a growth cycle on non-contaminated water (N cycle). P. vittata young plants, with extensive frond and root development, were suspended individually in 15 L of water with initial As of 59 µg/L, without any additional treatment or water refilling. During cycle 1, in 45 days P. vittata plants reduced As concentration below 10 µg/L, the allowed EU limits for drinking water. During the subsequent 30 day-N cycle on non-contaminated water, no leaching of As from the roots was observed, while the water pH increased 0.9 Units, but is within the allowed limits. During cycle 2, under the same conditions as cycle 1, As concentration decreased below 10 µg/L in less than seven days. These results show that P. vittata young plants, previously used for the phytofiltration of As, do not extrude As and, when reused, remove As much more rapidly. No additional treatments were required during phytofiltration and thus this represents a sustainable, efficient, and scalable strategy.
Collapse
|
18
|
Meharg AA, Meharg C. The Pedosphere as a Sink, Source, and Record of Anthropogenic and Natural Arsenic Atmospheric Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7757-7769. [PMID: 34048658 DOI: 10.1021/acs.est.1c00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Anthropocene has led to global-scale contamination of the biosphere through diffuse atmospheric dispersal of arsenic. This review considers the sources arsenic to soils and its subsequent fate, identifying key knowledge gaps. There is a particular focus on soil classification and stratigraphy, as this is central to the topic under consideration. For Europe and North America, peat core chrono-sequences record massive enhancement of arsenic depositional flux from the onset of the Industrial Revolution to the late 20th century, while modern mitigation efforts have led to a sharp decline in emissions. Recent arsenic wet and dry depositional flux measurements and modern ice core records suggest that it is South America and East Asia that are now primary global-scale polluters. Natural sources of arsenic to the atmosphere are primarily from volcanic emissions, aeolian soil dust entrainment, and microbial biomethylation. However, quantifying these natural inputs to the atmosphere, and subsequent redeposition to soils, is only starting to become better defined. The pedosphere acts as both a sink and source of deposited arsenic. Soil is highly heterogeneous in the natural arsenic already present, in the chemical and biological regulation of its mobility within soil horizons, and in interaction with climatic and geomorphological settings. Mineral soils tend to be an arsenic sink, while organic soils act as both a sink and a source. It is identified here that peatlands hold a considerable amount of Anthropocene released arsenic, and that this store can be potentially remobilized under climate change scenarios. Also, increased ambient temperature seems to cause enhanced arsine release from soils, and potentially also from the oceans, leading to enhanced rates of arsenic biogeochemical cycling through the atmosphere. With respect to agriculture, rice cultivation was identified as a particular concern in Southeast Asia due to the current high arsenic deposition rates to soil, the efficiency of arsenic assimilation by rice grain, and grain yield reduction through toxicity.
Collapse
Affiliation(s)
- Andrew A Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
| | - Caroline Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
| |
Collapse
|
19
|
Kaur I, Behl T, Aleya L, Rahman MH, Kumar A, Arora S, Akter R. Role of metallic pollutants in neurodegeneration: effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8989-9001. [PMID: 33447979 DOI: 10.1007/s11356-020-12255-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/27/2020] [Indexed: 04/16/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder of the brain characterized by shortfall in the social portfolio of an individual and abbreviated interactive and communication aspects rendering stereotypical behavior and pitfalls in a child's memory, thinking, and learning capabilities. The incidence of ASD has accelerated since the past decade, portraying environment as one of the primary assets, comprising of metallic components aiming to curb the neurodevelopmental pathways in an individual. Many regulations like Clean Air Act and critical steps taken by countries all over the globe, like Sweden and the USA, have rendered the necessity to study the effects of environmental metallic components on ASD progression. The review focuses on the primary metallic components present in the environment (aluminum, lead, mercury, and arsenic), responsible for accelerating ASD symptoms by a set of general mechanisms like oxidative stress reduction, glycolysis suppression, microglial activation, and metalloprotein disruption, resulting in apoptotic signaling, neurotoxic effects, and neuroinflammatory responses. The effect of these metals can be retarded by certain protective strategies like chelation, dietary correction, certain agents (curcumin, mangiferin, selenium), and detoxification enhancement, which can necessarily halt the neurodegenerative effects.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Paris, France
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka, Bangladesh
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
20
|
Wiklund JA, Kirk JL, Muir DCG, Gleason A, Carrier J, Yang F. Atmospheric trace metal deposition to remote Northwest Ontario, Canada: Anthropogenic fluxes and inventories from 1860 to 2010. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142276. [PMID: 33370897 DOI: 10.1016/j.scitotenv.2020.142276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
National and global inventories of anthropogenic trace element emissions to air is a comparatively recent phenomenon (post-1993 in Canada) as is the monitoring of atmospheric metal deposition, the latter being also very spatially limited. Paleo-reconstructive methods offer a contiguous record of environmental contamination providing a needed framework to establish locally relevant "pre-industrial" (~natural) conditions which can be compare with relative and quantitative deviations away from reference conditions. In this study, we reconstruct the history of the long-range, anthropogenic sourced atmospheric trace element deposition to the remote region of Northwestern Ontario Canada (Experimental Lakes Area (ELA)) using dated sediment records from five lakes. Several elements are shown to be highly enriched in lake sediments relative to pre-1860 sediments (Antimony, Lead, Tellurium, Tin, Arsenic, Bismuth, Cadmium and Mercury) and moderately (Zinc, Tungsten, Thallium, Copper, Silver, Selenium, Nickel and Vanadium). Mean decadal anthropogenic atmospheric fluxes (mg m-2 yr-1) are reconstructed for 1860-2010 and compare well with available local (ELA), regional (NW Ontario Canada, N Michigan USA) monitoring data, as well as global assessments of anthropogenic contribution to atmospheric trace metal burdens. Quantitative paleo reconstructions of atmospheric contamination history using the collective signal from multiple lakes provide a rigorous methodology to assess trends, uncertainties, evaluation with monitoring data and, provide an opportunity to explore landscape processes of contaminant transport and storage. Further study of the latter is recommended to understand the latency of legacy anthropogenic contamination of the environment.
Collapse
Affiliation(s)
- Johan A Wiklund
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6.
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6.
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6
| | - Amber Gleason
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6
| | - Jacques Carrier
- National Laboratory of Environmental Testing, Environment Canada, Burlington, Ontario, Canada L7R 4A6
| | - Fan Yang
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6
| |
Collapse
|
21
|
Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, Sheikh Abdullah SR, Shamsuzzaman SM. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8339. [PMID: 33187288 PMCID: PMC7698012 DOI: 10.3390/ijerph17228339] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/30/2023]
Abstract
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
Collapse
Affiliation(s)
- Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| | - Mohd Izuan Effendi Bin Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Mohd Yusoff Bin Abd Samad
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Md Kamal Uddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia;
| | - S M Shamsuzzaman
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| |
Collapse
|
22
|
Stachnik Ł, Korabiewski B, Raczyk J, Łopuch M, Wieczorek I. Arsenic pollution in Quaternary sediments and water near a former gold mine. Sci Rep 2020; 10:18458. [PMID: 33116153 PMCID: PMC7595152 DOI: 10.1038/s41598-020-74403-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022] Open
Abstract
Contamination of water and sediments with arsenic and heavy metals is a global issue affecting human health. Regions covered with Quaternary deposits have received little attention from the point of view of the flux of arsenic and heavy metals from sediments to surface water. This study aims to determine the flux of arsenic and other heavy metals from Quaternary sediments to surface waters in an area affected by the former Złoty Stok gold and arsenic mine. Contamination in surface waters and sediments was caused by arsenic, whereas concentrations of metals were usually within water quality standards. Arsenic contamination of surface water increased in the lower part of the basin covered by Quaternary sediments, and exceeded water quality standards by 2 orders of magnitude. Arsenic mass flux exceeded 8 kg/day near the confluence of the Trująca River with the Nysa Kłodzka, a main tributary of the Oder River. An increase in arsenic concentration in the lower part of the basin is related to mine tailings and preferential flow of groundwater through Quaternary sediments. In future, water resources scarcity may lead to an increase in arsenic contamination in surface and groundwater.
Collapse
Affiliation(s)
- Łukasz Stachnik
- Department of Physical Geography, Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wojciecha Cybulskiego 34, Wrocław, 50-205, Poland.
| | - Bartosz Korabiewski
- Department of Physical Geography, Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wojciecha Cybulskiego 34, Wrocław, 50-205, Poland
| | - Jerzy Raczyk
- Department of Physical Geography, Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wojciecha Cybulskiego 34, Wrocław, 50-205, Poland
| | - Michał Łopuch
- Department of Physical Geography, Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wojciecha Cybulskiego 34, Wrocław, 50-205, Poland
| | - Iwo Wieczorek
- Department of Physical Geography, Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wojciecha Cybulskiego 34, Wrocław, 50-205, Poland
| |
Collapse
|
23
|
Luo C, Routh J, Dario M, Sarkar S, Wei L, Luo D, Liu Y. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138122. [PMID: 32408435 DOI: 10.1016/j.scitotenv.2020.138122] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and mobilization of As, Cd, Pb, and Zn along the Hengshi River, groundwater, fluvial sediments, and soils, with a focus on As due to its high toxicity and the fact that mining is one of the main sources of contamination. Geochemical analyses (heavy metals, grain-size, X-ray diffraction, organic carbon and sulfur content) followed by geochemical modeling (PHREEQC) and statistical assessment were done to determine the physicochemical characteristics, toxicity risks, and behavior of heavy metals. Near the tailings pond, heavy metal concentrations in surface water were 2-100 times higher than the Chinese surface water standard for agriculture. Although water quality during the dry season has improved since the wastewater treatment plant started, heavy metal concentrations were high during rainy season. In groundwater, heavy metal concentrations were low and pose little risks. Soils along the Hengshi River were disturbed and they did not show any specific trends. The potential ecological risk of heavy metals was ranked as Cd > As > Cu > Pb > Zn in sediments and Cd > Cu > Pb > As > Zn in soils indicating multi-metal contamination and toxicity. As(III) was the predominant species in surface water during the dry season, whereas As(V) dominated during the rainy season. Arsenic levels in most sites exceeded the Chinese soil standard. Although As is assumed to have a moderate ecological risk in sediments and low risk in soils, anthropogenic activities, such as mining and land-use changes contribute to the release of As and other heavy metals and pose a risk for local residents.
Collapse
Affiliation(s)
- Chen Luo
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Joyanto Routh
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China.
| | - Mårten Dario
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden
| | - Soumyajit Sarkar
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Lezhang Wei
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Dinggui Luo
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Yu Liu
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| |
Collapse
|
24
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|
25
|
Soldoozy S, Trinh A, Kubicki JD, Al-Abadleh HA. In Situ and Real-Time ATR-FTIR Temperature-Dependent Adsorption Kinetics Coupled with DFT Calculations of Dimethylarsinate and Arsenate on Hematite Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4299-4307. [PMID: 32243161 DOI: 10.1021/acs.langmuir.0c00252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Temperature-dependent kinetic studies of the adsorption of critical pollutants onto reactive components in soils and removal technologies provide invaluable rate information and mechanistic insight. Using attenuated total internal reflection Fourier transform infrared spectroscopy, we collected in situ spectra as a function of time, concentration, and temperature in the range of 5-50 °C (278-323 K) for the adsorption of arsenate (iAs) and dimethylarsinate (DMA) on hematite nanoparticles at pH 7. These experimental data were modeled with density functional theory (DFT) calculations on the energy barriers between surface complexes. The Langmuir adsorption kinetic model was used to extract values of the fast (<5 min) and slow (6-10 min) observed adsorption rate, initial rate constants of adsorption and desorption, Arrhenius parameters, effective activation energies (ΔEa), and pre-exponential factors (A). The trend in the kinetic parameters correlated with the type of surface complexes that iAs and DMA form, which are mostly bidentate binuclear compared to a mix of outer sphere and monodentate, respectively. The observed initial adsorption rates were found to be more sensitive to changes in the aqueous concentration of the arsenicals than slow rates. On average, iAs adsorbs 2.5× faster and desorbs 4× slower than dimethylarsinate (DMA). The ΔEa and A values for the adsorption of iAs bidentate complexes are statistically higher than those extracted for outer-sphere DMA by a factor of 3. The DFT results on adsorption energies and ΔEa barriers are consistent with the experimental data and provide a mechanistic explanation for the low ΔEa values observed. The presence of defect sites with under-coordinated Fe atoms or exchangeable surface water (i.e., Fe-OH2 groups) lowers activation barriers of adsorption. These results suggest that increasing organic substitutions on arsenate at the expense of As-O bonds decreases the effective energy barrier for complex formation and lowers the number of collisional orientations that result in binding to the hematite surface.
Collapse
Affiliation(s)
- Sara Soldoozy
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Anthony Trinh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - James D Kubicki
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
26
|
Occurrence and Fate of Heavy Metals in Municipal Wastewater in Heilongjiang Province, China: A Monthly Reconnaissance from 2015 to 2017. WATER 2020. [DOI: 10.3390/w12030728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As one of the major sources of pollutions in the environments, effluents from municipal wastewater recently became a hot topic. This study quantified monthly county-level releases of five heavy metals, i.e., lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg), from municipal wastewater into the environment in the Heilongjiang Province of China, based on sampling, measurement, and modeling tools. Wastewater samples were collected from 27 municipal wastewater treatment plants (MWTPs) in 15 county-level cities of Heilongjiang every month from 2015 to 2017. The concentrations of five heavy metals were analyzed in both influents (Pb: 160 ± 100 μg/L; Cd: 15 ± 9.0 μg/L; Cr: 170 ± 64 μg/L; Hg: 0.67 ± 1.5 μg/L; As: 6.2 ± 4.8 μg/L) and effluents (Pb: 45 ± 15 μg/L; Cd: 5.2 ± 5.1 μg/L; Cr: 57 ± 13 μg/L; Hg: 0.28 ± 0.12 μg/L; As: 2.6 ± 1.4 μg/L). The removal ratios of the five heavy metals ranged from 50% to 67%. Inflow fluxes of Pb, Cr, and Cd displayed increasing trends first then decreased after reaching a maximum value, whereas those of Hg and Pb remained stable. Material flow analysis reveals that constructions of MWTPs are conducive to significantly reduce the releases of heavy metals from urban areas into the aquatic environment in the study area. Additionally, municipal wastewater sludge (used as fertilizer or spread on the land) could be a significant source of heavy metals in the land.
Collapse
|
27
|
Dousova B, Lhotka M, Buzek F, Cejkova B, Jackova I, Bednar V, Hajek P. Environmental interaction of antimony and arsenic near busy traffic nodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134642. [PMID: 31734606 DOI: 10.1016/j.scitotenv.2019.134642] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Antimony (Sb) and arsenic (As) are elements with similar chemistry, toxicity and binding properties, but different environmental risks and prevailing anthropogenic sources. A significant source of Sb contamination is associated with braking in extremely loaded traffic areas, where the produced abrasion dust contains up to 5% wt. of Sb2S3. In these same exposure areas, As still originates mostly from the combustion of fossil fuels. Heavily loaded crossroads from three different regions of the Czech Republic (Central Europe) were monitored for Sb content in road dusts, topsoils and reference soils during a two-year season (2016-2017). The same samples were also tested for As content to evaluate current contamination trends of both elements in exposed urban areas. The concentration of Sb varied from 5 to 70 µg g-1 in topsoils, and from 20 to 350 µg g-1 in road dusts with the preference for binding to the fine particle fraction (<0.1 mm). The average Sb concentration was up to 60 times the background value and decreased in the order: brake abrasion (103 µg g-1) > road dust (102 µg g-1)> topsoils (101 µg g-1) >> reference soils (<1 µg g-1). The concentration of As in road dust, topsoils and reference soils had about the same level, 101 µg g-1 indicating a more regional character of As pollution. Correlation factors for Sb/As versus iron (Fe)/organic matter (OM) indicated a more robust correlations in soils compared to road dusts and generally better correlations of Sb compared to As. While arsenic contamination has recently decreased thanks to a massive decline of arsenic emissions, antimony contamination indicates a dangerous trend due to growing automotive traffic.
Collapse
Affiliation(s)
- Barbora Dousova
- University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Miloslav Lhotka
- University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Frantisek Buzek
- Czech Geological Survey, Geologicka 6, 152 00 Prague 5, Czech Republic
| | - Bohuslava Cejkova
- Czech Geological Survey, Geologicka 6, 152 00 Prague 5, Czech Republic
| | - Iva Jackova
- Czech Geological Survey, Geologicka 6, 152 00 Prague 5, Czech Republic
| | - Vaclav Bednar
- University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Pavel Hajek
- Techflor, Ltd., Premyslovcu 49, 747 07 Opava, Czech Republic
| |
Collapse
|
28
|
Wang YF, Qiao M, Wang HT, Zhu D. Species-specific effects of arsenic on the soil collembolan gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109538. [PMID: 31401331 DOI: 10.1016/j.ecoenv.2019.109538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
It is well established that arsenic (As) pollution has a severe threat to food security and soil non-target organisms, however, its influences on soil fauna gut microbiota are poorly understood. The gut microbiota of soil fauna play an important role in host health and nutrient cycling. Here, we used dietary exposure to investigate the effects of As on the mortality and gut microbiota of two model soil collembolans (Folsomia candida and Onychiurus yodai) and determine the accumulation of As in collembolan body tissues. The results showed that, although As exposure did not induce the mortality of the two species, dose dependence of As accumulation was indeed detected in their body tissues. Oral As exposure (500 μg g-1 yeast) significantly altered the community structure (P < 0.05) of F. candida gut microbiota and reduced its diversity (by more than 20%; P < 0.05) compared to the control; however, no significant effects were observed in O. yodai gut microbiota. The two collembolan species possess significantly different gut microbiota (P < 0.05), which may partly explain the differences of the two collembolan gut microbiota response to As exposure. We further found that the genera Ochrobactrum, Geobacter and Staphylococcus were sensitive to As exposure in F. candida (P < 0.05), but these bacteria were low abundance and not altered in O. yodai. Moreover, the relative abundance of these bacteria was significantly correlated with As bioaccumulation in F. candida body tissues (P < 0.05, R2 > 0.6). Higher As bioaccumulation factor was also found in O. yodai body tissues compared to the F. candida. These results indicate that collembolan gut microbiota present a species-specific response to As and may be a more sensitive indicator than the mortality of collembolan.
Collapse
Affiliation(s)
- Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hong-Tao Wang
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
29
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
30
|
Titah HS, Halmi MIEB, Abdullah SRS, Hasan HA, Idris M, Anuar N. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:721-729. [PMID: 29723047 DOI: 10.1080/15226514.2017.1413337] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.
Collapse
Affiliation(s)
- Harmin Sulistiyaning Titah
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
- b Department of Environmental Engineering , Faculty of Civil Engineering and Planning, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo , Surabaya , Indonesia
- d Department of Civil and Structural , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Mohd Izuan Effendi Bin Halmi
- e Department of Land Management , Faculty of Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Hassimi Abu Hasan
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Mushrifah Idris
- c Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Nurina Anuar
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| |
Collapse
|
31
|
Sharma PK, Mayank M, Ojha CSP, Shukla SK. A review on groundwater contaminant transport and remediation. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/09715010.2018.1438213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P. K. Sharma
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, India
| | - Muskan Mayank
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, India
| | - C. S. P. Ojha
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, India
| | - S. K. Shukla
- Discipline of Civil and Environmental Engineering, School of Engineering, Edith Cowan University, Perth, Australia
| |
Collapse
|
32
|
Dunivin TK, Miller J, Shade A. Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire. PLoS One 2018; 13:e0191893. [PMID: 29370270 PMCID: PMC5785013 DOI: 10.1371/journal.pone.0191893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/12/2018] [Indexed: 02/05/2023] Open
Abstract
Arsenic (As), a toxic element, has impacted life since early Earth. Thus, microorganisms have evolved many As resistance and tolerance mechanisms to improve their survival outcomes given As exposure. We isolated As resistant bacteria from Centralia, PA, the site of an underground coal seam fire that has been burning since 1962. From a 57.4°C soil collected from a vent above the fire, we isolated 25 unique aerobic As resistant bacterial strains spanning seven genera. We examined their diversity, resistance gene content, transformation abilities, inhibitory concentrations, and growth phenotypes. Although As concentrations were low at the time of soil collection (2.58 ppm), isolates had high minimum inhibitory concentrations (MICs) of arsenate and arsenite (>300 mM and 20 mM respectively), and most isolates were capable of arsenate reduction. We screened isolates (PCR and sequencing) using 12 published primer sets for six As resistance genes (AsRGs). Genes encoding arsenate reductase (arsC) and arsenite efflux pumps (arsB, ACR3(2)) were present, and phylogenetic incongruence between 16S rRNA genes and AsRGs provided evidence for horizontal gene transfer. A detailed investigation of differences in isolate growth phenotypes across As concentrations (lag time to exponential growth, maximum growth rate, and maximum OD590) showed a relationship with taxonomy, providing information that could help to predict an isolate's performance given As exposure in situ. Our results suggest that microbiological management and remediation of environmental As could be informed by taxonomically-linked As tolerance, potential for resistance gene transferability, and the rare biosphere.
Collapse
Affiliation(s)
- Taylor K. Dunivin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Environmental and Integrative Toxicological Sciences Doctoral Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Justine Miller
- Lyman Briggs College, Michigan State University, East Lansing, Michigan, United States of America
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
33
|
Zhao Z, Wang S, Jia Y. Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite. CHEMOSPHERE 2017; 185:321-328. [PMID: 28704663 DOI: 10.1016/j.chemosphere.2017.06.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/17/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
The sulfide-induced change in arsenic speciation is often coupled to iron geochemical processes, including redox reaction, adsorption/desorption and precipitation/dissolution. Knowledge about how sulfide influenced the coupled geochemistry of iron and arsenic was not explored well up to now. In this work, retention and mobilization of As(III) and As(V) on ferrihydrite in sulfide-rich environment was studied. The initial oxidation states of arsenic and the contact order of sulfide notably influenced arsenic sequestration on ferrihydrite. For As(III) systems, pre-sulfidation of As(III) decreased arsenic sequestration mostly. The arsenic adsorption capacity decreased about 50% in comparison with the system without sulfide addition. For As(V) systems, pre-sulfidation of ferrihydrite decreased 30% sequestration of arsenic on ferrihydrite. Reduction of ferrihydrite by sulfide in As(V) system was higher than that in As(III) system. Geochemical modeling calculations identified formation of thioarsenite in the pre-sulfidation of As(III) system. Formation of arsenic thioanions enhanced As solubility in the pre-sulfidation of As(III) system. The high concentration of sulfide and Fe(II) in pre-sulfidation of ferrihydrite system contributed to saturation of FeS. This supplied new solid phase to immobilize soluble arsenic in aqueous phase. X-ray absorption near edge spectroscopy (XANES) of sulfur K-edge, arsenic K-edge and iron L-edge analysis gave the consistent evidence for the sulfidation reaction of arsenic and ferrihydrite under specific geochemical settings.
Collapse
Affiliation(s)
- Zhixi Zhao
- Key Laboratory of Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
34
|
Dani SU, Walter GF. Chronic arsenic intoxication diagnostic score (CAsIDS). J Appl Toxicol 2017; 38:122-144. [DOI: 10.1002/jat.3512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research; Acangau Foundation; Paracatu MG Brazil
- Department of General Internal Medicine; St. Gallen Cantonal Hospital; Switzerland
- PizolCare Praxis Wartau; Trübbach Switzerland
| | | |
Collapse
|
35
|
Lin CH, Chen Y, Su YA, Luo YT, Shih TT, Sun YC. Nanocomposite-Coated Microfluidic-Based Photocatalyst-Assisted Reduction Device To Couple High-Performance Liquid Chromatography and Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Inorganic Arsenic Species in Natural Water. Anal Chem 2017; 89:5891-5899. [PMID: 28459544 DOI: 10.1021/acs.analchem.7b00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To selectively and sensitively determine the trace inorganic As species, As(III) and As(V), we developed a nanocomposite-coated microfluidic-based photocatalyst-assisted reduction device (PCARD) as a vapor generation (VG) device to couple high-performance liquid chromatography (HPLC) separation and inductively coupled plasma-mass spectrometry (ICPMS) detection. Au nanoparticles were deposited on TiO2 nanoparticles to strengthen the conversion efficiency of the nanocomposite photocatalytic reduction. The sensitivity for As was significantly enhanced by employing the nanocomposite photocatalyst and using prereduction and signal-enhancement reagents. Under the optimal operating conditions, the analytical detection limits (based on 3σ) of the proposed online HPLC/nanocomposite-coated microfluidic-based PCARD/ICPMS system for As(III) and As(V) were 0.23 and 0.34 μg·L-1, respectively. The results were validated using a certified reference material (NIST SRM 1643e) and groundwater sample analysis, indicating the good reliability and applicability of our proposed system for the determination of inorganic As species in natural fresh water.
Collapse
Affiliation(s)
- Cheng-Hsing Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Yu Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Yi-An Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Yu-Ting Luo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Tsung-Ting Shih
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Menegatti CR, Nicolodelli G, Senesi GS, da Silva OA, Filho HJI, Villas Boas PR, Marangoni BS, Milori DMBP. Semiquantitative analysis of mercury in landfill leachates using double-pulse laser-induced breakdown spectroscopy. APPLIED OPTICS 2017; 56:3730-3735. [PMID: 28463267 DOI: 10.1364/ao.56.003730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laser-induced breakdown spectroscopy (LIBS) is showing to be a promising, quick, accurate, and practical technique to detect and measure metal contaminants and nutrients in urban wastes and landfill leachates. Although conventional LIBS presents some limitations, such as low sensitivity, when used in the single pulse configuration if compared to other spectroscopic techniques, the use of the double-pulse (DP) configuration represents an adequate alternative. In this work DP LIBS has been applied to the qualitative and quantitative analysis of mercury (Hg) in landfill leachates. The correlation analysis performed between each intensified charge-coupled device pixel and the Hg concentration allowed us to choose the most appropriate Hg emission line to be used for its measure. The normalization process applied to LIBS spectra to correct physical matrix effects and small fluctuations increased from 0.82 to 0.98 the linear correlation of the calibration curve between LIBS and the reference data. The limit of detection for Hg estimated using DP LIBS was 76 mg Kg-1. The cross validation (leave-one-out) analysis yielded an absolute average error of about 21%. These values showed that the calibration models were close to the optimization limit and satisfactory for Hg quantification in landfill leachate.
Collapse
|
37
|
Nachman KE, Ginsberg GL, Miller MD, Murray CJ, Nigra AE, Pendergrast CB. Mitigating dietary arsenic exposure: Current status in the United States and recommendations for an improved path forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:221-236. [PMID: 28065543 PMCID: PMC5303536 DOI: 10.1016/j.scitotenv.2016.12.112] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 05/19/2023]
Abstract
Inorganic arsenic (iAs) is a well-characterized carcinogen, and recent epidemiologic studies have linked chronic exposures to non-cancer health outcomes, including cardiovascular disease, diabetes, skin lesions and respiratory disorders. Greater vulnerability has been demonstrated with early life exposure for health effects including lung and bladder cancer, immunotoxicity and neurodevelopment. Despite its well-known toxicity, there are important gaps in the regulatory oversight of iAs in food and in risk communication. This paper focuses on the US regulatory framework in relation to iAs in food and beverages. The state of existing regulatory agency toxicological assessments, monitoring efforts, standard setting, intervention policies and risk communication are explored. Regarding the approach for standard setting, risk-based evaluations of iAs in particular foods can be informative but are insufficient to create a numeric criterion, given current uncertainties in iAs toxicology and the degree to which traditional risk targets can be exceeded by dietary exposures. We describe a process for prioritizing dietary exposures for different lifestages and recommend a relative source contribution-based approach to setting criteria for arsenic in prioritized foods. Intervention strategies begin with an appropriately set criterion and a monitoring program that documents the degree to which this target is met for a particular food. This approach will promote improvements in food production to lower iAs contamination for those foods which initially do not meet the criterion. Risk communication improvements are recommended to ensure that the public has reliable information regarding sources and alternative dietary choices. A key recommendation is the consideration of meal frequency advice similar to what is currently done for contaminants in fish. Recent action level determinations by FDA for apple juice and infant rice cereal are evaluated and used as illustrations of how our recommended approach can further the goal of exposure mitigation from key sources of dietary iAs in the US.
Collapse
Affiliation(s)
- Keeve E Nachman
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins Center for a Livable Future, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins Risk Sciences and Public Policy Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Mark D Miller
- Western States Pediatric Environmental Health Specialty Unit, University of California, San Francisco, CA, USA
| | - Carolyn J Murray
- Dartmouth Children's Environmental Health and Disease Prevention Research Center, Hanover, NH, USA; Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
38
|
Wong KW, Yap CK, Nulit R, Hamzah MS, Chen SK, Cheng WH, Karami A, Al-Shami SA. Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:116-134. [PMID: 27822691 DOI: 10.1007/s11356-016-7951-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo), enrichment factors (EF), contamination factor (C f) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit.
Collapse
Affiliation(s)
- Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Soo Kien Chen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wan Hee Cheng
- Inti International University, Persiaran Perdana BBN, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Ali Karami
- Laboratory of Aquatic Toxicology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Salman Abdo Al-Shami
- Biology Department, University College of Taymma, Taymma, P.O.Box 714, Tabuk, Saudi Arabia
| |
Collapse
|
39
|
Development of novel nanomaterials for remediation of heavy metals and radionuclides in contaminated water. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s41204-016-0008-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Rouff AA, Ma N, Kustka AB. Adsorption of arsenic with struvite and hydroxylapatite in phosphate-bearing solutions. CHEMOSPHERE 2016; 146:574-581. [PMID: 26748335 DOI: 10.1016/j.chemosphere.2015.12.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/06/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Arsenic sorption at above neutral pH is relevant when considering contaminant mobility in alkaline, phosphorus-bearing wastewaters, and may be viable in the presence phosphate minerals. Arsenic adsorption on struvite (MgNH4PO4 · 6H2O, MAP) and hydroxylapatite (Ca5(PO4)3OH, HAP) was evaluated at pH 8-11 from solutions with 2.7-0.125 mM phosphate and 0.05 mM As(III) or As(V). Over 7 d, As(III) removal from solution was minimal, but As(V) removal increased with pH, and was higher in the presence of MAP compared to HAP with a maximum of 74% removal in pH 11 MAP-bearing solutions. X-ray absorption fine structure spectroscopy (XAFS) analysis of solids recovered from pH 10-11 solutions revealed different mechanisms of As(V) sorption with MAP and HAP. Arsenic forms monodentate mononuclear surface complexes with MAP through the formation of a Mg-O-As bond, but is incorporated at the near-surface of HAP forming a johnbaumite-like (Ca5(AsO4)3OH) structure. Experiments using radioactive (33)P at pH 10-11 revealed faster exchange of P at the HAP surface, which could promote more facile As incorporation. Near-surface incorporated As in HAP may be less susceptible to remobilization compared to surface adsorbates formed with MAP. Overall, both MAP and HAP may sorb As at high pH in the presence of phosphate. This is relevant to the fate of As in alkaline contaminated waters in contact with phosphate mineral phases.
Collapse
Affiliation(s)
- Ashaki A Rouff
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA; The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Ning Ma
- The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Adam B Kustka
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
41
|
McComb JQ, Han FX, Rogers C, Thomas C, Arslan Z, Ardeshir A, Tchounwou PB. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico. MARINE POLLUTION BULLETIN 2015; 99:61-9. [PMID: 26238403 PMCID: PMC4646843 DOI: 10.1016/j.marpolbul.2015.07.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/22/2015] [Accepted: 07/25/2015] [Indexed: 05/05/2023]
Abstract
The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni>Cr>Sr>Co>Zn, Cd>Cu>Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants.
Collapse
Affiliation(s)
- Jacqueline Q McComb
- Environmental Ph.D. Science, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA
| | - Fengxiang X Han
- Environmental Ph.D. Science, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA; Department of Chemistry and Biochemistry, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA.
| | - Christian Rogers
- Environmental Ph.D. Science, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA
| | - Catherine Thomas
- The U.S. Army Engineer Research and Development Center (ERDC), 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA
| | - Adeli Ardeshir
- Genetics and Precision Agriculture Research Unit, USDA-ARS, P.O. 5367, Mississippi State, MS 39762, USA
| | - Paul B Tchounwou
- Environmental Ph.D. Science, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA
| |
Collapse
|
42
|
Analytical approaches for arsenic determination in air: A critical review. Anal Chim Acta 2015; 898:1-18. [DOI: 10.1016/j.aca.2015.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/24/2023]
|
43
|
Xu G, Pei S, Liu J, Gao M, Hu G, Kong X. Surface sediment properties and heavy metal pollution assessment in the near-shore area, north Shandong Peninsula. MARINE POLLUTION BULLETIN 2015; 95:395-401. [PMID: 25913796 DOI: 10.1016/j.marpolbul.2015.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
Samples of surface sediment were collected off the north Shandong Peninsula for grain size and element analyses. Based on the grain size analysis, the surface sediments were dominated by silt and sand, with a small portion of clay, and were probably from the coastal erosion of the Shandong Peninsula. The spatial distribution patterns of the heavy metals were primarily controlled by the sediment types. The geo-accumulation indexes suggest that there was no Cu, Zn and Cr pollution in the study area; Pb and Cd contaminations appeared only at a few stations, while As pollution was distributed widely. The enrichment factors indicated that Cu, Zn and Cr were primarily from terrigenous materials. By contrast, Cd, Pb and As, and especially Cd and As, were probably largely provided by anthropogenic sources. Due to the dilution of coarse-grained matters, there was no contamination at some of the stations at which the influence of human activities was obvious.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Ministry of Land and Resources, Qingdao 266071, China; Function Laboratory for Marine Geology, National Oceanography Laboratory, Qingdao, 266061, China; Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao 266071, China
| | - Shaofeng Pei
- Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Ministry of Land and Resources, Qingdao 266071, China; Function Laboratory for Marine Geology, National Oceanography Laboratory, Qingdao, 266061, China; Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao 266071, China.
| | - Jian Liu
- Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Ministry of Land and Resources, Qingdao 266071, China; Function Laboratory for Marine Geology, National Oceanography Laboratory, Qingdao, 266061, China; Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao 266071, China
| | - Maosheng Gao
- Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Ministry of Land and Resources, Qingdao 266071, China; Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao 266071, China
| | - Gang Hu
- Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Ministry of Land and Resources, Qingdao 266071, China; Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao 266071, China
| | - Xianghuai Kong
- Key Laboratory of Marine Hydrocarbon Resources and Environment Geology, Ministry of Land and Resources, Qingdao 266071, China; Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao 266071, China
| |
Collapse
|
44
|
Lin C, Wang J, Cheng H, Ouyang W. Arsenic profile distribution of the wetland argialbolls in the Sanjiang Plain of northeastern China. Sci Rep 2015; 5:10766. [PMID: 26042614 PMCID: PMC4455307 DOI: 10.1038/srep10766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/12/2015] [Indexed: 11/09/2022] Open
Abstract
The wetland Argialbolls pedon was chosen to investigate the effects of pedogenic processes and anthropogenic activities on the vertical distribution of As concentrations. Two wetland Argialboll cores (90 cm long) were collected from the Sanjiang Plain in northeastern China and analyzed for pH, soil organic matter (SOM), Fe, Mn, and As. The results indicate that SOM accumulated in the upper horizons, while Fe and Mn were reductively leached from the upper horizons and significantly accumulated in the lower argillic horizons. Atmospheric As deposition and As redistribution during the pedogenic process led to the unique vertical distribution of As concentrations in the wetland Argialbolls. Overall, As was leached from upper horizons and then accumulated in the lower argillic horizons. However, continual atmospheric As deposition maintained a slightly elevated As concentration in the top layer. In detail, As concentration in the upper horizons ranged from 1.1 to 5.3 mg kg(-1), while it ranged from 18.2 to 65.7 mg kg(-1) in the lower argillic horizons. The high As concentration in the argillic horizons might pose a risk to shallow groundwater in the area.
Collapse
Affiliation(s)
- Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jing Wang
- China Land Surveying and Planning Institute, Ministry of Land and Resources, Beijing 100035, China
| | - Hongguang Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
45
|
Lin C, Li P, Cheng H, Ouyang W. Vertical Distribution of Lead and Mercury in the Wetland Argialbolls of the Sanjiang Plain in Northeastern China. PLoS One 2015; 10:e0124294. [PMID: 25894341 PMCID: PMC4403988 DOI: 10.1371/journal.pone.0124294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
The wetland Argialbolls pedon was chosen to investigate the effects of pedogenic processes and anthropogenic activities on the vertical distribution of lead and mercury concentration and to assess the potential use of soil as an archive of atmospheric Pb and Hg pollution. The soil was sampled from 5 cm from the surface to a depth of 90 cm at two locations in the Sanjiang Plain in northeastern China. The soil was analyzed for pH, soil organic matter (SOM), Fe, Mn, and Al. The results indicate that the SOM concentration gradually decreased with depth, while Fe and Mn were reductively leached from the upper horizons and accumulated significantly in the lower argillic horizons. Atmospheric Pb and Hg deposition and their redistribution during the pedogenic process led to a unique vertical distribution in the wetland Argialbolls. Overall, Pb was leached from the upper horizons and then accumulated in the lower argillic horizons. However, the Hg concentration decreased with depth, following the SOM distribution. The Pb concentration was significantly correlated to the Fe and Mn concentrations in the Argialbolls profiles, while the Hg concentration was significantly correlated with SOM. Post-depositional mobility along the wetland Argialbolls profile is higher for Pb and low for Hg. Therefore, the Argialbolls profile does not provide an accurate reconstruction of atmospheric Pb deposition, but might provide an accurate reconstruction of net atmospheric Hg deposition.
Collapse
Affiliation(s)
- Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Peizhong Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Hongguang Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
46
|
Kim DH, Bokare AD, Koo MS, Choi W. Heterogeneous catalytic oxidation of As(III) on nonferrous metal oxides in the presence of H2O2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3506-3513. [PMID: 25695481 DOI: 10.1021/es5056897] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The oxidation of As(III) (arsenite) to As(V) (arsenate), a critical pretreatment process for total arsenic removal, is easily achieved using chemical oxidation methods. Hydrogen peroxide (H2O2) is widely used as an environmentally benign oxidant but its practical use for the arsenite oxidation is limited by the strong pH dependence and slow oxidation kinetics. This study demonstrated that H2O2-induced oxidation of As(III) can be markedly enhanced in the presence of nonferrous metal oxides (e.g., WO3, TiO2, ZrO2) as a heterogeneous catalyst working over a wide pH range in ambient reaction conditions. In particular, TiO2 is an ideal catalyst because it is not only active and stable but also easily available and inexpensive. Although the photocatalytic oxidation of As(III) on TiO2 was intensively studied, the thermal catalytic activities of TiO2 and other nonferrous metal oxides for the arsenic oxidation have been little investigated. The heterogeneous oxidation rate increased with increasing the TiO2 surface area and [H2O2] and weakly depended on pH whereas the homogeneous oxidation by H2O2 alone was favored only at alkaline condition. The oxidation rate in the TiO2/H2O2 system was not reduced at all in the absence of dioxygen. It was not retarded at all by OH radical scavengers but markedly inhibited by hydroperoxyl radical scavengers. It is proposed that the surface complexation of H2O2 on TiO2 induces the generation of the surface hydroperoxyl radical through an inner-sphere electron transfer, which subsequently reacts with As(III). The catalytic activity of TiO2 was maintained without showing any sign of deactivation. The heterogeneous catalytic oxidation is proposed as a viable method for the preoxidation treatment of As(III)-contaminated water under ambient conditions.
Collapse
Affiliation(s)
- Dong-hyo Kim
- School of Environmental Science and Engineering and Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Alok D Bokare
- School of Environmental Science and Engineering and Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Min suk Koo
- School of Environmental Science and Engineering and Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Wonyong Choi
- School of Environmental Science and Engineering and Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| |
Collapse
|
47
|
Sabur MA, Goldberg S, Gale A, Kabengi N, Al-Abadleh HA. Temperature-dependent infrared and calorimetric studies on arsenicals adsorption from solution to hematite nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2749-2760. [PMID: 25695733 DOI: 10.1021/la504581p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To address the lack of systematic and surface sensitive studies on the adsorption energetics of arsenic compounds on metal (oxyhydr)oxides, we conducted temperature-dependent ATR-FTIR studies for the adsorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid on hematite nanoparticles at pH 7. Spectra were collected as a function of concentration and temperature in the range 5-50 °C (278-323 K). Adsorption isotherms were constructed from spectral features assigned to surface arsenic. Values of K(eq), adsorption enthalpy, and entropy were extracted from fitting the Langmuir model to the data and from custom-built triple-layer surface complexation models derived from our understanding of the adsorption mechanism of each arsenical. These spectroscopic and modeling results were complemented with flow-through calorimetric measurements of molar heats of adsorption. Endothermic adsorption processes were predicted from the application of mathematical models with a net positive change in adsorption entropy. However, experimentally measured heats of adsorption were exothermic for all three arsenicals studied herein, with arsenate releasing 1.6-1.9 times more heat than methylated arsenicals. These results highlight the role of hydration thermodynamics on the adsorption of arsenicals, and are consistent with the spectral interpretation of type of surface complexes each arsenical form in that arsenate is mostly dominated by bidentate, MMA by a mixture of mono- and bidentate, and DMA by mostly outer sphere.
Collapse
Affiliation(s)
- Md Abdus Sabur
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, ON N2L 3C5, Canada
| | | | | | | | | |
Collapse
|
48
|
Keren R, Lavy A, Mayzel B, Ilan M. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations. Front Microbiol 2015; 6:154. [PMID: 25762993 PMCID: PMC4340220 DOI: 10.3389/fmicb.2015.00154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/10/2015] [Indexed: 11/13/2022] Open
Abstract
Sponges are potent filter feeders and as such are exposed to high fluxes of toxic trace elements, which can accumulate in their body over time. Such is the case of the Red Sea sponge Theonella swinhoei, which has been shown to accumulate up to 8500 mg/Kg of the highly toxicelement arsenic. T. swinhoei is known to harbor a multitude of sponge-associated bacteria, so it is hypothesized that the associated-bacteria will be tolerant to high arsenic concentration. This study also investigates the fate of the arsenic accumulated in the sponge to test if the associated-bacteria have an important role in the arsenic accumulation process of their host, since bacteria are key players in the natural arsenic cycle. Separation of the sponge to sponge cells and bacteria enriched fractions showed that arsenic is accumulated by the bacteria. Sponge-associated, arsenic-tolerant bacteria were cultured in the presence of 5 mM of either arsenate or arsenite (equivalent to 6150 mg/Kg arsenic, dry weight). The 54 isolated bacteria were grouped to 15 operational taxonomic units (OTUs) and isolates belonging to 12 OTUs were assessed for tolerance to arsenate at increased concentrations up to 100 mM. Eight of the 12 OTUs tolerated an order of magnitude increase in the concentration of arsenate, and some exhibited external biomineralization of arsenic-magnesium salts. The biomineralization of this unique mineral was directly observed in bacteria for the first time. These results may provide an explanation for the ability of the sponge to accumulate considerable amounts of arsenic. Furthermore arsenic-mineralizing bacteria can potentially be used for the study of bioremediation, as arsenic toxicity affects millions of people worldwide.
Collapse
Affiliation(s)
- Ray Keren
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | | | | | | |
Collapse
|
49
|
McComb J, Alexander TC, Han FX, Tchounwou PB. Understanding Biogeochemical Cycling of Trace Elements and Heavy Metals in Estuarine Ecosystems. ACTA ACUST UNITED AC 2015; 5. [PMID: 25685610 PMCID: PMC4326106 DOI: 10.4172/2155-6199.1000e148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jacqueline McComb
- Environmental Science Ph.D. Program, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA
| | - Turquoise C Alexander
- Environmental Science Ph.D. Program, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA
| | - Fengxiang X Han
- Environmental Science Ph.D. Program, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA ; Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
| | - Paul B Tchounwou
- Environmental Science Ph.D. Program, Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217, USA
| |
Collapse
|
50
|
Impact of Inorganic Arsenicals on Vegetative Growth of Two Pakistani Origins Sunflower Cultivars. J CHEM-NY 2015. [DOI: 10.1155/2015/275830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic arsenicals impact on vegetative growth of two sunflower (Helianthus annuusL.) cultivars (FH-385 as Hybrid 1 and FH-405 as Hybrid 2) was monitored. Various levels of two different sodium salts of arsenic, namely, sodium arsenate (Na2HAsO4·7H2O) as source of As5+and sodium arsenite (NaAsO2) as source of As3+, were used to evaluate the effect of arsenic on plant water relation parameters. Significant stress effects were found when arsenic was higher in concentrations (>60 mg/kg soil of both salts) as compared to control plants. Genotype FH-405 showed higher levels for shoot and root length, water contents, number of leaves, and leaf area, which indicates well adaptation of this cultivar in arsenic contaminated environment. T5 (100 mg/kg) of both salts showed notable stressful impacts as compared to low arsenic concentrations (20, 40 mg/kg) and especially control plants in case of all morphophysiological parameters of sunflower cultivars.
Collapse
|