1
|
Bera I, O’Sullivan M, Scaife C, Cagney G, Shields DC. Motif mapping during chickpea germination reveals a complex sequential activation of different proteolytic activities. PLoS One 2024; 19:e0307481. [PMID: 39480808 PMCID: PMC11527212 DOI: 10.1371/journal.pone.0307481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/07/2024] [Indexed: 11/02/2024] Open
Abstract
Despite the importance of grains and legumes in the human diet, little is known regarding peptide release and the temporal changes of protease activities during seed germination. LC/MS-MS peptidomic analysis of two cultivars of germinating chickpea followed by computational analyses indicated cleavage dominated by proteases with a single position preference (mainly before (P1) or after cleavage (P1'): L at P2 (cysEP-like); R or K at P1 (vignain-like), N or Q at P1 (legumain-like); and previously unidentified K, R, A and S at P1'; A at P2'). While P1 N cleavages were relatively constant, P1' K/R preferences were high in soaked garbanzo (kabuli) seeds, declined by four days, and returned at six days, but were much rarer in the brown (desi) cultivar. Late Embryogenesis Associated (LEA) peptides were markedly released during early germination. Vicilin peptides rich in glutamic acid near their N-termini markedly increased with germination, consistent with strong proteolytic resistance, even to human digestion, as indicated by analyses of separate datasets. Thus, this first peptidomics study of seed germination proteolytic profiles unveils a complex cultivar-specific programme of sequential activation and inactivation of a series of proteases, associated with the differential release of peptides from different protein groups.
Collapse
Affiliation(s)
- Indrani Bera
- Conway Institute of Biomolecular and Biomedical Research, UCD, Dublin, Ireland
- School of Medicine, UCD, Dublin, Ireland
| | - Michael O’Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, UCD, Dublin, Ireland
| | - Caitriona Scaife
- Conway Institute of Biomolecular and Biomedical Research, UCD, Dublin, Ireland
| | - Gerard Cagney
- Conway Institute of Biomolecular and Biomedical Research, UCD, Dublin, Ireland
- School of Biomolecular and Biomedical Science, UCD, Dublin, Ireland
| | - Denis C. Shields
- Conway Institute of Biomolecular and Biomedical Research, UCD, Dublin, Ireland
- School of Medicine, UCD, Dublin, Ireland
| |
Collapse
|
2
|
Jayarathna SB, Chawla HS, Mira MM, Duncan RW, Stasolla C. Mapping of quantitative trait loci (QTL) in Brassica napus L. for tolerance to water stress. Genome 2024. [PMID: 39417409 DOI: 10.1139/gen-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brassica napus L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to B. napus tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.
Collapse
Affiliation(s)
- Samadhi B Jayarathna
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Harmeet S Chawla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
4
|
Ning K, Sun T, Wang Z, Li H, Fang P, Cai X, Wu X, Xu M, Xu P. Selective penetration of fullerenol through pea seed coats mitigates osmosis-repressed germination via chromatin remodeling and transcriptional reprograming. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6008-6017. [PMID: 38437455 DOI: 10.1002/jsfa.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The alteration of chromatin accessibility plays an important role in plant responses to abiotic stress. Carbon-based nanomaterials (CBNMs) have attracted increasing interest in agriculture due to their potential impact on crop productivity, showcasing effects on plant biological processes at transcriptional levels; however, their impact on chromatin accessibility remains unknown. RESULTS This study found that fullerenol can penetrate the seed coat of pea to mitigate the reduction of seed germination caused by osmotic stress. RNA sequencing (RNA-seq) revealed that the application of fullerenol caused the high expression of genes related to oxidoreduction to return to a normal level. Assay for transposase accessible chromatin sequencing (ATAC-seq) confirmed that fullerenol application reduced the overall levels of chromatin accessibility of numerous genes, including those related to environmental signaling, transcriptional regulation, and metabolism. CONCLUSION This study suggests that fullerenol alleviates osmotic stress on various fronts, encompassing antioxidant, transcriptional, and epigenetic levels. This advances knowledge of the working mechanism of this nanomaterial within plant cells. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Ting Sun
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Zhuoyi Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Hailan Li
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Pingping Fang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Xiaoqi Cai
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Xinyang Wu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Min Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| | - Pei Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Wang Q, Lei X, Wang Y, Di P, Meng X, Peng W, Rong J, Wang Y. Genome-wide identification of the LEA gene family in Panax ginseng: Evidence for the role of PgLEA2-50 in plant abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108742. [PMID: 38772166 DOI: 10.1016/j.plaphy.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Ginseng frequently encounters environmental stress during its growth and development. Late Embryogenesis Abundant (LEA) proteins play a crucial role in combating adversity stress, particularly against abiotic challenges In this study, 107 LEA genes from ginseng, spanning eight subfamilies, were identified, demonstrating significant evolutionary conservation, with the LEA2 subfamily being most prominent. Gene duplication events, primarily segmental duplications, have played a major role in the expansion of the LEA gene family, which has undergone strong purifying selection. PgLEAs were unevenly distributed across 22 chromosomes, with each subfamily featuring unique structural domains and conserved motifs. PgLEAs were expressed in various tissues, exhibiting distinct variations in abundance and tissue specificity. Numerous regulatory cis-elements, related to abiotic stress and hormones, were identified in the promoter region. Additionally, PgLEAs were regulated by a diverse array of abiotic stress-related transcription factors. A total of 35 PgLEAs were differentially expressed following treatments with ABA, GA, and IAA. Twenty-three PgLEAs showed significant but varied responses to drought, extreme temperatures, and salinity stress. The transformation of tobacco with the key gene PgLEA2-50 enhanced osmoregulation and antioxidant levels in transgenic lines, improving their resistance to abiotic stress. This study offers insights into functional gene analysis, focusing on LEA proteins, and establishes a foundational framework for research on ginseng's resilience to abiotic stress.
Collapse
Affiliation(s)
- Qi Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yihan Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Peng Di
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiangru Meng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Kulesza E, Thomas P, Prewitt SF, Shalit-Kaneh A, Wafula E, Knollenberg B, Winters N, Esteban E, Pasha A, Provart N, Praul C, Landherr L, dePamphilis C, Maximova SN, Guiltinan MJ. The cacao gene atlas: a transcriptome developmental atlas reveals highly tissue-specific and dynamically-regulated gene networks in Theobroma cacao L. BMC PLANT BIOLOGY 2024; 24:601. [PMID: 38926852 PMCID: PMC11201900 DOI: 10.1186/s12870-024-05171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Theobroma cacao, the cocoa tree, is a tropical crop grown for its highly valuable cocoa solids and fat which are the basis of a 200-billion-dollar annual chocolate industry. However, the long generation time and difficulties associated with breeding a tropical tree crop have limited the progress of breeders to develop high-yielding disease-resistant varieties. Development of marker-assisted breeding methods for cacao requires discovery of genomic regions and specific alleles of genes encoding important traits of interest. To accelerate gene discovery, we developed a gene atlas composed of a large dataset of replicated transcriptomes with the long-term goal of progressing breeding towards developing high-yielding elite varieties of cacao. RESULTS We describe the creation of the Cacao Transcriptome Atlas, its global characterization and define sets of genes co-regulated in highly organ- and temporally-specific manners. RNAs were extracted and transcriptomes sequenced from 123 different tissues and stages of development representing major organs and developmental stages of the cacao lifecycle. In addition, several experimental treatments and time courses were performed to measure gene expression in tissues responding to biotic and abiotic stressors. Samples were collected in replicates (3-5) to enable statistical analysis of gene expression levels for a total of 390 transcriptomes. To promote wide use of these data, all raw sequencing data, expression read mapping matrices, scripts, and other information used to create the resource are freely available online. We verified our atlas by analyzing the expression of genes with known functions and expression patterns in Arabidopsis (ACT7, LEA19, AGL16, TIP13, LHY, MYB2) and found their expression profiles to be generally similar between both species. We also successfully identified tissue-specific genes at two thresholds in many tissue types represented and a set of genes highly conserved across all tissues. CONCLUSION The Cacao Gene Atlas consists of a gene expression browser with graphical user interface and open access to raw sequencing data files as well as the unnormalized and CPM normalized read count data mapped to several cacao genomes. The gene atlas is a publicly available resource to allow rapid mining of cacao gene expression profiles. We hope this resource will be used to help accelerate the discovery of important genes for key cacao traits such as disease resistance and contribute to the breeding of elite varieties to help farmers increase yields.
Collapse
Affiliation(s)
- Evelyn Kulesza
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick Thomas
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah F Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- USDA Animal and Plant Health Inspection Service (APHIS), Riverdale, MD, 20737, USA
| | - Akiva Shalit-Kaneh
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Plant Sciences, Volcani-ARO (Agricultural and Rural Organization), Gilat, Israel
| | - Eric Wafula
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Benjamin Knollenberg
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Mars Inc, Davis, CA, 95616, USA
| | - Noah Winters
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Eddi Esteban
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Nicholas Provart
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Craig Praul
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lena Landherr
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Claude dePamphilis
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Siela N Maximova
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark J Guiltinan
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Hassanein F, Fadel HH, Shehata AI, Hamdy NA, Masoud IM. In silico study to explore the mechanism of Toxoplasma-induced inflammation and target therapy based on sero and salivary Toxoplasma. Sci Rep 2024; 14:13600. [PMID: 38866852 PMCID: PMC11169245 DOI: 10.1038/s41598-024-63735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.
Collapse
Affiliation(s)
- Faika Hassanein
- Department of Microbiology & Immunology, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt.
| | - Hewida H Fadel
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Amany I Shehata
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Noha Alaa Hamdy
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Inas M Masoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
8
|
Li L, Bi X, Wu X, Chen Z, Cao Y, Zhao G. Improving vitrification efficiency of human in vitro matured oocytes by the addition of LEA proteins. Hum Reprod 2024; 39:1275-1290. [PMID: 38592717 DOI: 10.1093/humrep/deae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
STUDY QUESTION Can the addition of late embryogenesis-abundant (LEA) proteins as a cryoprotective agent during the vitrification cryopreservation of in vitro matured oocytes enhance their developmental potential after fertilization? SUMMARY ANSWER LEA proteins improve the developmental potential of human in vitro matured oocytes following cryopreservation, mostly by downregulating FOS genes, reducing oxidative stress, and inhibiting the formation of ice crystals. WHAT IS KNOWN ALREADY Various factors in the vitrification process, including cryoprotectant toxicity, osmotic stress, and ice crystal formation during rewarming, can cause fatal damage to oocytes, thereby affecting the oocytes developmental potential and subsequent clinical outcomes. Recent studies have shown that LEA proteins possess high hydrophilicity and inherent stress tolerance, and can reduce low-temperature damage, although the molecular mechanism it exerts protective effects is still unclear. STUDY DESIGN, SIZE, DURATION Two LEA proteins extracted and purified by us were added to solutions for vitrification-warming of oocytes at concentrations of 10, 100, and 200 µg/mL, to determine the optimal protective concentration for each protein. Individual oocyte samples were collected for transcriptomic analysis, with each group consisting of three sample replicates. PARTICIPANTS/MATERIALS, SETTING, METHODS Immature oocytes were collected from patients who were undergoing combined in vitro fertilization (IVF) treatment and who had met the designated inclusion and exclusion criteria. These oocytes underwent in vitro maturation (IVM) culture for experimental research. A fluorescence microscope was used to detect the levels of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and calcium in the mitochondria of vitrified-warmed human oocytes treated with different concentrations of LEA proteins, and the protective effect of the protein on mitochondrial function was assessed. The levels of intracellular ice recrystallization inhibition (IRI) in human oocytes after vitrification-warming were characterized by the cryomicroscope, to determine the LEA proteins inhibitory effect on recrystallization. By analyzing transcriptome sequencing data to investigate the potential mechanism through which LEA proteins exert their cryoprotective effects. MAIN RESULTS AND THE ROLE OF CHANCE The secondary structures of AfrLEA2 and AfrLEA3m proteins were shown to consist of a large number of α-helices and the proteins were shown to be highly hydrophilic, in agreement with previous reports. Confocal microscopy results showed that the immunofluorescence of AfrLEA2-FITC and AfrLEA3m-FITC-labeled proteins appeared to be extracellular and did not penetrate the cell membrane compared with the fluorescein isothiocyanate (FITC) control group, indicating that both AfrLEA2 and AfrLEA3m proteins were extracellular. The group treated with 100 µg/mL AfrLEA2 or AfrLEA3m protein had more uniform cytoplasmic particles and fewer vacuoles compared to the 10 and 200 µg/mL groups and were closest to the fresh group. In the 100 µg/mL groups, MMPs were significantly higher while ROS and calcium levels were significantly lower than those in the control group and were closer to the levels observed in fresh oocytes. Meanwhile, 100 µg/mL of AfrLEA2 or AfrLEA3m protein caused smaller ice crystal formation in the IRI assay compared to the control group treated with dimethylsulphoxide (DMSO) and ethylene glycol (EG); thus, the recrystallization inhibition was superior to that with the conventional cryoprotectants DMSO and EG. Further results revealed that the proteins improved the developmental potential of human oocytes following cryopreservation, likely by downregulating FOS genes and reducing oxidative stress. LIMITATIONS, REASONS FOR CAUTION The in vitro-matured metaphase II (IVM-MII) oocytes used in the study, due to ethical constraints, may not accurately reflect the condition of MII oocytes in general. The AfrLEA2 and AfrLEA3m proteins are recombinant proteins and their synthetic stability needs to be further explored. WIDER IMPLICATIONS OF THE FINDINGS LEA proteins, as a non-toxic and effective cryoprotectant, can reduce the cryoinjury of oocytes during cryopreservation. It provides a new promising method for cryopreservation of various cell types. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2022YFC2703000) and the National Natural Science Foundation of China (52206064). The authors declare no competing interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Lu Li
- Department of Histology and Embryology, School of Basic Medicine Sciences, Anhui Medical University, Hefei, P.R. China
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, P.R. China
| | - Xingyu Bi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, P.R. China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, P.R. China
| | - Zhongrong Chen
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, P. R. China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, P. R. China
| | - Gang Zhao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Anhui Medical University, Hefei, P.R. China
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, P. R. China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
9
|
Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, Mohamed Z, Doni F. Bioprospecting the roles of Trichoderma in alleviating plants' drought tolerance: Principles, mechanisms of action, and prospects. Microbiol Res 2024; 283:127665. [PMID: 38452552 DOI: 10.1016/j.micres.2024.127665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
Collapse
Affiliation(s)
- Sulistya Ika Akbari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Dedat Prismantoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, West Java 40132, Indonesia
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
| |
Collapse
|
10
|
Hernández‐Sánchez I, Rindfleisch T, Alpers J, Dulle M, Garvey CJ, Knox‐Brown P, Miettinen MS, Nagy G, Pusterla JM, Rekas A, Shou K, Stadler AM, Walther D, Wolff M, Zuther E, Thalhammer A. Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity. Protein Sci 2024; 33:e4989. [PMID: 38659213 PMCID: PMC11043620 DOI: 10.1002/pro.4989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.
Collapse
Affiliation(s)
- Itzell Hernández‐Sánchez
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center for Desert Agriculture, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Tobias Rindfleisch
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
| | - Jessica Alpers
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Patrick Knox‐Brown
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Present address:
Department of Discovery Pharmaceutical SciencesMerck & Co., Inc.South San FranciscoCaliforniaUSA
| | - Markus S. Miettinen
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Gergely Nagy
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Julio M. Pusterla
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | - Agata Rekas
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
| | - Keyun Shou
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Dirk Walther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Wolff
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
| | - Ellen Zuther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center of Artificial Intelligence in Public Health Research (ZKI‐PH)Robert Koch InstituteBerlinGermany
| | | |
Collapse
|
11
|
Lin Y, She M, Zhao M, Yu H, Xiao W, Zhang Y, Li M, Chen Q, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-wide analysis and functional validation reveal the role of late embryogenesis abundant genes in strawberry (Fragaria × ananassa) fruit ripening. BMC Genomics 2024; 25:228. [PMID: 38429694 PMCID: PMC10908092 DOI: 10.1186/s12864-024-10085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins play important roles in plant growth and development, as well as stresses responsiveness. Nowadays, it has been found that LEAs also have function in fruit ripening. However, the comprehensive analysis on a genome-wide basis of LEA family remains limited, and the role of LEA in fruit ripening has not been fully explored yet, especially in strawberry, an economic important plant and ideal material for studying fruit ripening. RESULTS In this study, a total of 266 putative LEA proteins were identified and characterized in strawberry genome. Subcellular localization prediction indicated that they were mostly localized in chloroplast, cytoplasm and nucleus. Duplication events detection revealed that whole genome duplication or segmental was the main driver for the expansion of LEA family in strawberry. The phylogenetic analysis suggested that FaLEAs were classified into eight groups, among which, LEA2 was the largest subgroup with 179 members, followed by LEA3, dehydrin (DHN), LEA4 and SMP (seed maturation protein). The LEA1 and DHN groups were speculated to play dominant roles in strawberry fruit development and ripening, according to their larger proportion of members detected as differentially expressed genes during such process. Notably, the expression of FaLEA167 belonging to LEA1 group was altered by strawberry maturation, and inhibited by overexpression of negative regulators of ripening (a cytosolic/plastid glyceraldehyde-3-phosphate dehydrogenase, FaGAPC2 and a cytosolic pyruvate kinase, FaPKc2.2). Subsequently, overexpression of FaLEA167 significantly increased the percentage of fruit at green stage, while reduced the full red fruit proportion. In consistent, the anthocyanins content and the fruit skin color variable reflecting a range from greenness to redness (a* value) were significantly reduced. Whereas, FaLEA167 overexpression apparently up-regulated citric acid, soluble protein and malondialdehyde content, but had no obvious effects on total soluble solids, sugar, flavonoids, phenolics content and antioxidant capacity. CONCLUSIONS These findings not only provided basic information of FaLEA family for further functional research, but also revealed the involvement of FaLEA167 in negatively regulating strawberry fruit ripening, giving new insights into understanding of FaLEA functions.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Musha She
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mantong Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, Zhejiang, China
| | - Wenfei Xiao
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, Zhejiang, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Abe KM, Lim CJ. Small LEA proteins as an effective air-water interface protectant for fragile samples during cryo-EM grid plunge freezing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579238. [PMID: 38370693 PMCID: PMC10871254 DOI: 10.1101/2024.02.06.579238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sample loss due to air-water interface (AWI) interactions is a significant challenge during cryo-electron microscopy (cryo-EM) sample grid plunge freezing. We report that small Late Embryogenesis Abundant (LEA) proteins, which naturally bind to AWI, can protect samples from AWI damage during plunge freezing. This protection is demonstrated with two LEA proteins from nematodes and tardigrades, which rescued the cryo-EM structural determination outcome of two fragile multisubunit protein complexes.
Collapse
Affiliation(s)
- Kaitlyn M. Abe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
13
|
Rendón-Luna DF, Arroyo-Mosso IA, De Luna-Valenciano H, Campos F, Segovia L, Saab-Rincón G, Cuevas-Velazquez CL, Reyes JL, Covarrubias AA. Alternative conformations of a group 4 Late Embryogenesis Abundant protein associated to its in vitro protective activity. Sci Rep 2024; 14:2770. [PMID: 38307936 PMCID: PMC10837141 DOI: 10.1038/s41598-024-53295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Late Embryogenesis Abundant (LEA) proteins are a group of intrinsically disordered proteins implicated in plant responses to water deficit. In vitro studies revealed that LEA proteins protect reporter enzymes from inactivation during low water availability. Group 4 LEA proteins constitute a conserved protein family, displaying in vitro protective capabilities. Under water deficiency or macromolecular crowding, the N-terminal of these proteins adopts an alpha-helix conformation. This region has been identified as responsible for the protein in vitro protective activity. This study investigates whether the attainment of alpha-helix conformation and/or particular amino acid residues are required for the in vitro protective activity. The LEA4-5 protein from Arabidopsis thaliana was used to generate mutant proteins. The mutations altered conserved residues, deleted specific conserved regions, or introduced prolines to hinder alpha-helix formation. The results indicate that conserved residues are not essential for LEA4-5 protective function. Interestingly, the C-terminal region was found to contribute to this function. Moreover, alpha-helix conformation is necessary for the protective activity only when the C-terminal region is deleted. Overall, LEA4-5 shows the ability to adopt alternative functional conformations under the tested conditions. These findings shed light on the in vitro mechanisms by which LEA proteins protect against water deficit stress.
Collapse
Affiliation(s)
- David F Rendón-Luna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Inti A Arroyo-Mosso
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Haydee De Luna-Valenciano
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
- Programa de Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Francisco Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Cesar L Cuevas-Velazquez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
14
|
Biswas S, Gollub E, Yu F, Ginell G, Holehouse A, Sukenik S, Boothby TC. Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Sci 2024; 33:e4872. [PMID: 38114424 PMCID: PMC10804681 DOI: 10.1002/pro.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Garrett Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Alex Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
15
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
16
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
17
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
18
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
19
|
Zhang Y, Zhang X, Zhu L, Wang L, Zhang H, Zhang X, Xu S, Xue J. Identification of the Maize LEA Gene Family and Its Relationship with Kernel Dehydration. PLANTS (BASEL, SWITZERLAND) 2023; 12:3674. [PMID: 37960031 PMCID: PMC10647770 DOI: 10.3390/plants12213674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Maize, the most widely planted and highest yielding of the three major crops in the world, requires the development and breeding of new varieties to accommodate the shift towards mechanized harvesting. However, the moisture content of kernels during harvest poses a significant challenge to mechanized harvesting, leading to seed breakage and increased storage costs. Previous studies highlighted the importance of LEA (Late Embryogenesis Abundant) members in regulating kernel dehydration. In this study, we aimed to gain a better understanding of the relationship between the LEA family and grain dehydration in maize. Through expression pattern analysis of maize, we identified 52 LEA genes (ZmLEAs) distributed across 10 chromosomes, organized into seven subgroups based on phylogenetic analysis, gene structure, and conserved motifs. Evolutionary and selective pressure analysis revealed that the amplification of ZmLEA genes primarily resulted from whole-genome or fragment replication events, with strong purifying selection effects during evolution. Furthermore, the transcriptome data of kernels of two maize inbred lines with varying dehydration rates at different developmental stages showed that 14 ZmLEA genes were expressed differentially in the two inbreds. This suggested that the ZmLEA genes might participate in regulating the kernel dehydration rate (KDR) in maize. Overall, this study enhances our understanding of the ZmLEA family and provides a foundation for further research into its role in regulating genes associated with grain dehydration in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.Z.); (L.Z.); (L.W.); (H.Z.); (X.Z.)
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.Z.); (L.Z.); (L.W.); (H.Z.); (X.Z.)
| |
Collapse
|
20
|
Inal B, Mirzapour M, Tufekci ED, Rustemoglu M, Kaba A, Albalawi MA, Alalawy AI, Sakran M, Alqurashi M, Ditta A. Drought-Induced miRNA Expression Correlated with Heavy Metal, Phenolic Acid, and Protein and Nitrogen Levels in Five Chickpea Genotypes. ACS OMEGA 2023; 8:35746-35754. [PMID: 37810661 PMCID: PMC10552140 DOI: 10.1021/acsomega.3c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Drought is a prime stress, drastically affecting plant growth, development, and yield. Plants have evolved various physiological, molecular, and biochemical mechanisms to cope with drought. Investigating specific biochemical pathways related to drought tolerance mechanisms of plants through biotechnology approaches is one of the quickest and most effective strategies for enhancing crop production. Among them, microRNAs (miRNAs) are the principal post-transcriptional regulators of gene expression in plants during plant growth under biotic and abiotic stresses. In this study, five different chickpea genotypes (İnci, Hasan bey, Arda, Seçkin, and Diyar 95) were grown under normal and drought stress. We recorded the expression levels of microRNAs in these genotypes and found differential expression (miRNA396, miR408, miRNA414, miRNA528, and miRNA1533) under contrasting conditions. Results revealed that miRNA414 and miRNA528 considerably increased in all genotypes under drought stress, and expression levels of miRNA418, miRNA1533, and miRNA396 (except for the Seçkin genotype) were found to be higher under the watered conditions. These genotypes were also investigated for heavy metal, phenolic acid, protein, and nitrogen concentrations under normal and drought stress conditions. The Arda genotype showed a significant increase in nitrogen (5.46%) and protein contents (28.3%), while protein contents were decreased in the Hasan bey and Seçkin genotypes subjected to drought stress. In the case of metals, iron was the most abundant element in all genotypes (İnci = 15.4 ppm, Hasan bey = 29.6 ppm, Seçkin = 37.8 ppm, Arda = 26.3 ppm, and Diyar 95 = 40.8 ppm) under normal conditions. Interestingly, these results were related to miRNA expression in the chickpea genotypes and hint at the regulation of multiple pathways under drought conditions. Overall, the present study will help us to understand the miRNA-mediated regulation of various pathways in chickpea genotypes.
Collapse
Affiliation(s)
- Behcet Inal
- Faculty
of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt 56100, Turkey
| | - Mohsen Mirzapour
- Faculty
of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt 56100, Turkey
| | - Ebru Derelli Tufekci
- Food
and Agriculture Vocational High School, Department of Field Crops, Cankiri Karatekin University, Cankiri 18100, Turkey
| | - Mustafa Rustemoglu
- Faculty
of Agriculture, Department of Plant Protection, Sirnak University, Sirnak 73000, Turkey
| | - Adem Kaba
- Faculty
of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt 56100, Turkey
| | - Marzough Aziz Albalawi
- Department
of Chemistry, University College at Alwajh, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Adel I. Alalawy
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 73000, Kingdom
of Saudi Arabia
| | - Mohamed Sakran
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 73000, Kingdom
of Saudi Arabia
- Biochemistry
Section, Chemistry Department, Faculty of Science, Tanta University, Tanta31527,Egypt
| | - Mohammed Alqurashi
- Department
of Biotechnology, Faculty of Science, Taif
University, Taif 21974, Saudi Arabia
| | - Allah Ditta
- Department
of Environmental Sciences, Shaheed Benazir
Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa 18000, Pakistan
- School
of Biological Sciences, The University of
Western Australia, 35
Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
21
|
Field S, Jang GJ, Dean C, Strader LC, Rhee SY. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. THE PLANT CELL 2023; 35:3173-3186. [PMID: 36879427 PMCID: PMC10473230 DOI: 10.1093/plcell/koad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This review highlights recent literature on biomolecular condensates in plant development and discusses challenges for fully dissecting their functional roles. Plant developmental biology has been inundated with descriptive examples of biomolecular condensate formation, but it is only recently that mechanistic understanding has been forthcoming. Here, we discuss recent examples of potential roles biomolecular condensates play at different stages of the plant life cycle. We group these examples based on putative molecular functions, including sequestering interacting components, enhancing dwell time, and interacting with cytoplasmic biophysical properties in response to environmental change. We explore how these mechanisms could modulate plant development in response to environmental inputs and discuss challenges and opportunities for further research into deciphering molecular mechanisms to better understand the diverse roles that biomolecular condensates exert on life.
Collapse
Affiliation(s)
- Sterling Field
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Geng-Jen Jang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Mitra A, Bhakta K, Kar A, Roy A, Mohid SA, Ghosh A, Ghosh A. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp12 of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2023; 24:1063-1077. [PMID: 37434353 PMCID: PMC10423329 DOI: 10.1111/mpp.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/13/2023]
Abstract
Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.
Collapse
Affiliation(s)
- Aroni Mitra
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | - Ankita Kar
- Division of Plant BiologyBose InstituteKolkataIndia
| | - Anisha Roy
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
23
|
Khan NZ, Ali A, Ali W, Aasim M, Khan T, Khan Z, Munir I. Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1239-1246. [PMID: 38024953 PMCID: PMC10678877 DOI: 10.1007/s12298-023-01358-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023]
Abstract
Salinity, low temperature, and drought are major environmental factors in agriculture leading to reduced crop yield. Dehydrins (DHNs) are induced transcriptionally during cellular dehydration and accumulate in different tissues during abiotic stresses. Here we isolated and characterized a bacterial gene BG757 in Arabidopsis, encoding a putative dehydrin type protein. ABA induces the expression of various dehydrins in plants, therefore, to elucidate the potential role, ABA sensitivity was examined in Arabidopsis transgenic lines expressing BG757. Interestingly, BG757-expressing plants showed hypersensitivity towards NaCl and ABA during seed germination. In addition to germination, BG757-expressing plants also showed root growth retardation in the presence of ABA and NaCl when compared with wild type (WT), suggesting that BG757 positively regulate salt stress and ABA response. Furthermore, BG757-expressing plants showed significant drought tolerance compared with WT. Consistent with drought tolerance, expression levels of stress inducible genes (DREB2A, RD22, RD26, LEA7 and SOS1) were strongly upregulated in transgenic plants compared with WT. All together these results suggest that heterologous expression of bacterial gene, BG757 in plants promotes resistance to environmental stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01358-w.
Collapse
Affiliation(s)
- Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Waqar Ali
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Zaryab Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
24
|
Iwai R, Uchida S, Yamaguchi S, Nagata D, Koga A, Hayashi S, Yamamoto S, Miyasaka H. Effects of LPS from Rhodobacter sphaeroides, a Purple Non-Sulfur Bacterium (PNSB), on the Gene Expression of Rice Root. Microorganisms 2023; 11:1676. [PMID: 37512850 PMCID: PMC10383378 DOI: 10.3390/microorganisms11071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of lipopolysaccharide (LPS) from Rhodobacter sphaeroides, a purple non-sulfur bacterium (PNSB), on the gene expression of the root of rice (Oryza sativa) were investigated by next generation sequencing (NGS) RNA-seq analysis. The rice seeds were germinated on agar plates containing 10 pg/mL of LPS from Rhodobacter sphaeroides NBRC 12203 (type culture). Three days after germination, RNA samples were extracted from the roots and analyzed by RNA-seq. The effects of dead (killed) PNSB cells of R. sphaeroides NBRC 12203T at the concentration of 101 cfu/mL (ca. 50 pg cell dry weight/mL) were also examined. Clean reads of NGS were mapped to rice genome (number of transcript ID: 44785), and differentially expressed genes were analyzed by DEGs. As a result of DEG analysis, 300 and 128 genes, and 86 and 8 genes were significantly up- and down-regulated by LPS and dead cells of PNSB, respectively. The plot of logFC (fold change) values of the up-regulated genes of LPS and PNSB dead cells showed a significant positive relationship (r2 = 0.6333, p < 0.0001), indicating that most of the effects of dead cell were attributed to those of LPS. Many genes related to tolerance against biotic (fungal and bacterial pathogens) and abiotic (cold, drought, and high salinity) stresses were up-regulated, and the most strikingly up-regulated genes were those involved in the jasmonate signaling pathway, and the genes of chalcone synthase isozymes, indicating that PNSB induced defense response against biotic and abiotic stresses via the jasmonate signaling pathway, despite the non-pathogenicity of PNSB.
Collapse
Affiliation(s)
- Ranko Iwai
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shunta Uchida
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Sayaka Yamaguchi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Daiki Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Aoi Koga
- Ciamo Co., Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
25
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
26
|
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: from metabolite release to symbiotic interplay. THE NEW PHYTOLOGIST 2023; 238:1362-1378. [PMID: 36710517 PMCID: PMC10952756 DOI: 10.1111/nph.18780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 1034127TriesteItaly
| | | | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| |
Collapse
|
27
|
Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023; 14:e0286822. [PMID: 36809045 PMCID: PMC10128015 DOI: 10.1128/mbio.02868-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.
Collapse
|
28
|
Ma J, Zuo D, Ye H, Yan Y, Li M, Zhao P. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives J. mandshurica. BMC PLANT BIOLOGY 2023; 23:80. [PMID: 36740678 PMCID: PMC9901102 DOI: 10.1186/s12870-023-04096-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Late Embryogenesis Abundant (LEA) proteins are a class of proteins associated with plant stress resistance. Two Juglans species, Juglans regia and J. mandshurica, are both diploid (2n = 32), monoecious perennial economic tree species with high edible, pharmaceutical, and timber value. The identification, characterization, and expression patterns of LEA proteins in J. regia and its wild relative, J. mandshurica, would not only provide the genetic basis of this gene family, but it would also supply clues for further studies of the evolution and regulating mechanisms of LEA proteins in other tree species. RESULTS In this study, we identified 25 and 20 members of the LEA gene family in Juglans regia and its wild relative, Juglans mandshurica, respectively. The results of phylogenetic analysis showed that the LEA members were divided into eight main subgroups. Predictions of their physicochemical properties showed the variable characteristics of LEA proteins, and the subcellular localization analysis indicated that most LEA proteins are localized in the nucleus. Chromosomal localization analysis and gene replication pattern prediction indicated that WGD is the predominant duplication mode of LEA genes. The results of the comparative analysis indicated a high level of collinearity between the two Juglans species. Analysis of cis-acting elements indicated that LEA genes had a relatively wide range of responses to abiotic stresses and phytohormonal processes, particularly in two phytohormones, methyl jasmonate and abscisic acid. Transcriptome profiling and qRT-PCR experiments showed that JrLEAs are commonly expressed in leaves, green husks, and male and female flowers, and most JmLEAs are more highly expressed in male flowers. We also hypothesized that JrLEAs are involved in the process of anthracnose resistance. Anthracnose-resistant varieties of JrLEAs presented relatively high expression levels at later stages. CONCLUSION In this study, we provide a theoretical basis for the functional study of LEA genes in J. regia and J. mandshurica. Analysis of cis-acting elements and gene expression indicated that JrLEAs and JmLEAs play important roles in resistance to biotic stresses in these species.
Collapse
Affiliation(s)
- Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Dongjun Zuo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yujie Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| |
Collapse
|
29
|
Yan X, Chen S, Pan Z, Zhao W, Rui Y, Zhao L. AgNPs-Triggered Seed Metabolic and Transcriptional Reprogramming Enhanced Rice Salt Tolerance and Blast Resistance. ACS NANO 2023; 17:492-504. [PMID: 36525364 DOI: 10.1021/acsnano.2c09181] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Seeds are facing harsher environments due to the changing climate. Improving seeds' stress resilience is critical to reduce yield loss. Here, we propose that using ROS-generating nanoparticles (NPs) to prestimulate seeds would enhance the stress resilience of seeds and seedlings through triggering stress/immune responses. We examined this hypothesis by exposing AgNPs-primed rice (Oryza sativa L.) seeds under salt conditions (NaCl). The results showed that primed seeds exhibit accelerated germination speed, increased seedling vigor (from 22.5 to 47.6), biomass (11%), and root length (83%) compared to seeds with hydropriming treatment. Multiomics (metabolomics and transcriptomics) analyses reveal that AgNPs-priming triggered metabolic and transcriptional reprogramming in rice seeds. Signaling metabolites, such as salicylic acid, niacinamide, and glycerol-3-phosphate, dramatically increased upon AgNPs-priming. KEGG pathway analysis reveals that AgNPs-priming activated stress signaling and defense related pathways, such as plant hormone signal transduction, glutathione metabolism, flavone and flavonol biosynthesis, MAPK signaling pathway, and plant-pathogen interaction. These metabolic and transcriptional changes indicate that AgNPs-priming triggered stress/immune responses. More importantly, this "stress memory" can last weeks, providing protection to rice seedlings against salt stress and rice blast fungus (Magnaporthe oryzae). Overall, we show that prestimulated seeds with ROS-generating AgNPs not only enable faster and better germination under stress conditions, but also increase seedling resistance to biotic and abiotic stresses. This simple nanobiostimulant-based strategy may contribute to sustainable agriculture by maintaining agricultural production and reducing the use of pesticides.
Collapse
Affiliation(s)
- Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Zhengyan Pan
- Liaoning Rice Research Institute, Shenyang110101, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing100193, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
30
|
Saji S, Saji H, Sage-Ono K, Ono M, Nakajima N, Aono M. Phytocyanin-encoding genes confer enhanced ozone tolerance in Arabidopsis thaliana. Sci Rep 2022; 12:21204. [PMID: 36550187 PMCID: PMC9780206 DOI: 10.1038/s41598-022-25706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Ozone is a phytotoxic air pollutant that has various damaging effects on plants, including chlorosis and growth inhibition. Although various physiological and genetic studies have elucidated some of the mechanisms underlying plant ozone sensitivity and lesion development, our understanding of plant response to this gas remains incomplete. Here, we show evidence for the involvement of certain apoplastic proteins called phytocyanins, such as AtUC5, that protect against ozone damage. Two representative ozone-inducible responses, chlorosis and stomatal closure, were suppressed in AtUC5-overexpressing plants. Analysis of transgenic plants expressing a chimeric protein composed of AtUC5 fused to green fluorescent protein indicated that this fusion protein localises to the apoplast of plant cells where it appears to suppress early responses to ozone damage such as generation or signalling of reactive oxygen species. Moreover, yeast two-hybrid analyses suggest that AtUC5 may physically interact with stress-related proteins such as copper amine oxidase and late embryogenesis abundant protein-like protein. In addition to AtUC5, other examined phytocyanins such as AtUC6 and AtSC3 could confer ozone tolerance to plants when overexpressed in A. thaliana, suggesting that these proteins act together to protect plants against oxidative stress factors.
Collapse
Affiliation(s)
- Shoko Saji
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Hikaru Saji
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Kimiyo Sage-Ono
- grid.20515.330000 0001 2369 4728Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Michiyuki Ono
- grid.20515.330000 0001 2369 4728Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Nobuyoshi Nakajima
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Mitsuko Aono
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| |
Collapse
|
31
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC PLANT BIOLOGY 2022; 22:596. [PMID: 36536303 PMCID: PMC9762057 DOI: 10.1186/s12870-022-03953-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
32
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
33
|
Smith MA, Graether SP. The Effect of Positive Charge Distribution on the Cryoprotective Activity of Dehydrins. Biomolecules 2022; 12:1510. [PMID: 36291719 PMCID: PMC9599493 DOI: 10.3390/biom12101510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 07/25/2023] Open
Abstract
Dehydrins are intrinsically disordered proteins expressed ubiquitously throughout the plant kingdom in response to desiccation. Dehydrins have been found to have a cryoprotective effect on lactate dehydrogenase (LDH) in vitro, which is in large part influenced by their hydrodynamic radius rather than the order of the amino acids within the sequence (alternatively, this may be a sequence specific effect). However, it seems that a different mechanism may underpin the cryoprotection that they confer to the cold-labile yeast frataxin homolog-1 (Yfh1). Circular dichroism spectroscopy (CD) was used to assess the degree of helicity of Yfh1 at 1 °C, both alone and in the presence of several dehydrin constructs. Three constructs were compared to the wild type: YSK2-K→R (lysine residues substituted with arginine), YSK2-Neutral (locally neutralized charge), and YSK2-SpaceK (evenly distributed positive charge). The results show that sequence rearrangements and minor substitutions have little impact on the ability of the dehydrin to preserve LDH activity. However, when the positive charge of the dehydrin is locally neutralized or evenly distributed, the dehydrin becomes less efficient at promoting structure in Yfh1 at low temperatures. This suggests that a stabilizing, charge-based interaction occurs between dehydrins and Yfh1. Dehydrins are intrinsically disordered proteins, expressed by certain organisms to improve desiccation tolerance. These proteins are thought to serve many cellular roles, such as the stabilization of membranes, DNA, and proteins. However, the molecular mechanisms underlying the function of dehydrins are not well understood. Here, we examine the importance of positive charges in dehydrin sequences by making substitutions and comparing their effects in the cryoprotection of two different proteins.
Collapse
Affiliation(s)
- Margaret A. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Graduate Program in Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
34
|
Zhou M, Peng N, Yang C, Wang C. The Poplar ( Populus trichocarpa) Dehydrin Gene PtrDHN-3 Enhances Tolerance to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2700. [PMID: 36297724 PMCID: PMC9611832 DOI: 10.3390/plants11202700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dehydrin (DHN), a member of the late embryogenesis abundant protein (LEA) family, was recently found to play a role in physiological responses to salt and drought stress. In this study, we identified and cloned the PtrDHN-3 gene from Populus trichocarpa. The PtrDHN-3 protein encoded 226 amino acids, having a molecular weight of 25.78 KDa and an isoelectric point of 5.18. It was identified as a SKn-type DHN and was clustered with other resistance-related DHN proteins. Real-time fluorescent quantitative PCR showed that transcription levels of PtrDHN-3 were induced by mannitol stress, and more significantly by salt stress. Meanwhile, in a yeast transgenic assay, salt tolerance increased in the PtrDHN-3 transgenic yeast, while the germination rate, fresh weight and chlorophyll content increased in PtrDHN-3-overexpressing transgenic Arabidopsis plants (OE) under salt stress. Significant increases in expression levels of six antioxidant enzymes genes, and SOD and POD enzyme activity was also observed in the OE lines, resulting in a decrease in O2- and H2O2 accumulation. The proline content also increased significantly compared with the wild-type, along with expression of proline synthesis-related genes P5CS1 and P5CS2. These findings suggest that PtrDHN-3 plays an important role in salt resistance in plants.
Collapse
|
35
|
Wang G, Xu X, Gao Z, Liu T, Li Y, Hou X. Genome-wide identification of LEA gene family and cold response mechanism of BcLEA4-7 and BcLEA4-18 in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111291. [PMID: 35696933 DOI: 10.1016/j.plantsci.2022.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Cold stress is a key factor limiting the yield and quality of non-heading Chinese cabbage. The hydrophilic protective protein LEA plays an important role in plant abiotic stress. In this study, 72 BcLEAs were identified from non-heading Chinese cabbage and divided into 9 subfamilies by phylogenetic analysis. Gene structure analysis showed that BcLEAs were unevenly distributed on 10 chromosomes, with few introns. Through analyzing the expression of these genes under cold stress by RNA-seq and qRT-PCR, two genes (BcLEA4-7 and BcLEA4-18) highly sensitive to cold stress were identified, whose roles in cold tolerance of non-heading Chinese cabbage were demonstrated by virus-induced gene silencing. The BcLEA promoters were analyzed to study the cold response mechanism of BcLEA4-7 and BcLEA4-18, revealing that both BcLEA4-7 and BcLEA4-18 promoters contained two CRT/DRE elements. Subsequently, it was found that the promoters isolated from non-heading Chinese cabbage could be activated at low temperatures. Further analysis showed BcCBF2 in non-heading Chinese cabbage interacted with two CRT/DRE elements in BcLEA4-7 and BcLEA4-18 promoters to stimulate their activity, indicating that BcCBF2 is an upstream regulator. Meanwhile, the CRT/DRE element located in BcLEA4-7 promoter (-219 bp to -171 bp) and BcLEA4-18 promoter (-234 bp to -186 bp) was more likely to be activated by BcCBF2, which may be attributed to its flanking sequence. These data laid a foundation for further understanding the functional role and regulatory mechanism of BcLEAs in cold stress tolerance.
Collapse
Affiliation(s)
- Guangpeng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinfeng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China
| | - Zhanyuan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Raga-Carbajal E, Espin G, Ayala M, Rodríguez-Salazar J, Pardo-López L. Evaluation of a bacterial group 1 LEA protein as an enzyme protectant from stress-induced inactivation. Appl Microbiol Biotechnol 2022; 106:5551-5562. [PMID: 35906439 DOI: 10.1007/s00253-022-12080-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are hydrophilic proteins that lack a well-ordered tertiary structure and accumulate to high levels in response to water deficit, in organisms such as plants, fungi, and bacteria. The mechanisms proposed to protect cellular structures and enzymes are water replacement, ion sequestering, and membrane stabilization. The activity of some proteins has a limited shelf-life due to instability that can be caused by their structure or the presence of a stress condition that limits their activity; several LEA proteins have been shown to behave as cryoprotectants in vitro. Here, we report a group1 LEA from Azotobacter vinelandii AvLEA1, capable of conferring protection to lactate dehydrogenase, catechol dioxygenase, and Baylase peroxidase against freeze-thaw treatments, desiccation, and oxidative damage, making AvLEA a promising biological stabilizer reagent. This is the first evidence of protection provided by this LEA on enzymes with biotechnological potential, such as dioxygenase and peroxidase under in vitro stress conditions. Our results suggest that AvLEA could act as a molecular chaperone, or a "molecular shield," preventing either dissociation or antiaggregation, or as a radical scavenger, thus preventing damage to these target enzymes during induced stress. KEY POINTS: • This work expands the basic knowledge of the less-known bacterial LEA proteins and their in vitro protection potential. • AvLEA is a bacterial protein that confers in vitro protection to three enzymes with different characteristics and oligomeric arrangement. • The use of AvLEA as a stabilizer agent could be further explored using dioxygenase and peroxidase in bioremediation treatments. AvLEA1 protects against freeze-thaw treatments, desiccation, and oxidative damage on three different enzymes with biotechnological potential.
Collapse
Affiliation(s)
- Enrique Raga-Carbajal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Guadalupe Espin
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Julieta Rodríguez-Salazar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
37
|
Huang Z, Zhu P, Zhong X, Qiu J, Xu W, Song L. Transcriptome Analysis of Moso Bamboo ( Phyllostachys edulis) Reveals Candidate Genes Involved in Response to Dehydration and Cold Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:960302. [PMID: 35928710 PMCID: PMC9343960 DOI: 10.3389/fpls.2022.960302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bamboo (Bambusoideae) belongs to the grass family (Poaceae) and has been utilized as one of the most important nontimber forest resources in the world. Moso bamboo (Phyllostachys edulis) is a large woody bamboo with high ecological and economic values. Global climate change brings potential challenges to the normal growth of moso bamboo, and hence its production. Despite the release of moso bamboo genome sequence, the knowledge on genome-wide responses to abiotic stress is still limited. In this study, we generated a transcriptome data set with respect to dehydration and cold responses of moso bamboo using RNA-seq technology. The differentially expressed genes (DEGs) under treatments of dehydration and cold stresses were identified. By combining comprehensive gene ontology (GO) analysis, time-series analysis, and co-expression analysis, candidate genes involved in dehydration and cold responses were identified, which encode abscisic acid (ABA)/water deficit stress (WDS)-induced protein, late embryogenesis abundant (LEA) protein, 9-cis-epoxycarotenoid dioxygenase (NCED), anti-oxidation enzymes, transcription factors, etc. Additionally, we used PeLEA14, a dehydration-induced gene encoding an "atypical" LEA protein, as an example to validate the function of the identified stress-related gene in tolerance to abiotic stresses, such as drought and salt. In this study, we provided a valuable genomic resource for future excavation of key genes involved in abiotic stress responses and genetic improvement of moso bamboo to meet the requirement for environmental resilience and sustainable production.
Collapse
|
38
|
Li C, Duan C, Zhang H, Zhao Y, Meng Z, Zhao Y, Zhang Q. Adaptative Mechanisms of Halophytic Eutrema salsugineum Encountering Saline Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:909527. [PMID: 35837468 PMCID: PMC9274170 DOI: 10.3389/fpls.2022.909527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Salt cress (Eutrema salsugineum), an Arabidopsis-related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with Arabidopsis, salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress. We emphasize the latest advances in research on the genome adaptive evolution encountering saline environments, and epigenetic regulation, and discuss the mechanisms underlying salt tolerance in salt cress. Finally, we discuss the existing questions and opportunities for future research in halophytic Eutrema. Together, the review fosters a better understanding of the mechanism of plant salt tolerance and provides a reference for the research and utilization of Eutrema as a model extremophile in the future. Furthermore, the prospects for salt cress applied to explore the mechanism of salt tolerance provide a theoretical basis to develop new strategies for agricultural biotechnology.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research Team of Plant Pathogen Microbiology and Immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
39
|
Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid Polypedilum vanderplanki. INSECTS 2022; 13:557. [PMID: 35735894 PMCID: PMC9224920 DOI: 10.3390/insects13060557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review the biochemical and genomic evidence that has revealed the protectant molecules, repair systems, and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species. Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Advanced Biosciences, Keio University, 341-1 Mizukami, Tsuruoka 997-0052, Japan
| |
Collapse
|
40
|
Habib I, Shahzad K, Rauf M, Ahmad M, Alsamadany H, Fahad S, Saeed NA. Dehydrin responsive HVA1 driven inducible gene expression enhanced salt and drought tolerance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:124-133. [PMID: 35427995 DOI: 10.1016/j.plaphy.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 05/27/2023]
Abstract
Heterologous expression of plant genes is becoming an important strategy for the improvement of specific traits in existing cultivars. This study presents the response of a salt-sensitive high-yielding wheat variety under stress-inducible expression of barley HVA1 gene belonging to the Late embryogenesis abundance (LEA) gene family. Six homozygous transgenic wheat plants were developed and advanced for testing under various water regimes and salt stress conditions. Putative transgenic plants showed better germination and root shoot development at the early developmental stages under drought stress conditions. Moreover, transgenic plants illustrated higher values of physiological features as compared to non-transgenic plants under both drought and salinity stresses that indicate improved physiological processes in transgenic plants. Higher membrane stability index (MSI) and lower electrolyte leakage (EL) after exposure to abiotic stresses reveal improved cellular membrane stability (CMS) and reduced injury to chloroplast membrane. Interestingly, under salinity stress, transgenic wheat plants showed preference towards higher K+ accumulation in the shoot, which is not a well-understood HVA1 mediated Na + avoidance mechanism under excessive subsurface salts. The predisposition of K+/Na + under salt stress conditions on heterologous expression of the HVA1 gene in wheat needs to be studied in detail in further studies.
Collapse
Affiliation(s)
- Imran Habib
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad Pakistan, P.O Box 577, Pakistan.
| | - Khurram Shahzad
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Rauf
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad Pakistan, P.O Box 577, Pakistan; Vegetable Research Station, Karor, District Layyah, Pakistan.
| | - Moddassir Ahmad
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad Pakistan, P.O Box 577, Pakistan
| | - Hameed Alsamadany
- Department of Biological Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia.
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou Hainan, 570228, China; Department of Agronomy, The University of Haripur, Haripur Khyber Pakhtunkhwa, Pakistan.
| | - Nasir Ahmad Saeed
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad Pakistan, P.O Box 577, Pakistan.
| |
Collapse
|
41
|
Neves RC, Møbjerg A, Kodama M, Ramos-Madrigal J, Gilbert MTP, Møbjerg N. Differential expression profiling of heat stressed tardigrades reveals major shift in the transcriptome. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111169. [PMID: 35182765 DOI: 10.1016/j.cbpa.2022.111169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Tardigrades are renowned for their extreme stress tolerance, which includes the ability to endure complete desiccation, high levels of radiation and very low sub-zero temperatures. Nevertheless, tardigrades appear to be vulnerable to high temperatures and thus the potential effects of global warming. Here, we provide the first analysis of transcriptome data obtained from heat stressed specimens of the eutardigrade Ramazzottius varieornatus, with the aim of providing new insights into the molecular processes affected by high temperatures. Specifically, we compare RNA-seq datasets obtained from active, heat-exposed (35 °C) tardigrades to that of active controls kept at 5 °C. Our data reveal a surprising shift in transcription, involving 9634 differentially expressed transcripts, corresponding to >35% of the transcriptome. The latter data are in striking contrast to the hitherto observed constitutive expression underlying tardigrade extreme stress tolerance and entrance into the latent state of life, known as cryptobiosis. Thus, when examining the molecular response, heat-stress appears to be more stressful for R. varieornatus than extreme conditions, such as desiccation or freezing. A gene ontology analysis reveals that the heat stress response involves a change in transcription and presumably translation, including an adjustment of metabolism, and, putatively, preparation for encystment and subsequent diapause. Among the differentially expressed transcripts we find heat-shock proteins as well as the eutardigrade specific proteins (CAHS, SAHS, MAHS, RvLEAM, and Dsup). The latter proteins thus seem to contribute to a general stress response, and may not be directly related to cryptobiosis.
Collapse
Affiliation(s)
| | - Ask Møbjerg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Bacterial hydrophilins promote pathogen desiccation tolerance. Cell Host Microbe 2022; 30:975-987.e7. [PMID: 35413266 DOI: 10.1016/j.chom.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Acinetobacter baumannii is a leading cause of hospital-acquired infections, where outbreaks are driven by its ability to persist on surfaces in a desiccated state. Here, we show that A. baumannii causes more virulent pneumonia following desiccation and profile the genetic requirements for desiccation. We find that desiccation tolerance is enhanced upon the disruption of Lon protease, which targets unfolded and aggregated proteins for degradation. Notably, two bacterial hydrophilins, DtpA and DtpB, are transcriptionally upregulated in Δlon via the two-component regulator, BfmR. These proteins, both hydrophilic and intrinsically disordered, promote desiccation tolerance in A. baumannii. Additionally, recombinant DtpA protects purified enzymes from inactivation and improves the desiccation tolerance of a probiotic bacterium when heterologously expressed. These results demonstrate a connection between environmental persistence and pathogenicity in A. baumannii, provide insight into the mechanisms of extreme desiccation tolerance, and reveal potential applications for bacterial hydrophilins in the preservation of protein- and live bacteria-based pharmaceuticals.
Collapse
|
43
|
Functional and Conformational Plasticity of an Animal Group 1 LEA Protein. Biomolecules 2022; 12:biom12030425. [PMID: 35327618 PMCID: PMC8946055 DOI: 10.3390/biom12030425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Group 1 (Dur-19, PF00477, LEA_5) Late Embryogenesis Abundant (LEA) proteins are present in organisms from all three domains of life, Archaea, Bacteria, and Eukarya. Surprisingly, Artemia is the only genus known to include animals that express group 1 LEA proteins in their desiccation-tolerant life-history stages. Bioinformatics analysis of circular dichroism data indicates that the group 1 LEA protein AfLEA1 is surprisingly ordered in the hydrated state and undergoes during desiccation one of the most pronounced disorder-to-order transitions described for LEA proteins from A. franciscana. The secondary structure in the hydrated state is dominated by random coils (42%) and β-sheets (35%) but converts to predominately α-helices (85%) when desiccated. Interestingly, AfLEA1 interacts with other proteins and nucleic acids, and RNA promotes liquid–liquid phase separation (LLPS) of the protein from the solvent during dehydration in vitro. Furthermore, AfLEA1 protects the enzyme lactate dehydrogenase (LDH) during desiccation but does not aid in restoring LDH activity after desiccation-induced inactivation. Ectopically expressed in D. melanogaster Kc167 cells, AfLEA1 localizes predominantly to the cytosol and increases the cytosolic viscosity during desiccation compared to untransfected control cells. Furthermore, the protein formed small biomolecular condensates in the cytoplasm of about 38% of Kc167 cells. These findings provide additional evidence for the hypothesis that the formation of biomolecular condensates to promote water stress tolerance during anhydrobiosis may be a shared feature across several groups of LEA proteins that display LLPS behaviors.
Collapse
|
44
|
Riyazuddin R, Nisha N, Singh K, Verma R, Gupta R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. PLANT CELL REPORTS 2022; 41:519-533. [PMID: 34057589 DOI: 10.1007/s00299-021-02720-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Drought stress-induced crop loss has been considerably increased in recent years because of global warming and changing rainfall pattern. Natural drought-tolerant plants entail the recruitment of a variety of metabolites and low molecular weight proteins to negate the detrimental effects of drought stress. Dehydrin (DHN) proteins are one such class of proteins that accumulate in plants during drought and associated stress conditions. These proteins are highly hydrophilic and perform multifaceted roles in the protection of plant cells during drought stress conditions. Evidence gathered over the years suggests that DHN proteins impart drought stress tolerance by enhancing the water retention capacity, elevating chlorophyll content, maintaining photosynthetic machinery, activating ROS detoxification, and promoting the accumulation of compatible solutes, among others. Overexpression studies have indicated that these proteins can be effectively targeted to mitigate the negative effects of drought stress and for the development of drought stress-tolerant crops to feed the ever-growing population in the near future. In this review, we describe the mechanism of DHNs mediated drought stress tolerance in plants and their interaction with several phytohormones to provide an in-depth understanding of DHNs function.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Sciences, Szent István University, Gödöllő, Hungary
| | - Kalpita Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Radhika Verma
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
45
|
Kalemba EM, Valot B, Job D, Bailly C, Meimoun P. Are Methionine Sulfoxide-Containing Proteins Related to Seed Longevity? A Case Study of Arabidopsisthaliana Dry Mature Seeds Using Cyanogen Bromide Attack and Two-Dimensional-Diagonal Electrophoresis. PLANTS (BASEL, SWITZERLAND) 2022; 11:569. [PMID: 35214905 PMCID: PMC8875303 DOI: 10.3390/plants11040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In recent years, several reports pointed out the role of protein oxidation in seed longevity, notably regarding the oxidation of methionine (Met) residues to methionine sulfoxide (MetO) in proteins. To further consider this question, we present a handy proteomic method based on the use of two-dimensional diagonal electrophoresis (2Dd) and cyanogen bromide (CNBr) cleavage, which we refer to as 2Dd-CNBr. CNBr treatment of proteins causes the non-enzymatic hydrolysis of peptide bonds on the carboxyl side of reduced Met residues. However, Met oxidation causes a lack of cleavage, thus modifying the electrophoretic mobility of CNBr-induced peptides. This approach was first validated using bovine serum albumin as a model protein, which confirmed the possibility of distinguishing between oxidized and non-oxidized forms of Met-containing peptides in gels. Then, the 2Dd-CNBr method was applied to the Arabidopsis thaliana seed protein extract in a control (non-oxidized) condition and in an oxidized one (as obtained following hypochlorous acid treatment). Twenty-four oxidized Met residues in 19 proteins identified by mass spectrometry were found to be surface exposed in these proteins. In the three-dimensional environment of the oxidized Met, we detected amino acid residues that could be converted by oxidation (carbonylation) or by phosphorylation, suggesting a possible interplay between Met oxidation and the other protein modifications. The identification of the proteins oxidatively modified in Met residues revealed the finding that MetO-containing proteins are related to seed longevity. Based on these results, we suggest that the method presently described also has the potential for wider applications.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Benoît Valot
- PAPPSO, INRA, CNRS, AgroParisTech, Université Paris-Saclay, GQE-Le Moulon, 91190 Gif-sur-Yvette, France;
- UMR CNRS 6249 Chrono-Environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Dominique Job
- UMR5240, CNRS, Université Claude Bernarnard Lyon 1, INSA, Bayer CropScience, 69622 Lyon, France;
| | - Christophe Bailly
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Patrice Meimoun
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| |
Collapse
|
46
|
Smith MA, Graether SP. The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective. Biomolecules 2022; 12:biom12020294. [PMID: 35204794 PMCID: PMC8961592 DOI: 10.3390/biom12020294] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Dehydrins are intrinsically disordered proteins composed of several well conserved sequence motifs known as the Y-, S-, F-, and K-segments, the latter of which is a defining feature of all dehydrins. These segments are interspersed by regions of low sequence conservation and are organized modularly, which results in seven different architectures: Kn, SKn, YnSKn, YnKn, KnS, FnK and FnSKn. Dehydrins are expressed ubiquitously throughout the plant kingdom during periods of low intracellular water content, and are capable of improving desiccation tolerance in plants. In vitro evidence of dehydrins shows that they are involved in the protection of membranes, proteins and DNA from abiotic stresses. However, the molecular mechanisms by which these actions are achieved are as of yet somewhat unclear. With regards to macromolecule cryoprotection, there is evidence to suggest that a molecular shield-like protective effect is primarily influenced by the hydrodynamic radius of the dehydrin and to a lesser extent by the charge and hydrophobicity. The interaction between dehydrins and membranes is thought to be a surface-level, charge-based interaction that may help to lower the transition temperature, allowing membranes to maintain fluidity at low temperatures and preventing membrane fusion. In addition, dehydrins are able to protect DNA from damage, showing that these abiotic stress protection proteins have multiple roles.
Collapse
Affiliation(s)
- Margaret A. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology and Graduate Program in Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
47
|
Li L, Zhou X, Chen Z, Cao Y, Zhao G. The group 3 LEA protein of Artemia franciscana for cryopreservation. Cryobiology 2022; 106:1-12. [DOI: 10.1016/j.cryobiol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
|
48
|
Crilly CJ, Brom JA, Warmuth O, Esterly HJ, Pielak GJ. Protection by desiccation-tolerance proteins probed at the residue level. Protein Sci 2022; 31:396-406. [PMID: 34766407 PMCID: PMC8819849 DOI: 10.1002/pro.4231] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Extremotolerant organisms from all domains of life produce protective intrinsically disordered proteins (IDPs) in response to desiccation stress. In vitro, many of these IDPs protect enzymes from dehydration stress better than U.S. Food and Drug Administration-approved excipients. However, as with most excipients, their protective mechanism is poorly understood. Here, we apply thermogravimetric analysis, differential scanning calorimetry, and liquid-observed vapor exchange (LOVE) NMR to study the protection of two model globular proteins (the B1 domain of staphylococcal protein G [GB1] and chymotrypsin inhibitor 2 [CI2]) by two desiccation-tolerance proteins (CAHS D from tardigrades and PvLEA4 from an anhydrobiotic midge), as well as by disordered and globular protein controls. We find that all protein samples retain similar amounts of water and possess similar glass transition temperatures, suggesting that neither enhanced water retention nor vitrification is responsible for protection. LOVE NMR reveals that IDPs protect against dehydration-induced unfolding better than the globular protein control, generally protect the same regions of GB1 and CI2, and protect GB1 better than CI2. These observations suggest that electrostatic interactions, charge patterning, and expanded conformations are key to protection. Further application of LOVE NMR to additional client proteins and protectants will deepen our understanding of dehydration protection, enabling the streamlined production of dehydrated proteins for expanded use in the medical, biotechnology, and chemical industries.
Collapse
Affiliation(s)
- Candice J. Crilly
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Julia A. Brom
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Owen Warmuth
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Harrison J. Esterly
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Gary J. Pielak
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA,Department of Biochemistry & BiophysicsUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA,Lineberger Cancer CenterUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA,Integrative Program for Biological and Genome SciencesUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| |
Collapse
|
49
|
Zečić A, Dhondt I, Braeckman BP. Accumulation of Glycogen and Upregulation of LEA-1 in C. elegans daf-2(e1370) Support Stress Resistance, Not Longevity. Cells 2022; 11:245. [PMID: 35053361 PMCID: PMC8773926 DOI: 10.3390/cells11020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.
Collapse
Affiliation(s)
| | | | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (A.Z.); (I.D.)
| |
Collapse
|
50
|
Hsiao AS. Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status. FRONTIERS IN PLANT SCIENCE 2022; 13:904446. [PMID: 35685011 PMCID: PMC9171514 DOI: 10.3389/fpls.2022.904446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 05/14/2023]
Affiliation(s)
- An-Shan Hsiao
- *Correspondence: An-Shan Hsiao ; orcid.org/0000-0002-2485-9034
| |
Collapse
|