1
|
Mendez-Victoriano G, Zhu Y, Middleton F, Massa PT, Ajulu K, Webster MJ, Weickert CS. Increased Parenchymal Macrophages are associated with decreased Tyrosine Hydroxylase mRNA levels in the Substantia Nigra of people with Schizophrenia and Bipolar Disorder. Psychiatry Res 2024; 340:116141. [PMID: 39153291 DOI: 10.1016/j.psychres.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.
Collapse
Affiliation(s)
- Gerardo Mendez-Victoriano
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Paul T Massa
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Kachikwulu Ajulu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia S Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Bengesser SA, Hohenberger H, Tropper B, Dalkner N, Birner A, Fellendorf FT, Platzer M, Rieger A, Maget A, Hamm C, Queissner R, Pilz R, Bauer K, Lenger M, Mörkl S, Wagner-Skacel J, Kapfhammer HP, Meier-Allard N, Stracke A, Holasek SJ, Murphy L, Reininghaus EZ. Gene expression analysis of MAOA and the clock gene ARNTL in individuals with bipolar disorder compared to healthy controls. World J Biol Psychiatry 2022; 23:287-294. [PMID: 34468263 DOI: 10.1080/15622975.2021.1973816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Circadian rhythms are associated with bipolar disorder (BD). This cross-sectional study aimed at investigating ARNTL and MAOA gene expression differences (1) between individuals with BD and controls, (2) between affective episodes, and (3) the relationship between ARNTL and MAOA expression. METHODS ARNTL and MAOA gene expression in peripheral mononuclear blood cells were analysed from fasting blood samples (BD n = 81, controls n = 54) with quantitative real-time PCR operating on TaqMan® assays (normalised to 18S RNA expression). ANCOVAs corrected for age, sex, body mass index, and medication was used to evaluate expression differences and correlation analyses for the relation between ARNTL and MAOA expression. RESULTS ARNTL gene expression differed between affective episodes (F(2,78) = 3.198, p = 0.047, Partial Eta2= 0.083), but not between BD and controls (n.s.). ARNTL and MAOA expression correlated positively in BD (r = 0.704, p < 0.001) and in controls (r = 0.932, p < 0.001). MAOA expression differed neither between BD and controls nor between affective episodes (n.s.). DISCUSSION Clock gene expression changes were observed in different affective states of BD. More precisely, ARNTL gene expression was significantly higher in euthymia than in depression. ARNTL and MAOA gene expression correlated significantly in BD and in controls, which emphasises the strong concatenation between circadian rhythms and neurotransmitter breakdown.
Collapse
Affiliation(s)
- S A Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - H Hohenberger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - B Tropper
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - N Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - A Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - F T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - M Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - A Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - A Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - C Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - R Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - R Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - K Bauer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - M Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - S Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - J Wagner-Skacel
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - H P Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - N Meier-Allard
- Otto Loewi Research Center, Chair of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - A Stracke
- Otto Loewi Research Center, Chair of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - S J Holasek
- Otto Loewi Research Center, Chair of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - L Murphy
- CAMH Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - E Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Charles EF, Lambert CG, Kerner B. Bipolar disorder and diabetes mellitus: evidence for disease-modifying effects and treatment implications. Int J Bipolar Disord 2016; 4:13. [PMID: 27389787 PMCID: PMC4936996 DOI: 10.1186/s40345-016-0054-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/18/2016] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Bipolar disorder refers to a group of chronic psychiatric disorders of mood and energy levels. While dramatic psychiatric symptoms dominate the acute phase of the diseases, the chronic course is often determined by an increasing burden of co-occurring medical conditions. High rates of diabetes mellitus in patients with bipolar disorder are particularly striking, yet unexplained. Treatment and lifestyle factors could play a significant role, and some studies also suggest shared pathophysiology and risk factors. OBJECTIVE In this systematic literature review, we explored data around the relationship between bipolar disorder and diabetes mellitus in recently published population-based cohort studies with special focus on the elderly. METHODS A systematic search in the PubMed database for the combined terms "bipolar disorder" AND "elderly" AND "diabetes" in papers published between January 2009 and December 2015 revealed 117 publications; 7 studies were large cohort studies, and therefore, were included in our review. RESULTS We found that age- and gender- adjusted risk for diabetes mellitus was increased in patients with bipolar disorder and vice versa (odds ratio range between 1.7 and 3.2). DISCUSSION Our results in large population-based cohort studies are consistent with the results of smaller studies and chart reviews. Even though it is likely that heterogeneous risk factors may play a role in diabetes mellitus and in bipolar disorder, growing evidence from cell culture experiments and animal studies suggests shared disease mechanisms. Furthermore, disease-modifying effects of bipolar disorder and diabetes mellitus on each other appear to be substantial, impacting both treatment response and outcomes. CONCLUSIONS The risk of diabetes mellitus in patients with bipolar disorder is increased. Our findings add to the growing literature on this topic. Increasing evidence for shared disease mechanisms suggests new disease models that could explain the results of our study. A better understanding of the complex relationship between bipolar disorder and diabetes mellitus could lead to novel therapeutic approaches and improved outcomes.
Collapse
Affiliation(s)
- Ellen F. Charles
- />David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| | - Christophe G. Lambert
- />Center for Global Health, Division of Translational Informatics, Department of Internal Medicine, University of New Mexico Health Sciences Center, University of New Mexico, MSC10 5550, Albuquerque, NM 87131 USA
| | - Berit Kerner
- />Semel Institute for Neuroscience and Human Behavior, University of California, 695 Charles E. Young Drive South, Box 951761, Los Angeles, CA 90095 USA
- />Fakultät für Gesundheit, Private Universität Witten/Herdecke, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| |
Collapse
|