1
|
Zhang H, Yan M, Li L, Jiang Z, Xiong Y, Wang Y, Akogwu CO, Tolulope OM, Zhou H, Sun Y, Wang H. Assembly and comparative analysis of the complete mitochondrial genome of red raspberry (Rubus idaeus L.) revealing repeat-mediated recombination and gene transfer. BMC PLANT BIOLOGY 2025; 25:85. [PMID: 39838290 PMCID: PMC11752677 DOI: 10.1186/s12870-024-05969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Red raspberry (Rubus idaeus L.) is a renowned fruit plant with significant medicinal value. Its nuclear genome and chloroplast genome (plastome) have been reported, while there is a lack of genetic information on its mitogenome. We sequenced and assembled the complete mitogenome of R. idaeus, and conducted a series of genetic investigations comparing it with the nuclear and chloroplast genomes, so as to better gain a comprehensive understanding of the species' genetic background. RESULTS The mitogenome is represented by one circular chromosome of 438,947 bp. Twenty-four core genes, nine variable genes, 26 tRNAs, and three rRNAs were annotated. A total of 52 SSRs and 38 tandem repeat sequences were identified. 533 pairs of dispersed repeats were detected, among which three pairs were found to have mediated the homologous recombination, resulting in one major conformation and seven minor conformations. Furthermore, 52 homologous sequences between the mitogenome and plastome were identified, including six complete protein-coding genes and 12 tRNA genes. We also detected 828 homologous fragments between the nuclear genome and mitogenome, including one trnM-CAU gene. CONCLUSIONS In this study, we presented the mitogenome of R. idaeus for the first time based on data obtained from Illumina and Oxford Nanopore sequencing platforms. Key characteristics of the mitogenome were examined, including its gene composition, repetitive elements, and homologous DNA fragments. Additionally, we identified multiple recombination events in the mitogenome mediated by repetitive sequences The high-quality and well-annotated mitogenome for the known fruit red raspberry will provide essential genetic information for species classification, evolution analysis, and even genetic improvement in Rubus in the future.
Collapse
Affiliation(s)
- Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Yan
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Lijuan Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Xiong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusheng Wang
- School of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Caleb Onoja Akogwu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Olutayo Mary Tolulope
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Acharya K, Liu Z, Schachterle J, Kumari P, Manan F, Xu SS, Green AJ, Faris JD. Genetic mapping of QTLs for resistance to bacterial leaf streak in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:265. [PMID: 39532716 DOI: 10.1007/s00122-024-04767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Robust QTLs conferring resistance to bacterial leaf streak in wheat were mapped on chromosomes 3B and 5A from the variety Boost and on chromosome 7D from the synthetic wheat line W-7984. Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa poses a significant threat to global wheat production. High levels of BLS resistance are rare in hexaploid wheat. Here, we screened 101 diverse wheat genotypes under greenhouse conditions to identify new sources of BLS resistance. Five lines showed good levels of resistance including the wheat variety Boost and the synthetic hexaploid wheat line W-7984. Recombinant inbred populations derived from the cross of Boost × ND830 (BoostND population) and W-7984 × Opata 85 (ITMI population) were subsequently evaluated in greenhouse and field experiments to investigate the genetic basis of resistance. QTLs on chromosomes 3B, 5A, and 5B were identified in the BoostND population. The 3B and 5A QTLs were significant in all environments, but the 3B QTL was the strongest under greenhouse conditions explaining 38% of the phenotypic variation, and the 5A QTL was the most significant in the field explaining up to 29% of the variation. In the ITMI population, a QTL on chromosome 7D explained as much as 46% of the phenotypic variation in the greenhouse and 18% in the field. BLS severity in both populations was negatively correlated with days to heading, and some QTLs for these traits overlapped, which explained the tendency of later maturing lines to have relatively higher levels of BLS resistance. Markers associated with the QTLs were converted to KASP markers, which will aid in the deployment of the QTLs into elite lines for the development of BLS-resistant wheat varieties.
Collapse
Affiliation(s)
- Krishna Acharya
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58105, USA
| | - Jeffrey Schachterle
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84604, USA
| | - Pooja Kumari
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Fazal Manan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58105, USA
| | - Steven S Xu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew J Green
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105, USA.
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
3
|
Yang X, Cheng X, Wang G, Song S, Ding X, Xiong H, Wang C, Zhao J, Li T, Deng P, Liu X, Chen C, Ji W. Cytogenetic identification and molecular mapping for the wheat-Thinopyrum ponticum introgression line with resistance to Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:191. [PMID: 39046492 DOI: 10.1007/s00122-024-04686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Xinong 511, a new wheat-Thinopyrum ponticum variety with excellent fusarium head blight resistance, the QTLs were mapped to the wheat chromosomes 5B and 7A with named QFhb.nwafu-5B and QFhb.nwafu-7A, respectively. Novel Fusarium head blight (FHB) resistance germplasms and genes are valuable for wheat improvement and breeding efforts. Thinopyrum ponticum, a wild relative of common wheat, is a valuable germplasm of disease resistance for wheat improvement and breeding. Xinong 511 (XN511) is a high-quality wheat variety widely cultivated in the Yellow and Huai Rivers Valley of China with stable FHB-resistance. Through analysis of pedigree materials of the wheat cultivar XN511, we found that the genetic material and FHB resistance from Th. ponticum were transmitted to the introgression line, indicating that the FHB resistance in XN511 likely originates from Th. ponticum. To further explore the genetic basis of FHB resistance in XN511, QTL mapping was conducted using the RILs population of XN511 and the susceptible line Aikang 58 (AK58). Survey with makers closely-linked to Fhb1, Fhb2, Fhb4, Fhb5, and Fhb7, indicated that both XN511 and the susceptible lines do not contain these QTL. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed allele-specific PCR (AS-PCR) markers, QTLs in XN511 were successfully located on wheat chromosomes 5B and 7A. These findings are significant for further understanding and utilizing FHB resistance genes in wheat improvement.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaofang Cheng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Guangyi Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Siyuan Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xu Ding
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Changyou Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Tingdong Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Xinlun Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Chunhuan Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Wanquan Ji
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China.
| |
Collapse
|
4
|
Sharma D, Budhlakoti N, Kumari A, Saini DK, Sharma A, Yadav A, Mir RR, Singh AK, Vikas VK, Singh GP, Kumar S. Exploring the genetic architecture of powdery mildew resistance in wheat through QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386494. [PMID: 39022610 PMCID: PMC11251950 DOI: 10.3389/fpls.2024.1386494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.
Collapse
Affiliation(s)
- Divya Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Centre for Agriculture Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, Ludhiana, India
| | - Anshu Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aakash Yadav
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Reyazul Rouf Mir
- Department of Genetics and Plant Breeding , Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Amit Kumar Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V. K. Vikas
- Divison of Crop Improvement, ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, Tamilnadu, India
| | - Gyanendra Pratap Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
5
|
Jiang Y, Dong L, Li H, Liu Y, Wang X, Liu G. Genetic linkage map construction and QTL analysis for plant height in proso millet (Panicum miliaceum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:78. [PMID: 38466414 DOI: 10.1007/s00122-024-04576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE A genetic linkage map representing proso millet genome was constructed with SSR markers, and a major QTL corresponding to plant height was mapped on chromosome 14 of this map. Proso millet (Panicum miliaceum L.) has the lowest water requirements of all cultivated cereal crops. However, the lack of a genetic map and the paucity of genomic resources for this species have limited the utility of proso millet for detailed genetic studies and hampered genetic improvement programs. In this study, 97,317 simple sequence repeat (SSR) markers were developed based on the genome sequence of the proso millet landrace Longmi 4. Using some of these markers in conjunction with previously identified SSRs, an SSR-based linkage map for proso millet was successfully constructed using a large mapping population (316 F2 offspring). In total, 186 SSR markers were assigned to 18 linkage groups corresponding to the haploid chromosomes. The constructed map had a total length of 3033.42 centimorgan (cM) covering 78.17% of the assembled reference genome. The length of the 18 linkage groups ranged from 88.89 cM (Chr. 15) to 274.82 cM (Chr. 16), with an average size of 168.17 cM. To our knowledge, this is the first genetic linkage map for proso millet based on SSR markers. Plant height is one of the most important traits in crop improvement. A major QTL was repeatedly detected in different environments, explaining 8.70-24.50% of the plant height variations. A candidate gene affecting auxin biosynthesis and transport, and ROS homeostasis regulation was predicted. Thus, the linkage map and QTL analysis provided herein will promote the development of gene mining and molecular breeding in proso millet.
Collapse
Affiliation(s)
- Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Li Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Yanan Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Xindong Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
6
|
Sun N, Chen J, Wang Y, Hussain I, Lei N, Ma X, Li W, Liu K, Yu H, Zhao K, Zhao T, Zhang Y, Yu X. Development and utility of SSR markers based on Brassica sp. whole-genome in triangle of U. FRONTIERS IN PLANT SCIENCE 2024; 14:1259736. [PMID: 38259948 PMCID: PMC10801002 DOI: 10.3389/fpls.2023.1259736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
Introduction Simple sequence repeats (SSR), also known as microsatellites, are crucial molecular markers in both animals and plants. Despite extensive previous research on SSRs, the development of microsatellite markers in Brassica crops remains limited and inefficient. Methods Krait software was used to identify microsatellites by genome-wide and marker development based on three recently sequenced basic species of Brassica crops in the triangle of U (Brassica rapa, B. nigra and B. oleracea), as well as three allotetraploids (B. juncea, B. napus and B. carinata) using public databases. Subsequently, the primers and the characteristics of microsatellites for most of them were accordingly designed on each chromosome of each of the six Brassica species, and their physical locations were identified,and the cross-transferability of primers have been carried out. In addition, a B-genome specific SSR marker was screened out. Results A total of 79341, 92089, 125443, 173964, 173604, and 222160 SSR loci have been identified from the whole genome sequences of Brassica crops within the triangle of U crops, B. rapa (AA), B. nigra (BB), B. oleracea (CC), B. napus (AACC), B. juncea (AABB) and B. carinata (BBCC), respectively. Comparing the number distribution of the three allotetraploid SSR loci in the three subgenomes AA, BB and CC, results indicate that the allotetraploid species have significant reduction in the number of SSR loci in the genome compared with their basic diploid counterparts. Moreover, we compared the basic species with their corresponding varieties, and found that the microsatellite characters between the allotetraploids and their corresponding basic species were very similar or almost identical. Subsequently, each of the 40 SSR primers was employed to investigate the polymorphism potential of B. rapa (85.27%), B. nigra (81.33%) and B. oleracea (73.45%), and B. rapa was found to have a higher cross-transfer rate among the basic species in the triangle of U. Meanwhile, a B-genome specific SSR marker, BniSSR23228 possessing the (AAGGA)3 sequence characteristics was obtained, and it located in chromosome B3 with a total length of 97 bp. Discussion In this study, results suggest that the pattern of distribution may be highly conserved during the differentiation of basic Brassica species and their allotetraploid counterparts. Our data indicated that the allotetraploidization process resulted in a significant reduction in SSR loci in the three subgenomes AA, BB and CC. The reasons may be partial gene dominated chromosomal homologous recombination and rearrangement during the evolution of basic diploid species into allotetraploids. This study provides a basis for future genomics and genetic research on the relatedness of Brassica species.
Collapse
Affiliation(s)
- Nairan Sun
- Group of Vegetable Breeding, Hainan Institute of Zhejiang University, Sanya, China
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Jisuan Chen
- Department of Supply Chain, Ningbo Haitong Food Technology Co., Ltd., Ningbo, China
| | - Yuqi Wang
- Group of Vegetable Breeding, Hainan Institute of Zhejiang University, Sanya, China
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Iqbal Hussain
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Na Lei
- Section of Horticulture and Landscape Architecture, Harbin Academy of Agricultural Sciences, Harbin, China
| | - Xinyan Ma
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Weiqiang Li
- Group of Vegetable Breeding, Hainan Institute of Zhejiang University, Sanya, China
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Kaiwen Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Hongrui Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Kun Zhao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Tong Zhao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Yi Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Xiaolin Yu
- Group of Vegetable Breeding, Hainan Institute of Zhejiang University, Sanya, China
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| |
Collapse
|
7
|
Gogoi A, Munda S, Paw M, Begum T, Siddiqui MH, Gaafar ARZ, Kesawat MS, Lal M. Molecular genetic divergence analysis amongst high curcumin lines of Golden Crop (Curcuma longa L.) using SSR marker and use in trait-specific breeding. Sci Rep 2023; 13:19690. [PMID: 37952010 PMCID: PMC10640617 DOI: 10.1038/s41598-023-46779-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
Curcuma longa L., is recognized worldwide as a medicinally and economically important plant species due to its curcumin content which is an industrially important compound. In this study, a total of 329 accessions were collected from four states of India and planted in the experimental farm of CSIR-NEIST, Jorhat, India, in augmented design. Among these, 152 high curcumin (> 1.50%) accessions were screened for molecular divergence study using 39 SSR primers. The primers showed the most efficient outcome with 2-8 allele/ loci and a total 163 number of alleles with 100% polymorphism. Cluster analysis revealed the construction of three clusters, out of which one cluster was geographically dependent, and germplasm was particularly from Assam state. Jaccard's pairwise coefficient showed maximum genetic dissimilarity of (0.75) between accession RRLJCL 3 and RRLJCL 126, indicating high variation as it was from two different states viz Arunachal Pradesh and Nagaland respectively and minimum genetic dissimilarity of (0.09) between RRLJCL 58 and RRLJCL 59 indicating significantly less variation as the two accessions were from same state, i.e., Arunachal Pradesh. Analysis of Molecular Variance (AMOVA) revealed high molecular variation within the population (87%) and significantly less variation among the population (13%). Additionally, Neighbour Joining dendrogram, Principal Component Analysis (PCA), and bar plot structure revealed similar clustering of germplasm. This diversity assessment will help in selecting the trait-specific genotypes, crop improvement program, conservation of gene pool, marker-assisted breeding, and quantitative trait loci identification. Moreover, to the best of our knowledge, it is the first molecular diversity report among 152 high curcumin lines of C. longa from North East India using 39 SSR primers.
Collapse
Affiliation(s)
- Anindita Gogoi
- Academy of Scientific and Industrial Research, Ghaziabad, UP, 201002, India
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Sunita Munda
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Manabi Paw
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Twahira Begum
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahipal Singh Kesawat
- Institute for Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Mohan Lal
- Academy of Scientific and Industrial Research, Ghaziabad, UP, 201002, India.
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| |
Collapse
|
8
|
Liu S, He G, Xie G, Gong Y, Zhu N, Xiao C. De novo assembly of Iron-Heart Cunninghamia lanceolata transcriptome and EST-SSR marker development for genetic diversity analysis. PLoS One 2023; 18:e0293245. [PMID: 37917740 PMCID: PMC10621985 DOI: 10.1371/journal.pone.0293245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Iron-Heart Cunninghamia lanceolata, a wild relative of Chinese fir with valuable genetic and breeding traits, has been limited in genetic studies due to a lack of genomic resources and markers. In this study, we conducted transcriptome sequencing of Iron-Heart C. lanceolata leaves using Illumina NovaSeq 6000 and performed assembly and analysis. We obtained 45,326,576 clean reads and 115,501 unigenes. Comparative analysis in five functional databases resulted in successful annotation of 26,278 unigenes, with 6,693 unigenes annotated in all databases (5.79% of the total). UniProt and Pfam databases provided annotations for 22,673 and 18,315 unigenes, respectively. Gene Ontology analysis categorized 23,962 unigenes into three categories. KEGG database alignment annotated 10,195 unigenes, classifying them into five categories: metabolism, genetic information, biological systems, cellular processes, and environmental information processing. From the unigenes, we identified 5,645 SSRs, with dinucleotides repeats being the most common (41.47%). We observed variations in repeat numbers and base compositions, with the majority of markers ranging from 12 to 29 bp in length. We randomly selected 200 primer pairs and successfully amplified 15 pairs of polymorphic SSR primers, which effectively distinguished Chinese fir plants of different origins. This study provides insights into the genetic characteristics of Iron-Heart C. lanceolata and offers a foundation for future molecular marker development, breeding programs, genetic diversity analysis, and conservation strategies.
Collapse
Affiliation(s)
- Sen Liu
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Gongxiu He
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Gongliang Xie
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yamei Gong
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Ninghua Zhu
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha, China
- National Long-Term Scientific Research Base for Forestry in Mid-Subtropics China, Central South University of Forestry and Technology, Changsha, China
| | - Can Xiao
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
9
|
Kutlu I, Çelik S, Karaduman Y, Yorgancılar Ö. Phenotypic and genetic diversity of doubled haploid bread wheat population and molecular validation for spike characteristics, end-use quality, and biofortification capacity. PeerJ 2023; 11:e15485. [PMID: 37312880 PMCID: PMC10259445 DOI: 10.7717/peerj.15485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Increasing grain quality and nutritional value along with yield in bread wheat is one of the leading breeding goals. Selection of genotypes with desired traits using traditional breeding selection methods is very time-consuming and often not possible due to the interaction of environmental factors. By identifying DNA markers that can be used to identify genotypes with desired alleles, high-quality and bio-fortified bread wheat production can be achieved in a short time and cost-effectively. In the present study, 134 doubled haploid (DH) wheat lines and their four parents were phenotypically evaluated for yield components (spike characteristics), quality parameters, and grain Fe and Zn concentrations in two successive growing seasons. At the same time, ten genic simple sequence repeats (SSR) markers linked to genes related to the traits examined were validated and subsequently used for molecular characterization of trait-specific candidate genotypes. Significant genotypic variations were determined for all studied traits and many genotypes with desired phenotypic values were detected. The evaluation performed with 10 SSR markers revealed significant polymorphism between genotypes. The polymorphic information content (PIC) values of 10 markers ranged from 0.00 to 0.87. Six out of 10 SSRs could be more effective in representing the genotypic differentiation of the DH population as they demonstrated the highest genetic diversity. Both Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering and STRUCTURE analyses divided 138 wheat genotypes into five (K = 5) main groups. These analyzes were indicative of genetic variation due to hybridization and segregation in the DH population and the differentiation of the genotypes from their parents. Single marker regression analysis showed that both Xbarc61 and Xbarc146 had significant relationships with grain Fe and Zn concentrations, while Xbarc61 related to spike characteristics and Xbarc146 related to quality traits, separately. Other than these, Xgwm282 was associated with spike harvest index, SDS sedimentation value and Fe grain concentration, while Gwm445 was associated with spikelet number, grain number per spike and grain Fe concentration. These markers were validated for the studied DH population during the present study and they could be effectively used for marker-assisted selection to improve grain yield, quality, and bio-fortification capacity of bread wheat.
Collapse
Affiliation(s)
- Imren Kutlu
- Department of Field Crops, Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| | - Sadettin Çelik
- Department of Forestry, Genç Vocational School, Bingöl University, Bingöl, Turkey
| | - Yaşar Karaduman
- Department of Food Engineering, Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| | - Özcan Yorgancılar
- Department of Biotechnology, Transitional Zone Agricultural Research Institute, Eskişehir, Turkey
| |
Collapse
|
10
|
Kumar S, Saini DK, Jan F, Jan S, Tahir M, Djalovic I, Latkovic D, Khan MA, Kumar S, Vikas VK, Kumar U, Kumar S, Dhaka NS, Dhankher OP, Rustgi S, Mir RR. Comprehensive meta-QTL analysis for dissecting the genetic architecture of stripe rust resistance in bread wheat. BMC Genomics 2023; 24:259. [PMID: 37173660 PMCID: PMC10182688 DOI: 10.1186/s12864-023-09336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Farkhandah Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Mohd Tahir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V K Vikas
- ICAR-IARI, Regional Station, Wellington, 643 231, The Nilgiris, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology., CCS Haryana Agriculture University, Hisar, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, Molecular Cytogenetics Laboratory, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Narendra Singh Dhaka
- Department of Genetics and Plant Breeding, College of Agriculture, G. B. Pant, University of Agriculture & Technology, Pantnagar-263145, U. S. Nagar, Uttarakhand, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge Amherst, MA, 01003, USA
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, 2200 Pocket Road, Florence, SC, 29506, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India.
| |
Collapse
|
11
|
Zhang W, Yu Z, Wang D, Xiao L, Su F, Mu Y, Zheng J, Li L, Yin Y, Yu T, Jin Y, Ma P. Characterization and identification of the powdery mildew resistance gene in wheat breeding line ShiCG15-009. BMC PLANT BIOLOGY 2023; 23:113. [PMID: 36823576 PMCID: PMC9948530 DOI: 10.1186/s12870-023-04132-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious fungal disease that critically threatens the yield and quality of wheat. Utilization of host resistance is the most effective and economical method to control this disease. In our study, a wheat breeding line ShiCG15-009, released from Hebei Province, was highly resistant to powdery mildew at all stages. To dissect its genetic basis, ShiCG15-009 was crossed with the susceptible cultivar Yannong 21 to produce F1, F2 and F2:3 progenies. After genetic analysis, a single dominant gene, tentatively designated PmCG15-009, was proved to confer resistance to Bgt isolate E09. Further molecular markers analysis showed that PmCG15-009 was located on chromosome 2BL and flanked by markers XCINAU130 and XCINAU143 with the genetic distances 0.2 and 0.4 cM, respectively, corresponding to a physic interval of 705.14-723.48 Mb referred to the Chinese Spring reference genome sequence v2.1. PmCG15-009 was most likely a new gene differed from the documented Pm genes on chromosome 2BL since its different origin, genetic diversity, and physical position. To analyze and identify the candidate genes, six genes associated with disease resistance in the candidate interval were confirmed to be associated with PmCG15-009 via qRT-PCR analysis using the parents ShiCG15-009 and Yannong 21 and time-course analysis post-inoculation with Bgt isolate E09. To accelerate the transfer of PmCG15-009 using marker-assisted selection (MAS), 18 closely or co-segregated markers were evaluated and confirmed to be suitable for tracing PmCG15-009, when it was transferred into different wheat cultivars.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ziyang Yu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Dongmei Wang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Luning Xiao
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Fuyu Su
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanjun Mu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Jianpeng Zheng
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Yan Yin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Tianying Yu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Yuli Jin
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
12
|
Du B, Wu J, Islam MS, Sun C, Lu B, Wei P, Liu D, Chen C. Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat. PLoS One 2022; 17:e0276602. [PMID: 36279291 PMCID: PMC9591062 DOI: 10.1371/journal.pone.0276602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Flag leaf is an important organ for photosynthesis of wheat plants, and a key factor affecting wheat yield. In this study, quantitative trait loci (QTL) for flag leaf morphological traits in wheat reported since 2010 were collected to investigate the genetic mechanism of these traits. Integration of 304 QTLs from various mapping populations into a high-density consensus map composed of various types of molecular markers as well as QTL meta-analysis discovered 55 meta-QTLs (MQTL) controlling morphological traits of flag leaves, of which 10 MQTLs were confirmed by GWAS. Four high-confidence MQTLs (MQTL-1, MQTL-11, MQTL-13, and MQTL-52) were screened out from 55 MQTLs, with an average confidence interval of 0.82 cM and a physical distance of 9.4 Mb, according to the definition of hcMQTL. Ten wheat orthologs from rice (7) and Arabidopsis (3) that regulated leaf angle, development and morphogenesis traits were identified in the hcMQTL region using comparative genomics, and were speculated to be potential candidate genes regulating flag leaf morphological traits in wheat. The results from this study provides valuable information for fine mapping and molecular markers assisted selection to improve morphological characters in wheat flag leaf.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Peipei Wei
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
13
|
Christov NK, Tsonev S, Dragov R, Taneva K, Bozhanova V, Todorovska EG. Genetic diversity and population structure of modern Bulgarian and foreign durum wheat based on microsatellite and agronomic data. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Nikolai Kirilov Christov
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Stefan Tsonev
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Rangel Dragov
- Department of Durum Wheat Breeding, Field Crops Institute, Agricultural Academy, Chirpan, Bulgaria
| | - Krasimira Taneva
- Department of Durum Wheat Breeding, Field Crops Institute, Agricultural Academy, Chirpan, Bulgaria
| | - Violeta Bozhanova
- Department of Durum Wheat Breeding, Field Crops Institute, Agricultural Academy, Chirpan, Bulgaria
| | - Elena Georgieva Todorovska
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
14
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 PMCID: PMC9372038 DOI: 10.1038/s41598-022-18149-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
15
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 DOI: 10.1101/2022.06.24.497482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 05/20/2023] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
16
|
Jambuthenne DT, Riaz A, Athiyannan N, Alahmad S, Ng WL, Ziems L, Afanasenko O, Periyannan SK, Aitken E, Platz G, Godwin I, Voss-Fels KP, Dinglasan E, Hickey LT. Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1355-1373. [PMID: 35113190 PMCID: PMC9033734 DOI: 10.1007/s00122-022-04037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.
Collapse
Affiliation(s)
- Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Naveenkumar Athiyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Samir Alahmad
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Wei Ling Ng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Laura Ziems
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Olga Afanasenko
- Department of Plant Resistance To Diseases, All Russian Research Institute for Plant Protection, St Petersburg, Russia, 196608
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Elizabeth Aitken
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Ian Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
17
|
Identification and Validation of a Chromosome 4D Quantitative Trait Locus Hotspot Conferring Heat Tolerance in Common Wheat (Triticum aestivum L.). PLANTS 2022; 11:plants11060729. [PMID: 35336611 PMCID: PMC8949852 DOI: 10.3390/plants11060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022]
Abstract
Understanding of the genetic mechanism of heat tolerance (HT) can accelerate and improve wheat breeding in dealing with a warming climate. This study identified and validated quantitative trait loci (QTL) responsible for HT in common wheat. The International Triticeae Mapping Initiative (ITMI) population, recombinant inbreed lines (RILs) derived from a cross between Synthetic W7984 and Opata M85, was phenotyped for shoot length, root length, whole plant length under heat stress and corresponding damage indices (DIs) to compare HT performances of individuals. Wide variations among the RILs were shown for all the traits. A total of 13 QTL including 9 major QTL and 4 minor QTL were identified, distributed on 6 wheat chromosomes. The six major QTL with the highest R2 were associated with different traits under heat stress. They were all from Opata M85 background and located within a 2.2 cm interval on chromosome 4D, making up a QTL hotspot conferring HT in common wheat. The QTL hotspot was validated by genotyping-phenotyping association analysis using single-nucleotide-polymorphism (SNP) assays. The QTL, especially the 4D QTL hotspot identified and validated in this study, are valuable for the further fine mapping and identification of key genes and exploring genetic mechanism of HT in wheat.
Collapse
|
18
|
Munda S, Saikia RJ, Begum T, Bhandari S, Gogoi A, Sarma N, Tamang R, Lal M. Evaluation of Genetic Diversity Based on Microsatellites and Phytochemical Markers of Core Collection of Cymbopogon winterianus Jowitt Germplasm. PLANTS (BASEL, SWITZERLAND) 2022; 11:528. [PMID: 35214861 PMCID: PMC8878620 DOI: 10.3390/plants11040528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Cymbopogon winterianus Jowitt is an industrially important crop due to its value in the aromatic, perfumery and pharmaceutical industries. In this study, 72 accessions of C. winterianus were selected for molecular diversity analysis using SSR markers. It revealed a total of 65 polymorphic alleles showing an average of 68.10% polymorphism. The best SSR primer with competency in discriminating the germplasm was 3CM0506 with PIC (0.69), MI (0.69) and Rp (3.12). Genetic variation was studied between Assam, Manipur, Meghalaya and Arunachal Pradesh populations. A dendrogram based on the Neighbour-Joining Method showed clustering of germplasm on the collection site. A total of six relevant genetic populations were identified through a structure harvester software analysis. Moreover, a dendrogram based on similarity, complete linkage and Euclidean distance was also elucidated differentiating the genotypes with respect to the major phytochemical constituents of the essential oil. GC-FID and GC-MS analyses of the essential oil of the 72 germplasms revealed citronellal content from 2.58-51.45%, citronellol from 0.00-26.39% and geraniol from 0.00-41.15%. This is the first molecular diversity report with 72 accessions of C. winterianus collected from the NE region using 28 SSR primers as well as their diversity based on phytochemical markers. This diversity computation will help with acquisition of the knowledge and relationship among each individual accession leading to the development of improved and essential oil component-rich cultivars.
Collapse
Affiliation(s)
- Sunita Munda
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Raktim Jyoti Saikia
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
| | - Twahira Begum
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Sangeeta Bhandari
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
| | - Ankita Gogoi
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
| | - Neelav Sarma
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Raghu Tamang
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
| | - Mohan Lal
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; (S.M.); (R.J.S.); (T.B.); (S.B.); (A.G.); (N.S.); (R.T.)
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
19
|
Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers. J Genet 2022. [DOI: 10.1007/s12041-021-01346-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Feng Z, Song L, Song W, Qi Z, Yuan J, Li R, Han H, Wang H, Chen Z, Guo W, Xin M, Liu J, Hu Z, Peng H, Yao Y, Sun Q, Ni Z, Xing J. The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand‑grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3873-3894. [PMID: 34374829 DOI: 10.1007/s00122-021-03934-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 05/12/2023]
Abstract
This study demonstrated that the aberrant transcription of DvGW2 contributed to the increased grain width and thousand-grain weight in wheat-Dasypyrum villosum T6VS·6DL translocation lines. Due to the high immunity to powdery mildew, Dasypyrum villosum 6VS has been one of the most successful applications of the wild relatives in modern wheat breeding. Along with the desired traits, side-effects could be brought when large alien chromosome fragments are introduced into wheat, but little is known about effects of 6VS on agronomic traits. Here, we found that T6VS·6DL translocation had significantly positive effects on grain weight, plant heightand spike length, and small negative effects on total spikelet number and spikelet compactness using recipient and wheat-D. villosum T6VS·6DL allohexaploid wheats, Wan7107 and Pm97033. Further analysis showed that the 6VS segment might exert direct genetic effect on grain width, then driving the increase of thousand-grain weight. Furthermore, comparative transcriptome analysis identified 2549 and 1282 differentially expressed genes (DEGs) and 2220 and 1496 specifically expressed genes (SEGs) at 6 days after pollination (DAP) grains and 15 DAP endosperms, respectively. Enrichment analysis indicated that the process of cell proliferation category was over-represented in the DEGs. Notably, two homologous genes, TaGW2-D1 and DvGW2, were identified as putative candidate genes associated with grain weight and yield. The expression analysis showed that DvGW2 had an aberrant expression in Pm97033, resulting in significantly lower total expression level of GW2 than Wan7107, which drives the increase of grain weight and width in Pm97033. Collectively, our data indicated that the compromised expression of DvGW2 is critical for increased grain width and weight in T6VS·6DL translocation lines.
Collapse
Affiliation(s)
- Zhiyu Feng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Long Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wanjun Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongqi Qi
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jun Yuan
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Run Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haiming Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huifang Wang
- Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Characterization and Use in Wheat Breeding of Leaf Rust Resistance Genes from Durable Varieties. BIOLOGY 2021; 10:biology10111168. [PMID: 34827161 PMCID: PMC8615195 DOI: 10.3390/biology10111168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Wheat leaf rust is one of the most significant diseases worldwide, incited by a parasitic fungus which infects leaves, affecting grain yield. This pathogen is spread by the wind over large areas through microscopic spores. This huge number of spores favors the selection of virulent forms; therefore, there is a continuous need for new resistance genes to control this disease without fungicides. These resistant genes are naturally found in resistant wheat varieties and can be introduced by standard crosses. In this work, seven resistant genes were introduced into several commercial susceptible varieties. The selection of resistance genes was assisted by DNA markers that are close to these genes on the chromosome. Additionally, the selection of desirable traits from the commercial variety was also assisted by DNA markers to accelerate the process. In field testing, the varieties developed here were resistant to leaf rust, and suitable for commercial use. Abstract Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA. RILs (Recombinant Inbred Lines) were developed for each of these varieties and used in genetics studies to identify components of resistance, both in greenhouse inoculations using leaf rust races, and in field evaluations under natural population infections. In Buck Manantial, the APR gene LrBMP1 was associated with resistance in field tests. In crosses involving Sinvalocho MA, four genes were previously identified and associated with resistance in field testing: APR (Adult Plant Resistance) gene LrSV1, the APR genetic system LrSV2 + LrcSV2 and the ASR (All Stage Resistance) gene LrG6. Using backcrosses, LrBMP1 was introgressed in four commercial susceptible varieties and LrSV1, LrSV2 + LrcSV2 and LrG6 were simultaneously introgressed in three susceptible commercial varieties. The use of molecular markers for recurrent parent background selection allowed us to select resistant lines with more than 80% similarity to commercial varieties. Additionally, progress towards positional cloning of the genetic system LrSV2 + LrcSV2 for leaf rust APR is reported.
Collapse
|
22
|
Kaur P, Sachan S, Sharma A. Weed competitive ability in wheat: a peek through in its functional significance, present status and future prospects. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2165-2179. [PMID: 34744359 PMCID: PMC8526637 DOI: 10.1007/s12298-021-01079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Weed competitive ability of a crop is one of the most widely explored aspects in the current scenario of aftermaths of synthetic herbicides such as herbicide resistant weeds emergence, residue accumulation in trophic levels; increased demands of organic produce, global climatic shifts, and other environmental issues. Further weed infestations are known to cause much more economic losses relative to crop attacks by pests. To understand the basic characteristics and underlying processes governing the competitive ability of a crop is therefore prudent, particularly in staples such as wheat. We discuss here an overview of the existing attributes of wheat-weed environment, the significance of crop competitiveness and various associated above-ground and below-ground traits (pertaining to early seed vigor and early seedling germination) discerned through biological, classical genetics and high throughput omics toolbox to provide numerous resources in terms of genome and transcriptome sequences, potential QTLs, genetic variation, molecular markers, association mapping studies, and others. Competitiveness is a cumulative response manifested as morphological, physiological, biochemical or allelochemical response ultimately driven through genetic architecture of a crop and its interaction with environment. Development of wheat competitive cultivar thus requires interdisciplinary approaches and germplasm screening to identify potential donors for competitiveness is an attractive and feasible alternative. For which utilization of landraces and other wild species, already proven to house sufficient genetic heterogeneity, thus poses a competitive advantage. Further, the availability of novel breeding techniques such as rapid generation advance could speed up the development of competitive wheat ideotype.
Collapse
Affiliation(s)
- Parampreet Kaur
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shephali Sachan
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
23
|
Identification and Cloning of a CC-NBS-NBS-LRR Gene as a Candidate of Pm40 by Integrated Analysis of Both the Available Transcriptional Data and Published Linkage Mapping. Int J Mol Sci 2021; 22:ijms221910239. [PMID: 34638580 PMCID: PMC8508864 DOI: 10.3390/ijms221910239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Wheat powdery mildew, caused by the obligate parasite Blumeria graminis f. sp. tritici, severely reduces wheat yields. Identifying durable and effective genes against wheat powdery mildew and further transferring them into wheat cultivars is important for finally controlling this disease in wheat production. Pm40 has been widely used in wheat breeding programs in Southwest China due to the spectrum and potentially durable resistance to powdery mildew. In the present study, a resistance test demonstrated that Pm40 is still effective against the Bgt race E20. We identified and cloned the TraesCS7B01G164000 with a total length of 4883 bp, including three exons and two introns, and encoded a protein carrying the CC-NBS-NBS-LRR domain in the Pm40-linked region flanked by two EST markers, BF478514 and BF291338, by integrating analysis of gene annotation in wheat reference genome and both sequence and expression difference in available transcriptome data. Two missense mutations were detected at positions 68 and 83 in the CC domain. The results of both cosegregation linkage analysis and qRT-PCR also suggested that TraesCS7B01G164000 was a potential candidate gene of Pm40. This study allowed us to move toward the final successfully clone and apply Pm40 in wheat resistance improvement by gene engineering.
Collapse
|
24
|
Jung WJ, Lee YJ, Kang CS, Seo YW. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC PLANT BIOLOGY 2021; 21:418. [PMID: 34517837 PMCID: PMC8436466 DOI: 10.1186/s12870-021-03180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association (GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be suggested and also molecular markers can be developed. RESULTS We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading (DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP) values of the genotypic effect for each trait under different environments were predicted, and these were used for GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations (MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were significantly affected by the accumulation of favorable or unfavorable alleles. CONCLUSIONS From this study, newly identified MTA and putative agronomically useful genes will help to study molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can be used to develop wheats with superior agronomic traits.
Collapse
Affiliation(s)
- Woo Joo Jung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Yong Jin Lee
- Department of Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea.
- Department of Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
25
|
Aycan M, Baslam M, Asiloglu R, Mitsui T, Yildiz M. Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:314-327. [PMID: 34147724 DOI: 10.1016/j.plaphy.2021.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 05/24/2023]
Abstract
The loss of cropland soils, climate change, and population growth are directly affecting the food supply. Given the higher incidence of salinity and extreme events, the cereal performance and yield are substantially hampered. Wheat is forecast to decline over the coming years due to the salinization widespread as one of the oldest and most environmental severe constraints facing global cereal production. To increase salinity tolerance of wheat, in this study, we developed two new salt-tolerant bread wheats, named 'Maycan' and 'Yıldız'. The salinity tolerance of these lines, their parents, and a salt-sensitive cultivar has been tested from measurements of physiological, biochemical, and genes associated with osmotic adjustment/plant tolerance in cultures containing 0 and 150 mM NaCl at the seedling stage. Differential growth reductions to increased salinity were observed in the salt-sensitive cultivar, with those newly developed exhibiting significantly greater root length, growth of shoot and water content as salinity tolerances overall than their parents. 'Maycan' and 'Yıldız' had higher osmoregulator proline content and antioxidants enzyme activities under salinity than the other bread wheat tested. Notably, an important upregulation in the expression of genes related to cellular ion balance, osmolytes accumulation, and abscisic acid was observed in both new wheat germplasms, which may improve salt tolerance. These finding revealed that 'Maycan' and 'Yıldız' exhibit high-salt tolerance at the seedling stage and differing in their tolerance mechanisms to the other tested cultivars, thereby providing an opportunity for their exploitation as modern bread wheats.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Rasit Asiloglu
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Mustafa Yildiz
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara, Turkey.
| |
Collapse
|
26
|
Sharma JS, Overlander M, Faris JD, Klindworth DL, Rouse MN, Kang H, Long Y, Jin Y, Lagudah ES, Xu SS. Characterization of synthetic wheat line Largo for resistance to stem rust. G3 (BETHESDA, MD.) 2021; 11:6292116. [PMID: 34849816 PMCID: PMC8496286 DOI: 10.1093/g3journal/jkab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
Resistance breeding is an effective approach against wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The synthetic hexaploid wheat line Largo (pedigree: durum wheat “Langdon” × Aegilops tauschii PI 268210) was found to have resistance to a broad spectrum of Pgt races including the Ug99 race group. To identify the stem rust resistance (Sr) genes, we genotyped a population of 188 recombinant inbred lines developed from a cross between the susceptible wheat line ND495 and Largo using the wheat Infinium 90 K SNP iSelect array and evaluated the population for seedling resistance to the Pgt races TTKSK, TRTTF, and TTTTF in the greenhouse conditions. Based on genetic linkage analysis using the marker and rust data, we identified six quantitative trait loci (QTL) with effectiveness against different races. Three QTL on chromosome arms 6AL, 2BL, and 2BS corresponded to Sr genes Sr13c, Sr9e, and a likely new gene from Langdon, respectively. Two other QTL from PI 268210 on 2DS and 1DS were associated with a potentially new allele of Sr46 and a likely new Sr gene, respectively. In addition, Sr7a was identified as the underlying gene for the 4AL QTL from ND495. Knowledge of the Sr genes in Largo will help to design breeding experiments aimed to develop new stem rust-resistant wheat varieties. Largo and its derived lines are particularly useful for introducing two Ug99-effective genes Sr13c and Sr46 into modern bread wheat varieties. The 90 K SNP-based high-density map will be useful for identifying the other important genes in Largo.
Collapse
Affiliation(s)
- Jyoti Saini Sharma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Megan Overlander
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Justin D Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Daryl L Klindworth
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Houyang Kang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Triticeae Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Yunming Long
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yue Jin
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Evans S Lagudah
- Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Steven S Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| |
Collapse
|
27
|
Zhao D, Fan S, Zhang D, Pan Y, Gu Q, Wang J, Yang Z, Zhu J. Parasexual reproduction in Alternaria solani: Simple sequence repeat molecular evidence for haploidization. Mycologia 2021; 113:949-955. [PMID: 34125655 DOI: 10.1080/00275514.2021.1922243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple alleles were constantly detected in Alternaria solani isolates by simple sequence repeat (SSR) analysis, and sectors were also observed in their subcultures. These preliminary results and observations point to a possible parasexual cycle in A. solani. In this study, codominant SSR markers were used as molecular markers on the chromosomes of A. solani and single-conidium subculture was used to simulate the mitosis process of A. solani in nature. The number of alleles at locus As-95236 changed from 2 to 1 as a molecular marker for haploidy of parasexuality of A. solani. Fifty monosporic F1 strains were tested. The results showed that two parent strains lost allele with a haploid probability of 38%. For F2 strains, the results showed that all four F1 strains lost allele with a haploid probability of 75%. Since sexual recombination of A. solani has not been found so far, the allele lost in the subcultures of A. solani isolates provides molecular evidence for the existence of parasexual reproduction in A. solani.
Collapse
Affiliation(s)
- Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shasha Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Qing Gu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
28
|
Gill BK, Klindworth DL, Rouse MN, Zhang J, Zhang Q, Sharma JS, Chu C, Long Y, Chao S, Olivera PD, Friesen TL, Zhong S, Jin Y, Faris JD, Fiedler JD, Elias EM, Liu S, Cai X, Xu SS. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1674-1691. [PMID: 33825238 PMCID: PMC8362117 DOI: 10.1111/tpj.15263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/18/2021] [Indexed: 05/26/2023]
Abstract
The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The Sr13 functional gene CNL13 has haplotypes R1, R2 and R3. The R1/R3 and R2 haplotypes were originally designated as alleles Sr13a and Sr13b, respectively. To detect additional Sr13 alleles, we developed Kompetitive allele specific PCR (KASP™) marker KASPSr13 and four semi-thermal asymmetric reverse PCR markers, rwgsnp37-rwgsnp40, based on the CNL13 sequence. These markers were shown to detect R1, R2 and R3 haplotypes in a panel of diverse tetraploid wheat accessions. We also observed the presence of Sr13 in durum line CAT-A1, although it lacked any of the known haplotypes. Sequence analysis revealed that CNL13 of CAT-A1 differed from the susceptible haplotype S1 by a single nucleotide (C2200T) in the leucine-rich repeat region and differed from the other three R haplotypes by one or two additional nucleotides, confirming that CAT-A1 carries a new (R4) haplotype. Stem rust tests on the monogenic, transgenic and mutant lines showed that R1 differed from R3 in its susceptibility to races TCMJC and THTSC, whereas R4 differed from all other haplotypes for susceptibility to TTKSK, TPPKC and TCCJC. Based on these differences, we designate the R1, R3 and R4 haplotypes as alleles Sr13a, Sr13c and Sr13d, respectively. This study indicates that Sr13d may be the primitive functional allele originating from the S1 haplotype via a point mutation, with the other three R alleles probably being derived from Sr13d through one or two additional point mutations.
Collapse
Affiliation(s)
- Baljeet K. Gill
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Daryl L. Klindworth
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | | | - Jinglun Zhang
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Qijun Zhang
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Jyoti S. Sharma
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | | | - Yunming Long
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Shiaoman Chao
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Pablo D. Olivera
- Department of Plant PathologyUniversity of MinnesotaSt PaulMN55108USA
| | - Timothy L. Friesen
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Shaobin Zhong
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108USA
| | - Yue Jin
- USDA‐ARSCereal Disease LaboratorySt PaulMN55108USA
| | - Justin D. Faris
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Jason D. Fiedler
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Elias M. Elias
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Shuyu Liu
- Texas A&M AgriLife ResearchAmarilloTX79106USA
| | - Xiwen Cai
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Steven S. Xu
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| |
Collapse
|
29
|
Cui Y, Xing P, Qi X, Bao Y, Wang H, Wang RRC, Li X. Characterization of chromosome constitution in three wheat - Thinopyrum intermedium amphiploids revealed frequent rearrangement of alien and wheat chromosomes. BMC PLANT BIOLOGY 2021; 21:129. [PMID: 33663390 PMCID: PMC7931331 DOI: 10.1186/s12870-021-02896-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Thinopyrum intermedium (2n = 6x = 42) is an important wild perennial Triticeae species exhibiting many potentially favorable traits for wheat improvement. Wheat-Th. intermedium partial amphiploids serve as a bridge to transfer desirable genes from Th. intermedium into common wheat. RESULTS Three octoploid Trititrigia accessions (TE261-1, TE266-1, and TE346-1) with good resistances to stripe rust, powdery mildew and aphids were selected from hybrid progenies between Th. intermedium and the common wheat variety 'Yannong 15' (YN15). Genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and multicolor GISH (McGISH) analyses demonstrated that the three octoploid Trititrigia possess 42 wheat chromosomes and 14 Th. intermedium chromosomes. The 14 alien (Th. intermedium) chromosomes belong to a mixed genome consisting of J-, JS- and St-genome chromosomes rather than a single J, JS or St genome. Different types of chromosomal structural variation were also detected in the 1A, 6A, 6B, 2D and 7D chromosomes via FISH, McGISH and molecular marker analysis. The identity of the alien chromosomes and the variationes in the wheat chromosomes in the three Trititrigia octoploids were also different. CONCLUSIONS The wheat-Th. intermedium partial amphiploids possess 14 alien chromosomes which belong to a mixed genome consisting of J-, JS- and St- chromosomes, and 42 wheat chromosomes with different structural variations. These accessions could be used as genetic resources in wheat breeding for the transfer of disease and pest resistance genes from Th. intermedium to common wheat.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Piyi Xing
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Xiaolei Qi
- Tai'an Academy of Agricultural Science, Tai'an, 271000, China
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China
| | - Richard R-C Wang
- USDA-ARS Forage & Range Research Laboratory, Logan, UT, 84322-6300, USA
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
30
|
Identification and development of novel salt-responsive candidate gene based SSRs (cg-SSRs) and MIR gene based SSRs (mir-SSRs) in bread wheat (Triticum aestivum). Sci Rep 2021; 11:2210. [PMID: 33500485 PMCID: PMC7838269 DOI: 10.1038/s41598-021-81698-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/03/2020] [Indexed: 01/30/2023] Open
Abstract
Salt stress adversely affects the global wheat production and productivity. To improve salinity tolerance of crops, identification of robust molecular markers is highly imperative for development of salt-tolerant cultivars to mimic yield losses under saline conditions. In this study, we mined 171 salt-responsive genes (including 10 miRNAs) from bread wheat genome using the sequence information of functionally validated salt-responsive rice genes. Salt-stress, tissue and developmental stage-specific expression analysis of RNA-seq datasets revealed the constitutive as well as the inductive response of salt-responsive genes in different tissues of wheat. Fifty-four genotypes were phenotyped for salt stress tolerance. The stress tolerance index of the genotypes ranged from 0.30 to 3.18. In order to understand the genetic diversity, candidate gene based SSRs (cg-SSRs) and MIR gene based SSRs (miR-SSRs) were mined from 171 members of salt-responsive genes of wheat and validated among the contrasting panels of 54 tolerant as well as susceptible wheat genotypes. Among 53 SSR markers screened, 10 cg-SSRs and 8 miR-SSRs were found to be polymorphic. Polymorphic information content between the wheat genotypes ranged from 0.07 to 0.67, indicating the extant of wide genetic variation among the salt tolerant and susceptible genotypes at the DNA level. The genetic diversity analysis based on the allelic data grouped the wheat genotypes into three separate clusters of which single group encompassing most of the salt susceptible genotypes and two of them containing salt tolerance and moderately salt tolerance wheat genotypes were in congruence with penotypic data. Our study showed that both salt-responsive genes and miRNAs based SSRs were more diverse and can be effectively used for diversity analysis. This study reports the first extensive survey on genome-wide analysis, identification, development and validation of salt-responsive cg-SSRs and miR-SSRs in wheat. The information generated in the present study on genetic divergence among genotypes having a differential response to salt will help in the selection of suitable lines as parents for developing salt tolerant cultivars in wheat.
Collapse
|
31
|
Genome survey sequencing and genetic diversity of cultivated Akebia trifoliata assessed via phenotypes and SSR markers. Mol Biol Rep 2021; 48:241-250. [PMID: 33400074 DOI: 10.1007/s11033-020-06042-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
Akebia trifoliata (Lardizabalaceae) is an important medicinal plant with multiple pharmacological effects. However, the lack of genomic information had limited the further excavation and utilization of this plant. An initial survey of the genome A. trifoliata was performed by next-generation sequencing, and then the genome size was inferred by flow cytometry. The whole genome survey of A. trifoliata generated 61.90 Gb of sequence data with approximately 95.51 × coverage. The genome size, heterozygosity and GC content obtained by k-mer analysis were almost 648.07 Mb, 0.72% and 36.11%, respectively. The genome size calculated by flow cytometry was 685.77 Mb, which was consistent with the results of genome survey. A total of 851,957 simple sequence repeats (SSR) were identified in the A. trifoliata genome. Twenty-eight phenotypic traits and thirty pairs of SSR primers were selected for the analysis of the genetic diversity of 43 accessions of cultivated A. trifoliata. The results showed that 216 bands were generated by 30 pairs of SSR primers, of which 189 (87.5%) were polymorphic. In addition, the phenotypes and SSR markers were used for cluster analysis of 43 cultivated accessions. The results of the two clustering methods were partially consistent. The genome survey of A. trifoliata demonstrated that the genome size of this plant was about 648.07 Mb. In the present study, the size and characteristics of the genome of A. trifoliata were reported for the first time, which greatly enriched the genomic resources of A. trifoliata for the further research and utilization.
Collapse
|
32
|
Tsonev S, Christov NK, Mihova G, Dimitrova A, Todorovska EG. Genetic diversity and population structure of bread wheat varieties grown in Bulgaria based on microsatellite and phenotypic analyses. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1996274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Stefan Tsonev
- Department of Functional Genetics, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | | | - Gallina Mihova
- Department of Cereal and Legumes Breeding, Dobrudzha Agricultural Institute, Agricultural Academy, General Toshevo, Bulgaria
| | - Anna Dimitrova
- Department of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
33
|
Jiao Z, Zhu X, Li H, Liu Z, Huang X, Wu N, An J, Li J, Zhang J, Jiang Y, Li Q, Qi Z, Niu J. Cytological and molecular characterizations of a novel 2A nullisomic line derived from a widely-grown wheat cultivar Zhoumai 18 conferring male sterility. PeerJ 2020; 8:e10275. [PMID: 33194433 PMCID: PMC7605228 DOI: 10.7717/peerj.10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022] Open
Abstract
A dwarf, multi-pistil and male sterile dms mutant was previously reported by us. However, the genetic changes in this dms are unclear. To examine the genetic changes, single nucleotide polymorphism (SNP) association, chromosome counting, and high-resolution chromosome fluorescence in situ hybridization (FISH) techniques were employed. By comparing tall plants (T) with dwarf plants (D) in the offspring of dms mutant plants, SNP association analysis indicated that most SNPs were on chromosome 2A. There were three types in offspring of dms plants, with 42, 41 and 40 chromosomes respectively. High-resolution chromosome painting analysis demonstrated that T plants had all 42 wheat chromosomes; the medium plants (M) had 41 chromosomes, lacking one chromosome 2A; while D plants had 40 wheat chromosomes, and lacked both 2A chromosomes. These data demonstrated that dms resulted from a loss of chromosome 2A. We identified 23 genes on chromosome 2A which might be involved in the development of stamens or pollen grains. These results lay a solid foundation for further analysis of the molecular mechanisms of wheat male sterility. Because D plants can be used as a female parent to cross with other wheat genotypes, dms is a unique germplasm for any functional study of chromosome 2A and wheat breeding specifically targeting genes on 2A.
Collapse
Affiliation(s)
- Zhixin Jiao
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Xinxin Zhu
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Zhitao Liu
- Nanjing Agricultural University, State key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, Jiangsu, China.,Sichuan Academy of Agricultural Sciences, Crop Research Institue, Chengdu, Sichuan, China
| | - Xinyi Huang
- Nanjing Agricultural University, State key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, Jiangsu, China
| | - Nan Wu
- Nanjing Agricultural University, State key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, Jiangsu, China
| | - Junhang An
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Jing Zhang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Yumei Jiang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Qiaoyun Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Zengjun Qi
- Nanjing Agricultural University, State key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, Jiangsu, China
| | - Jishan Niu
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Song Q, Yan L, Quigley C, Fickus E, Wei H, Chen L, Dong F, Araya S, Liu J, Hyten D, Pantalone V, Nelson RL. Soybean BARCSoySNP6K: An assay for soybean genetics and breeding research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:800-811. [PMID: 32772442 PMCID: PMC7702105 DOI: 10.1111/tpj.14960] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/30/2020] [Indexed: 05/10/2023]
Abstract
The limited number of recombinant events in recombinant inbred lines suggests that for a biparental population with a limited number of recombinant inbred lines, it is unnecessary to genotype the lines with many markers. For genomic prediction and selection, previous studies have demonstrated that only 1000-2000 genome-wide common markers across all lines/accessions are needed to reach maximum efficiency of genomic prediction in populations. Evaluation of too many markers will not only increase the cost but also generate redundant information. We developed a soybean (Glycine max) assay, BARCSoySNP6K, containing 6000 markers, which were carefully chosen from the SoySNP50K assay based on their position in the soybean genome and haplotype block, polymorphism among accessions and genotyping quality. The assay includes 5000 single nucleotide polymorphisms (SNPs) from euchromatic and 1000 from heterochromatic regions. The percentage of SNPs with minor allele frequency >0.10 was 95% and 91% in the euchromatic and heterochromatic regions, respectively. Analysis of progeny from two large families genotyped with SoySNP50K versus BARCSoySNP6K showed that the position of the common markers and number of unique bins along linkage maps were consistent based on the SNPs genotyped with the two assays; however, the rate of redundant markers was dramatically reduced with the BARCSoySNP6K. The BARCSoySNP6K assay is proven as an excellent tool for detecting quantitative trait loci, genomic selection and assessing genetic relationships. The assay is commercialized by Illumina Inc. and being used by soybean breeders and geneticists and the list of SNPs in the assay is an ideal resource for SNP genotyping by targeted amplicon sequencing.
Collapse
Affiliation(s)
- Qijian Song
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Long Yan
- Shijiazhuang Branch Center of National Center for Soybean Improvement/the Key Laboratory of Crop Genetics and BreedingInstitute of Cereal and Oil CropsHebei Academy of Agricultural and Forestry SciencesShijiazhuangChina
| | - Charles Quigley
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Edward Fickus
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - He Wei
- Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouHenan ProvinceChina
| | - Linfeng Chen
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Faming Dong
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Susan Araya
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Jinlong Liu
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - David Hyten
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | - Randall L. Nelson
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit and Department of Crop SciencesUSDA‐ARSUniversity of IllinoisUrbanaILUSA
| |
Collapse
|
35
|
Zatybekov A, Anuarbek S, Abugalieva S, Turuspekov Y. Phenotypic and genetic variability of a tetraploid wheat collection grown in Kazakhstan. Vavilovskii Zhurnal Genet Selektsii 2020; 24:605-612. [PMID: 33659846 PMCID: PMC7716525 DOI: 10.18699/vj20.654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
New cultivars adapted to major durum wheat growing environments are essential for the cultivation of this crop. The development of new cultivars has required the availability of diverse genetic material and their extensive field trials. In this work, a collection of tetraploid wheat consisting of 85 accessions was tested in the field conditions of Almaty region during 2018 and 2019. The accessions were ranged according to nine agronomic traits studied, and accessions with the highest yield performance for Almaty region of Kazakhstan were revealed. The ANOVA suggested that the performance of agronomic traits were influenced both by Environment and Genotype. Also, the collection was analyzed using seven SSR (simple sequence repeats) markers. From 3 to 6 alleles per locus were revealed, with an average of 4.6, while the effective number of alleles was 2.8. Nei's genetic diversity was in the range of 0.45-0.69. The results showed high values of polymorphism index content (PIC) in the range of 0.46-0.70, with an average of 0.62, suggesting that 6 out of 7 SSRs were highly informative (PIC > 0.5). Phylogenetic analysis of the collection has allowed the separation of accessions into six clusters. The local accessions were presented in all six clusters with the majority of them grouped in the first three clusters designated as A, B, and C, respectively. The relations between SSR markers and agronomic traits in the collection were studied. The results can be efficiently used for the enhancement of local breeding projects for the improvement of yield productivity in durum wheat.
Collapse
Affiliation(s)
- A Zatybekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - S Anuarbek
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - S Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Y Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
36
|
Yu M, Chen H, Mao SL, Dong KM, Hou DB, Chen GY. Contribution of photosynthetic- and yield-related traits towards grain yield in wheat at the individual quantitative trait locus level. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1827979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Ma Yu
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hua Chen
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Shuang-Lin Mao
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- New Crop Variety Approval Office, Sichuan Seed Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, Sichuan, PR China
| | - Kai-Mi Dong
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Da-Bin Hou
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Guo-Yue Chen
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
37
|
Babu P, Baranwal DK, Harikrishna, Pal D, Bharti H, Joshi P, Thiyagarajan B, Gaikwad KB, Bhardwaj SC, Singh GP, Singh A. Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:567147. [PMID: 33013989 PMCID: PMC7516254 DOI: 10.3389/fpls.2020.567147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2023]
Abstract
Wheat is an important source of dietary protein and calories for the majority of the world's population. It is one of the largest grown cereal in the world occupying over 215 M ha. Wheat production globally is challenged by biotic stresses such as pests and diseases. Of the 50 diseases of wheat that are of economic importance, the three rust diseases are the most ubiquitous causing significant yield losses in the majority of wheat production environments. Under severe epidemics they can lead to food insecurity threats amid the continuous evolution of new races of the pathogens, shifts in population dynamics and their virulence patterns, thereby rendering several effective resistance genes deployed in wheat breeding programs vulnerable. This emphasizes the need to identify, characterize, and deploy effective rust-resistant genes from diverse sources into pre-breeding lines and future wheat varieties. The use of genetic resistance has been marked as eco-friendly and to curb the further evolution of rust pathogens. Deployment of multiple rust resistance genes including major and minor genes in wheat lines could enhance the durability of resistance thereby reducing pathogen evolution. Advances in next-generation sequencing (NGS) platforms and associated bioinformatics tools have revolutionized wheat genomics. The sequence alignment of the wheat genome is the most important landmark which will enable genomics to identify marker-trait associations, candidate genes and enhanced breeding values in genomic selection (GS) studies. High throughput genotyping platforms have demonstrated their role in the estimation of genetic diversity, construction of the high-density genetic maps, dissecting polygenic traits, and better understanding their interactions through GWAS (genome-wide association studies) and QTL mapping, and isolation of R genes. Application of breeder's friendly KASP assays in the wheat breeding program has expedited the identification and pyramiding of rust resistance alleles/genes in elite lines. The present review covers the evolutionary trends of the rust pathogen and contemporary wheat varieties, and how these research strategies galvanized to control the wheat killer genus Puccinia. It will also highlight the outcome and research impact of cost-effective NGS technologies and cloning of rust resistance genes amid the public availability of common and tetraploid wheat reference genomes.
Collapse
Affiliation(s)
- Prashanth Babu
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Harikrishna
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Dharam Pal
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Hemlata Bharti
- Directorate of Medicinal and Aromatic Plants Research (ICAR), Anand, India
| | - Priyanka Joshi
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | | | | | | | - Anupam Singh
- DCM SHRIRAM-Bioseed Research India, ICRISAT, Hyderabad, India
| |
Collapse
|
38
|
Gou X, Shi H, Yu S, Wang Z, Li C, Liu S, Ma J, Chen G, Liu T, Liu Y. SSRMMD: A Rapid and Accurate Algorithm for Mining SSR Feature Loci and Candidate Polymorphic SSRs Based on Assembled Sequences. Front Genet 2020; 11:706. [PMID: 32849772 PMCID: PMC7398111 DOI: 10.3389/fgene.2020.00706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Microsatellites or simple sequence repeats (SSRs) are short tandem repeats of DNA widespread in genomes and transcriptomes of diverse organisms and are used in various genetic studies. Few software programs that mine SSRs can be further used to mine polymorphic SSRs, and these programs have poor portability, have slow computational speed, are highly dependent on other programs, and have low marker development rates. In this study, we develop an algorithm named Simple Sequence Repeat Molecular Marker Developer (SSRMMD), which uses improved regular expressions to rapidly and exhaustively mine perfect SSR loci from any size of assembled sequence. To mine polymorphic SSRs, SSRMMD uses a novel three-stage method to assess the conservativeness of SSR flanking sequences and then uses the sliding window method to fragment each assembled sequence to assess its uniqueness. Furthermore, molecular biology assays support the polymorphic SSRs identified by SSRMMD. SSRMMD is implemented using the Perl programming language and can be downloaded from https://github.com/GouXiangJian/SSRMMD.
Collapse
Affiliation(s)
- Xiangjian Gou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.,Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shifan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Ya'an, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
39
|
Al-Ashkar I, Alotaibi M, Refay Y, Ghazy A, Zakri A, Al-Doss A. Selection criteria for high-yielding and early-flowering bread wheat hybrids under heat stress. PLoS One 2020; 15:e0236351. [PMID: 32785293 PMCID: PMC7423122 DOI: 10.1371/journal.pone.0236351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/04/2020] [Indexed: 01/09/2023] Open
Abstract
Hybrid performance during wheat breeding can be improved by analyzing genetic distance (GD) among wheat genotypes and determining its correlation with heterosis. This study evaluated the GD between 16 wheat genotypes by using 60 simple sequence repeat (SSR) markers to classify them according to their relationships and select those with greater genetic diversity, evaluate the correlation of the SSR marker distance with heterotic performance and specific combining ability (SCA) for heat stress tolerance, and identify traits that most influence grain yield (GY). Eight parental genotypes with greater genetic diversity and their 28 F1 hybrids generated using diallel crossing were evaluated for 12 measured traits in two seasons. The GD varied from 0.235 to 0.911 across the 16 genotypes. Cluster analysis based on the GD estimated using SSRs classified the genotypes into three major groups and six sub-groups, almost consistent with the results of principal coordinate analysis. The combined data indicated that five hybrids showed 20% greater yield than mid-parent or better-parent. Two hybrids (P2 × P4) and (P2 × P5), which showed the highest performance of days to heading (DH), grain filling duration (GFD), and GY, and had large genetic diversity among themselves (0.883 and 0.911, respectively), were deemed as promising heat-tolerant hybrids. They showed the best mid-parent heterosis and better-parent heterosis (BPH) for DH (-11.57 and -7.65%; -13.39 and -8.36%, respectively), GFD (12.74 and 12.17%; 12.09 and 10.59%, respectively), and GY (36.04 and 20.04%; 44.06 and 37.73%, respectively). Correlation between GD and each of BPH and SCA effects based on SSR markers was significantly positive for GFD, hundred kernel weight, number of kernels per spike, harvest index, GY, and grain filling rate and was significantly negative for DH. These correlations indicate that the performance of wheat hybrids with high GY and earliness could be predicted by determining the GD of the parents by using SSR markers. Multivariate analysis (stepwise regression and path coefficient) suggested that GFD, hundred kernel weight, days to maturity, and number of kernels per spike had the highest influence on GY.
Collapse
Affiliation(s)
- Ibrahim Al-Ashkar
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- * E-mail:
| | - Majed Alotaibi
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yahya Refay
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhalim Ghazy
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Adel Zakri
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Yu M, Liu ZH, Yang B, Chen H, Zhang H, Hou DB. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci Rep 2020; 10:12261. [PMID: 32703989 PMCID: PMC7378237 DOI: 10.1038/s41598-020-69138-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
Plant height is an important agronomic trait for morphogenesis and grain yield formation in wheat. In this study, we performed both normal and multivariate conditional quantitative trait locus (QTL) analyses for plant height with spike length, internode number, length of the first internode to the sixth internode from the top during harvest, and photosynthesis traits at the seedling stage and heading stage based on a recombinant inbred line population. A total of 49 normal QTLs were detected, as well as 312 conditional QTLs. The genetic region Xbcd1970-Xbcd262 on chromosome 2D harbored the most QTLs, with 6 normal QTLs and 39 conditional QTLs. A comparison between the normal and conditional QTL mapping analyses suggested that the length of the third internode, fourth internode, and fifth internode from the top showed a high genetic association with plant height, whereas all photosynthesis traits showed weaker associations. This comparative analysis could serve as a platform for dissecting the genetic relation between objective traits and other phenotypic traits before manipulation of genes collocated with QTL clusters.
Collapse
Affiliation(s)
- Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Ze-Hou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Bin Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Hua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Hong Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Da-Bin Hou
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
41
|
Faris JD, Overlander ME, Kariyawasam GK, Carter A, Xu SS, Liu Z. Identification of a major dominant gene for race-nonspecific tan spot resistance in wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:829-841. [PMID: 31863156 DOI: 10.1007/s00122-019-03509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A single dominant gene found in tetraploid and hexaploid wheat controls broad-spectrum race-nonspecific resistance to the foliar disease tan spot caused by Pyrenophora tritici-repentis. Tan spot is an important foliar disease of durum and common wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Genetic studies in common wheat have shown that pathogen-produced necrotrophic effectors interact with host genes in an inverse gene-for-gene manner to cause disease, but quantitative trait loci (QTLs) with broad race-nonspecific resistance also exist. Less work has been done to understand the genetics of tan spot interactions in durum wheat. Here, we evaluated a set of Langdon durum-wild emmer (Triticum turgidum ssp. dicoccoides) disomic chromosome substitution lines for reaction to four P. tritici-repentis isolates representing races 1, 2, 3, and 5 to identify wild emmer chromosomes potentially containing tan spot resistance genes. Chromosome 3B from the wild emmer accession IsraelA rendered the tan spot-susceptible durum cultivar Langdon resistant to all four fungal isolates. Genetic analysis indicated that a single dominant gene, designated Tsr7, governed resistance. Detailed mapping experiments showed that the Tsr7 locus is likely the same as the race-nonspecific QTL previously identified in the hexaploid wheat cultivars BR34 and Penawawa. Four user-friendly SNP-based semi-thermal asymmetric reverse PCR (STARP) markers cosegregated with Tsr7 and should be useful for marker-assisted selection of resistance. In addition to 3B, other wild emmer chromosomes contributed moderate levels of tan spot resistance, and, as has been shown previously for tetraploid wheat, the Tsn1-Ptr ToxA interaction was not associated with susceptibility. This is the first report of a major dominant gene governing resistance to tan spot in tetraploid wheat.
Collapse
Affiliation(s)
- Justin D Faris
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA.
| | - Megan E Overlander
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Steven S Xu
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA.
| |
Collapse
|
42
|
Ollier M, Talle V, Brisset AL, Le Bihan Z, Duerr S, Lemmens M, Goudemand E, Robert O, Hilbert JL, Buerstmayr H. QTL mapping and successful introgression of the spring wheat-derived QTL Fhb1 for Fusarium head blight resistance in three European triticale populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:457-477. [PMID: 31960090 PMCID: PMC6985197 DOI: 10.1007/s00122-019-03476-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/07/2019] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE The spring wheat-derived QTL Fhb1 was successfully introgressed into triticale and resulted in significantly improved FHB resistance in the three triticale mapping populations. Fusarium head blight (FHB) is a major problem in cereal production particularly because of mycotoxin contaminations. Here we characterized the resistance to FHB in triticale breeding material harboring resistance factors from bread wheat. A highly FHB-resistant experimental line which derives from a triticale × wheat cross was crossed to several modern triticale cultivars. Three populations of recombinant inbred lines were generated and evaluated in field experiments for FHB resistance using spray inoculations during four seasons and were genotyped with genotyping-by-sequencing and SSR markers. FHB severity was assessed in the field by visual scorings and on the harvested grain samples using digital picture analysis for quantifying the whitened kernel surface (WKS). Four QTLs with major effects on FHB resistance were identified, mapping to chromosomes 2B, 3B, 5R, and 7A. Those QTLs were detectable with both Fusarium severity traits. Measuring of WKS allows easy and fast grain symptom quantification and appears as an effective scoring tool for FHB resistance. The QTL on 3B collocated with Fhb1, and the QTL on 5R with the dwarfing gene Ddw1. This is the first report demonstrating the successful introgression of Fhb1 into triticale. It comprises a significant step forward for enhancing FHB resistance in this crop.
Collapse
Affiliation(s)
- Marine Ollier
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria.
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-Food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, 59655, Villeneuve d'Ascq, France.
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France.
- Bayer Crop Science, Le petit Boissay, Toury, France.
| | - Vincent Talle
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Anne-Laure Brisset
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Zoé Le Bihan
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Simon Duerr
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
- Saatzucht Donau GmbH & Co KG, Breeding Station, Reichersberg, Austria
| | - Marc Lemmens
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Ellen Goudemand
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - Olivier Robert
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - Jean-Louis Hilbert
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-Food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| |
Collapse
|
43
|
Zhu Y, Wang S, Wei W, Xie H, Liu K, Zhang C, Wu Z, Jiang H, Cao J, Zhao L, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2947-2963. [PMID: 31324930 DOI: 10.1007/s00122-019-03398-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 05/06/2023]
Abstract
Three major loci for pre-harvest sprouting tolerance (PHST) were mapped on chromosomes 1AL, 3BS, and 6BL, and two CAPS and one dCAPS markers were validated. Sixteen lines with favorable alleles and increased PHST were identified. Pre-harvest sprouting (PHS) significantly affects wheat grain yield and quality. In the present study, the PHS tolerance (PHST) of 192 wheat varieties (lines) was evaluated by assessment of field sprouting, seed germination index, and period of dormancy in different environments. A high-density Illumina iSelect 90K SNP array was used to genotype the panel. A genome-wide association study (GWAS) based on single- and multi-locus mixed linear models was used to detect loci for PHST. The single-locus model identified 23 loci for PHST (P < 0.0001) and explained 6.0-18.9% of the phenotypic variance. Twenty loci were consistent with known quantitative trait loci (QTLs). Three single-nucleotide polymorphism markers closely linked with three major loci (Qphs.ahau-1A, Qphs.ahau-3B, and Qphs.ahau-6B) on chromosomes 1AL, 3BS, and 6BL, respectively, were converted to two cleaved amplified polymorphic sequences (CAPS) and one derived-CAPS markers, and validated in 374 wheat varieties (lines). The CAPS marker EX06323 for Qphs.ahau-6B co-segregated with a novel major QTL underlying PHST in a recombinant inbred line population raised from the cross Jing 411 × Wanxianbaimaizi. Linear regression showed a clear dependence of PHST on the number of favorable alleles. Sixteen varieties showing an elevated degree of PHST were identified and harbored more than 16 favorable alleles. The multi-locus model detected 39 marker-trait associations for PHST (P < 0.0001), of which five may be novel. Six loci common to the two models were identified. The combination of the two GWAS methods contributes to efficient dissection of the complex genetic mechanism of PHST.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Shengxing Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Wenxin Wei
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hongyong Xie
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Kai Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Can Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Zengyun Wu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hao Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Liangxia Zhao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shihe Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| |
Collapse
|
44
|
Kyratzis AC, Nikoloudakis N, Katsiotis A. Genetic variability in landraces populations and the risk to lose genetic variation. The example of landrace 'Kyperounda' and its implications for ex situ conservation. PLoS One 2019; 14:e0224255. [PMID: 31661501 PMCID: PMC6818954 DOI: 10.1371/journal.pone.0224255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/09/2019] [Indexed: 11/19/2022] Open
Abstract
Genetic characterization enhances the development of rational conservation strategies and the utilization of germplasm to plant breeding programs. In the present study, 19 microsatellite markers were employed to evaluate the genetic diversity and the genetic affiliations across 20 Cypriot durum wheat (Triticum turgidum L. subsp. durum) landraces, 13 landraces from the broader Mediterranean basin and 22 modern varieties. Cluster analysis depicted a clear separation among modern varieties and landraces, regardless of their origin. Landraces presented the highest genetic variation (average discriminating power of 0.89) and a high number of private alleles (131) was detected; underlying the unique genetic mark-up of this genepool. AMOVA revealed that the highest variability was detected within the landraces originating from Cyprus and landraces from the broader Mediterranean basin. The Cypriot landrace 'Kyperounda' was selected for further evaluation of its' intra-genetic variation and it was determined that genetic diversity was higher in accessions conserved as sublines (He 0.643-0.731) than bulks (He 0.384-0.469). Bayesian analysis revealed substantial admixture within 'Kyperounda' accessions, depicted also by Principal Coordinate Analysis. The findings of the current manuscript emphasize that high intra-genetic diversity is retained when landraces are conserved as sublines in ex situ collections, while landraces that are conserved as bulks have a higher risk of bottleneck. Hence, a more exhausting diversity evaluation is needed in order to fully utilize landraces in breeding schemes and to prevent the loss of genetic variation.
Collapse
Affiliation(s)
- Angelos C. Kyratzis
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Katsiotis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
45
|
Physical information of 2705 PCR-based molecular markers and the evaluation of their potential use in wheat. J Genet 2019. [DOI: 10.1007/s12041-019-1114-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Fan C, Luo J, Zhang S, Liu M, Li Q, Li Y, Huang L, Chen X, Ning S, Yuan Z, Zhang L, Wang J, Zheng Y, Liu D, Hao M. Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2155-2166. [PMID: 31016346 DOI: 10.1007/s00122-019-03344-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Common wheat landrace Kaixian-luohanmai carries a gene(s) that promotes homoeologous chromosome pairing. A major QTL responsible for this effect was mapped to chromosome arm 3AL. Polyhaploid hybrids of a Chinese common wheat landrace Kaixian-luohanmai (KL) and related species show increased levels of chromosome pairing. Over 90% of that pairing is between homoeologous arms of wheat chromosomes, with a very strong preference for pairing between homoeologs from genomes A and D. Wheat-rye pairing was also observed at low frequency. Two mapping populations were created from the hybrids of KL with two wheat genotypes top crossed to rye. Mean chiasmata numbers per plant were used as phenotypic data. Wheat 660 K and 15 K SNP arrays, DArT markers and SSR markers were used for genotyping of the top-cross ABDR hybrids. One major QTL, named QPh.sicau-3A, for increased homoeologous pairing was detected on chromosome arm 3AL, and it was responsible for ca. 16% of the total variation. This QTL was located in the interval 696-725 Mb in the Chinese Spring reference genome. SNP markers closely linked with QPh.sicau-3A were converted to KASP markers and validated for marker-assisted selection.
Collapse
Affiliation(s)
- Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, 610066, Sichuan, China
| | - Shujie Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Meng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Yazhou Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Lei Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China.
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu Campus, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
47
|
Zhou X, Hu T, Li X, Yu M, Li Y, Yang S, Huang K, Han D, Kang Z. Genome-wide mapping of adult plant stripe rust resistance in wheat cultivar Toni. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1693-1704. [PMID: 30941466 DOI: 10.1007/s00122-019-03308-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/05/2019] [Indexed: 05/28/2023]
Abstract
Two adult plant stripe rust resistance QTL, QYrto.swust-3AS and QYrto.swust-3BS, were identified and mapped in common wheat cultivar Toni. The two QTL were located to corresponding positions in the wheat physical map position based on flanking SNP markers. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important foliar diseases of wheat. Characterization and utilization of resistance genes are the most effective, economic and environmental-friendly way to control the disease. The wheat cultivar Toni resistant at the adult plant stage to predominant Chinese Pst races was crossed with the susceptible genotype Mingxian 169. A recombinant inbred line population comprising 171 lines was tested in the field at three locations in the 2016 and 2017 crop seasons. The Affymetrix Axiom® 35 K single-nucleotide polymorphism (SNP) Wheat Breeder's Genotyping Array was used to map quantitative trait loci (QTL) for adult plant resistance to stripe rust. Inclusive composite interval mapping identified stable QTL QYrto.swust-3AS and QYrto.swust-3BS that explained 31.6-48.2% and 21.9-56.3% of the variation in stripe rust severity and infection type, respectively. The two QTL regions were anchored to the wheat IWGSC Ref Seq v1.0 sequence. QYrto.swust-3AS was localized to a 2.22-Mb interval flanked by SNP markers AX-95240191 and AX-94828890. Among 65 HC (high confidence) annotated genes in this region, 11 (16.9%) contained NB-ARC domains and 9 (13.8%) contained protein kinase domains and thus could contribute to disease resistance. QYrto.swust-3BS was localized to a 4.77-Mb interval flanked by SNP markers AX-94509749 and AX-94998050. One hundred and thirty three HC genes are annotated in this region. Among them, 14 (10.5%) protein kinase domain genes may contribute to disease resistance. The linked markers should be useful for marker-assisted selection in breeding for resistance.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Tian Hu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Ma Yu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Yuanyuan Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China.
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
48
|
Venske E, dos Santos RS, Busanello C, Gustafson P, Costa de Oliveira A. Bread wheat: a role model for plant domestication and breeding. Hereditas 2019; 156:16. [PMID: 31160891 PMCID: PMC6542105 DOI: 10.1186/s41065-019-0093-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bread wheat is one of the most important crops in the world. Its domestication coincides with the beginning of agriculture and since then, it has been constantly under selection by humans. Its breeding has followed millennia of cultivation, sometimes with unintended selection on adaptive traits, and later by applying intentional but empirical selective pressures. For more than one century, wheat breeding has been based on science, and has been constantly evolving due to on farm agronomy and breeding program improvements. The aim of this work is to briefly review wheat breeding, with emphasis on the current advances. DISCUSSION Improving yield potential, resistance/tolerance to biotic and abiotic stresses, and baking quality, have been priorities for breeding this cereal, however, new objectives are arising, such as biofortification enhancement. The narrow genetic diversity and complexity of its genome have hampered the breeding progress and the application of biotechnology. Old approaches, such as the introgression from relative species, mutagenesis, and hybrid breeding are strongly reappearing, motivated by an accumulation of knowledge and new technologies. A revolution has taken place regarding the use of molecular markers whereby thousands of plants can be routinely genotyped for thousands of loci. After 13 years, the wheat reference genome sequence and annotation has finally been completed, and is currently available to the scientific community. Transgenics, an unusual approach for wheat improvement, still represents a potential tool, however it is being replaced by gene editing, whose technology along with genomic selection, speed breeding, and high-throughput phenotyping make up the most recent frontiers for future wheat improvement. FINAL CONSIDERATION Agriculture and plant breeding are constantly evolving, wheat has played a major role in these processes and will continue through decades to come.
Collapse
Affiliation(s)
- Eduardo Venske
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| | - Railson Schreinert dos Santos
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| | - Carlos Busanello
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| | - Perry Gustafson
- Plant Sciences Division, 1–32 Agriculture, University of Missouri, Columbia, MO 65211 USA
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| |
Collapse
|
49
|
Desiderio F, Zarei L, Licciardello S, Cheghamirza K, Farshadfar E, Virzi N, Sciacca F, Bagnaresi P, Battaglia R, Guerra D, Palumbo M, Cattivelli L, Mazzucotelli E. Genomic Regions From an Iranian Landrace Increase Kernel Size in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:448. [PMID: 31057571 PMCID: PMC6482228 DOI: 10.3389/fpls.2019.00448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 05/27/2023]
Abstract
Kernel size and shape are important parameters determining the wheat profitability, being main determinants of yield and its technological quality. In this study, a segregating population of 118 recombinant inbred lines, derived from a cross between the Iranian durum landrace accession "Iran_249" and the Iranian durum cultivar "Zardak", was used to investigate durum wheat kernel morphology factors and their relationships with kernel weight, and to map the corresponding QTLs. A high density genetic map, based on wheat 90k iSelect Infinium SNP assay, comprising 6,195 markers, was developed and used to perform the QTL analysis for kernel length and width, traits related to kernel shape and weight, and heading date, using phenotypic data from three environments. Overall, a total of 31 different QTLs and 9 QTL interactions for kernel size, and 21 different QTLs and 5 QTL interactions for kernel shape were identified. The landrace Iran_249 contributed the allele with positive effect for most of the QTLs related to kernel length and kernel weight suggesting that the landrace might have considerable potential toward enhancing the existing gene pool for grain shape and size traits and for further yield improvement in wheat. The correlation among traits and co-localization of corresponding QTLs permitted to define 11 clusters suggesting causal relationships between simplest kernel size trait, like kernel length and width, and more complex secondary trait, like kernel shape and weight related traits. Lastly, the recent release of the T. durum reference genome sequence allowed to define the physical interval of our QTL/clusters and to hypothesize novel candidate genes inspecting the gene content of the genomic regions associated to target traits.
Collapse
Affiliation(s)
- Francesca Desiderio
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Leila Zarei
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran
| | - Stefania Licciardello
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | | | | | - Nino Virzi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | - Fabiola Sciacca
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Raffaella Battaglia
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Davide Guerra
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Massimo Palumbo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Acireale, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
50
|
Yao F, Zhang X, Ye X, Li J, Long L, Yu C, Li J, Wang Y, Wu Y, Wang J, Jiang Q, Li W, Ma J, Wei Y, Zheng Y, Chen G. Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genet 2019; 20:38. [PMID: 30914040 PMCID: PMC6434810 DOI: 10.1186/s12863-019-0736-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/03/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Stripe rust is a serious fungal disease of wheat (Triticum aestivum L.) caused by Puccinia striiformis f. sp. tritici (Pst), which results in yield reduction and decreased grain quality. Breeding for genetic resistance to stripe rust is the most cost-effective method to control the disease. In the present study, a genome-wide association study (GWAS) was conducted to identify markers linked to stripe rust resistance genes (or loci) in 93 Northern Chinese wheat landraces, using Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) molecular marker technology based on phenotypic data from two field locations over two growing seasons in China. RESULTS Seventeen accessions were verified to display stable and high levels of adult plant resistance (APR) to stripe rust via multi-environment field assessments. Significant correlations among environments and high heritability were observed for stripe rust infection type (IT) and disease severity (DS). Using mixed linear models (MLM) for the GWAS, a total of 32 significantly associated loci (P < 0.001) were detected. In combination with the linkage disequilibrium (LD) decay distance (6.4 cM), 25 quantitative trait loci (QTL) were identified. Based on the integrated map of previously reported genes and QTL, six QTL located on chromosomes 4A, 6A and 7D were mapped far from resistance regions identified previously, and represent potentially novel stripe rust resistance loci at the adult plant stage. CONCLUSIONS The present findings demonstrated that identification of genes or loci linked to significant markers in wheat by GWAS is feasible. Seventeen elite accessions conferred with stable and high resistance to stripe rust, and six putative newly detected APR loci were identified among the 93 Northern Chinese wheat landraces. The results illustrate the potential for acceleration of molecular breeding of wheat, and also provide novel sources of stripe rust resistance with potential utility in the breeding of improved wheat cultivars.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xuemei Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|